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Abstract
Water distribution systems are made up of interconnected components that should allow water systems to meet demand,

but leaks can waste enough water to limit supply. To limit financial losses, water utilities must quickly determine that a

leak is occurring and where it is referred to as the localization of the leak. Over the years, there have been various methods

proposed to detect and locate leaks. This literature review summarizes many of the methodologies introduced, categorizes

them into data-driven approaches and model-based methods, and reviews their performance. Data-driven approaches

demand efficient exploitation and use of available data from pressure and flow devices, and model-based methods require

finely calibrated hydraulic models to reach a verdict. Data-driven approaches can manage uncertainty better than model-

based methods.
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Abbreviations
ACO Ant colony optimization

ANN Artificial neural network

AWWA American Water Works Association

BLIFF Burst location identification framework by

fully linear DenseNet

BN Bayesian network

BPNN Back-propagation neural network

Cas-SVDD Cascade support vector data description

CNN Convolutional neural network

CtL-SSL Clustering-then-localization semi-supervised

learning

CUSUM Cumulative sum

DenseNet Densely connected convolutional networks

DL Deep learning

DMA District metering areas

EM Expectation maximization

EWMA Exponential weighted moving average

ExSem Expert structural expectation–maximization

FLS Fuzzy logic system

FNR False-negative rate

FPR False-positive rate

IDW Inverse distance weighted

ISLMD Improved spline-local mean decomposition

IWA International water association

KPCA Kernel principal component analysis

LDA Linear discriminant analysis

LKF Linear Kalman filter

LMD Local mean decomposition

LP Local polynomial

LS Least squares

LSS Leak signature space

LSTM Long short-term memory

MDN Mixture density network

MLPNN Multilayer perceptron neural network

MDN Mixture density network

MNF Minimum night flow

NKF Nonlinear Kalman filter

NRW Non-revenue water

OC Ordinary cokriging

OK Ordinary kriging
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PCA Principal component analysis

PKF Predictive Kalman filter

RMSE Root-mean-square error

RNN Recurrent neural network

SCADA Supervisory control and data acquisition

SIP Standardized innovation process

SOM Self-organizing maps

SPC Statistical process control

SVR Support vector machine

TDOA Time difference of arrival

TFR Transient frequency response

TNR True-negative rate

TPR True-positive rate

WDS Water distribution system

1 Introduction

Water loss has received worldwide attention because of the

continuing concern of the water industry regarding rapidly

increasing population demands.

The IWA states that NRW was 48.6 billion cubic meters

per year divided between residential and commercial losses

[1] and that number grew to 126 billion cubic meters

according to a 2019 study [2]. While there are many

components of NRW, the biggest losses come from the

pipelines, reaching 30% of the water pumped by the WDS

[3]. About 10% of the supplied water is wasted in resi-

dential areas [4]. Therefore, it is important to detect and

manage leaks as soon as possible to either repair or replace

pipelines as a preventive measure [5]. The negative effects

of leaks cover many aspects such as public health, in which

water contamination is likely to happen through pathogen

intrusion [6], the economy, in which utilities lose consid-

erable revenue [7], dissatisfaction among the consumers

from supply interruption [8], and serious environmental

damage [9].

Avoiding water leaks in WDSs is challenging; most

distribution systems in the USA are older than 50 years,

which is over the typical design period. However, mini-

mizing damages caused by leaks and improving the per-

formance of the water supply system are doable [9] by

detecting leaks as timely as possible and reducing NRW.

Lambert categorizes water leaks into three classifications:

reported, unreported, and background [10]. Reported leaks

are easily repaired because consumers report water that

rises to the surface of the ground. The situation differs for

reported and background leaks because the utility, or a

third-party company, needs to continually look for

anomalies. There are situations where some small leaks are

unidentified and may run unnoticed for months.

One of the most commonly used methods by water

utilities is MNF [11], which compares flow rates with flow

thresholds. Unusual jumps that signify leaks trigger an

alarm as the flow goes beyond the threshold; flows should

be minimal at night, which makes the process of identifi-

cation smoother and valid. This cumulative pressure on

water availability is a motive to consider the optimal

management of clean water resources [12].

The IWA launched DMA to help with constant super-

vision of water consumption [13]. In collaboration with the

AWWA, they initiated an effort to develop an effective

water balance-based method under the name ‘‘The Water

Audit Method.’’ The method helps utilities manage supply

efficiently under the ongoing pressure of a growing popu-

lation, urbanization, industrialization, and other global

pressures [14] without having to be weighed down by

financial liabilities produced by physical losses. Since The

Water Audit Method launched in the latter years of the past

century, many methods have been developed that consider

how the technical infrastructure is constantly evolving and

how utilities collect massive amounts of data from the

SCADA or other telemetry systems.

Many hardware- and software-based methods have been

developed to detect bursts and leaks [15]. Hardware

methods depend on sensors and devices [16] and are split

between acoustic detection methods (e.g., leak correlator,

leak noise loggers, and listening rods) and non-acoustic

detection methods (e.g., ground penetrating radar and gas

injection). While hardware-based methods have proven

efficient and accurate in locating leaks and bursts, they are

time and labor-intensive, in addition, such manual methods

lose effectiveness as the depth increases [11, 17]. On the

other hand, software-based methods are faster and less

expensive [18] and are divided into two categories:

numerical or model-based (e.g., time-domain analysis) and

non-numerical or data-driven modeling methods (e.g.,

artificial neural networks and support vector regression).

Much effort has been invested in constructing systems

capable of detecting leaks and precisely locating them in

their distribution networks through a combination of

mathematical models and machine learning algorithms;

these techniques and methods fall under either transient-

based, model-based, or data-driven approaches. Transient-

based approaches find leaks by measuring pressure signals

with frequent tests [19] and can locate some leaks. Model-

based approaches employ mathematical formulas and first

principles modeling to analyze data and discover links

between the metrics and process states [16, 20] and are

successful in finding leaks. Data-driven approaches do not

demand a full understanding of water networks or the

deciphering of the micro-interactions that take place in
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normal WDSs. Data-driven modeling can deliver results

based on signal processing or statistical analysis, some-

times without needing deterministic models [12, 18].

Leak detection in WDSs is challenging given the current

technologies. This review presents some techniques and

approaches for novelty detection so that the utility acts as

quickly as possible to alleviate the adverse impact of leaks

and provide uninterrupted supply to consumers. The rest of

the review is outlined as follows: Sect. 2 discusses the

methodology used. Section 3 goes into depth into data-

driven approaches, and Sect. 4 discusses model-based

methods. Section 5 assesses the performance of many

discussed methods. Section 6 summarizes problems with

the approaches, and Sect. 7 concludes the review.

2 Research methodology

The research methodology follows PRISMA (Preferred

Reporting Items for Systematic Reviews and Meta-Anal-

yses) guidelines [21]. This systematic review reflects and

considers peer-reviewed research papers from 2002

through 2021. The identification phase was completed

using Web of Science and Google Scholar databases from

different journals and conferences. The keywords used in

this literature research are ‘‘water,’’ ‘‘leak detection,’’ and

‘‘data-driven’’ combined with ‘‘deep learning’’ and

‘‘model-based’’ in different combinations. The initial

identification from different search engines identified 319

possibilities. Twenty-six duplicates were removed, leaving

293. We further excluded 89. Then, we were unable to

retrieve 120 studies, leaving 84 for additional screening.

Finally, 18 studies were eliminated for some reason,

leaving 66 to be reviewed in detail.

Figure 1 shows the exact procedure followed from the

identification of relevant papers to the final step of inclu-

sion. Figure 2 shows the distribution of the papers included

in this section against the publication year, and Fig. 3

shows that 71.1% are focused on data-driven approaches.

The exclusion criteria were as follows:

I. Any article that is not related to the body of the

review

II. Papers in languages other than English

3 Data-driven methods and techniques used
for burst and leak detection

Data-driven approaches are divided into four main cate-

gories. Figure 4 illustrates a generic framework for data-

driven approaches.

One of the earliest researches this century related to

burst and leak detection was by Mounce in [22]. Their

study used a neural network to detect bursts in the WDS.

Since then, there has been a dramatic growth in the number

of studies relating to the topic. Mounce and all used ANNs

to identify leaks by building an empirical model that

classifies and predicts when such an event occurs from

time-series data produced by sensors; this automated

computing structure acknowledged the complexity and

non-linearity of the water distribution system and solved

the problem by decomposing the network and constructing

Fig. 1 Research methodology diagram based on the PRISMA

framework
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more than one neural network to supervise zones in the

DMA [22].

In a study published in 2006, Mounce et al. tested static

and time delay architectures of neural networks to classify

bursts that were simulated through hydrant flushing. The

results showed that time delay NNs are more accurate than

static neural networks. Time delay NNs feature a memory

element and can learn patterns through time. That feature is

lacking in static NNs. The outperformance was solidified

by the results that showed that time delay NNs identified

75% of bursts, while the static architecture could detect

only 4% of the simulated events [23].

The theoretical basis of applying FLS and engaging

ANNs in the form of MDNs is to draw conclusions about

abnormalities from a data stream. This implementation of

FLS requests flow data, and it results in an error of 10%,

which is smaller than the error resulting from MNF [24].

SOMs employed a leak function to help ease detection

[25]. Mounce and others presented an online application of

artificial intelligence to detect leaks and other abnormal

events, and they verified the ability to detect small and

medium leaks with an exceptionally small number of

ghosts [26].

Mounce et al. [27] used SVM, a supervised statistical

learning machine learning model, to model and predict

from time-series data. When comparing the SVM model to

ANNs, SVMs appear to have less sensitivity to noise,

making it more practical according to [28].

Romano et al. [84, 85] used artificial neural networks,

statistical process control, and a Bayesian network to

forecast pressure and flow values, compare the actual and

expected values, and finally classify the signals as normal

or leak. Two years later, Romano et al. [29] improved their

methodology to approximately locate bursts by using

geostatistical techniques and a multivariate Gaussian

graphical model and overcame the shortcoming of the

probability that accompanies the increasing number of

accessible data. In that paper, they used four geostatistical

techniques, OC, OK, LP, and IDW, and of the four tech-

niques, OC provided the smallest root-mean-square errors

in all the five scenarios studied.

The LKF method developed by Ye and Fanner is based

on regression and Kalman filtering of flow and pressure

measurements, and the results obtained show that flow data

are more sensitive to bursts [30]. Researchers argue that

LKF has the advantage of efficient computations that make

it an effective and practical method to expose leaks [14].

Palau et al. [31] performed PCA to detect severe out-

liers. Pattern matching methods and auto-associative neural

networks for novelty detection showed promising results in

exploring enormous time-series datasets very quickly

despite the limitations in pattern libraries [12]. Fourier

series and CUSUM are used for leak detection. The former

Fig. 2 Number of publications

included in the research

methodology section

Fig. 3 Number of data-driven approaches and model-based methods

included in the research methodology section
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learns the flow dynamics, and the latter is used for detec-

tion. Eliades et al. [32] presented their solution in addition

to the night flow analysis for comparison, Fourier series

and CUSUM outperformed the night flow analysis and

scored a TPR of 94.5%, whereas the highest TPR the NF

analysis achieved is 79.5%. The combined Fourier series

and CUSUM method may miss small leaks unless a proper

detection threshold is chosen to weed out background

noises. The method, however, does not require sensors that

sample pressures frequently, which most systems do not

have. It also avoids misclassifying existing small leaks

when the analysis starts.

Weighted least squares with the EM algorithm is an

unbiased unsupervised procedure, and it detects a leak

based on the difference between the measured flow and the

expected flow [33]. Bekker et al. [34] developed an

investigative approach where the setup starts with pro-

ducing the expected values of demand and pressure, and

then compares the generated values with the measured

values. The deviations indicate a burst or leak, and to

continuously supervise the network, a threshold value is

established based on the previous year’s data. This method

was applied on three networks in three different areas, and

the performance varied based on area. As the area covered

by a flow meter gets larger, the size of the leak must grow

to be detected. For example, the Rhine area in the

Netherlands was studied in the paper, and only leaks that

exceeded 150 m3/h were detected. To move past such an

obstacle, investment in more flow meters to divide into

smaller areas is recommended.

The probabilistic demand forecasting model distin-

guishes abnormalities, e.g., bursts, based on previously

documented data under the assumption of being normal (no

bursts). The methodology identifies a burst based on the

forecasted and actual values, and when the probability of

the actual demand is larger than that of the forecasted one

by a probability distribution function (PDF) then a burst

exists [8, 35]. The methodology worked better at night with

bursts greater than 5% of the mean flow.

NKF overcame the drawback of LKF by addressing the

current system’s condition. Jung and Lansey [36] com-

pared their methodology to two statistical process control

methods, i.e., CUSUM and Hotelling T2. NKF, which uses

SIP and nodal group demand estimates, had a detection

Fig. 4 Basic framework of data-

driven approaches
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probability close to SPC-Hotelling T2 in identifying large

bursts, but the former proved to be better when it came to

small leaks and instant detection. Anomalous event

detection produced by [37] is a four-step statistical

methodology, which relies on the desired TPR and FPR

values and the window size. This modified SPC has proven

its flexibility and is used by many water utilities. Karray

et al. [38] proposed a hybrid method to detect leaks in long

pipes, and it showed promising results: fast detection

speed, acceptable reliability, full-time availability, good

sensitivity, and medium complexity.

Evolutionary polynomial regression has been proven to

be an effective leak detection method with no prerequisites,

such as replacing the metering devices in the DMA [39].

BNL is an ANN approach that overcame the problem of

assuming mutual relationships between the factors that

cause leaks and the problem of prediction and uncertainty.

It used the algorithm ExSEM and achieved an accuracy of

almost 85% when applied to a water system. However, the

aforementioned technique cannot manage continuous data,

and discretization must take place for it to operate, such

limitations must be overcome to ensure a better perfor-

mance for future uses [40].

BPNN, one of the most used NNs, contains at least three

layers (input, output, and one hidden layer) and is inte-

grated with five hoop strain variations that can recognize

patterns and predict the leak point when choosing the right

hidden layers. Its RMSE, which can be as small as 1%,

proves the success of the method [41]. As opposed to the

model-based genetic algorithm used by [42], the dynamic

time wrapping and supervised learning algorithm proposed

by [43] performs better at night with great accuracy and

sensitivity and a low number of false alarms.

MLPNN was investigated by [44]. Another data-driven

approach that employs two different classifiers individu-

ally, namely, LDA and neural network, finds leaks based

on pressure data. This AI-based technique achieves 80%

accuracy; the approach suggests that increasing the number

of sensors [45], Rayaroth Sivaradje [46]) and considering

the optimal positioning in the WDS improve the perfor-

mance of the classifiers [45].

A hybrid method that incorporates KPCA and Cas-

SVDD detected small leaks with an accuracy of 90% by

using historical or real-time data depending on if it is

offline modeling or online detection, then denoising and

signal reconstruction based on LMD take place before

announcing a verdict [47].

Research conducted by [48], which located leaks by

using Kriging spatial interpolation, shows that many

parameters factor into the outcome, which is the same as

concluded by [45]. Bayesian reasoning is then employed to

better the accuracy [48]. Like many techniques that rely on

pressure data to manage leaks effectively, disturbance

extraction and isolation forest techniques by [49] showed

great promise for application to large WDSs by detecting

leaks from noisy pressure measurements without the

introduction of extra flow sensors. The performance eval-

uation measures are summarized in Table 1.

3.1 Clustering strategies

In 2016, [50] came up with a new strategy to manage

uncertainty: the clustering algorithm. That algorithm

eliminates the uncertainty that results from the prediction

and classification stages.

There are two steps before reaching a verdict; the first is

a clustering algorithm for outlier detection, and the second

identifies the leak. The method is promising given the low

FPR compared to other studies. Differentiating from the

huge amount of historical data needed for classification and

prediction methods, [51] created a method that needs only

‘‘1 day’s worth of time-series data’’ but can consider the

variations throughout the year. They employed the tem-

porally fluctuating correlation among flow sensors to

evaluate the discrepancies between flow data coming from

cosine distances to lower the false-positive rate brought on

by cyclical changes in water demand, weather, and season.

However, this did not result in better TPR results when

compared to the clustering algorithm.

Monitoring support by Geleen et al. [52] is a proactive

leakage control method that employs feature-based clus-

tering that looks for cluster patterns to identify a leak based

on pressure anomalies. This application is expanded to

include oil, electricity, or gas leaks.

Lu and Sela [53] proposed a method that offers a quick

and effective solution to find hidden information in WDSs

by analyzing high-frequency pressure signals from scat-

tered sensors [53].

Quiñones-Grueiro et al. [54] provided a method to

manage large WDSs. They used topological clustering for

network partitioning to locate leaks. CtL-SSL is a machine

learning-based framework for WDS leak detection and

localization. This framework lessens the data requirement,

shows very effective results, and is a tool for water man-

agement in any WDS [55].

3.2 Methods implementing deep learning

Deep learning offers a framework to solve detection

problems and a wider range in overcoming/issues that basic

traditional techniques find challenging and has the potential

to separate the variabilities more effectively [56]. Qui-

ñones-Grueiro et al. [57] used a model-based approach to

link a deep neural network, a data-driven approach, and

Gaussian process regression to detect and locate leaks, a

flowchart of the proposed approach is shown in Fig. 5.
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Table 1 Data-driven approaches

Technique Category Data requested Efficiency Reference

TPR FPR ACC Remarks

Time delay NNs Classification Flow 75% 0 – Error or DP DT [23]

ANNs and FLS Prediction-

classification

Flow – – – 10% error in

identifying

flushing events

Several hours [26]

SVR Prediction-

classification

Flow/pressure – 22% – – – [27]

Fourier series and

CUSUM

Prediction-

classification

Flow 94.50% 0 – – 9.8 days [32]

Weighted least

squares and EM

algorithm

Prediction-

classification

Flow – 15% – – – [33]

Deviation analysis Prediction-

classification

Demand/pressure 90% 2.10% – – 20 min [34]

Adaptive forecasting

model

Prediction-

classification

Demand/pressure – 3.30% – Detection

probability of

88.3%

18.7 min [92]

NKF Prediction-

classification

Nodal group

demand

– 0 – Detection

probability of

87%

– [36]

BLN Prediction-

classification

Pressure – – 84.60% – – [40]

Anomalous event

detection

Statistical

method

Flow 80% 10% – – [ = 1/2 h [37]

Clustering algorithm Clustering Flow 71.43% 0.78% – – – [50]

Dynamic time

wrapping and

supervised learning

algorithm

Prediction-

classification

Flow/demand 98.30% 6.70% – – – [43]

Back-propagation NN Prediction-

classification

Pressure – – – 1.01% RMSE – [41]

Clustering and cosine

distances

Clustering Flow 71.43% 0.40% – – – [51]

Feature-based

clustering

Clustering Pressure – – – Average accuracy

F1-score of

93.5%

– [52]

LDA, NN Classification Pressure – – 80% – – [45]

KPCA, Cas-SVDD Classification Pressure – – 90%

(small

leaks)

The accuracy gets

higher as the

leaks get larger

– [47]

Kriging spatial

interpolation,

Bayesian reasoning

Classification Pressure – – – – – [48]

Disturbance

extraction and

isolation forest

Classification Pressure – As low as

3% in

some

cases

– – DP as high as

90%

[49]

CtL-SSL Clustering Pressure – – 95% – 83% leakage

localization

accuracy

[55]
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Wang et al. [58] succeeded in employing an LSTM neural

network, which is an advanced version of the RNN struc-

ture, in leak detection because the method showed high

accuracy and sensitivity.

Kang et al. [59] combined CNNs with support vector

machines. That architecture uses a one-dimensional CNN

for local feature detection and the latter classifies leaks,

they proposed an algorithm to approximately localize the

leaks. A novel framework developed by [60] locates the

leak by narrowing down the locations to specific pipes and

has proven applicability in practice. BLIFF uses pressure

data in a mixed data-driven and model-based approach, a

method that has not received much attention in other

studies, to locate leaks. The framework proved useful

because the locations were not as generalized and narrowed

down to pipes. To escape the disorder of pressure signals,

linear connections were used instead of the usual convo-

lutional layers in DenseNet [61], which also eased calcu-

lations. With all the advantages that the method presents,

there is a constraint, which requires pressure meters instead

of flow meters.

A study by [62] employed ISLMD and CNN to detect

and locate leaks. ISLMD eliminates noise from nonlinear

and nonstationary signals. Their sensitivity results varied

Fig. 5 Flowchart of the methodology combining a data-driven approach with a model-based method

Table 2 Data-driven approaches that implement DL

Technique Data requested Efficiency Reference

TPR FPR ACC

CNN and SVM Normal and abnormal signal pairs 99.20% – 99.30% [59]

BLIFF Pressure – 98.38% [47, 60, 62]

CNN and ISLMD Pressure – 79.15–92.5% [62]

LSTM-RNN Flow 94.82% 0.21% 88.80% [58]

CNN and variational autoencoder Acoustic signals – – 97.20% [63]

LSTM-RNN Flow – – 90% [5]

DNN and Gaussian process regression Flow/pressure – – 87% [57]

Table 3 Model-based methods

Category Methods Reference

Sensitivity analysis Flow sensitivity matrices, pressure sensitivity matrices [67, 68, 70–73]

Optimization-

calibration

Genetic algorithm, multi-objective ACO, LS [42, 74, 76]

Error-domain model

falsification

Leak detection based on leak-scenario falsification, time-series leakage

detection, and Bayesian model updating approach

[77–82]
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depending on whether the AlexNet or LSSVM model was

used. AlexNet detected 79.15% of the leaks, while LSSVM

found that 92.5% CNN was integrated with a variational

autoencoder in a paper by [63], and the combination

achieved great accuracy and could detect leaks as small as

0.25 L/s, which proves its success.

Liao et al. [64] used DL to identify leaks in the water

pipeline system. The accuracy of their model relies on

calibrated parameters (e.g., pipe roughness), and it could

reach 99.7%. However, their method does not cover the

grounds where several leaks occur simultaneously. Lee

et al. [5] introduced an LSTM-RNN, which accounts for

numeral conditions in the system and provides a summary

of the network’s performance. Table 2 summarizes the

performance of some of the methods mentioned in the

literature. It shows the techniques used, the type of data

needed for the models, and some metrics found.

4 Model-based methods and techniques
used for burst and leak detection

Many researchers have preferred model-based methods

over the years before they fully realized their full potential

or limitations. These approaches are represented by math-

ematical formulas. Table 3 classifies the methods under

three main categories.

Pudar and Liggett et al. [65] introduced a sensitivity

matrix to guide measurement locations, but they suggested

the method could not replace traditional leak surveys. That

was the case until research conducted by (Perez et al. [66])

took place and adopted a mathematical model. Conse-

quently, from 2011 to 2019, much research was invested

into introducing leak detection and localization methods

based on pressure sensitivity analysis [67–71].

Perez et al. [67] focused on determining a reasonable

number of sensors to obtain more accurate locations based

on an optimal sensor placement methodology that gave

successful results under ideal conditions, but its accuracy

was adversely affected by noise. Casillas et al. [70] located

leaks using pressure measurements. Their LSS method

assigns a key signature to every leak and then applies a

linear model to approximate the location. In a case study

that employed 15 pressure sensors and five flowmeters, the

success rate reached 87%, better than the other six cases

studied [71]. The change that resulted from replacing

pressure data with flow measurements for leak detection in

pipelines was covered by [72, 73].

A series of model-based methods such as genetic algo-

rithms, least squares, and multi-objective ant colony opti-

mization fall under the optimization-calibration category

[42, 74–76]. Wu et al. [42] found leak hotspots by opti-

mizing their model before calibration. They used genetic

algorithms to detect hard-to-find leaks. However, Hu et al.

[20] revealed Wu’s method congregates to the local optima

due to the huge solution space.

Sanz et al. [76] established a methodology that requires

calibration to solve the long-term issue of the leak location.

Multi-objective ACO succeeded in detecting leaks by using

two stages: dividing the WDS into pressure zones and then

calibrating the nodal demands to quantify and locate the

leaks [74]. Many methodologies build on error-domain

model falsification where a model is falsified based on the

thresholds, and the remaining models describe the leak

region. The falsification method proposed by [77] paved

the way for work by [78–82].

5 Performance evaluation

Most authors assessed their methodologies using different

measures. A confusion matrix is a machine learning con-

cept [83], which represents visually the performance of an

algorithm. A confusion matrix shows important measures:

TPR, TNR, FPR, and FNR. Such measures are mentioned

in various papers [23, 51, 59, 84, 85]. A true positive refers

to the occurrence of an actual leak in the WDS, a false

positive is an alarm for a leak when there is none. Other

common measures for evaluation are accuracy, precision,

Fig. 6 Confusion matrix
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and F-score. Figure 6 shows a confusion matrix with

measures and their respective mathematical equations.

6 Results and Discussion

Data-driven approaches can be exploited to detect and

locate leaks without deep knowledge of every component

or relationship in the WDS. However, the approaches come

with the price of obtaining high FPR. Wu et al. [8] sum-

marized the most frequent limitations of classification,

prediction-classification, and statistical methods.

The requirement of data and the absence of hydraulic

data labels are two limitations in classification methods.

Mounce et al. [23] used the same simulated events in

training and testing the method. MLPNN by [44] is

immune to noise, shows a parallel structure to the real-life

WDS, and has speedy processing and sorting abilities.

However, the performance evaluation rates were not

explicitly mentioned as was the case with many other

papers [30, 35, 48, 84, 85].

Prediction-classification methods could provide mis-

leading results at times because of the uncertainty that

results from measurement inaccuracies, absent data, or

variations over the year. Many methods may not be able to

identify small leaks [33, 36–38, 50, 51, 84–89] or be based

on impractical assumptions that may not reflect reality

[36, 90, 91].

Background noises often cause an error that leads to

inaccuracy in conclusions [32, 88].

Many methodologies require the optimal placement of

sensors or the investment in more sensors [45, 46, 84–88].

The presence of large leaks overshadows smaller leaks in

the EPR modeling paradigm [39].

Model-based methods are widely applied and studied for

leak detection but similar to data-driven approaches, there

are some limitations and weak spots that must be addres-

sed. Generally, their effectiveness is questioned because of

uncertainties generated by full-scale water distribution

systems. Many papers address this in the literature. Hu

et al. [20] summarized the weaknesses, the hydraulic

models must be well-calibrated and reality simulating for

model-based approaches to be applicable, which requires a

huge amount of data and investment. Well-calibrated

hydraulic models are not common in water utilities.

Perez et al. [68] stated that the pressure sensitivity

matrix is very applicable and provides adequate results.

However, that method delivers satisfactory outcomes when

the sensors are optimally placed. This methodology by

(Perez et al. [68]) assumes that leaks occur at nodes and

neglects the leaks that happen at the pipeline level. Con-

sequently, the model locates leaks at the nearest node.

Casillas et al. [70] continued and said that pressure

sensitivity matrices’ accuracy is affected by noise inference

in the system. The genetic algorithm used by [42] operates

well when working on large WDSs in the mornings, but it

finds the local optima. Multi-objective ACO can be used

with either pressure or demand, but the performance relies

on the number of pressure measurements [74]. Error-do-

main falsification models show potential and have been

tested on a real full-scale WDS [82], but the method of [77]

cannot detect small leaks.

7 Conclusions and future research

Water loss has received worldwide attention over the years.

Loss from leaks could be controllable and should be min-

imized. In this review, many methodologies are discussed

under two distinct categories: data-driven and model-based

approaches. Classification, prediction-classification, statis-

tical methods, and clustering algorithms fall under the

former while sensitivity matrices, optimization-calibration,

and error-domain falsification-based methods fall under the

latter. There is an overlap between the two categories with

methods that mix the two [16, 20, 46, 89–91]. The per-

formance of the proposed methodologies is summarized as

well as their weaknesses. Many studies provided effective

or promising detection techniques, and many papers pro-

vided approaches to locate leaks. Future work should focus

on minimizing false-positive rates and maximizing true-

positive rates in methodologies and techniques that water

utilities can easily access. Some techniques can be used in

other fields such as oil or electricity. Also, some techniques

with high detection rates should be tested in real-life WDSs

and compared with the theoretical results.
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85. Romano M, Kapelan Z, Savić DA (2014) Evolutionary algorithm

and expectation maximization strategies for improved detection

of pipe bursts and other events in water distribution systems.

J Water Resour Plan Manag 140(5):572–584

86. Srirangarajan S, Allen M, Preis A, Iqbal M, Lim HB, Whittle AJ

(2013) Wavelet-based burst event detection and localization in

water distribution systems. J Sign Process Syst 72(1):1–16

87. Tao T, Huang H, Li F, Xin K (2014) Burst detection using an

artificial immune network in water-distribution systems. J Water

Resour Plan Manag 140(10):04014027

88. Zan TTT, Lim HB, Wong KJ, Whittle AJ, Lee BS (2014) Event

detection and localization in urban water distribution network.

IEEE Sens J 14(12):4134–4142

89. Zhang Q, Wu ZY, Zhao M, Qi J, Huang Y, Zhao H (2016)

Leakage zone identification in large-scale water distribution

systems using multiclass support vector machines. J Water

Resour Plan Manag 142(11):04016042

90. Soldevila A, Blesa J, Tornil-Sin S, Duviella E, Fernandez-Canti

RM, Puig V (2016) Leak localization in water distribution net-

works using a mixed model-based/data-driven approach. Control

Eng Pract 55:162–173

91. Soldevila A, Fernandez-Canti RM, Blesa J, Tornil-Sin S, Puig V

(2017) Leak localization in water distribution networks using

Bayesian classifiers. J Process Control 55:1–9

92. Bakker M, Trietsch EA, Vreeburg JHG, Rietveld LC (2014b)

Analysis of historic bursts and burst detection in water supply

areas of different size. Water Sci Technol Water Supply

14(6):1035–1044

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds

exclusive rights to this article under a publishing agreement with the

author(s) or other rightsholder(s); author self-archiving of the

accepted manuscript version of this article is solely governed by the

terms of such publishing agreement and applicable law.

Neural Computing and Applications (2023) 35:11611–11623 11623

123


	Data-driven approaches and model-based methods for detecting and locating leaks in water distribution systems: a literature review
	Abstract
	Introduction
	Research methodology
	Data-driven methods and techniques used for burst and leak detection
	Clustering strategies
	Methods implementing deep learning

	Model-based methods and techniques used for burst and leak detection
	Performance evaluation
	Results and Discussion
	Conclusions and future research
	Data availability
	References




