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Abstract
Image white-balancing is an integral part of every camera’s processing pipeline. White-balancing is used to remove

illumination chromaticity from an image. Most research in this field has been limited to images with a single uniform

illuminant. In this paper, we introduce a novel method for illumination estimation for situations where the scene is

illuminated by a variable number of different illuminants and where the illumination in the scene can be non-uniform. The

proposed method uses a lightweight convolutional neural network that achieves state-of-the-art results. The method

performs illumination estimation on a patch-by-patch basis. We use the assumption that only one illuminant affects each

patch since they are so small. Unlike other such methods, our method uses features extracted from the entire image to

perform patch illumination estimation. The paper also shows how the image features improve method accuracy with a

minimal increase in complexity. The proposed method has around 42 k parameters, and it was tested on three different

cameras from the Large-Scale Multi-Illuminant dataset.

Keywords Color constancy � Image color analysis � Image processing � Illumination estimation � Non-uniform illumination

1 Introduction

The Human Visual system is fascinating, and one of its

most interesting features is chromatic adaptation. This

feature allows us to perceive an object’s color as relatively

constant. This means the Human Visual System adapts to

the scene illumination chromaticity so that we perceive the

color of the object as though it is illuminated by a canon-

ical illuminant, which is usually a perfectly white light.

Humans will perceive an object’s color as constant,

meaning we will perceive a banana as yellow regardless of

whether it is seen at dusk, dawn, or high noon. This process

is called color constancy, and it is subjective. It ensures a

relatively constant perception of an object’s color under a

diverse set of illumination conditions.

Cameras are unable to perform color constancy as this is

an ill-posed problem, and many methods have been

developed that try to emulate this feature of the Human

Visual System. The process of chromatic adaptation of

digital images is also known as white-balancing. The job of

a white-balancing algorithm is to remove the effect the

scene illumination chromaticity has on a digital image.

What this means is the algorithm transforms the image to

make it look as though the scene is illuminated by a

canonical illuminant.

White-balancing is an image processing step present in

all modern digital cameras. A variety of methods have been

created to solve the problem, ranging from simple methods

that use image statistics [1, 2] to methods that use neural

networks [3]. Many white-balancing algorithms can be

divided into two steps. In the first step, the scene illumi-

nation is estimated, and in the second, the estimated illu-

mination is used to chromatically adapt the image. The first

step is the main focus of most research in this area since it
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is the harder, more complex step. More detail is given in

Sect. 2.

The process of white-balancing is also important for

computer vision tasks since one of the most important

features of objects is their color. Tasks such as object

detection, object classification, and object tracking benefit

from a constant object color. One such example is face

recognition, where the effect of illumination needs to be

removed to improve accuracy [4].

The problem with most illumination estimation methods

is that they use the assumption that an image is only

affected by one uniform illuminant. This assumption is

sometimes not true, and such methods fail to provide sat-

isfactory results on multi-illuminant images. A simple

example is an indoor room with windows and a lightbulb.

The lightbulb is one illuminant, and the sun coming from

the windows is the other illuminant.

There are some methods that perform multi-illuminant

estimation. Many of them [5, 6] divide the image into

patches and perform illumination estimation for each patch

independently. Such methods have low complexity, but

they also have low accuracy. The lower accuracy is the

result of the fact that patches are small, and sometimes they

do not contain enough information for proper illuminant

estimation. Authors in [7] have used segmentation methods

such as U-Net [8]. In such cases, the entire image is used,

and the illuminant correction is performed on a pixel-by-

pixel basis. They have higher accuracy and higher com-

plexity. In this paper, we propose a lightweight convolu-

tional neural network (CNN) that performs illumination

estimation for images that contain a variable number of

illuminants that do not need to be uniform. We also per-

form experiments that show the model achieves state-of-

the-art results.

The paper is divided into sections as follows. Section 2

gives a formal problem definition. Section 3 presents some

currently existing approaches. Section 4 presents the pro-

posed approach and the used training setup. Section 5 gives

an overview of the used dataset. Section 6 shows how we

evaluated the proposed method. The performed ablation

study is also explained in Sect. 6. In Sect. 7, the obtained

results are shown. The proposed method is compared to

existing methods. Finally, in Sect. 8 the conclusion and

future directions are presented.

2 Color constancy overview

Scene illumination has a substantial effect on the color of

an object. The human visual system has the ability to

ignore the illumination’s chromatic effect so that we can

perceive the object’s color as relatively constant. Several

different methods have been developed for computers to

emulate this. One way to achieve this is to divide the

process into two steps: the scene illumination estimation

step and the removal of illumination chromaticity step. A

large number of methods [3, 9] use this approach. Another

approach for white-balancing is to directly perform color

correction without first creating an illumination map. Some

of these methods are based on Retinex theory [1, 10, 11],

and some use segmentation models to predict the color-

corrected image[7].

2.1 Problem formulation

We represent an image as an array of 3-element vectors

called pixels. The three elements of a pixel are the red,

green, and blue intensities f ¼ ðfr; fg; fbÞ. A common image

formation model is the Lambertian model [12].

fc ¼
Z
x
IðkÞpcðkÞSðx; kÞ dk ð1Þ

Pixels RGB intensities depend on illumination color IðkÞ,
the camera sensitivity function pðkÞ ¼ ðprðkÞ; pgðkÞ; pbðkÞÞ
of the three channels, and surface reflectance Sðx; kÞ where

x represents the spatial coordinates and k represents the

light wavelength.

A common way to perform chromatic adaptation is to

use the von Kriss model [13]. It uses a diagonal matrix to

perform color correction separately for each color channel.

The model uses the assumption that the camera sensitivity

functions of the three channels are independent. This is not

always true, but experiments have shown that this gives

sufficient results [13].

Ic ¼ Ku,c�Iu ð2Þ

Ic is the image taken under the canonical illuminant, Ku,c

represents the von Kriss diagonal matrix, � is matrix

multiplication, and Iu is the image taken under an unknown

illuminant. The diagonal matrix can be expressed as:

Ku,c ¼

Lc
r

Lu
r

0 0

0
Lc

g

Lu
g

0

0 0
Lc

b
Lu

b

2
66666666664

3
77777777775

ð3Þ

where Lu
r , Lu

g, Lu
b

are the red, green, and blue values of the

unknown illuminant and Lc
r , Lc

g, Lc
b

are the red, green, and

blue values of the canonical illuminant. The canonical

illuminant is the white light or a Lc value of ð1; 1; 1ÞT .

The problem of illumination estimation is the fact that it

is an ill-posed problem. This fact can be explained in an
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image with a few surfaces. As an example, we can use an

image that only contains a purple wall. Without additional

information, we cannot tell whether the wall is purple and

the scene illumination is white light, whether the wall is

white and the illuminant is purple, or if another wall color/

illumination color combination has created this particular

image of a purple wall.

3 Related work

There are a lot of different methods that are used for white-

balancing. The oldest methods use low-level statistical

features extracted from an image. These methods use

assumptions to simplify the problem of illumination

estimation.

One such method is the Grey-World algorithm [2].

Grey-World uses the assumption that the average reflec-

tance of a scene is achromatic. Deviation from the achro-

matic average is caused by the chromaticity of the

illumination. To calculate the illuminant, the method takes

the average of each color channel.

The White-patch algorithm [1] is another popular sta-

tistical method. It uses the assumption that the maximum

response of each channel is caused by perfect reflectance.

To calculate the image illuminant, the maximum value of

each channel is used.

As shown in [14], these two methods are just special

instances of a color constancy framework. This framework

was further expanded in [15] which resulted in the Grey-

Edge framework. For this method, the assumption is that

the average edge difference in a scene is achromatic. This

framework can be represented using the following formula.

�Z ���� o
nfc;rðxÞ
oxn

����
p

dx

�1
p

¼ kLn;p;rc
ð4Þ

In the formula, x represents the spatial coordinates, n the

order of the derivative, p is the Minkowski norm, c one of

the three color channels R, G, B, k is a scalar for illumi-

nation vector normalization, j � j is the Frobenius norm and

r is a scale factor used for the convolution of the image

with a Gaussian filter fC;r ¼ fCbGr.

These methods are used for illumination estimation

when an image has a single uniform illuminant. They can

be adapted for multi-illuminant estimation by dividing the

image into small patches and performing illumination

estimation on each patch [16]. Since the patches are small,

the assumption that each patch is illuminated by a single

uniform illuminant is used.

Recently, researchers have shown that learning-based

methods produce good illumination estimation results. In

[3], they present a convolutional neural network that uses

an attention mechanism to perform single-illuminant esti-

mation. In [17], an efficient lightweight convolutional

neural network with less than 22k parameters is presented.

Both of these methods can only perform single-illuminant

estimation, and they will not give satisfactory results in

multi-illuminant situations.

There are a couple of learning-based methods that per-

form multi-illuminant estimation. Both [5] and [6] are

methods for single and multiple illuminant estimation.

They perform illumination estimation by dividing an image

into many small patches. The illuminant is estimated for

each patch separately. The illuminants are then combined

into a single illumination mask that is used to correct the

image.

The major difference between the methods is that [6]

uses two neural networks. One neural network outputs

multiple illumination estimations for a single patch and the

other predicts which estimation is the best. These methods

are lightweight, but the problem with the patch-based

approach is that since the patches are so small that some-

times the patches do not contain enough information for

accurate estimation.

A way to avoid this problem is to use the entire image.

The U-Net model [8] was used for this purpose [7]. Here,

the illumination is not directly estimated, instead the model

outputs the white-balanced image. The problem here is that

this model is significantly more complex than the patch-

based methods.

In this paper, we present a method that combines the

simplicity of patch-based models with the usage of the

entire image to perform illumination estimation.

4 Proposed method

Our proposed method is a patch-based illumination esti-

mation model. It divides the images into many small pat-

ches, and the illumination is estimated for each patch.

Since the patches are small, we use the assumption that

each patch has a single uniform illuminant. What differ-

entiates our model from [5] and [6] is that we use features

extracted from the entire image to perform illumination

estimation for each patch.

To estimate the illumination of a single patch, we use a

two-stage convolutional neural network. In the first stage,

we encode the image using several different conventional

layers. In the second stage, we encode the patch using a

single convolutional layer. After that, we combine the

encoded image and encoded patch. The combination is

achieved by adding the two tensors. The combined tensor is

fed to several different convolutional layers, whose output

is the illumination of the patch.
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This paper is the continuation of research done in [17].

The major contributions of this paper compared to [17] are

that the method in this paper can perform illumination

estimation on an image with non-uniform illumination and

that it can perform illumination estimation regardless of

how many illuminants affect the image.

4.1 Model architecture

The proposed model uses two modified instances of One-

Net [17]. The first instance is used as the image encoder.

The input to the encoder is an image of size 256 � 256

pixels. In the encoder, we removed the last convolutional

layer and changed the size of the max-pooling kernel from

(8,8) to (4,4). The size of the input patch is 16 � 16 pixels.

The second instance of One-Net is used as the patch

encoder and for patch illumination estimation. The first

layer of the second One-Net is used as the patch encoder.

The encoded patch is combined with the encoded image by

adding the two tensors. The rest of the layers are the same

as One-Net, except for the max pooling layers whose

kernel was changed from (8,8) to (2,2). The created model

is lightweight and has around 42k parameters. Just like

One-Net, all convolutional layers have a kernel size of

(1,1). A detailed schematic of the model architecture can

be seen in Fig. 1.

4.2 Training setup

To develop the method, Python [18] and Tensorflow 2.9 [19]

were used. For training, the loss function from [20] is used.

Loss ¼
����

illpred � illgt

illgt

����
2

ð5Þ

illpred is the estimated illumination and illgt is the illu-

mination ground truth. For the optimizer, AdamW [21]

with weight decay 5 � 10�5 was used. The model was

trained for 400 epochs on the Nvidia RTX A6000 GPU and

AMD Ryzen 3960X CPU. To change the learning rate of

the optimizer, a cyclical learning rate [22] was used. The

maximum learning rate was 1 � 10�3, and the minimum

learning rate was 1 � 10�7. A half-cycle period of 200

epochs was used, as it provided the best results.

To train the model, each image was resized to 256 �
256 pixels. That image was then divided into 256 patches

of size 16 � 16 pixels. Completely black patches were

ignored during training and testing. Black image regions

contain calibration objects that were used to extract the

illumination. Image standardization was performed on the

entire image and each patch separately before being fed

into the model. The ground-truth for each patch is calcu-

lated by taking the average value of the illumination map

for that patch. A batch size of 500 was used during training.

Random image rotation and random image flipping were

used during model training.

5 Dataset

To evaluate our method and compare other methods, we

used the LSMI [7] dataset. LSMI is a large-scale dataset

that contains 7486 different images taken from 2762 dif-

ferent scenes. To create the dataset, three different cameras

were used: Samsung Galaxy Note 20 Ultra, Sony a9, and

Nikon D810. The dataset contains images of a variety of

different indoor scenes. The images in the dataset contain

one to three different illuminants. It contains 3051 two

illuminant scenes and 346 three illuminant scenes.

The authors [7] provide a per-pixel illumination mask

for each image. To create the mask for two illuminants, the

Fig. 1 Visual representation of the model architecture and the

parameters used for each layer
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authors took three images of the scene, two images that are

affected by one of the illuminants and an image that is

affected by both of the illuminants. The two illuminant

scene is simply the sum of the two scenes that are affected

by one of the two illuminants. A similar process was used

for the three illuminant images, with the difference being

the number of images that were taken.

We used this dataset since it is one of the largest datasets

for color constancy, with a large diversity of scenes and

different illuminations. It also contains non-uniform illu-

mination, which is not common in other datasets. There are

other multi-illuminant datasets, but they contain a small

number of images. One such dataset is Multiple Light

Sources [23]. It contains 68 images, of which 59 were

taken in laboratory environments and 9 were real-world

images. Laboratory environment images are taken in a dark

room with controlled lighting. Such images cannot prop-

erly emulate the diverse set of illumination situations that

can happen in the real world. The Multiple-Illuminant

Multi-Object [24] is another multi-illuminant dataset. It

contains 20 real-world images. This is not enough to

properly train and test a neural network.

6 Evaluation

Following the LSMI paper [7], we perform an experiment

for each camera separately using the train/validation/test

split provided by the authors. The original authors used a

70/20/10 train/validation/test. The galaxy subset contains

2500 images, the Nikon subset contains 1988 images, and

the Sony subset contains 2998 images. We also divide the

Table 1 Comparison of results

obtained using the different

model variants

Model variant Mean Std. Median Trimean Best 25% Worst 25% 95 Percentile

Drop Conv Pool Max*

– – – (4,4) 1.79 1.91 1.36 1.45 0.39 4.29 5.58

U – – (4,4) 1.99 1.98 1.43 1.53 0.46 4.50 5.69

– U – (4,4) 2.74 4.59 1.46 1.64 0.48 7.39 9.10

– – U (8,8) 2.32 4.34 1.17 1.36 0.37 6.34 7.26

– – U (4,4) 1.61 1.92 0.95 1.10 0.29 4.03 5.33

U U – (4,4) 1.99 2.04 1.29 1.45 0.49 4.70 6.29

– U U (8,8) 3.03 4.90 1.69 1.85 0.57 7.95 9.35

– U U (4,4) 3.14 4.52 1.77 1.98 0.58 8.20 10.58

U U U (8,8) 2.55 3.40 1.52 1.69 0.50 6.43 8.04

U U U (4,4) 2.09 2.33 1.41 1.52 0.47 4.95 6.32

U – U (8,8) 1.94 3.53 1.04 1.16 0.29 5.26 6.08

U – U (4,4) 1.57 1.84 0.93 1.06 0.27 3.96 5.00

*Max refers to the Max-pooling kernel size in the feature extractor

Table 2 Comparison of results

obtained using all data and only

a 25% subset on the galaxy

subset

Model Mean Std Median Trimean Best 25% Worst 25% 95 Percentile

Using all patches 2.03 2.15 1.36 1.36 0.48 4.74 5.93

Using 25% of patches 1.57 1.84 0.93 1.06 0.27 3.96 5.00

Table 3 Comparison of results

obtained only using the

information from the patch and

results obtained by using

information from the patch and

the entire image

Model Mean Std Median Trimean Best 25% Worst 25% 95 Percentile

Patch (Galaxy) 3.68 2.71 2.16 2.41 0.70 9.37 11.07

Image-Patch (Galaxy) 1.57 1.84 0.93 1.06 0.27 3.96 5.00

Patch (Nikon) 3.59 3.34 2.03 2.30 0.60 9.34 10.94

Image-Patch (Nikon) 1.53 2.35 0.85 0.97 0.24 4.02 4.76

Patch (Sony) 4.17 5.98 2.42 2.64 0.64 10.91 14.28

Image-Patch (Sony) 1.76 2.83 0.93 1.10 0.25 4.75 5.69

The presented measures were calculated using the angular error of each patch in the dataset, excluding

patches that are completely black
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test set into three subsets for proper comparison with

methods in [7]. The three subsets are single illuminant

images, multi-illuminant images, and mixed illuminant

images.

In LSMI paper [7], they use two types of methods:

patch-based methods and methods that use the entire

image. The authors show that the results from patch-based

methods are significantly worse than the results from the

methods that use the entire image. In this paper, we will

compare our method to both types of methods even though

our method is patch-based. For proper comparison, we used

the same image and patch sizes as the authors in LSMI [7].

The used image size is 256 � 256 pixels, and the used

patch size is 16 � 16 pixels.

To compare different methods, we used the angular

distance between the ground-truth illumination vector and

the predicted illumination vector. This is a commonly used

metric for method comparison.

Table 4 Comparison of results

obtained on the Galaxy phone

camera

Method Single Multi Mixed

Mean Median Mean Median Mean Median

Pix2Pix [27] 6.53 2.17 4.28 2.63 5.66 2.44

Gijsenij et al. [16] 7.49 6.04 12.38 9.57 10.09 7.43

Bianco et al. [5] 4.15 3.30 5.56 4.33 4.89 3.83

HDRNet [26] 2.85 2.20 3.13 2.70 3.06 2.54

U-Net [8] 2.95 1.86 2.35 2.00 2.63 1.91

Proposed method 1.19 0.75 2.16 1.53 1.57 0.93

The proposed method results are bolded

Table 5 Comparison of results

obtained on the Nikon camera
Method Single Multi Mixed

Mean Median Mean Median Mean Median

Pix2Pix [27] 6.10 2.27 4.18 2.76 5.41 2.49

Bianco et al. [5] 3.18 2.61 4.65 4.19 3.93 3.48

HDRNet [26] 2.76 2.43 3.20 3.01 2.99 2.61

U-Net [8] 1.51 1.14 2.36 1.84 1.95 1.45

Proposed method 1.27 0.67 1.99 1.43 1.53 0.85

The proposed method results are bolded

Table 6 Comparison of results

obtained on the Sony camera
Method Single Multi Mixed

Mean Median Mean Median Mean Median

Pix2Pix [27] 4.08 1.72 4.37 3.26 4.20 2.20

Bianco et al. [5] 3.25 2.62 4.38 3.93 3.86 3.19

HDRNet [26] 2.70 2.37 3.65 3.33 3.21 2.89

U-Net [8] 2.83 2.44 3.04 2.78 2.94 2.66

Proposed method 1.45 0.60 2.23 1.65 1.76 0.93

The proposed method results are bolded

Table 7 Comparison of the

worst patch illuminant

estimation error between the

dataset subsets

Dataset subset Mean Std Median Trimean Best 25% 75 Percentile 95 Percentile

Galaxy 3.44 3.79 1.85 2.39 0.54 4.99 10.27

Nikon 3.28 3.87 1.71 2.19 0.51 4.55 10.80

Sony 4.06 4.07 2.34 2.97 0.47 6.42 12.00
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Angular error ¼ cos�1

�
L � L̂

jj L jj2jj L̂ jj2

�
ð6Þ

L and L̂ are the ground-truth and predicted illuminations, �
is the vector dot product, and jj � jj2 is the Euclidean norm.

The mean, median, best 25% mean, worst 25% mean,

and 95 percentile angular error measures are used in the

result tables.

6.1 Ablation study

Since we modified the original One-Net [17], we per-

formed an ablation study to see how the method performs

when some of the layers of the feature extractor are

removed. The layers that were considered were the last

three layers of the original One-Net architecture, as they

are used to transform the output of the model to an RGB

vector that represents the image illuminant prediction. All

Fig. 2 Visual comparison of

model-corrected image and

ground-truth corrected image.

The angular error for each patch

is also shown. The max angular

error for each image is around

2�. All images have been tone-

mapped for better visualization
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other layers from One-Net remained the same. The final

three layers are a Dropout layer (Drop), a Convolutional

layer (Conv), and a Global-Pooling layer (Pool), in that

order. All possible combinations of the final three layers

were tested and are presented in Table 1.

For the variants that use the final Convolutional layer,

the output of the feature extractor is added to the patch

before it is processed by the first Convolutional layer of the

estimator. This was done so that the output of the feature

extractor can be used for patch illumination estimation.

The ablation study was performed on the Galaxy images

dataset subset using the same train/validation/test proce-

dure explained in Sect. 5.

Table 1 shows that the proposed model that uses the

Drop-Pool layers achieves the best results. During the

development of the method, we reduced the Max-pooling

kernel from (8,8) to (4,4) so that encoders that do not use

the Global-pooling layer can be added to the second One-

Net instance. Since the proposed variant uses Global-

pooling, we also tested variants with a Max-Pooling kernel

of (8,8). Table 1 also shows that using a (4,4) Max-pooling

kernel produces the best results and that using kernels of

larger size reduces the model accuracy.

During training, only a subset of patches was used. For

each epoch, 25% of patches are randomly selected from

each image. This was done to decrease training time and to

fix overfitting. Since the model is trained end to end, each

image is used several hundred times per epoch. Table 2

shows the effect of using only a subset of data for each

epoch. It shows that using only 25% of patches improves

the results for all angular error measures. The ablation

study was performed on the Galaxy images dataset subset

using the same train/validation/test procedure explained in

Sect. 5.

To test the effectiveness of the image encoder, we per-

formed two experiments. One where we use the image

encoder and one where we do not use the image encoder

and only information from the patch is used for illumina-

tion estimation. The version that does not use an image

encoder was trained on patches only. Table 3 shows the

angular error of the two methods for each of the three

cameras.

In Table 3, we can see that the addition of image fea-

tures significantly improves the results for all the angular

error measures. This is most prominent on the Sony cam-

era, where the angular error of the method that uses both

image and patch information is less than half of the angular

error of the method that only uses patch information.

The Worst 25% and 95 Percentile show the true benefit

of using image information because here we can see the

most significant absolute improvement since the Trimean

and Median angular error measures fall under the accept-

able Human Visual System angular error according to [25].

7 Results

In this section, we compare our results with the results of

other methods. We also provide some examples of how our

method performs.

Fig. 3 Showcase of situations

where the model gives sub-par

results. The angular error for

each patch is also shown. The

max angular error is different

for each image. All images have

been tone-mapped for better

visualization
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Following the LSMI [7] authors, we perform experi-

ments for each camera separately, and we use the

train/validation/test split provided with the dataset. A

separate model was trained for each camera. Each model

has seen images from only one of the cameras. We also

divide the test set into three subsets. In the first subset, only

images with one illuminant are present. In the second

subset, only images with two or three illuminants are

present. The final subset contains images with one to three

illuminants present.

Tables 4, 5, and 6 compare our method to existing

methods. Gijsenij et al. [16] and Bianco et al. [5] are patch-

based methods. HDRNet [26], U-Net [8], and Pix2Pix [27]

are image-based methods.

Since color constancy can be seen as an image-to-image

translation problem when there is non-uniform illumina-

tion, we also tested several GAN models. We tested

CycleGAN [28], Pix2Pix [27], Pix2PixHD [29], and CUT

[30]. Surprisingly, all but Pix2Pix [27] achieved results

worse than the worst results in Tables 4, 5, 6. This seems

like an interesting research topic, but it goes out of the

scope of this paper.

Table 4 shows how our method compares to other

methods when looking at an image from the Galaxy phone

camera. Our method has less than half the angular error of

the patch-based methods. Our method also outperforms all

methods when looking at single illuminant images. When

looking at the multi-illuminant situation, we can see the

result is more similar when compared to the image-based

methods, but our method still outperforms all other meth-

ods. We also performed statistical analysis to compare our

model to the best-performing model from the literature.

Using the one-tailed Z-test, we observed a p-value of less

than 0.001, concluding that our results are significantly

different from the results of U-Net [8].

Table 5 shows how our method compares when looking

at Nikon camera images. Here again, our method is sig-

nificantly better than the patch-based method [5] and

image-based methods HDRNet [26], U-Net [8], and Pix2-

Pix [27]. For Nikon images, our results are more similar to

the result achieved by U-Net, when compared to the other

cameras. Also, the result achieved by our method has a

smaller accuracy deviation between cameras than U-Net.

Finally, Table 6 compares our method to other methods

on Sony camera images. For this dataset subset, our

methods outperform all other methods in all angular error

measures.

Table 7 shows the angular error measures compiled by

only using the worst patch estimation in each image. It

shows that the most difficult subset is the Sony images,

which have the worst results in almost all angular error

measures. We can also compare the results with Table 3

where we can see that the results are comparable with the

results obtained by only using patch information for esti-

mation. We can also see that there is a huge jump between

the 75 Percentile and 95 Percentile, showing us there are

some outlier samples where the model performs poorly.

We further explore qualitative results in subsection 7.1.

7.1 Qualitative results

In this subsection, we look into how our method performs

on a visual level. We show how images look after we

correct them. We also explore in what kind of situations

our model fails, how a corrected image looks in such sit-

uations, and why the model fails in those situations.

Firstly, we show in Fig. 2 some random images from the

dataset. We show a couple of one-illuminant, two-illumi-

nant, and three-illuminant images. We can see from the

angular error that there are differences between the ground-

truth and the predicted illumination, but these differences

are not noticeable. This is consistent with research from

[25] that states the human eye cannot distinguish the colors

when the angle between the ground truth and prediction is

less than 2�. With these examples, we can visualize that our

patch-based method can perform accurate illumination

estimation even when the patch itself contains only one

color, as is the case in many of the showcase images that

contain a single color wall.

In Fig. 3, we show three examples where the model

cannot properly estimate the illuminant. The first image

shows us that the model has difficulty estimating strong

artificial illumination. The angular error map confirms this.

The upper right area of the image has the worst estimation,

and this image region contains artificial lights. The image

region that contains a glossy table that reflects the artificial

light also has erroneous illumination estimation.

The second situation where the model does not accu-

rately estimate the illumination is in regions that contain

highly saturated pixels. In this example, the blue color of

the sky gets lost. This is shown in the angular error map.

Half of the image illumination is properly estimated, while

the other half is not. The area with erroneous results con-

tains highly saturated pixels created by the strong natural

outdoor lighting.

The final image shows a situation where the model

cannot predict the illumination of any region correctly.

This image is illuminated by low-intensity light. The top

right part of the image is black, and the rest of the image is

full of noisy data. These factors cause the model to perform

poorly.
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8 Conclusion

In this paper, we propose a lightweight convolutional

neural network that only has around 42 000 parameters. We

tested the model on the LSMI dataset. We show that our

model achieves significantly better results than other patch-

based methods. The model also outperforms the per-pixel

estimation models in all angular error measures. We show

that the addition of global image information significantly

improves the accuracy of a patch-based model without

significantly increasing the network complexity. We also

present qualitative results that show how our model per-

forms and analyzes some situations where the model fails.

The analysis shows that the model can predict the patch

illumination even when the patch only contains a single

one-color surface. In future work, we want to extend the

model for cross-camera estimation. We want to develop a

method that is camera invariant and can perform accurate

illumination estimation on an image from cameras not seen

during training.

Data availability The dataset analyzed during the current study is

available upon request, https://github.com/DY112/LSMI-dataset [7].
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