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Abstract
In the recent past, deep convolutional neural network (DCNN) has been used in majority of state-of-the-art methods due to

its remarkable performance in number of computer vision applications. However, DCNN are computationally expensive

and requires more resources as well as computational time. Also, deeper architectures are prone to overfitting problem,

while small-size dataset is used. To address these limitations, we propose a simple and computationally efficient deep

convolutional neural network (DCNN) architecture based on the concept multiscale processing for human activity

recognition. We increased the width and depth of the network by carefully crafting the design of network, which results in

improved utilization of computational resources. First, we designed a small micro-network with varying receptive field size

convolutional kernels (1�1, 3�3, and 5�5) for extraction of unique discriminative information of human objects having

variations in object size, pose, orientation, and view. Then, the proposed DCNN architecture is designed by stacking

repeated building blocks of small micro-networks with same topology. Here, we factorize the larger convolutional

operation in stack of smaller convolutional operations to make the network computationally efficient. The softmax

classifier is used for activity classification. Advantage of the proposed architecture over standard deep architectures is its

computational efficiency and flexibility to use with both small as well as large size datasets. To evaluate the effectiveness

of the proposed architecture, several extensive experiments are conducted by using publically available datasets, namely

UCF sports, IXMAS, YouTube, TV-HI, HMDB51, and UCF101 datasets. The activity recognition results have shown

outperformance of the proposed method over other existing state-of-the-art methods.
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1 Introduction

With the rapid development of digital media technology

such as surveillance, film crew and mobile phone, com-

puter vision scientists have increased interest in develop-

ment of automated monitoring system. Therefore, vision-

based human activity recognition (HAR) has become one

of the most prominent research area due to its numerous

applications in intelligent security monitoring, entertain-

ment, smart indoor security, military applications, health-

care, robot vision, day-to-day activity monitoring [1, 2],

etc. HAR system aims to automate the video monitoring

system to help the human operator in identifying unusual

events of interest. A number of works have already been

done in this area with significant improvement in accuracy

but accurate activity recognition is still a challenging task

[2]. In the past decade, a large number of researches have

given the methods for human activity recognition that use

different handcrafted features [2–7] such as histogram of

oriented gradient (HOG) [3], local binary pattern (LBP)

[4], local ternary pattern (LTP) [5], scale-invariant feature

transform (SIFT) [6], Harris3D [7], etc. The methods based

on handcrafted features achieved success up to certain

& Ashish Khare

khare@allduniv.ac.in

Arati Kushwaha

aratikushwaha.jk@gmail.com

Om Prakash

au.omprakash@gmail.com

1 Department of Electronics & Communication, University of

Allahabad, Prayagraj, Uttar Pradesh, India

2 Department of Computer Science & Engineering, HNB

Garhwal University, Srinagar Garhwal, India

123

Neural Computing and Applications (2023) 35:13321–13341
https://doi.org/10.1007/s00521-023-08440-0(0123456789().,-volV)(0123456789().,- volV)

http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-023-08440-0&amp;domain=pdf
https://doi.org/10.1007/s00521-023-08440-0


extent for the videos captured in controlled environments.

But, the challenges of accurate human activity recognition

still lies for real-world applications since realistic videos

are complex in nature and have a dynamic range of varying

information. Also in real time applications, it is difficult to

decide which feature will be suitable for the problem at

hand. A small variation in motion, scale and object pose

can generate similar feature values in different categories

of activity classes and different feature values in same

category of activities which may lead to poor classification

[8].

In recent past, deep learning-based approaches have

outpaced the handcrafted feature-based conventional

approaches due to its success in number of computer vision

applications [9–16]. The self-learning capability of deep

learning networks from complex representation of visual

data may help deep learning architectures suitable for

video-based human activity recognition [10]. After the

success of AlexNet, several deep architectures have been

considered for computer vision applications with the aim to

achieve better performance in a limited computational cost.

The most straightforward way of improving classification

accuracy is to increase size of the network in terms of

network depth and width. It has been studied by the

researchers that deeper architectures can grab dynamic

range of complex details from complex visual data than the

shallower ones [13]. However, deeper architectures need

large number of learnable parameters and plenty of com-

putational resources for training. These architectures suffer

from overfitting problem with smaller size datasets.

Enormous works have been done on human activity

recognition based on deep learning. Researchers working

in this area have used fusion of two networks, integration

of handcrafted features and deep learning architectures, and

3D CNN-based architectures to achieve better performance

which came true up to certain extent. But with the

advancements in mobile computing devices and robotics,

design of an efficient algorithm is still needed that performs

better in limited computational budget.

Therefore, we proposed a simple and computationally

efficient deep convolutional neural network (CNN) archi-

tecture for human activity recognition. The proposed

architecture is constructed by stacking the repeated build-

ing blocks (small micro-networks) of same topology. The

micro-networks are small CNN architectures designed to

cluster the neurons, and their outputs are highly correlated

at each layer. Micro-networks are constructed using con-

volutional kernels with varying receptive fields. The

designed architecture will grab dynamic range of complex

details for each activity category from the complex visual

data that have large variations in scale and poses of human

objects.

The main contributions of the proposed work are as

follows:

(i) We designed a simple and computationally effi-

cient deep CNN architecture based on small

micro-networks that have lesser number of hyper-

parameters than the standard deep learning archi-

tectures, and it can also be trained on low

computing devices or scenarios that have inher-

ently limited computational budget such as mobile

vision technologies.

(ii) The proposed network is fine-tuned and trained

from scratch using raw RGB data then evaluated

using a softmax classifier.

(iii) Several extensive experiments have been per-

formed to validate the authenticity of the proposed

network. To establish the soundness of the

proposed architecture, compared it with its close

variants in terms of learnable parameters and

convergence rate.

To validate the performance of the proposed framework of

human activity recognition, we conducted experiments on

six different publically available human activity recogni-

tion video datasets and compared the results with several

existing state-of-the-art methods. The experimental results

have demonstrated the usefulness and effectiveness of the

proposed human activity recognition method.

Rest of the paper is organized as follows: The details of

related work is given in Sect. 2. The description of the

proposed work for human activity recognition is given in

Sect. 3. In Sect. 4, we presented the experimental setup

and datasets considered in the proposed work. The exper-

imental results are discussed in Sect. 5, and finally Sect. 6

concludes the paper.

2 Related work

Video-based human activity recognition is a difficult task

due to several challenges like fuzzy boundary between

activity categories, varying view-point, inter- and intra-

class variations, similarity between different categories of

activity, object occlusion, varying illumination conditions,

camera motion, presence of noise, cluttered background,

non-rigid human object and ambiguous definition of dif-

ferent actions [1, 2], etc. Selection and extraction of suit-

able features play a vital role in activity recognition task.

Good discriminative features enhance the performance,

while poor and ambiguous features degrade the perfor-

mance of activity recognition. Based on feature extraction

techniques, the literature related to human activity recog-

nition is categorized into two categories, namely
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conventional handcrafted feature-based approaches and

deep learning-based approaches.

In the past decade, a number of handcrafted feature

descriptors have been exploited by researchers such as

[3–7], etc., for human activity recognition. Based on the

combination of optical flow vectors and histogram of ori-

ented magnitude a novel feature descriptor have been

proposed by Arati et al. [2] for activity recognition. Alina

et al. [17] have developed a framework for human activity

recognition using skeleton data in which they used a ran-

dom forest classifier for activity recognition. Arati et al.

[18] proposed a framework for human activity recognition

in which they used multiple features in order to uniquely

represent complex information for each activity category.

They constructed the feature vector based on integration of

Discrete Wavelet Transform, Multiclass LBP, and HOG

features and then used one-vs-one multiclass support vector

machine for activity recognition. Roshan at al. [19] have

presented human activity recognition framework based on

combination of multiple handcrafted feature representation

techniques for multi-view environment and then used

hidden Markov model for activity recognition. In [20],

Swati et al. proposed a framework for human activity

recognition for video sequences in which they used an

integration of moment invariants and uniform local binary

patterns followed by multiclass SVM. Muhammad et al.

[21] have considered a hybrid approach based on multiple

features to extract feature vectors and then used rank cor-

relation-based feature selection approach for selecting

appropriate features followed by KNN multiclass classifier

for activity recognition. Hand-crafted feature based

approaches have achieved success up to certain extent but

still there is a need to design algorithms for realistic videos

recorded in complex uncontrolled environments.

In recent years, deep learning-based models have

become a mainstream method for computer vision appli-

cations [8–14, 17, 22, 23]. Motivated by this, several

researchers have published their work on human activity

recognition based on deep learning architectures

[8, 24–29]. In [8], a resource-conscious deep learning

architecture which consists of total 26 layers has been

proposed by Muhammad et al. for vision-based human

activity recognition. They used a statistical approach for

unique unambiguous feature selection based on Poisson

distribution followed by softmax classifier for action

recognition. A 3D asymmetric MicroNets based method for

human action recognition has been proposed by Hao et al.

[24] in which they used several MicroNets to incorporate

the multiscale processing. Noor et al. [25] have proposed a

framework for human action recognition in which they

used a video summarization technique followed by 3D

deep CNN architecture. Muhammad et al. [26] have pro-

posed a framework for human action recognition, in which

they computed deep learning features by pre-trained VGG-

16 model and handcrafted feature by using horizontal and

vertical gradients followed by feature fusion strategy to

construct the feature vector. The final feature vector for

activity recognition was constructed by selecting high

probable features based on the three parameters—relative

entropy, mutual information and strong correlation coeffi-

cient (SCC). Tran et al. [27] have proposed a 3D deep CNN

architecture to grab spatiotemporal features to achieve

significant improvement in accuracy value for human

action recognition. Sachin et al. [28] have proposed a deep

CNN architecture for human action recognition in which

they first computed depth images and then these depth

images are used for training and testing purposes. In [29],

Mei et al. have proposed a semi-CNN architecture based on

the concept of fusion of 2D and 3D CNN architectures to

encode spatiotemporal information for human action

recognition.

From the above detailed literature review, we found that

several approaches, based on conventional features as well

as deep learning, for video-based activity recognition

exists. Although a number of work have been done for

human activity recognition and have achieved remarkable

success in terms of classification accuracy, people are still

trying to develop efficient algorithms which can work well

in limited computational budget with increased perfor-

mance. Therefore in this work, we proposed a computa-

tionally efficient deep CNN architecture based on micro-

networks for human activity recognition that have lesser

number of parameters and could be trained on low com-

puting devices.

3 The proposed method

The ultimate goal of the proposed work is to introduce a

simple and computationally efficient CNN architecture

which works well in limited computational budget and has

flexibility of training with small and large size datasets,

with improved performance. In this work, we propose a

supervised learning-based multiscale architecture for

human activity recognition that has the capability to learn

complex invariant features from realistic video data and

deals with challenges of varying size of objects, varying

object poses and various image transforms. The proposed

approach consists of the following main steps:

(i) Collect large video data and resize them using

augmentation techniques before feeding for net-

work training and to avoid the overfitting problem

also.

(ii) Design small micro-networks that have varying

convolutional kernels on the same layer to process
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data using a combination of convolutional, ReLU

and batch normalization layers. This design pro-

vides multiscale processing.

(iii) Design a simple and optimized CNN architecture

by stacking repeating building blocks (stacking

small micro-networks) with the same network

topology.

(iv) Fine-tune the proposed network and train the

proposed network from scratch using raw RGB

data and evaluate the trained network using

softmax classifier after training.

3.1 General design principle of the proposed
architecture

Although several works have been done for activity

recognition based on deep learning methods, selection of

an optimum deep learning architecture is still a difficult

task and is application-dependent [25]. Further, it has been

proven that the deeper architectures have better general-

ization ability and are able to learn more discriminative

features hierarchically. The most straightforward way of

increasing the size of the network is by increasing the depth

and width of the network on each layer. But by simply

stacking convolutional layers to design the deep architec-

ture makes the algorithm computationally expensive.

Therefore, such deeper architectures are not suitable for

mobile vision devices that have limited computing capa-

bility and constrained memory. Also by uniformly

increasing the network size, it become prone to overfitting

problem with smaller size dataset. Thus, the need is to

carefully design the CNN architecture with an increase in

depth and width of the network.

Further, it has been studied that visual data of human

activities recorded in realistic environment consists of

dynamic range of complex information due to complex

human motions, which lead to the challenges like large

inter-class variations in the same activity category and

fuzzy boundaries between different activity categories

caused due to variations in scale, pose, and viewpoint

changes as illustrated in Fig. 1.

Figure 1 shows that varying object size, pose, orienta-

tion and views of human objects in the sample frames

represent different activity categories. Therefore, unique

discrimination of each activity category requires several

local and global structural information of each activity

category. Thus, during the design of CNN architecture for

human activity recognition, choice of right size convolu-

tional kernel is difficult due to large variation in distribu-

tion of information across sample frames of each activity

category. We can overcome the above-mentioned chal-

lenge up to certain extent by designing deep architecture

with varying receptive field size convolutional kernels at a

particular layer, which can encapsulate the dynamic range

of complex patterns of human activities that have varia-

tions in scale, orientation, and pose. A larger size convo-

lutional kernel can be used to capture information which is

more spread out in the frame and a smaller size convolu-

tional kernel can be used for information which is less

spread out [11].

Inspired by the method proposed by Christian et al. [11],

we proposed a deep CNN architecture based on the concept

of multiscale processing in which we used varying size

convolutional kernels at a same layer of network. Moti-

vated by the works presented in [11, 24], we designed a

small micro-network with varying size convolutional ker-

nels (1�1, 3�3, and 5�5) as shown in Fig. 2a. The pro-

posed deep convolutional neural network architecture is

constructed by stacking repeated building blocks of these

small micro-networks. The micro-network is used in this

work to increase the depth and width of the network

simultaneously and to enhance the learning capability of

the network without increasing the computational budget.

The proposed architecture is deeper and wider than the

standard deep learning architectures and has the capability

to get trained on low-memory GPU devices. The proposed

architecture has the potential to process complex patterns at

multiple scale which helps in robust discrimination of each

activity category uniquely and makes the network learning

process faster.

3.2 Factorizing convolutional operation
with smaller filters

The computational efficiency and lesser number of learning

parameters are essential factors in designing of deep CNN

architecture for low computing devices. Therefore, for

efficient utilization of computational resources of the sys-

tem, we further factorize the larger convolutional operation

of the micro-network into a smaller size convolutional

operation in a manner that have the same effect on the

receptive field size of the larger convolution operation of

the network as illustrated in Fig. 3. Figure 3 represents

decomposition of 5�5 convolutional operation using stack

of two 3�3 convolutional operations.

Thus, to increase the computational speed, the convo-

lutional layer C3 in path 3 (Fig. 2a) with convolutional

kernel of size 5�5 is replaced by two 3�3 convolutional

kernels (as shown in Fig. 2b). This leads to the reduction in

number of learnable parameters, i.e., stacks of two con-

volutional layers with 3�3 kernels along with C channels

requires 2� ð32C2Þ ¼ 18C2 parameters, whereas single

convolutional layer with 5�5 kernel size needs 52C22 ¼
25C2 parameters. Stacking of two convolutional layers
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with kernel size 3�3 instead of a single convolutional layer

with 5�5 increases the depth of network which introduces

more nonlinearity in the network [30].The merit of stacking

two convolutional layer (of size 3�3 ) instead of single

5�5 convolutional layer is that smaller size filter helps in

extracting fine-grained details of activity data. And also

increasing depth of the network allows network to learn

more complex details. Therefore, the micro-network pre-

sented in Fig. 2b is used to design the CNN for the pro-

posed work.

3.3 Architectural detail

Inspired from inception modules proposed in [11, 24], we

designed small micro-networks having multiple size

convolutional kernel in which larger size kernel is for

capturing the globally distributed information and smaller

size kernel is for capturing the locally distributed infor-

mation. Results obtained after applying all convolutional

kernels on a particular level are concatenated and used as

an input to the next level. The proposed micro-network is

shown in Fig. 2b. The proposed micro-network is a CNN

architecture that is constructed with C1, C2, and C3 con-

volutional layers with 1�1, 3�3 and 5�5 (equivalently

stack of two convolution operations of kernel size 3�3)

convolutional kernels followed by ReLU and batch nor-

malization layer to process input feature at multiple scales

[9]. The convolutional layer C1 in path 2 and path 3 used

kernel size 1�1 before 3�3 and 5�5 operation to reduce

the dimensionality of the channel before passing through

Fig. 1 Sample frames of UCF101 dataset [19] from two activity categories a Horse riding and b Cycling
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the network. This reduces the computational complexity of

the network and also increases the width and depth of the

network. The final output feature map of path 1, path 2, and

path 3 are concatenated and used as an input to the next

layer. The output at layer of this micro-network is mathe-

matically represented as follows:

fl ¼ Tlð½f1; f2; f3�Þ ð1Þ

where ½f1; f2; f3� refers to concatenation of feature maps and

Tlð:Þ is nonlinear transformation.

Thus, with the carefully crafted design of small micro-

network, we increased the network depth and width and

Fig. 2 Proposed micro-networks

Fig. 3 Illustration of replacing 5�5 convolutional operation using stack of two 3�3 convolutional operations
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that too in a limited computational budget with multiscale

processing capability. Varying size convolutional kernel on

a layer of the proposed architecture is used to extract

various feature maps to capture different complex patterns

of activity data. These feature maps extracted with differ-

ent varying convolutional operations are concatenated and

used as input to the next layer. The proposed deep learning

architecture for human activity recognition is shown in

Fig. 4.

This architecture is constructed by stacking micro-net-

works after three convolutional layers followed by one

fully connected layer with 256 units and a softmax clas-

sifier. Each convolutional layer of the proposed architec-

ture and micro-network is followed by ReLU activation

function and batch normalization to introduce nonlinearity

in the network and for generalization of the network, to

enhance the discriminative power of the decision function

and speed up the learning process [9, 31]. In the proposed

architecture, first two micro-networks consist of 64, (64,

96), (8, 16, 16) convolutional kernels, the next two micro-

networks have 96, (96,128), (16, 32, 32) convolutional

kernels, and the last two micro-networks have 128,

(128,256), (32, 64, 64) convolutional kernels. The pro-

posed architecture also contains four max-pooling layers

(M1-M4) with window size (3,3) and stride (2,2), one

average pooling layer A1 with window size (5,5), and

stride (1,1). Table 1 presents the detailed architectural

description of the proposed architecture.

Human activity data have a dynamic range of complex

information. Similar activities can have extremely large

variations in the size of human objects. Therefore, choos-

ing the right size of convolutional kernel is important. With

the larger convolutional kernel size, we can grab infor-

mation that is distributed in large area and smaller size of

convolutional kernel help to grab locally distributed

information. Therefore, we used different size convolu-

tional kernels in a micro-network layer which helps in

multiscale processing of dynamic range of information.

Therefore, the proposed deep CNN architecture with

multiscale processing in micro-networks has capability to

deal with the challenges of large variations in sizes, ori-

entations, and poses of human objects within the same

activity class.

4 Experiments and datasets used

This section presents an elaboration of implementation

details, evaluation criteria and datasets used in our

experiments.

4.1 Implementation detail and evaluation
criteria

We trained the proposed architecture from scratch on

several publically available datasets discussed in Sect. 4.2.

To implement the proposed architecture, we used Python3,

Keras and TensorFlow deep learning libraries. All the

experiments have been performed on NVIDIA P2000 GPU

having Intel� Xeon� CPU E7- 4809 processor. The pro-

posed architecture was trained from scratch using

stochastic gradient descent (SGD) optimizer with initial

learning rate 0.01, batch size 64, momentum 0.9, and

weight decay 1e-4 [32]. We have also considered close

Fig. 4 Proposed deep learning architecture for human activity recognition
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variants of the proposed architecture by using variants of

the proposed micro-network (bottleneck_1 and bottle-

neck_2) as illustrated in Fig. 5a and b.

The bottleneck shown in Fig. 5a is proposed in [11].

Learnable parameters, convergence rate, and classification

accuracy are used as performance measure to evaluate the

effectiveness of the proposed architecture [13]. The pro-

posed architecture has also been evaluated with different

initial learning rate.

4.2 Dataset description

The soundness of the proposed architecture is tested by

conducting several extensive experiments on six publically

available benchmark human activity datasets UCF sports

[33], IXMAS [34], YouTube [35], TV-HI (TV Human

Interaction) dataset [36], HMDB51 [37] and UCF101 [38].

The sample frames of the considered datasets are shown in

Fig. 6.

Table 1 Architectural details of

the proposed network
Layer Kernel size Proposed architecture Output size

Convolution 7�7 32, Conv, stride 2, ReLU, BN 75�75

Pooling 3�3 Max pooling, stride 2 38�38

Convolution 1�1 32, Conv, stride 1, ReLU 38�38

Convolution 3�3 64, Conv, stride 1, ReLU, BN 38�38

Pooling 3�3 Max pooling, stride 2 19�19

Micro-network – 1� 1Conv
1� 1; 3� 3Conv

1� 1; 3� 3; 3� 3Conv

2
4

3
5 �2

19�19

Pooling 3�3 Max pooling, stride 2 10�10

Micro-network – 1� 1Conv
1� 1; 3� 3Conv

1� 1; 3� 3; 3� 3Conv

2
4

3
5 �2

10�10

Pooling 3�3 Max pooling, stride 2 5�5

Micro-network – 1� 1Conv
1� 1; 3� 3Conv

1� 1; 3� 3; 3� 3Conv

2
4

3
5 �2

5�5

Pooling 5�5 Average pooling, stride 2 1�1

FC – 256, ReLU –

Classification layer – Softmax Classifier –

Fig. 5 Close variants of the proposed micro-network a Bottleneck_1 [11] b Bottleneck_2
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4.2.1 UCF sports dataset

UCF sports [33] is a publically available dataset that con-

sists of several sports activity. The videos in this dataset

were collected from broadcasted television channels such

as BBC and ESPN that are captured in a realistic envi-

ronment. It consists of total ten activity categories (golf

swing, kicking, lifting, diving, horse-riding, running,

skateboarding, Swing_Bench, Swing_SideAngle and

walking). This dataset consists of a total of 182 videos of

resolution 720�480, recorded in real sports environment

with challenges like varying lighting condition, complex

background, occlusion, etc.

4.2.2 IXMAS dataset

IXMAS [34] is a publically available multi-view activity

dataset with total 13 activity classes (check watch, crossing

arms, do nothing, getting up, scratching head, sitting down,

walking, waving, pointing, punching, picking up, throwing

from bottom-up and throwing overhead) performed by 11

peoples. It is a collection of total 1148 low-resolution

videos captured by five different cameras from different

views under a controlled environment with a 23 fps frame

rate and 320�291 revolution.

4.2.3 YouTube dataset

YouTube [35] is a realistic human activity video dataset

collected from YouTube. It consists of total 11 activity

categories (basketball playing, biking/cycling, diving, golf

swing, juggling, horse riding, trampoline jumping, volley-

ball spiking, walking with dog, and swinging. It is one of

the popularly used sports dataset having challenges like

object appearance, illumination conditions, viewpoint,

object scale and camera motion. Each category of activities

of this dataset has been divided into 25 groups with some

shared properties in each group like similar background,

view point, same human object, etc.

4.2.4 TV-HI dataset

TV-HI (TV Human Interaction) dataset [36] was created in

2012. The main objective of this dataset was to address the

recognition of interaction between two human objects. It

consists of four types of human interaction activities

(handshaking, high-fives, hugs and kisses) with the chal-

lenges like clutter background, camera motion, changes in

viewpoint, complex background and varying number of

people in the scene. This dataset was collected from 20

different TV shows, having a total of 300 video clips.

4.2.5 HMDB51 dataset

HMDB51 [37] is one of the most popular challenging

dataset in which videos were collected from YouTube and

movies. It consists of total 7K videos with 51 activity

categories in which each activity category have minimum

101 video clips with 320�240 resolution and 30 fps frame

rate. This dataset consists of activity categories ranging

from daily life activities to sports activities, with complex

high-level activities and having challenges like complex

background, camera motion, varying lighting condition,

human–human interaction, and human–object interaction,

etc. These 51 activity categories could be categorized into

five main groups that are general facial actions (laugh,

chew, smile, talk, etc.), facial actions with object manip-

ulation (eat, drink, smoke), general body movements

(cartwheel, jump, pull up, push up, run, sit down, stand up,

turn, walk, wave, etc.), body movements with object

interaction (brush hair, catch, draw sword, dribble, golf, hit

something, kickball, pick, throw, etc.) and body move-

ments for human interaction (fencing, hug, kick someone,

kiss, sword fight, etc.).

4.2.6 UCF101 dataset

UCF101 [38] is a realistic user uploaded human activity

video dataset that have a total of 13320 instances that are

recorded under an uncontrolled environment and have

challenges like varying illumination conditions, contain

partial occlusions, different pose and orientations of human

objects, cluttered scenes, complex background, camera

motion, etc. The average length of video clips in this

dataset is 170 frames per video and duration is about 7

second with 320�240 resolution and 30 fps frame rate. It is

one of the most challenging human activity recognition

dataset due to the large number of activity categories, the

large number of video clips, and also unconstrained nature

of such video clips. Its 101 activity categories can be

divided into five groups that are human–object interaction,

body-motion only, human–human interaction, playing

musical instruments and sports.

5 Results and discussion

Using the proposed architecture, we experimented for HAR

on several publically available datasets. The datasets used

in our experiments have their own challenging situations

and actions. The recognition results were recorded for

different learning rates, epochs, etc. Learnable parameters,

classification accuracy and convergence rate are taken as

performance measures to evaluate the results of the pro-

posed architecture. Three sets of experiments were
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conducted in order to evaluate the effectiveness and effi-

ciency of the proposed architecture. Firstly, we conducted

experiments by training proposed architecture from scratch

using RGB data using varying learning rate, to find the

initial learning rate at which training of the proposed

architecture is comparatively faster. Then, we compared

the proposed architecture with its close variants in terms of

classification accuracy, convergence rate and learnable

parameters, and finally, we compared the proposed archi-

tecture with standard deep learning architectures [9–11] in

terms of learnable parameters. Results of the proposed

architecture were again compared with results of several

state-of-the-art methods of human activity recognition.

5.1 Analysis of the proposed micro-network
in designing of CNN architecture

In this section, firstly we evaluated the impact of the micro-

networks (micro-network-A and micro-network-B) given

in Fig. 2 on the proposed CNN architecture. For this, we

designed CNN architectures by separately stacking the

micro-network-A and micro-network-B. The architectural

details of the designed architectures with micro-network-A

and micro-network-B are given in Table 2.

Both the architectures were trained from scratch on

YouTube dataset [35] up to 100 epochs with learning rate

0.05 and SGD optimizer. The results of both the networks

are compared in terms of convergence rate and learning

parameters. The comparative results of are given in

Table 3.

From Table 3, it can be observed that the CNN archi-

tecture designed with micro-network-B is better than

micro-network-A in terms of speed and computational

resources. CNN architecture with micro-network-B

achieves faster convergence rate and requires lesser num-

ber of learnable parameters than the architecture designed

with micro-network-A. Therefore, we used micro-network-

B (Fig. 2b) to design the proposed architecture for human

activity recognition.

After that, we studied the impact of micro-networks in

the layers of CNN architecture instead of simply stacking

the convolutional layer. For this, we have taken eight dif-

ferent close variants of the proposed CNN architecture by

simply stacking convolutional layers instead of using

micro-networks. The first architecture (CNN-1) has same

depth as the proposed network with convolutional kernel of

size 3�3. The second, third and fourth architectures (CNN-

2, CNN-3 and CNN-4) have more depth than the proposed

network with convolutional kernel of size 3�3. The fifth

architecture (CNN-5) has the same depth as proposed

network with convolutional kernel of size 5�5. The sixth,

seventh and eighth architectures (CNN-6, CNN-7 and

CNN-8)) have same width but more depth than the pro-

posed network with convolutional kernel of size 5�5. The

architectural details of these architectures are presented in

Table 4.

The proposed architecture and all architectures listed in

Table 4 are trained up to 50 epochs from scratch on

YouTube dataset [35] with learning rate 0.05 and by using

SGD optimizer. The experimental results of the proposed

architecture and architectures mentioned in Table 4 are

given in Table 5 in terms of classification accuracy and

learning parameters.

From Table 5, it can be observe that the proposed

method achieves highest accuracy value with compara-

tively less number of learning parameters at 50 epochs.

Table 5 shows outperformance of the proposed method

over other CNN architectures designed by naively stacking

convolutional kernels. The experimental results have

demonstrated that by employing varying field size convo-

lutional kernels in the layers of the proposed CNN archi-

tecture instead of simply stacking convolutional kernels,

we can encapsulate the dynamic range of complex patterns

of human activities, which captures information that is

distributed globally and locally and helps in faster learning

of network from the complex pattern of visual data. The

micro-network based architecture is found better in terms

of convergence rate, computational resources and classifi-

cation accuracy. Therefore, for entire experimentation, we

have used micro-network-B (as shown in Fig. 2b) for

designing of the proposed CNN architecture for human

activity recognition.

5.2 Evaluation of the proposed deep CNN
architecture

The obtained results using the proposed architecture were

evaluated in terms of classification accuracy, and learnable

parameters for which, firstly, we compared the proposed

architecture with its close variants (Variant_1 and Vari-

ant_2). The architectural details of the proposed architec-

ture and its close variants are given in Table 6. The

variants of micro-network architectures are shown in

Fig. 5a and b.

In variant_1 first two micro-networks consist of 64, (64,

96), (8, 16) , 16 convolutional kernels, next two micro-

networks have 96, (96,128), (16, 32), 32 convolutional

kernels, and last two have 128, (128, 256), (32, 64), 64

convolutional kernels, whereas in variant_2, first two

micro-networks consist of 64, (64, 96), (8, 8, 16, 16)

convolutional kernels, the next two micro-networks have

bFig. 6 Sample frames of the datasets taken for experimentation.

a UCF sports [33] b IXMAS [34] c YouTube [35], d TV-HI [36],

e HMDB51 [37], and f UCF101 [38]
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96, (96,128), (16, 16, 32, 32) convolutional kernels, and the

last two have 128, (128,256), (32, 32, 64, 64) convolutional

kernels. The proposed architecture and its close variants are

trained from scratch using raw RGB data of HMDB51

dataset [37] and using SGD optimizer at 0.05 initial

learning rate with 1000 epochs. The experimental results of

the proposed method and its close variants are shown in

Table 7.

From Table 7, it can be observed that the proposed

architecture achieves better accuracy (96.58%) than its

variants at 1000 epochs. Although variant_2 needs fewer

learnable parameters than the proposed architecture but

have slow convergence than the proposed architecture, the

variant_1 has 96.35% accuracy and variant_2 has 95.46%

accuracy in 1000 epochs. Therefore, from Table 7, it can

be observed that the proposed architecture outperformed

among all its variants.

We again experimented the proposed architecture to

investigate the impact of varying learning rate on classifi-

cation accuracy. For this, we experimented on HMDB51

dataset [37]. We trained the proposed architecture from

scratch using SGD optimizer up to 1000 epochs to analyze

the network. The results at varying learning rate are given

in Table 8. The learning rate plays a vital role in conver-

gence of network. From Table 8, it can be observed that we

achieved the highest accuracy value 96.% at learning rate

0.01. Smaller learning rate slows down the network con-

vergence, while larger learning rate sometimes skips the

local minima of the loss function. Thus, it can be concluded

that the proposed architecture have faster convergence at

0.01 learning rate. Therefore, we have taken an initial

learning rate 0.01 for the entire experimentation.

Further, we compared the proposed architecture with

standard deep learning architectures, i.e., AlexNet [9],

VGGNet [10] and GoogleNet [11] in terms of learnable

parameters as shown in Table 9.

It can be seen from Table 9 that the proposed archi-

tecture requires lesser number of learnable parameters than

standard deep architectures. Therefore, the proposed

architecture is computationally efficient in terms of com-

putational resources and time. The fewer number of

learnable parameters make the proposed architecture less

prone to overfitting problem as one can observe in the

learning curve of the proposed architecture shown in

Fig. 7. These curves indicate that the proposed architecture

Table 2 Architectural details of the CNN architecture designed with micro-network-A and micro-network-B

Layers The CNN architecture with micro-network-A The CNN architecture with micro-network-B

Convolution 32, Conv, stride 2, ReLU, BN 32, Conv, stride 2, ReLU, BN

Pooling Max pooling, stride 2 Max pooling, stride 2

Convolution 32, Conv, stride 1, ReLU BN 32, Conv, stride 1, ReLU

Convolution 64, Conv, stride 1, ReLU, BN 64, Conv, stride 1, ReLU, BN

Pooling Max pooling, stride 2 Max pooling, stride 2

Micro-network 1� 1Conv
1� 1; 3� 3Conv
1� 1; 5� 5Conv

2
4

3
5� 2

1� 1Conv
1� 1; 3� 3Conv

1� 1; 3� 3; 3� 3Conv

2
4

3
5� 2

Pooling Max pooling, stride 2 Max pooling, stride 2

Micro-network 1� 1Conv
1� 1; 3� 3Conv
1� 1; 5� 5Conv

2
4

3
5� 2

1� 1Conv
1� 1; 3� 3Conv

1� 1; 3� 3; 3� 3Conv

2
4

3
5� 2

Pooling Max pooling, stride 2 Max pooling, stride 2

Micro-network 1� 1Conv
1� 1; 3� 3Conv
1� 1; 5� 5Conv

2
4

3
5� 2

1� 1Conv
1� 1; 3� 3Conv

1� 1; 3� 3; 3� 3Conv

2
4

3
5� 2

Pooling Average pooling, stride 2 Average pooling, stride 2

FC 256, ReLU 256, ReLU

Classification layer Softmax classifier Softmax classifier

Table 3 Comparison of the CNN architectures designed with micro-

network-A and micro-network-B in terms of convergence rate and

learning parameters

Architectures Convergence

rate (%)

Learning

parameters

The CNN architecture with

micro-network-A

97.12 1,722,619

The CNN architecture with

micro-network-B

98.68 1,542,331
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have capability to be trained on low computing mobile

vision devices.

5.3 Comparison of the proposed method
with other existing state-of-the-art methods

To evaluate the soundness of the proposed architecture, we

conducted experiments on six publically available datasets

viz. UCF sports [33], IXMAS [34], YouTube [35], TV-HI

[36], HMDB51 [37] and UCF101 [38] and compared the

result of the proposed method with other existing state-of-

the-art methods in terms of classification accuracy and

learning parameter.

First, we experimented the proposed method on UCF

sports dataset [33]. We trained the proposed architecture

from scratch using RGB data with SGD optimizer and 0.01

learning rate. The network was kept on training until the

network achieved global minima. The experimental results

of the proposed method and other existing state-of-the-art

methods [8, 21, 26, 39–44] on UCF sports dataset are given

in Table 10.

From Table 10, one can observe that the proposed

method results in the highest value of classification

Table 4 Architectural details of

the CNN architecture by

stacking single convolutional

operations in layers

CNN-1 CNN-2 CNN-3 CNN-4 CNN-5 CNN-6 CNN-7 CNN-8

3�3,32 3�3,32 3�3,32 3�3,32 5�5,32 5�5,32 5�5,32 5�5,32

Pooling Pooling Pooling Pooling Pooling Pooling Pooling Pooling

[3�3,32] [3�3,32] [3�3,32] [3�3,32] [5�5,32] [5�5,32] [5�5,32] [5�5,32]

[3�3,64] [3�3,64] [3�3,64] [3�3,64] [5�5,64] [5�5,64] [5�5,64] [5�5,64]

Pooling Pooling Pooling Pooling Pooling Pooling Pooling Pooling

[3�3,64] [3�3,64] [3�3,64] [3�3,64] [5�5,64] [5�5,64] [5�5,64] [5�5,64]

[3�3,64] [3�3,64] [3�3,64] [3�3,64] [5�5,64] [5�5,64] [5�5,64] [5�5,64]

Pooling Pooling Pooling Pooling Pooling Pooling Pooling Pooling

[3�3,96] [3�3,96] [3�3,96] [3�3,96] [5�5,96] [5�5,96] [5�5,96] [5�5,96]

[3�3,96] [3�3,96] [3�3,96] [3�3,96] [5�5,96] [5�5,96] [5�5,96] [5�5,96]

Pooling Pooling Pooling Pooling Pooling Pooling Pooling Pooling

[3�3,128] [3�3,128] [3�3,128] [3�3,128] [5�5,128] [5�5,128] [5�5,128] [5�5,128]

[3�3,128] [3�3,128] [3�3,128] [3�3,128] [5�5,128] [5�5,128] [5�5,128] [5�5,128]

Pooling Pooling Pooling Pooling Pooling Pooling Pooling Pooling

FC(256) [3�3,256] [3�3,256] [3�3,256] FC(256) [5�5,256] [5�5,256] [5�5,256]

– [3�3,256] [3�3,256] [3�3,256] – [5�5,256] [5�5,256] [5�5,256]

– Pooling Pooling Pooling – Pooling Pooling Pooling

– FC(256) [3�3,512] [3�3,512] – FC(256) [5�5,512] [5�5,512]

– – [3�3,512] [3�3,512] – – [5�5,512] [5�5,512]

– – Pooling Pooling – – Pooling Pooling

– – FC(512) [3�3,1024] – – FC(512) [5�5,1024]

– – – [3�3,1024] – – – [5�5,1024]

– – – Pooling – – – Pooling

– – – FC(1024) – – – FC(1024)

Table 5 Experimental results of

the proposed architecture and

architectures mentioned in

Table 4

Architectures Classification accuracy (%) Learning parameters

CNN-1 (3�3) 93.68 1,026,795

CNN-2 (3�3) 96.35 1,649,899

CNN-3 (3�3) 85.61 5,192,939

CNN-4 (3�3) 75.70 20,143,339

CNN-5 (5�5) 94.90 1,913,003

CNN-6 (5�5) 93.85 4,905,615

CNN-7 (5�5) 74.46 13,943,403

CNN-8 (5�5) 12.76 54,059,627

The proposed architecture 98.68 1,542,331
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accuracy (100%) which is comparable to results of the

method proposed by Muhammad et al. [43] with second

highest accuracy value (99.90%) and Muhammad et al.

[21] with the third-highest accuracy value (99.40%). But

these methods are computationally costly than the pro-

posed architecture as one can observe from Table 10 that

the method proposed by Muhammad et al. [43] is taking

more learning parameter, i.e., 37M than the proposed

method (1.5M). The integration of deep learning features

computed by using AlexNet and conventional handcrafted

features, followed by machine learning classification,

makes the method proposed by Muhammad et al. [43],

computationally expensive than the proposed method. The

method of Muhammad et al. [21] have used a weighted

segmentation approach followed by rank correlation-based

Table 6 Architectural details of the proposed network architecture and its close variants

Layer The proposed architecture Variant_1 Varient_2

Convolution 32, Conv, stride 2, ReLU, BN 32, Conv, stride 2, ReLU, BN 32, Conv, stride 2, ReLU, BN

Pooling Max pooling, stride 2 Max pooling, stride 2 Max pooling, stride 2

Convolution 32, Conv, stride 1, ReLU BN 32, Conv, stride 1, ReLU BN 32, Conv, stride 1, ReLU BN

Convolution 64, Conv, stride 1, ReLU, BN 64, Conv, stride 1, ReLU, BN 64, Conv, stride 1, ReLU, BN

Pooling Max pooling, stride 2 Max pooling, stride 2 Max pooling, stride 2

Micro-network 1� 1Conv
1� 1; 3� 3Conv

1� 1; 3� 3; 3� 3Conv

2
4

3
5� 2

1� 1Conv
1� 1; 3� 3Conv
1� 1; 5� 5Conv

3� 3max pool; 1� 1Conv

2
664

3
775� 2

1� 1Conv
1� 1; 3� 3Conv

1� 1; 3� 3; 1� 3; 3� 1Conv

2
4

3
5� 2

Pooling Max pooling, stride 2 Max pooling, stride 2 Max pooling, stride 2

Micro-network 1� 1Conv
1� 1; 3� 3Conv

1� 1; 3� 3; 3� 3Conv

2
4

3
5� 2

1� 1Conv
1� 1; 3� 3Conv
1� 1; 5� 5Conv

3� 3max pool; 1� 1Conv

2
664

3
775� 2

1� 1Conv
1� 1; 3� 3Conv

1� 1; 3� 3; 1� 3; 3� 1Conv

2
4

3
5� 2

Pooling Max pooling, stride 2 Max pooling, stride 2 Max pooling, stride 2

Micro-network 1� 1Conv
1� 1; 3� 3Conv

1� 1; 3� 3; 3� 3Conv

2
4

3
5� 2

1� 1Conv
1� 1; 3� 3Conv
1� 1; 5� 5Conv

3� 3max pool; 1� 1Conv

2
664

3
775� 2

1� 1Conv
1� 1; 3� 3Conv

1� 1; 3� 3; 1� 3; 3� 1Conv

2
4

3
5� 2

Pooling Average pooling, stride 2 Average pooling, stride 2 Average pooling, stride 2

FC 256, ReLU 256, ReLU 256, ReLU

Classification

layer

Softmax classifier Softmax classifier Softmax classifier

Table 7 Comparison of the

proposed architecture with its

variants in terms of

classification accuracy and

learnable parameters

Architectures Classification accuracy (%) Learning parameters

Variant_1 96.35 1,674,179

Variant_2 95.46 1,480,307

The proposed architecture 96.58 1,552,099

Table 8 Performance of the proposed architecture at varying learning

rates in terms of classification accuracy

Learning rate (lr) Classification accuracy (%)

0.1 96.03

0.01 96.63

0.05 96.58

0.001 95.44

0.005 96.09

Table 9 Comparison of the proposed architecture with standard deep

learning architectures in terms of learnable parameters

Architectures Learnable parameters (Approx)

AlexNet 71,966,795

VGGNet 139,789,939

GoogleNet 7,427,409

The proposed architecture 1,552,099
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feature selection approach and then used KNN for classi-

fication. Although this method performs well with small

size dataset but this technique will become computationally

expensive and very difficult to train in case of larger

activity category dataset. Therefore, the proposed method

perform better than other existing state-of-the-art methods

and is computationally efficient in terms of resource and

time. The reason behind good performance of the proposed

method is the use of varying size receptive field (small

micro-network) of the convolutional kernel in different

layers of the proposed network. This micro-network with

varying receptive field size extracts finer details of several

local and global structural information of each activity

categories. These extracted information are sufficient to

uniquely discriminate each activity categories. The results

of this experiment have demonstrated that the proposed

method is suitable for small-size realistic dataset that have

challenges like large inter-class variations in the same

activity category caused due to variations in scale, pose and

viewpoint changes. It also works well with low computing

devices having limited computational budget.

Second experiment was conducted on the IXMAS

dataset [34] which is a low-resolution multi-view dataset.

We trained the proposed architecture from scratch using

raw RGB data, SGD optimizer with initial learning 0.01

and achieved 99.51% classification accuracy. The experi-

mental result of the proposed method on the IXMAS

dataset [34] and its comparison with other existing state-of-

the-art methods [18, 26, 43, 45–47] are presented in

Table 11.

From Table 11, it can be observed that the proposed

method achieved the second-highest classification accu-

racy, i.e., 99.51%. Although Muhammad et al. [43] have

achieved the highest accuracy value, i.e., 99.60% and

method of Arati et al. [18] have achieved 99.50% classi-

fication accuracy, which are comparable to the perfor-

mance of the proposed work, but these methods are

computationally expensive than the proposed method.

Muhammad et al. [43] have used integration of deep

Fig. 7 Learning curves for IXMAS [33] dataset (First column—Training versus validation accuracy and second column—Training versus

validation loss)

Table 10 Classification

accuracy and learning

parameters on the UCF sports

dataset [33]

Methods Classification accuracy (%) Learning parameters (Approx)

Muhammad et al. [8] 99.20 170M

Muhammad et al. [21] 99.40 –

Muhammad et al. [26] 98.00 139M

Amin et al. [39] 82.14 1030M

Amany et al. [40] 86.70 72K

Farhat et al. [41] 99.30 –

Amany al. [42] 92.67 2M

Muhammad et al. [43] 99.90 37M

Saima et al. [44] 97.30 –

The proposed method 100.00 1.5M
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learning feature (computed using VGGNet) and hand-

crafted features followed by use of multiclass support

vector machine for activity recognition. This makes the

method proposed by Muhammad et al. [43] computation-

ally expensive than the proposed architecture in terms of

computational time and resources, as it requires 37M

learning parameters. Further, the method of Arati et al. [18]

is based on conventional handcrafted feature-based

approach in which they used integration of multiple fea-

tures to extract feature vector followed by multiclass

classification. Although this approach requires less com-

putational resources than the deep learning-based methods

but it is not suitable for large size datasets having fuzzy

boundaries between different activity categories. Thus, the

proposed method is found computationally efficient and

gives comparable performance to other existing state-of-

the-art methods [18, 26, 43, 45–47] in terms of computa-

tional cost. The experiment on IXMAS dataset also indi-

cate that the proposed method is also found suitable for

low-resolution and multi-view camera environments.

Further, we conducted experiment on YouTube dataset

[35] which is realistic sports video dataset. The proposed

architecture was trained from scratch, using raw RGB data,

SGD optimizer and learning rate 0.01. The proposed net-

work get optimized at 201 epochs and gives 99.70%

accuracy value. The experimental results of the proposed

method, on YouTube dataset [35], have been compared

with other existing state-of-the-art methods

[25, 26, 41–44, 48] in terms of classification accuracy value

and learning parameters. The results are given in Table 12.

Table 12 shows that the proposed method performs

comparatively better than other state-of-the-art methods in

terms of classification accuracy and learnable parameter

both. The proposed architecture achieves second highest

classification accuracy, i.e., 99.70% and requires 1.5 in

learnable parameters. Although method proposed by

Muhammad et al. [43] achieved the highest accuracy value,

i.e., 100%, it is computationally expensive as it can be

observed from Table 12 that it requires 37M parameters.

Thus, the proposed method has been found computation-

ally efficient and gives comparable performance to other

existing state-of-the-art methods [25, 26, 41–44, 48] in

terms of computational cost and classification accuracy.

The next experiment was conducted on TV-HI dataset

[36] which is on unconstrained realistic video dataset taken

from 20 TV shows. The proposed architecture was trained

from scratch, with raw RGB data, SGD optimizer and

learning rate 0.01. The network achieved global optima at

1000 epochs. The experimental results of the proposed

method, on TV-HI dataset [45], have been compared with

other existing state-of-the-art methods [49–54] in terms of

classification accuracy and learning parameters. The com-

parison results are given in Table 13.

From Table 13, it can be observed that the proposed

method outperformed over other existing state-of-the-art

methods in terms of classification accuracy and computa-

tional resources both. The proposed method achieved

99.71% classification accuracy value.

This set of experiment also suggest that the proposed

method is found suitable for smaller-size realistic dataset,

as TV-HI dataset has only four activity classes and that too

without any overfitting problem (see Learning curve of this

experiment in Fig. 8). The reason behind is that the pro-

posed method extracts sufficient finer details of complex

human activities to represent each activity category

uniquely and deal with challenges like large inter-class

variations in the same activity category caused due to

variations in scale, pose, and viewpoint changes and

complex motions of human objects.

To validate the effectiveness of the proposed architec-

ture, further, we experimented by using HMDB51 dataset

[37] which is one of the most challenging publically

available realistic dataset having a total of 51 activity

categories. We trained the proposed architecture from

scratch by using the SGD optimizer with a learning rate

0.01 and trained the network till it achieved global minima.

The proposed method is compared with other state-of-the

art methods in terms of classification accuracy and learning

parameters. The experimental results of the proposed

method and the other existing state-of-the-art methods

[8, 24–28, 48, 55, 56] on HMDB51 dataset [37] are given

in Table 14.

Table 11 Classification

accuracy and learning

parameters on the IXMAS

dataset [34]

Methods Classification accuracy (%) Learning parameters (Approx)

Arati et al. [18] 99.50 –

Muhammad et al. [26] 95.20 139M

Mariem et al. [45] 92.18 –

An-An et al. [46] 94.70 –

Zan et al. [47] 95.10 –

Muhammad et al. [43] 99.60 37M

The proposed method 99.51 1.5M
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Table 14 shows that the proposed method has achieved

the highest accuracy value (97.48%) and is computation-

ally efficient as it requires only 1.5M trainable parameters.

This is due to the multiscale processing capability of the

proposed deep architecture, which extract unique discrim-

inative information from realistic scenes that have chal-

lenges like extremely large variations in size, orientation

and pose of human objects in the same activity category

and fuzzy boundary between the activity categories. This

experiment also demonstrate that the proposed architecture

is also found suitable for realistic larger-size video data and

is computationally efficient.

At last, we evaluated the effectiveness of the proposed

method and conducted experiment on UCF101 dataset

[38], which is one of the most challenging large size

dataset having 101 activity categories. We trained the

proposed architecture from scratch with SGD optimizer

and an initial learning rate 0.01. We trained the network

until it achieved global minima. To analyze the effective-

ness of the proposed architecture, we compared the results

Table 12 Classification

accuracy and learning

parameters on YouTube dataset

[35]

Methods Classification accuracy (%) Learning parameters (Approx)

Noor et al. [25] 97.65 23.5M

Muhammad et al. [26] 99.40 139M

Farhat et al. [41] 94.50 –

Amany et al. [42] 81.40 2M

Muhammad et al. [43] 100 37M

Saima et al. [44] 96.70 –

Zufan et al. [48] 98.20 135M

The proposed method 99.70 1.5M

Table 13 Classification

accuracy and learning

parameters on TV-HI dataset

[36]

Methods Classification accuracy (%) Learning parameters (Approx)

Mahlagha et al. [49] 68.00 3M

Mahlagha et al. [50] 75.00 140M

Umair et al. [51] 84.00 44M

Ke et al. [52] 64.00 12M

Qiuhong et al. [53] 55.40 –

Hanli et al. [54] 78.20 –

The proposed method 99.71 1.5M

Fig. 8 Learning curves for TV-HI [36] dataset (First column—Training versus validation accuracy and second column—Training versus

validation loss)
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of the proposed architecture with several existing state-of-

the-art methods [24, 25, 27–29, 48, 55, 56, 58] on classi-

fication accuracy and learning parameters. The results are

given in Table 15.

From Table 15, it can be observed that the proposed

method had achieved the second-highest accuracy value

(98.01%). Although the method proposed by Noor et al.

[25] achieved the highest classification accuracy value

(98.66%), this method is computationally expensive, as

requires 23.5M learning parameters, whereas the proposed

method requires only 1.5M parameters for learning.

Method proposed by Noor et al. [25] firstly used video

summarization as a preprocessing step and then hand-

crafted feature computation is done followed by use of 3D

CNN architecture for activity recognition, which requires

more computation time and resources. From this experi-

ment, we also found that the proposed method is flexible to

smaller as well as larger size realistic and multi-view

datasets and that too within the limited computational

budget.

From the close observations of the several experimen-

tations performed over challenging datasets [33–38] and

their results shown in Tables 3, 5, 7, 8, 9, 10, 11, 12, 13, 14

and 15, it can be concluded that the proposed architecture

is computationally efficient and gives comparatively

improved classification results in terms of classification

accuracy, learning parameters and convergence rate. It can

also be observed from Table 9 that the proposed architec-

ture requires fewer number of learnable parameters than

the standard deep architectures [9–11]. Therefore, it

requires lesser computational resources, which clearly

indicate that the proposed architecture is suitable for low

computing devices. The learning curves as shown in

Figs. 7 and 8, respectively, demonstrated that the proposed

architecture also perform well with smaller size datasets

and is less prone to overfitting problem. Again, from

Tables 10, 11, 12, 13, 14 and 15, it can be observed that the

proposed architecture perform better than other existing

state-of-the-art methods in terms of computational effi-

ciency and classification accuracy. Thus, we found that the

proposed architecture is computationally efficient in terms

of computation time and computational resources. It has

also been found that the proposed method is suitable for

Table 14 Classification

accuracy value and learning

parameters on the HMDB51

dataset [37]

Methods Classification accuracy (%) Learning parameters (Approx)

Muhammad et al. [8] 81.40 170M

Hao et al. [24] 65.40 57.8M

Noor et al. [25] 95.04 23.5M

Muhammad et al. [26] 93.70 139M

Du et al. [27] 78.70 33.3M

Sachin et al. [28] 96.03 138M

Zufan et al. [48] 60.40 135M

Jun et al. [55] 80.50 47.6M

Sheng et al. [56] 68.20 27.6M

Chaolong et al. [57] 70.80 210M

The proposed method 97.48 1.5M

Table 15 Classification

accuracy value and learning

parameters on the UCF101 [38]

dataset

Methods Classification accuracy (%) Learning parameters (Approx)

Hao et al. [24] 92.60 57.8M

Noor et al. [25] 98.66 23.5M

Du et al. [27] 97.30 33.3M

Sachin et al. [28] 97.70 138M

Mei et al. [29] 89.00 60.5M

Zufan et al. [48] 91.00 135M

Jun et al. [55] 98.50 47.6M

Sheng et al. [56] 91.40 27.6M

Chaolong et al. [57] 95.10 210M

Yamin et al. [58] 75.38 44M

The proposed method 98.01 1.5M
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both larger and smaller size datasets with realistic complex

scenarios.

6 Conclusions

In this study, we presented a simple and computationally

efficient deep CNN architecture based on the concept of

multiscale processing, for human activity recognition in

realistic and multi-view environment. In this work, firstly,

we designed small micro-networks with varying receptive

field size (1�1, 3�3, 5�5). By carefully stacking the

varying receptive field size micro-network, a simple and

computationally efficient deep CNN architecture has been

designed. The designed architecture have potential to

capture the dynamic range of complex visual patterns of

activity data having challenges of large inter and intra-class

variations, fuzzy boundary between activity categories,

variations in views, object size, pose, and orientation of

human objects in the sample frames of same activity cat-

egory. The proposed architecture is simple and uses much

smaller number of parameters than the standard deep CNN

architectures. Use of lesser number of parameters results in

better utilization of resources. The proposed architecture is

fine-tuned and trained from scratch over several publically

available datasets [33–38] and evaluated in terms of con-

vergence rate, classification accuracy and learning param-

eters. The results and their comparisons with other state-of-

the-art methods demonstrate the supremacy of the pro-

posed architecture. Architecture of the proposed method

can be trained with any size dataset. From the experiments,

results and its exhaustive analyses (from Tables 10, 11, 12,

13, 14 and 15 and Figs. 7 and 8), it has been shown that the

proposed architecture is suitable for realistic and multi-

view video data that have range of challenges. As a future

work, the proposed architecture may be further optimized

in terms of learning parameters and increased in depth of

the network with limited computational budget. Further,

the proposed architecture can be investigated for other

computer vision applications.
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