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Abstract
Recent successes in point cloud semantic segmentation heavily rely on a large amount of annotated data. Furthermore,

three-dimensional point cloud data are generally sparse and unorganized, and a frame of point cloud usually includes more

than 100,000 points, which increases the difficulty of point cloud annotation. To reduce the annotation efforts, we propose

a multi-granularity semisupervised active learning pipeline which aims to select representative, uncertain and diverse data

to annotate. To better exploit annotating budget, we first leverage the conventional point cloud registration algorithm to

develop a matching score function which is used to select a representative subset. And then we change the annotating units

from a point cloud scan to segmented regions through two semisupervised methods. Subsequently, in each active selection

step, segmented region information is calculated with two terms: softmax entropy and point cloud intensity, and the latter

serves to encourage region diversity. Finally, to further reduce annotation effort, semisupervised learning is introduced to

our pipeline to automatically select a portion of unlabeled segmented regions with high confidence and assign pseudolabels

to them. Extensive experiments show that our approach greatly outperforms previous active learning methods, and we

obtain the mean class intersection-over-union performance of 95% fully supervised learning with merely 3% of labeled

data on SemanticKITTI dataset.

Keywords Active learning � Semisupervised learning � Convolutional neural network � Supervoxel � Semantic segmentation

1 Introduction

In recent years, with the aid of deep learning, autonomous

driving achieves significant breakthroughs in multiple

tasks, like object detection, motion forecasting, and

semantic segmentation. As an emerging field among them,

point cloud semantic segmentation (PCSS) is usually used

to understand the driving-scene and draw more and more

attention. Especially in the past 5 years, numerous novel

PCCS methods [18, 35, 47] based on deep learning

frameworks have been proposed. And several public

datasets of PCSS have also been released, such as

Semantic3D [15], ScanNet [9], SemanticKITTI [3].

To achieve superior performance of the model, deep

learning generally relies on a large amount of annotated

data to strengthen the large-scale model. However, the

performance of the model is still not saturated with respect

to the size of annotated data [54]. Moreover, it costs lots of

human labor and time to annotate a large amount of data,

and sometimes only relevant professionals can annotate

data [4]. More importantly, 3D point cloud data are gen-

erally sparse and unorganized, and a point cloud often

includes more than 100,000 points [3], which results in

difficulties of point cloud annotation. Active learning (AL)

is an effective method to solve this problem. The purpose

of AL is to select the most informative and representative
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samples from the unlabeled data to annotate, which greatly

reduces the cost of annotation.

Existing AL methods are mostly at the sample level and

focus less on dense prediction tasks. Most of the works [36]

are proposed for image processing and natural language

processing tasks. However, since point cloud is an unor-

ganized and irregular structure, these methods for image

cannot be directly applied to it. In addition, compared with

images, point cloud typically contains rich geometric

information [33] and intensity information. Besides, it is

often collected in sequence, which contains temporal

information [3]. This information, which is mostly not

involved in recent works [26, 43, 52], has the potential to

improve the AL model performance.

In this paper, we focus on these characteristics of the

point cloud and propose a novel sample selection and

annotation pipeline. Specifically, our proposed method

takes representativeness, uncertainty, and diversity into

consideration and conducts multi-granularity sample

selection: inter-frame and intra-frame. For inter-frame

selection, we consider the sample representativeness within

the sequence, so as to single out a subset which could

represent for the entire sequence distribution. In other

words, the coverage area of adjacent frames usually over-

laps with different sizes, so it is uneconomical to label all

point clouds, which will produce a lot of redundancy.

Inspired by the point cloud registration algorithm [5], we

develop a novel matching score function which is used to

evaluate the similarity of two frames within the sequence.

According to whether the matching score is smaller or

bigger than a similarity threshold, we determine which one

of the two frames is a member of the representative subset.

As shown in Fig. 3, a representative subset selected from a

sequence can cover the whole coverage of the point cloud

sequence with fewer samples, reduce the occurrence of

overlapping areas, and thus lower the annotation costs.

As for intra-frame selection, not all annotated points

within the frame contribute to the model’s improvement

[52], that is, redundancy also exists in the intra-frame

annotation. Besides, due to the particularity of the dense

prediction task, it is laborious to annotate every point in

PCSS task. To make the point cloud annotation more

efficient and encourage maximizing the segmentation

performance, we argue that the unit of point cloud anno-

tation can be changed from the frame to a small portion of

segmented regions [52]. Therefore, we make a tradeoff

between annotating labor and efficiency to alleviate the

expensive point-by-point labeling [43]. Specifically, we

propose a novel method to reduce the redundancy of the

intra-frame granularity under the guidance of uncertainty

estimation and point cloud intensity. In detail, we first

segment a point cloud into regions as the fundamental

labeled units using two unsupervised algorithms [33, 46].

Next, uncertainty estimation is carried out on such seg-

mented regions. Furthermore, to avoid selecting some

typically uncertain segmented regions which exist in sev-

eral point clouds, we introduce exclusive intensity infor-

mation of point cloud [19] to complement segmented

region information estimation. Finally, the segmented

regions with uncertainty and diversity are selected to

annotate.

AL aims at minimizing the training size, while exactly

matching the natural demand of semisupervised learning

[27]. Semisupervised learning utilizes both labeled and

unlabeled data to train models and is well suited to solve

the lack of data in real-world tasks. Pseudolabeling is one

of the application methods in semisupervised learning. Its

goal is to leverage the model trained by partially labeled

data to predict unlabeled data for generating pseudolabels

[51]. Then, data with high confidence in model prediction

will be assigned pseudolabels. Therefore, the integration of

semisupervised learning and AL has attracted research

interest in recent years [45, 50]. However, this integration

method used to PCCS is almost not involved in recent

literature. In this paper, to further reduce the human

annotating labor, we propose to automatically select and

pseudolabel a portion of the confident unlabeled data. The

proposed method aims at searching for the most certain and

informative unlabeled data with the guidance of a high-

confidence threshold. Specifically, we first leverage the

trained model to predict unlabeled data for getting the

prediction confidence. And further, the data with high

prediction confidence are selected and added to the labeled

data pool. Then, the labeled data and pseudolabeled data

are exploited to fine-tune the model.

Experimental results show that our method significantly

outperforms existing deep active learning approaches on

the SemanticKITTI dataset and achieves state-of-the-art

performance on the S3DIS dataset. Our proposed method

could achieve the performance of 90% fully supervised

learning, while less than 15% and 3% annotations are

required on S3DIS and SemanticKITTI datasets, respec-

tively. The ablation studies also verify the effectiveness of

each component proposed in our method.

In summary, the major contributions of this paper are as

follows:

• We propose a new multi-granularity sample selection

and annotation AL pipeline for point cloud semantic

segmentation.
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• We introduce semisupervised learning to automatically

select and annotate the high prediction confidence data

for effectively reducing annotation costs.

• Experiments on challenging SemanticKITTI dataset

show that our approach outperforms existing deep

active learning methods in classification accuracy and

could highly reduce human annotation labor and

computational costs.

2 Related works

2.1 3D semantic segmentation

Recently, 3D PCSS has achieved great progress with the

aid of deep learning. The purpose of 3D PCSS is to divide a

point cloud into several objects according to the predicted

semantic meanings of points. According to the represen-

tation of the point cloud data, 3D semantic segmentation

methods can be classified into three categories: point-based

[18, 35], projection-based [34], voxel-based [7, 29]. Point-

based methods directly process unstructured point clouds,

which suffer from efficiency bottlenecks. In order to

employ the two-dimensional (2D) convolutional neural

networks (CNN) architectures, projection-based methods

focus on converting the 3D point cloud to 2D pseudo-

images, yet resulting in information loss. Voxel-based

methods convert a point cloud into 3D voxels processed by

3D volumetric convolutions. Although retains the 3D

geometric information, it requires very high resolution in

order not to lose much information. Overall, these methods

heavily rely on fully annotated datasets, which require

densely annotated point clouds that are laborious and time-

consuming. To this end, we focus on how to train a model

with less annotated data to achieve similar performance

compared to fully supervised training.

2.2 Deep active learning

As a machine learning method, AL has been of research

interest for a couple of decades for increasing label effi-

ciency and reducing annotated costs. AL selects the most

informative and representative samples from the unlabeled

dataset into the labeled pool through the query strategy and

then iteratively trains the model until the annotated budget

is exhausted or the pre-defined termination conditions are

reached. Therefore, the query strategy is becoming extre-

mely important. The main query strategies include the

uncertainty-based approach [4, 20, 23, 30], distribution-

based approach [2, 14, 31] and expected model change

approach [21, 41]. Various methods were proposed to

measure the uncertainty of the unlabeled samples through

the posterior probability of a predicted class [23], the dif-

ference between the first prediction and the second one

[20], or the entropy of class posterior probabilities [30].

Some earlier studies [8, 42] also estimated the sample

uncertainty referring to a committee of classifiers. The

distribution-based approach queries samples by consider-

ing the selection of core subsets and chooses the samples

which represent the whole dataset, like clustering algorithm

[31], Gaussian process [14] and context-aware methods [2].

The expected model change approach primarily chooses

the unlabeled samples that can make the largest change on

the current model through estimating expected gradient

length [41], expected future errors [38], or expected output

changes [21].

Deep learning (DL) has achieved unparalleled break-

throughs in various fields, while DL is often very greedy

for large amounts of labeled data [16]. Therefore, many

researchers have high expectations for the results of com-

bining DL and AL, referred to as deep active learning

(DAL) [36], for AL’s capacity to effectively reduce

labeling costs. Gal et al. [12] proposed a significant AL

framework for high-dimensional data based on Bayesian

deep learning, to estimate uncertainty through Monte

Carlo(MC) Dropout integration. However, Sener and

Savarese [40] pointed out that this method is unsuitable for

large datasets because of batch sampling. And then, they

proposed a Core-set approach from the perspective of

distribution to construct a core set which is representative

of the entire original dataset. They considered minimizing

the core-set loss is equivalent to the k-Center problem

which can be tackled by an efficient approximate solution.

William et al. [4] proposed an ensemble-based AL for

deriving well-behaved uncertainty estimates for unlabeled

data. Meanwhile, they compared it against the Bayesian

deep learning approach [12] and the density-based

approach [40], and the results show ensemble-based AL

can effectively counteract the class-imbalanced problem

during acquisition and lead to more calibrated predictive

uncertainties. Yoo and Kweon [54] introduced a novel

active learning method with a loss prediction module

which is learned to predict the target loss of the unlabeled

dataset. By considering the difference between a pair of

loss predictions, the loss prediction module could discard

the scale of the real loss changes. Inspired by semisuper-

vised learning, some researchers [13, 17, 45, 50, 55] have

assigned pseudo-labels to high-confidence samples in order

to further improve the accuracy and keep the stability of

the DAL model because of the majority and consistency. In

addition, some researchers combined generative adversar-

ial networks (GAN) [48], reinforcement learning [28], and

transfer learning [10] with AL to achieve various purposes,

respectively.
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2.3 AL for semantic segmentation

Semantic segmentation has important applications in var-

ious fields, like autonomous driving [24], image processing

[1], and high-resolution remote sensing [32]. Combining

AL with semantic segmentation is also conducive to alle-

viating the annotation cost. Although many AL approaches

for semantic segmentation have been proposed, most of

them focus on 2D image segmentation [6, 22, 44, 53].

Recently, a few researchers are applying AL to 3D point

cloud segmentation. Lin et al. [26] first combined AL with

DL for semantic segmentation of large-scale airborne laser

scanning (ALS) point clouds. They proposed a segment-

based query function, considering interactions among

points within segments, to assess the informativeness of

samples. Based on the previous training framework, they

introduced incremental learning to save the training time

and added mutual information metric to estimate model-

dependent uncertainty [25]. Shi et al. [43] proposed a

super-point-based [11] AL strategy which could better

exploit the limited annotation cost. And they further

designed shape-level diversity and local spatial consistency

constraint. Observing that only a small portion of annotated

regions are sufficient for 3D scene understanding, Wu et al.

[52] proposed a region-based and diversity-aware AL. In

this paper, from the perspective of uncertainty, represen-

tativeness, and diversity, we propose a multi-granularity

sample selection and annotation pipeline which combines

the unique 3D geometric information of the point cloud and

the sequential relationship between frames.

3 Methodology

In this section, we describe our multi-granularity and

semisupervised AL pipeline in detail. We first introduce the

architecture of our pipeline. Then, the proposed inter-frame

selection approach is presented. And then, we introduce the

segmented region-based inner frame selection strategy in

detail. Furthermore, we illustrate how to compute the

confidence of segmented regions to further apply pseu-

dolabels for semisupervised learning task. Next, the details

of the network adopted in our work are explained. Finally,

we introduce how we leverage the query strategy to select

the segmented regions with uncertainty and diversity for

annotation and pick out segmented regions with high

confidence probability for pseudolabeling.

3.1 Architecture of the proposed pipeline

The purpose of PCSS is to train a model by leveraging the

dataset, and then, the model assigns a predicted label to

each point, which is a dense prediction task. Therefore, the

labor and time cost of sample annotation required in the

training of PCSS model are very high. In order to improve

the efficiency of manual annotation, we first achieve a

representative subset DNDT from the original point cloud

dataset Dorig through the normal distributions transfer

(NDT) algorithm. Next over-segments 3D point cloud

scans from DNDT into supervoxels using the voxel cloud

connectivity segmentation (VCCS) [33] algorithm. Subse-

quently, the locally convex connected patches (LCCP) [46]

algorithm is used to obtain the segmented regions from

the generated supervoxels. Each segmented region contains

several points, so it is convenient and time-saving to

annotate such regions. So, we have a segmented 3D point

cloud dataset D now, which can be divided into two sub-

sets. One is a little labeled subset DL containing randomly

selected point cloud scans, and the other is a large unla-

beled subset DU.

Our multi-granularity and semisupervised active learn-

ing can be divided into 5 steps:

1. Achieving a representative subset DNDT from the

original point cloud dataset Dorig through the NDT

algorithm.

2. Generating a segmented 3D point cloud dataset

D through VCCS [33] and LCCP [46] algorithms.

3. Training a network on the current labeled subset DL for

assigning a label to each point.

4. Calculating the information score of segmented regions

with two items: softmax entropy and intensity of point

cloud as shown in Fig. 1a. And computing the softmax

confidence of segmented regions as shown in Fig. 1c

5. Selecting Top� K segmented regions for annotators to

annotate exclusive labels, and moving them from the

unlabeled subset DU into the current labeled subset DL

as shown in Fig. 1b. Meanwhile picking out Top�M

segmented regions with pseudolabels from DU and also

feeding into DL as shown in Fig. 1d.

3.2 Registration-based inter-frame selection

Generally speaking, a point cloud dataset contains multiple

sequences, each of which contains multiple frames. Con-

tinuous frames in the same sequence have overlapping

areas and include a large number of repeated categories, so

we employ a point cloud matching approach to screen out a
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subset which could represent the sequence from the per-

spective of building-map.

Considering robustness and efficiency, we choose the

NDT algorithm [5] as the point cloud registration method.

This is because NDT does not need to establish explicit

correspondences between points or features, and all

derivatives could be calculated analytically. The NDT

transforms the discrete set of 2D points reconstructed from

a single point cloud scan into a piecewise continuous and

differentiable probability density, which consists of a set of

normal distributions and can be used to match another scan

through Newton’s algorithm [5]. During the registration of

the two point cloud scans through the NDT algorithm, if

the registration process converges or reaches the maximum

number of iterations, a registration score scorematch will be

obtained, which is used to construct the matching score

function for screening representative point clouds.

scorematch ¼ 1�
X

i

exp
� x0i � qi
� �tP�1

i x0i � qi
� �

2

 !
;

ð1Þ

where x0i,
P�1

i and qi denotes the following notation:

• x0i denotes the point xi mapped into the coordinate frame

of the target scan according to the parameters P of

rotation and displacement. xi is the reconstructed 2D

point of laser scan sample i of the input scan in the

coordinate frame of the input scan.

•
P

i and qi represent the covariance matrix and the mean

of the corresponding normal distribution to point x0i.

In our work, when the registration score scorematch of two

point cloud scans is less than a threshold dmatch, we con-

sider that the overlapping area of two point cloud scans is

large, and then discard the input frame and retain the target

frame. On the contrary, when it is greater than dmatch, we

take the current input frame as the target frame for the next

matching. The outline of the proposed inter-frame selection

approach, given a point cloud sequence S ¼ fs1; s2; . . .; sng
of n scans and a initial representative subset S0 ¼ fs1g, is
as follows:

1. Take the scan s1 as the target frame and scan s2 as the

input frame, and then calculate their matching score

score1�2
match through the NDT algorithm. If score

score1�2
match is less than the threshold dmatch, there is no

need to update subset S0.
2. Next take the scan s3 as the input frame, and perform

the registration between scan s3 and scan s1. If their

matching score score1�3
match is larger than the threshold

dmatch, scan s3 will be added to the subset S0 and taken

as the target frame at the same time.

3. Repeat the above steps until the point cloud registration

of each frame in the sequence is completed.

And then, we can achieve a representative subset S0 ¼
fs01; s02; . . .; s0mg that represents the whole sequence. The

process of inter-frame selection is illustrated in detail in

Algorithm 1.

Fig. 1 Multi-granularity and semi-semisupervised active learning

pipeline. In our proposed architecture, the network is first trained in

supervision with labeled subset DL. The network then produces

softmax entropy and intensity of all segmented regions in unlabeled

subset DU. a Combining segmented region entropy with point cloud

intensity to form the selection indicators. b The Top� K segmented

regions are selected for the annotator to label and moved to the

labeled subset DL for the next round. c Calculating the classification

score for each segmented region. d Assigning pseudolabels to

Top�M segmented regions and moving them to the labeled subset

DL
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It is obvious that the number of point clouds selected

from the same sequence will be different with different

thresholds. Taking the sequence 07 (with 1101 point cloud

scans) in SemanticKITTI dataset as an example, the

number of point clouds selected by setting different

thresholds is shown in Fig. 2. For example, when the

threshold is dmatch ¼ 0:2, a representative subset S0 (with
330 point cloud scans) is selected from the sequence 07.

Then, the selected point cloud scans are used to build the

map, as shown in Fig. 3. The results show that the subset

selected by the NDT matching algorithm can represent all

the elements in the scene completely.

3.3 Segmented region-based inner frame
selection

The labeling cost varies greatly depending on target tasks.

In the annotation process, it is relatively cheap to select

closed polygons to form a semantic annotation for a 2D

image, but 3D point-wise data require expensive point-by-

point labeling [43, 54]. However, not all annotated points

within the frame contribute to the model’s improvement

[52]. Besides, when annotating the same number of points,

if the selected points are scattered in the whole frame,

although the model performance may be very good, the

difficulty and time consumption of annotation will be

greatly increased, and it is hard to exploit the limited

budget.

To alleviate the time and labor of manual point-by-point

labeling, we first leverage VCCS [33] and LCCP [46]

algorithms to segment a point cloud scan into segmented

regions which can be taken as the fundamental label

querying units. Then, in each active selection step, we

calculate segmented regions information with softmax

entropy and point cloud intensity.

3.3.1 Segmented regions generation

Geometrically constrained supervoxels All points in a point

cloud scan are required to be annotated in the supervised

task or conventional AL, which is labor-intensive. If we

can divide a point cloud scan into connective segmented

regions as the basic unit of annotation, it will greatly

improve the efficiency of annotation. So, we first employ

VCCS [33] algorithm to deal with the original point cloud

scan for generating geometrically constrained supervoxels.

The VCCS algorithm is composed of 4 parts: (1) construct

Fig. 2 The number of point clouds selected from the sequence 07

(with 1101 point cloud scans) in SemanticKITTI dataset by setting

different thresholds

Fig. 3 Leveraging 330 representative point cloud scans selected from

the sequence 07 in SemanticKITTI dataset with threshold dmatch ¼ 0:2
to build the map
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the adjacency graph for the voxel-cloud to ensure these

supervoxels connection in space; (2) select a number of

seed points to initialize the supervoxels; (3) calculate the

normalized distance dnorm with three distances: spatial

distance ds, color distance dc and distance df in fast point

feature histograms (FPFH) space [39]; and (4) use a flow-

constrained local iterative clustering for generating geo-

metrically constrained supervoxels as shown in Fig. 4.

Point cloud partitioning These geometrically con-

strained supervoxels gained in the last step are not isolated;

they can be further merged into larger segmented regions.

So next we leverage LCCP [46] algorithm to segment the

supervoxel adjacency graph by classifying whether the

connection relation between two supervoxels is convex or

concave through two criteria: extended convexity criterion

(CC) and sanity criterion (SC). Finally, these small

supervoxels can merge into larger segmented regions as

shown in Fig. 5 through a region-growing process

according to the discriminant results.

3.3.2 Calculating segmented regions information

In each AL selection step, the trained network predicts the

probability pðyi ¼ jjxiÞ of each point xi belonging to the jth
category. Then, we calculate the information of a seg-

mented region from two aspects: (1) softmax entropy based

on the probability; (2) point cloud intensity, which is

introduced in detail as follows.

Segmented region entropy As a widely concerned aspect

in AL, uncertainty sampling aims to select the most

uncertain samples to annotate from unlabeled subset DU. In

this paper, we use softmax entropy to measure the uncer-

tainty of a segmented region. We first obtain the softmax

probability pðyi ¼ jjxiÞ of each point xi belonging to the jth
category in the unlabeled subset DU. Then, we calculate the

region entropy En for the nth segmented region Rn through

averaging the entropy of points within unlabeled region Rn

as shown in Eq. 2,

En ¼ 1

Rn

XRn

i¼1

�P yi ¼ jjxi;Hð Þ log P yi ¼ jjxi;Hð Þ; ð2Þ

where Rn contains N points, H denotes the network

parameters. If the trained network is quite confident about a

predicted category, it will assign a probability to that cat-

egory greater than other categories. In this case, the entropy

En is much lower than other categories. On the contrary, a

higher entropy value is obtained when the trained network

is not confident about a category in the prediction.

Point cloud intensity After obtaining the entropy En of

each segmented region, the most obvious way is to select

the top-ranked regions for annotation. However, these

segmented regions with higher entropy En may result in

redundant annotation effort if appearing in the same

querying step. To increase diverse information for the

network, we can leverage the intensity of each point in a

point cloud scan. The reason for this is that intensity is

different from material to material. The intensities of

reflection on the same material are similar, while pulsed on

different materials are different [19]. Based on this theory,

we pick the intensity as a diversity-aware selection crite-

rion to select diverse segmented regions for the network.

We compute the region intensity score In for the nth seg-

mented region Rn by averaging intensity of points within

unlabeled region Rn as shown in Eq. 3,

In ¼
1

Rn

XRn

i¼1

qi; ð3Þ

where qi is intensity of a point.

After calculating the softmax entropy En and intensity In
of each segmented region, we can combine them linearly to

form the information score rn of the nth segmented region

Rn as shown in Eq. 3.Fig. 4 Visualization of over-segmenting an original 3D point cloud

scan into supervoxels using the VCCS [33] algorithm. Points of the

same color belong to the same supervoxel

Fig. 5 Visualization of obtaining the segmented regions after using

LCCP [46] algorithm to work on previous supervoxels. Points of the

same color belong to the same segmented region
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rn ¼ aEn þ bIn: ð4Þ

Finally, we can obtain a sorted information list r,

r ¼ r1; r2; . . .; rnð Þ: ð5Þ

3.4 Segmented region confidence estimation

In our work, at each AL iterative process, the most infor-

mative unlabeled segmented regions are selected for

annotating, and the network is retrained with added labeled

dataset. In this way, the redundant annotation of nonin-

formative regions is avoided, greatly reducing human

annotation labor. Actually, the subset DU also contains an

adequate amount of ignored unlabeled data with high

confidence. After the network is trained with the initial

labeled subset DL, we can use its predictive capability to

generate relatively accurate pseudolabels for unlabeled

segmented regions in subset DU.

We select the segmented regions with high confidence

from subset DU, when the predicted probability difference

Smar between the two most likely class labels is smaller

than a threshold dH . The pseudolabel ypseudoc is defined as:

ypseudoc ¼
argmax

j
p yi ¼ jjxi;Hð Þ; if Smar [ dH

None; otherwise;

(

ð6Þ

where the threshold dH is set to a large value to achieve

high confident pseudolabels. The Smar is formulated as

follows:

Smar ¼ Sc1conf � Sc2conf ; ð7Þ

where Sc1conf , S
c2
conf represent the classification scores of the

highest and second highest predicted class labels for a

segmented region, respectively. As shown in Eq. 8, given

a segmented region R with N points, we calculate the

confidence of the predicted class label for all points and

achieve the classification scores Sc1conf and Sc2conf for a seg-

mented region by averaging the predicted probabilities of

all points in the segmented region.

Sc1conf ¼
1

N

XN

n¼1

P yc1n jR;H
� �

;

Sc2conf ¼
1

N

XN

n¼1

P yc2n jR;H
� �

:

ð8Þ

Through the probability difference Smar, we can avoid

selecting noisy segmented regions to assign pseudolabels.

For the segmented regions which meet the pseudola-

beling condition, we can arrange each segmented region in

descending order according to its probability difference

Smar to obtain a descending list uS,

uS ¼ S1mar; S
2
mar; . . .; S

n
mar

� �
: ð9Þ

3.5 PCSS network

The PCSS network is a crucial component in our pipeline

for 3D deep learning. Currently, many point-based [35] and

voxel-based [37] networks are proposed to process 3D

data. However, most of these methods suffer from high

memory consumption and computational costs. To better

demonstrate the effectiveness of the proposed AL pipeline,

we pick MinkowskiNet [7] based on sparse convolution

and SPVCNN [29] based on point-voxel CNN as the PCSS

networks in this paper.

MinkowskiNet is proposed for spatio-temporal percep-

tion which can directly process 3D point cloud scans using

high-dimensional convolutions. To achieve this, it adopts

sparse tensors and convolutions for three reasons:

1. The sparse tensor can better express and generalize

high-dimensional spaces.

2. The sparse convolution is similar to the standard

convolution which can leverage all architectural inno-

vations such as residual connections and batch

normalization.

3. The sparse convolution is efficient and fast according

to only computing outputs for predefined coordinates

and saving them into a compact sparse tensor.

To implement efficient and generalized sparse convolution,

it proposes an open-source library which includes sparse

tensor quantization, generalized sparse convolution, max

pooling, and so on. Furthermore,MinkowskiNet leverages a

hybrid kernel (cross-shaped kernel and cubic kernel) to

resolve the problem of computational cost and the number

of parameters in a network caused by increasing

dimensions.

SPVCNN is composed of a fine-grained point-based

branch that keeps the 3D data in high resolution without

large memory footprint, and a coarse-grained voxel-based

branch which aggregates the neighboring features without

random memory accesses [29]. And for large outdoor

scenes [3], it further proposes sparse point-voxel convo-

lution (SPVConv) that enhances PVConv with the sparse

convolution to enable higher resolutions in the voxel-based

branch.

3.6 Annotating labels for segmented regions

On the one hand, according to the final decreasing order r,
we can select Top� K segmented regions for annotators to

assign labels. For the experiment, we actually regard the
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ground truth of the segmented region as the labeled data

instead of labeling by human annotators. Then, these

labeled segmented regions Dlabel are moved from unlabeled

subset DU to labeled subset DL. Note that only a small

portion of a point cloud scan in each active selection is

added to the subset DL as shown in Fig. 1b, because we

take the segmented region as the basic labeling unit.

On the other hand, after getting the final descending list

uS, we select Top�M segmented regions to assign pseu-

dolabels. Then, these pseudolabeled regions Dpseudo are fed

into the labeled subset DL from unlabeled subset DU.

Accomplishing the segmented region information estima-

tion, label annotation, region confidence estimation and

pseudolabeling, we repeat the AL loop to fine-tune the

PCSS network on the updated subset DL until the annotated

budget is exhausted or the iterations are reached. Note that

after each fine-tuning step, we put the high-confidence

samples Dpseudo back to DU and erase their pseudolabels.

4 Experiments

In this section, we first introduce our experimental settings,

including two datasets, the initial portion of all labeled

point cloud scans, maximum iteration, and annotation

budget. Then, we compare our approach with other existing

methods to demonstrate the effectiveness of our method.

Next, to verify the contribution of each individual strategy,

we conduct ablation experiments. Finally, based on the

experimental results, we present the limitations of our

method and the directions for future work.

4.1 Experimental settings

4.1.1 Datasets

We evaluate the performance of our approach and compare

it with the other AL methods on two large-scale chal-

lenging datasets, S3DIS and SemanticKITTI, respectively.

S3DIS is a commonly used indoor semantic segmentation

dataset which can be divided into 6 large areas, with a total

of 271 rooms. We take Area5 as the validation set and

perform active learning training on the remaining datasets.

As for SemanticKITTI [3], it is a representative outdoor

dataset which is released in 2019 for autonomous driving.

SemanticKITTI consists of 22 sequences with total of

43,552 point cloud scans, splitting sequences 00 to 10 as a

training set where sequence 08 is used as the validation set

and the rest sequences as the test set. And the total number

of training points is totalnumber ¼ 2;349;559;532.

4.1.2 Segmented region generation

We employ the VCCS [33] algorithm to over-segment a 3D

point cloud scan into supervoxels with given voxel reso-

lution Rvoxel and seed resolution Rseed. Considering the

density difference between indoor and outdoor point cloud,

we set Rvoxel, Rseed to a small value (Rvoxel ¼ 0:05,

Rseed ¼ 0:5) for S3DIS dataset, and a large value

(Rvoxel ¼ 0:15, Rseed ¼ 3:5) for SemanticKITTI dataset.

The Rvoxel represents the voxel resolution which will be

used for the segmentation, Rseed denotes the distance

between supervoxels. After that, flow-constrained local

iterative clustering is used to generate geometrically con-

strained supervoxels based on spatial connection. Next, we

utilize the LCCP algorithm to cluster these supervoxels

into larger segmented regions through CC criterion with

bTresh ¼ 10�, and SC criterion with asmooth ¼ 0:1. The

bTresh denotes the concavity tolerance angle, and asmooth is

utilized to calculate the smoothness constraint.

4.1.3 Annotation budget

In each active label acquisition step, because the number of

points in different segmented regions varies, we set the

annotation budget as a fixed portion of total training points

instead of a fixed number of segmented regions for the fair

comparison with other methods. The number of pseudola-

bel acquisitions is also set as a fixed portion of the total

points.

4.1.4 Active learning settings

At the beginning of each experiment, we first randomly

select a small portion xinit% of fully labeled point clouds as

the initially labeled subset DL and treat the rest as the

unlabeled subset DU. Then, we perform K rounds as fol-

lowing steps: (1) Training the PCSS network on subset DL;

(2) Selecting a portion xlabel% of total training points from

subset DU for annotation according to different AL

querying methods; (3) If pseudolabels are adopted, select a

portion xpseudo% of total training points for assigning

pseudolabels at dH ¼ 0:9; (4) Moving the newly annotated

points into subset DL and fine-tune the network. In order to

ensure the reliability of the experimental results, each

experiment is conducted three times and results are

averaged.

Specifically, we set xinit ¼ 3%, K ¼ 7 and xlabel ¼ 2%

for S3DIS dataset, and xinit ¼ 1%, K ¼ 5 and xlabel ¼ 1%
for SemanticKITTI dataset [52].
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4.1.5 Network training

For both S3DIS and SemanticKITTI datasets, the networks

are trained with Adam optimizer (initial learning

rate = 0.001) and cross-entropy loss [52]. And the voxel

resolution of both datasets is set to 5 cm.

On the S3DIS dataset, we train the networks on 3

TITAN RTX GPUs with a batch size of nine. In the

training, we first train both networks for 200 epochs on 3%

of the fully labeled point cloud scans and then fine-tune the

two networks for 150 epochs after adding 2% active

annotated data into subset DL each time. Since the point

clouds in the S3DIS dataset do not include intensity

information, we set a ¼ 1; b ¼ 0 in Eq. 4 for the dataset.

On the SemanticKITTI dataset, we train both networks

on 4 GTX 1080Ti GPUs and set the batch size to 8. In the

training, we initially train both networks for 100 epochs on

1% of the fully labeled point cloud scans and then fine-tune

the two networks for 30 epochs after adding 1% active

annotated data into subset DL each time. Referring to [52],

the weight of softmax entropy in Eq. 4 is set as a ¼ 1.

Based on the experimental results, we set b ¼ 0:05:

4.2 Comparison with other methods

We compare our approach with 7 other AL methods,

including random point cloud scans selection (RAND),

uncertainty-based methods, such as softmax confidence

(CONF [50]), softmax margin (MARG [50]), softmax

entropy (ENT [50]) and segmented-entropy(SEG-ENT

[13]), and diversity-based methods, such as core-set

approach (CoSET [40]) and ReDAL [52], which is a recent

region-based and diversity-aware AL approach.

4.2.1 Inter-frame selection

The inter-frame selection algorithm proposed in this

research cannot be employed to reduce the inter-frame

redundancy of the S3DIS dataset since the point clouds in

the S3DIS dataset are not collected in chronological

sequence. As a result, we only conduct inter-frame selec-

tion comparison experiments on the SemanticKITTI data-

set. To fairly verify the effectiveness of the inter-frame

selection method based on the NDT registration algorithm,

we adopt the random selection method as the active query

method. The experimental results are shown in Table 1.

RAND and RANDNDT indicate that point cloud scans are

randomly selected from the original unlabeled dataset Dorig

and the unlabeled dataset DNDT for annotation, respec-

tively. Note that the dataset Dorig contains 19,130 raining

point cloud scans, after the NDT matching with the

threshold dmatch ¼ 0:1, the dataset DNDT contains 9335

point cloud scans. For the SPVCNN network, our inter-

frame selection method can achieve 90% performance of

the result of fully supervised methods

(mIoUSPVCNN
supvis ¼ 63:52%) with merely 5% of annotated

data. With the MinkowskiNet network, our method is also

better than RAND. Although the training data for active

queries is reduced, our method makes the model be trained

on more diverse and informative labeled data.

4.2.2 Intra-frame selection

The visualization of SemanticKITTI on sequence 08 vali-

dation subset with SPVCNN network is shown in Fig. 6.

And the experimental comparison results on the Seman-

ticKITTI dataset are shown in Figs. 7 and 8 where the x-

axis represents the percentage of annotated points, and the

y-axis means the mIoU obtained by the network. Under

both networks, our proposed multi-granularity and

semisupervised AL pipeline consistently outperforms the

previous methods over the PCSS task. We find that our

method outperforms any other AL methods on two

experiments with initial xinit ¼ 1% labeled data. It verifies

the effectiveness of the inter-frame selection method based

on the NDT registration algorithm again.

As for the SPVCNN, in Table 2, we observe that our AL

method can achieve 90% performance of the result of fully

supervised methods with merely 3% of annotated data, and

it reaches 97.95% fully supervised performance with 5% of

annotated points. Particularly, it, respectively, outperforms

the recent state-of-the-art (SOTA) method ReDAL [52] by

6.6%, 7.4%, 8.4%, and 6.9% when using 2%, 3%, 4%, and

5% labeled points. With the network of MinkowskiNet, in

Table 3, our AL method can achieve 90% performance of

the result of fully supervised methods ðmIoUMinkuNet
supvis ¼

61:4%Þ with merely 2% of annotated data, and it can even

reach 99.48% fully supervised performance with only 4%

of annotated points.

On the S3DIS dataset, as shown in Figs. 9 and 10, our

method highly outperforms any other AL methods except

Table 1 Results of mIoU performance (%) on SemanticKITTI with

SPVCNN and MinkowskiNet in frame annotation

% Labeled data SPVCNN MinkowskiNet

RAND RANDNDT RAND RANDNDT

Init 41.84 45.99 37.74 39.56

2 45.41 49.66 42.74 43.79

3 52.19 53.84 48.82 48.47

4 54.76 56.41 52.51 52.81

5 56.89 57.78 54.67 55.69
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for ReDAL. As shown in Tables 4 and 5, the performance

of mIoU we obtained is very close to those obtained by

ReDAL. The main reason for this is that the point clouds in

the S3DIS dataset do not include diverse intensity infor-

mation. Therefore, we cannot leverage the intensity infor-

mation of the point cloud to reduce its intra-frame

redundancy which results in both networks being trained on

the redundant annotated dataset. Furthermore, this result

also demonstrates that our method achieves SOTA per-

formance by leveraging segmented region entropy and

pseudolabels.

4.3 Ablation studies

We verify the effectiveness of segmented region, point

cloud intensity, pseudolabels and NDT in our proposed

pipeline on SemanticKITTI dataset with 5% of annotated

points for fair comparison.

The results are shown in Table 6 and Fig. 11 where

ENT and ENTreg represents querying the annotated points

by calculating the softmax entropy of a point cloud scan

and the segmented region entropy, respectively. Inten, Pseu

and NDT, respectively, denote selecting the segmented

regions using point cloud intensity, training the network

with pseudolabels, and selecting segmented regions from a

representative dataset screened out by the NDT algorithm.

In Table 6, we can observe that changing the annotating

units from a point cloud scan to segmented regions con-

tributes most to the improvement with about 6.15% mIoU.

Furthermore, with the aid of Inten, Pseu and NDT, the

mIoU performance of segmented region entropy yields an

improvement of 1.90%, 2.84% and 2.49%, respectively.

Fig. 6 Visualization of SemanticKITTI on sequence 08 validation subset with SPVCNN network. With our AL approach, the model can

correctly identify persons on the sidewalk with merely 5% annotated points

Fig. 7 Experimental results of different AL methods on Seman-

ticKITTI with SPVCNN. We compare our multi-granularity and

semisupervised AL method with other approaches. It is obvious that

our method highly outperforms previous AL approaches

Fig. 8 Experimental results of different AL methods on Seman-

ticKITTI with MinkowskiNet. We compare our multi-granularity and

semisupervised AL method with other approaches. It is obvious that

our method highly outperforms previous AL approaches

Table 2 Results of mIoU

performance (%) on

SemanticKITTI with SPVCNN

% Labeled data RAND CONF MAR ENT SEG-ENT CoSET ReDAL Ours

Init 41.84 42.98 42.39 41.90 43.18 42.19 41.87 43.30

2 45.41 46.31 46.84 45.57 47.89 46.98 51.70 55.12

3 52.19 50.15 49.55 51.42 52.60 52.93 55.83 59.94

4 54.76 54.46 51.66 51.85 53.60 54.57 56.86 61.63

5 56.89 55.41 53.21 56.45 54.00 56.45 58.18 62.22

The bold text is used to highlight the best performance
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From the comparison of combination (ENTreg ? Inten) and

combination (ENTreg ? Inten ? Pseu), we find that pseu-

dolabels play a key role in the performance of the trained

network.

From Fig. 11, we observe that the performance of

‘‘ENTreg’’ is similar to ‘‘ENTreg ? Inten.’’ The reason is

that without the diverse intensity information, the selected

segmented regions still contain redundant regions. The

result also validates the feasibility of selecting point cloud

intensity information as the diversity indicator. Although

the final performance of group (ENTreg ? Inten ? Pseu)

and group (ENTreg ? Inten ? Pseu ? NDT) is very close,

the training data for the latter are reduced from 19,130

scans to 9335 scans after inter-frame selection. This result

shows that the inter-frame selection method effectively

reduces inter-frame redundancy, and it enables the model

to be trained on a more representative dataset. Despite the

fact that the quantity of point clouds available for model

training is reduced by 51.20%, the model performance is

not compromised by the reduction in the training dataset.

Besides less training data mean less training time con-

sumption and storage consumption. The result also vali-

dates the importance of our inner selection strategy.

The group (ENTreg ? Pseu) outperforms the group

(ENTreg ? NDT) by only 0.34%, and the performance of

group (ENTreg ? Inten?NDT) is weaker than that of the

Table 3 Results of mIoU

performance (%) on

SemanticKITTI with

MinkowskiNet

% Labeled data RAND CONF MAR ENT SEG-ENT CoSET ReDAL Ours

Init 37.74 37.32 38.20 37.33 37.75 36.86 37.48 38.50

2 42.74 42.01 42.73 42.16 42.62 41.25 48.88 55.56

3 48.82 47.37 45.07 45.77 49.51 45.15 55.30 59.75

4 52.51 49.54 47.84 49.46 51.87 49.93 58.35 61.08

5 54.67 53.49 51.27 52.34 53.12 51.89 59.76 61.18

The bold text is used to highlight the best performance

Fig. 9 Experimental results of different AL methods on S3DIS with

SPVCNN. We compare our multi-granularity and semisupervised AL

method with other approaches. Except for ReDAL approach, our

method highly outperforms previous AL approaches

Fig. 10 Experimental results of different AL methods on S3DIS with

MinkowskiNet. We compare our multi-granularity and semisuper-

vised AL method with other approaches. Except for ReDAL

approach, our method highly outperforms previous AL approaches

Table 4 Results of mIoU

performance (%) on S3DIS with

SPVCNN

% Labeled data RAND CONF MAR ENT SEG-ENT CoSET ReDAL Ours

Init 27.05 28.60 28.29 27.92 29.16 28.89 27.86 34.29

5 31.39 32.14 30.07 31.02 34.55 33.24 41.27 43.04

7 35.37 33.76 31.34 35.10 40.97 36.59 47.68 48.48

9 40.51 38.57 33.30 40.90 42.30 37.02 52.34 51.25

11 44.50 40.60 39.75 41.51 43.07 41.42 54.28 55.98

13 46.28 42.43 40.41 43.42 44.48 41.34 57.01 56.81

15 49.02 44.44 40.45 45.06 45.04 41.40 57.97 58.30

The bold text is used to highlight the best performance
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group (ENTreg ? Inten ? Psu). It can be seen that the Pseu

approach actually feeds the model with supplementary

pseudolabeled training data, which can improve the model

performance. The NDT method, on the other hand, enables

the model to be trained on less redundant and more

informative data. Although it can improve the model per-

formance, the NDT method is a coarse-grained selection

method which filters out redundant information by the unit

of frame. This way may result in the removal of data that is

necessary for enhancing the model performance. In

summary, there are two ways to improve model perfor-

mance, either by feeding the model with a large amount of

trainable data, including pseudolabeled data, or by pro-

viding data that is diverse and representative.

4.4 Discussion

4.4.1 Per-class IoU results

A comparison of the performance of our method with fully

supervised one is shown in Table 7. For the SPVCNN

network, our method is on par with full supervision (Full)

on most categories, and even better than that on the cate-

gory of building. Although the performance on the three

categories of other-vehicle, parking, and terrain is weaker

than full supervised one, our method achieves 91%, 86%,

and 93% of full supervised result, respectively. The main

reason for that is that the inter-frame filtering method is a

coarse-grained method, which may result in filtering out

some useful information. Another possible reason is the

imbalanced class distributions in the SemanticKITTI

dataset. As for the MinkowskiNet network, our method

outperforms the fully supervised result for some small

objects, such as motorcycle, person and bicyclist.

4.4.2 Performance change

To investigate the relationship between segmentation per-

formance and the proportion of annotated data, we expand

the annotated data proportion to 10% and conduct experi-

ments on the SemanticKITTI dataset, as shown in Fig. 12.

The results show that our method achieves 99.15% per-

formance of full supervision result with 10% of the anno-

tated data. It can be seen that the model performance

slowly improves from 62.11 to 62.98% as the annotated

data increase from 5 to 10%. The main reason for the slow

performance improvement is that as the proportion of

annotated data increases, the proportion of the new anno-

tated data that is valid for the model decreases. Another

possible reason is that the diversity filtering criteria pro-

posed in this paper, when designing the active query

Table 5 Results of mIoU

performance (%) on S3DIS with

MinkowskiNet

% Labeled data RAND CONF MAR ENT SEG-ENT CoSET ReDAL Ours

Init 26.59 25.52 25.20 26.60 26.30 25.60 25.63 26.67

5 30.22 27.81 25.87 27.60 26.66 35.58 39.45 39.48

7 34.76 30.25 32.40 28.91 30.45 38.88 44.29 44.72

9 38.79 32.23 36.20 35.40 39.72 40.41 50.50 52.01

11 43.80 38.39 41.31 37.10 41.95 41.28 55.11 55.42

13 46.13 42.10 42.28 37.42 44.66 43.63 56.14 56.49

15 48.57 42.18 43.15 40.37 45.79 47.26 57.26 57.30

The bold text is used to highlight the best performance

Table 6 Ablation study with 5% of annotated data on SemanticKITTI

with SPVCNN network

ENT ENTreg Inten Pseu NDT mIoU (%)

p
– – – – 56.45

–
p

– – – 59.93

–
p p

– – 61.07

–
p

–
p

– 61.63

–
p

– –
p

61.42

–
p p p

– 62.18

-
p p

–
p

61.58

–
p p p p

62.22

Fig. 11 Ablation study. Segmented region entropy, point cloud

intensity, pseudolabels and NDT all yield improvements to mIoU

Neural Computing and Applications (2023) 35:15629–15645 15641

123



function, only utilizes one piece of information, the point

cloud intensity, which makes it difficult to feed the model

with more diverse data.

4.4.3 Computational costs

We report the computational time (in minutes) of four

methods presented in ablation study in Table 8 where

ENTint, ENTpse and ENTndt, respectively, denote

‘‘ENTreg ? Inten,’’ ‘‘ENTreg ? Pseu’’ and

‘‘ENTreg ? NDT.’’ And Ttrain and Tcal denote the average

time per epoch in an AL loop and the calculating time for

active querying, respectively.

Because the amount of annotated data is the same for the

initial training, the training time Ttrain is approximately the

same for each method. It can be seen that as the proportion

of annotated data increases, the calculation time Tcal for

active querying tends to decrease. It is because the amount

of data in the unlabeled dataset DU gradually decreases,

resulting in less computation on querying. Using point

cloud intensity data for calculating segmented regions

information has no impact on calculation time Tcal. The

addition of pseudolabeling, on the other hand, increases

active querying time by 19.0%, with a mean value of

23.07 min. It can be seen that compared to the ENTreg

method, the mean calculating time Tcal and training time

Ttrain of the ENTndt method are reduced by 54.6% and

50.5%, respectively. The reason for computational costs

reduction is that after NDT-based inter-frame selection,

and the number of point clouds in the training set decreased

from 19,130 to 9335, resulting in a considerable reduction

Table 7 Per-class results of IoU performance(%) with 5% of annotated data on SemanticKITTI with two networks

Method mIoU Car Bicycle Motorcycle Truck Other-vehicle Person Bicyclist Motorcyclist Road

SPVCNN

Full 63.5 96.7 41.4 66.0 79.9 60.1 67.1 84.9 0.0 93.6

Ours 62.2 95.9 38.6 64.9 80.4 54.8 66.6 84.0 0.0 92.8

MinkowskiNet

Full 61.4 95.9 20.4 63.9 70.3 45.5 65.0 78.5 0.4 93.5

Ours 61.2 95.8 32.5 67.3 61.1 49.5 71.3 83.6 0.0 92.8

Method Parking Sidewalk Other-ground Building Fence Vegetation Trunk Terrain Pole Traffic-sign

SPVCNN

Full 50.6 81.1 0.0 82.8 59.5 88.0 65.3 75.2 64.4 50.5

Ours 43.6 79.6 0.0 89.3 57.5 86.2 65.0 69.9 63.2 49.8

MinkowskiNet

Full 50.6 82.0 0.2 91.2 63.8 87.2 68.5 74.3 64.4 50.1

Ours 44.7 79.8 0.6 89.8 57.2 87.0 65.0 73.2 62.6 48.5

Fig. 12 Experimental results of our method on SemanticKITTI with

more annotated data. Segmented region entropy, point cloud intensity,

pseudolabels and NDT all yield improvements to mIoU

Table 8 Computational time (min) with 5% of annotated data on

SemanticKITTI with SPVCNN network

% Labeled data Time ENTreg ENTint ENTpse ENTndt

Init. Ttrain 0.83 0.78 0.78 0.83

Tcal 25.93 24.00 28.30 10.88

2 Ttrain 71.98 71.50 69.15 35.63

Tcal 18.85 18.63 23.88 8.97

3 Ttrain 71.92 71.02 70.13 35.93

Tcal 17.90 18.67 21.87 8.22

4 Ttrain 71.93 70.28 69.96 35.93

Tcal 17.15 17.28 20.68 7.95

5 Ttrain 72.47 70.08 69.90 35.40

Tcal 17.10 17.18 20.62 7.90
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in computation in the unlabeled dataset. This result also

validates the importance of our registration-based inter-

frame selection.

4.4.4 Hyper-parameters analysis

We conduct a parametric study of three important param-

eters proposed in our method, which are the registration

threshold (dmatch), the weight of point cloud intensity (b) in
Eq. 4, and the proportion of pseudolabeled data (xpseudo).

During the experiment, we keep the other settings

unchanged and then evaluate how mIoU performance

varies with the set parameters, the results are shown in

Table 9. It can be seen that the mIou performance decays

when the point cloud intensity threshold is gradually

increasing. It is because samples with uncertainty are more

important for improving model performance than samples

with diversity [52]. As the xpseudo increases, the model

performance tends to flatten out. The reason may be that

the amount of mislabeled data in the Dpseudo dataset also

increases as the xpseudo increases, which has a negative

effect on the model performance. Although the NDT-based

inter-frame selection can effectively reduce computational

costs, it can degrade model performance when the dmatch is

set too large. This is because NDT-based inter-frame

selection is a coarse-grained selection method that may

result in the removal of data that is necessary for enhancing

the model performance.

4.5 Limitations and future work

Although our proposed method proved to be effective in

reducing human annotation labor and computational costs,

there are still two pivotal limitations. The first is that the

diversity filtering criteria proposed in this paper, when

designing the active query function, only utilize the point

cloud intensity. In fact, there is additional information that

can be used, such as the color properties contained in the

S3DIS dataset’s point clouds. It is because regions with

substantial color variances are more likely to suggest

semantic diversity.

The other limitation is that the imbalance of categories

in the dataset during the acquisition is not considered. Deep

learning is usually trained and evaluated with the

assumption that the dataset is balanced or nearly so. In

reality, datasets in real-world scenarios are frequently

unevenly distributed between categories, such as S3DIS

and SemanticKITTI. The model trained on a skewed

dataset is likely to be overwhelmed by samples coming

from the majority categories. To summarize, we argue that

active learning should not only select informative and

diverse samples to decrease annotating costs, but should

also be able to alleviate the imbalance in the labeled subset

for improving the model’s accuracy and robustness. In

addition, scribble-annotation is a popular and effective

method that retains as much information as possible to

allow relatively high performance when compared to fully

supervised training [49]. In future work, active learning can

be integrated with scribble-annotations, i.e., only scribbling

the uncertain and diverse data, to further minimize anno-

tation labor.

5 Conclusion

In this paper, we propose a multi-granularity and semisu-

pervised active learning pipeline for point cloud semantic

segmentation. We first propose the novel inter-frame

selection module based on the NDT registration algorithm

to select a representative subset. Then, two key compo-

nents, the segmented region entropy and point cloud

intensity, are designed to select the most informative and

diverse regions to annotate rather than a traditional point

cloud scan. Next, through the efficient pseudolabeling

method, our method further achieves high-cost efficiency.

Finally, we conduct extensive experiments and ablation

studies with two networks on SemanticKITTI dataset,

where our method substantially achieves SOTA cost effi-

ciency and greatly outperforms all existing works.
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