
ORIGINAL ARTICLE

Multi-objective chaos game optimization

Nima Khodadadi1 • Laith Abualigah2,7,8,9 • Qasem Al-Tashi3,4 • Seyedali Mirjalili5,6,10

Received: 8 January 2022 / Accepted: 20 February 2023 / Published online: 2 April 2023
� The Author(s) 2023

Abstract
The Chaos Game Optimization (CGO) has only recently gained popularity, but its effective searching capabilities have a

lot of potential for addressing single-objective optimization issues. Despite its advantages, this method can only tackle

problems formulated with one objective. The multi-objective CGO proposed in this study is utilized to handle the problems

with several objectives (MOCGO). In MOCGO, Pareto-optimal solutions are stored in a fixed-sized external archive. In

addition, the leader selection functionality needed to carry out multi-objective optimization has been included in CGO. The

technique is also applied to eight real-world engineering design challenges with multiple objectives. The MOCGO

algorithm uses several mathematical models in chaos theory and fractals inherited from CGO. This algorithm’s perfor-

mance is evaluated using seventeen case studies, such as CEC-09, ZDT, and DTLZ. Six well-known multi-objective

algorithms are compared with MOCGO using four different performance metrics. The results demonstrate that the sug-

gested method is better than existing ones. These Pareto-optimal solutions show excellent convergence and coverage.

Keywords Algorithm � Bechmark � Artificial Intelligence � Multi-objective optimization � CEC benchmark �
Chaos game optimization � Engineering problems � Optimization

1 Introduction

The term ‘‘optimization’’ is commonly used to refer to the

process of determining which of several possible actions

would yield the best results under specified constraints.

Because of the interdependence and complexity of

sophisticated engineering systems, one will need an analyst

with a broad perspective to help one optimize their pro-

duction, laboratory, retail, or service system. Furthermore,

when studying a system, the subsets’ interaction should be

considered to preserve its integrity and optimality. Addi-

tionally, the system’s components’ specifications, and

existing uncertainties, should be described and incorpo-

rated into the system’s intended goals. Metaheuristic

algorithms are search techniques that use a higher-level

approach to find the optimal solution to a given problem.

Genetic Algorithm (GA) [1], Particle Swarm Optimizer

(PSO) [2], Ant colony Optimization (ACO) [3], Stochastic

Paint Optimizer (SPO) [4] and Mountain Gazelle Opti-

mizer (MGO) [5] are some of the well-known meta-

heuristic algorithms. Additionally, optimization is applied

in a number of fields, such as control, medicine, image

processing and structural engineering [6, 7].

& Seyedali Mirjalili

ali.mirjalili@torrens.edu.au

1 The Department of Civil, Architectural and Environmental

Engineering, University of Miami, 1251 Memorial Drive,

Coral Gables, FL 33146, USA

2 MEU Research Unit, Middle East University, Amman 11831,

Jordan

3 Department of Imaging Physics, The University of Texas MD

Anderson Cancer Center, Houston, TX, USA

4 University of Albaydha, Albaydha, Yemen

5 Centre for Artificial Intelligence Research and Optimization,

Torrens University Australia, Sydney, Australia

6 Yonsei Frontier Lab, Yonsei University, Seoul, Korea

7 Hourani Center for Applied Scientific Research, Al-Ahliyya

Amman University, Amman 19328, Jordan

8 Computer Science Department, Prince Hussein Bin Abdullah

Faculty for Information Technology, Al al-Bayt University,

Mafraq 25113, Jordan

9 Applied Science Research Center, Applied Science Private

University, Amman 11931, Jordan

10 University Research and Innovation Center, Obuda

University, Budapest 1034, Hungary

123

Neural Computing and Applications (2023) 35:14973–15004
https://doi.org/10.1007/s00521-023-08432-0(0123456789().,-volV)(0123456789().,- volV)

http://orcid.org/0000-0002-1443-9458
http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-023-08432-0&amp;domain=pdf
https://doi.org/10.1007/s00521-023-08432-0


Everyone desires to gain the most significant benefit at

the cheapest cost [8]. This goal can be presented mathe-

matically as an optimization problem. However, there are

various optimization problems with many objectives in the

real world and frequent inconsistencies among specific

goals [9]. Therefore, it is often challenging to discover the

optimal solution that settles all the objects simultaneously

[10]. Accordingly, multi-objective problems frequently

have multiple solutions rather than a single one, and multi-

objective optimizers have gained the interest of research-

ers. Ordinarily, optimization problems with less than four

specified objectives are designated multi-objective prob-

lems, while other problems with more than four are des-

ignated many-objective problems [11].

After a lengthy investigation, multi-objective problems

are sufficiently advanced, and exciting consideration is

given to addressing many-objective problems [12]. Gen-

erally speaking, techniques for tackling various optimiza-

tion problems are subdivided into two kinds. The

conventional optimizers are gradient search optimizers,

Newton search optimizers, quasi-newton search optimizers,

and conjugate gradient search optimizers. The other kind is

heuristic search optimizers, which are stimulated the per-

son’s expertise in addressing remarkable problems or

behavior of living in real life. Classical optimizers typically

require calculating derivatives or differentials, so it is hard

to utilize many complex real-world problems. Therefore,

usually, when tackling multi-objective problems, heuristic

optimizers are employed, such as Multi-Objective Genetic

Algorithm (MOGA) [13], Multi-Objective Artificial Bee

Colony Optimizer (MOABC) [14], Multi-Objective Arti-

ficial Hummingbird Algorithm (MOAHA) [15], Multi-

Objective Seagull Optimization Algorithm (MOSOA) [16],

Multi-Objective Particle Swarm Optimization (MOPSO)

[17], Multi-Objective Firefly Algorithm (MOFA) [18],

Multi-Objective Atomic Orbital Search (MOAOS) [19],

Artificial Vultures Optimization Algorithm (MOAVOA)

[20], Multi-Objective Bonobo Optimizer (MOBO) [21],

Multi-Objective Stochastic Paint Optimizer (MOSPO)

[22], Multi-Objective Moth-Flame Optimization (MMFO)

[23], Archive-Based Multi-objective Harmony Search

(AMHS) [24] and Multi-objective Non-dominated

Advanced Butterfly Optimization Algorithm (MONSBOA)

[25]. This paper proposed a novel optimization structure

with a distinguished convergence and coverage as a new

multi-objective optimizer. The proposed method is based

on modifying the Chaos Game optimizer (CGO) [26] to

produce dynamic control factors to decrease the time of

finding the best solutions for addressing various multi-ob-

jective benchmark functions and industrial engineering

problems.

Nevertheless, the number of non-dominated solutions is

negligible at the beginning of the optimization rule.

Therefore, they may use the population members in the

wrong direction. Hence, the main idea is to generate a

diverse number of solutions in the Pareto front that will

encourage the candidate solutions to progress toward

encouraging areas of the given search space in successive

iterations. The multi-objective CGO approach that has been

presented, referred to as MOCGO, makes use of a leader

selection methodology to strengthen its capabilities and

avoid the drawbacks of the original CGO method as well as

an archive method to save non-dominated solutions. The

proposed MOCGO is tested on a wide variety of problems,

both constrained and unconstrained, from the fields of

mathematics and industrial engineering optimization. The

results of a series of comparisons between the proposed

MOCGO method and other state-of-the-art multi-objective

approaches using several common performance metrics,

such as Inverted Generational Distance (IGD), Genera-

tional Distance (GD), Spacing(S), and Maximum Spread

(MS), demonstrated the proposed MOCGO approach’s

superior ability to handle multiple complex problems.

This article continues as follows. Section 2 covers

multi-objective related work. Section 3 suggests a single

version and a multi-objective Chaos Game Optimizer

(MOCGO). Section 4 tabulates and discusses the experi-

mental outcomes. Section 5 then discusses the conclusion

and future works.

2 Literature review

Most real-world optimization problems, including big data,

data mining, design, optimization, scheduling, mathemat-

ics, control, etc., are essentially designated by multiple

differing objectives. The variables are constantly indistinct

when tackling specific problems because of uncontrollable

circumstances, leading to more complex problem presen-

tations [27]. Single-objective problems are distinct from

multi-objective problems [28]. Only one best solution is

achieved in the first type, whereas many solutions are

accomplished in multi-objective problems, called Pareto-

optimal solutions [29]. The objective function in single-

objective problems is numerical, and it is sufficient to

check the objective values to compare the quality of the

candidate solutions. Typically, the best cases of mini-

mization problems are the smaller objective values. But the

objective values are a vector in multi-objective problems.

Therefore, the theory of Pareto dominance is used to

compare the quality of the candidate solutions with various

objective values [30].

As an example, in [31], a multi-objective GA is pro-

posed for optimizing the parameters of the Modular Neural

Network, and this is only one of a number of new multi-

objective techniques that have recently been introduced in

14974 Neural Computing and Applications (2023) 35:14973–15004

123



the literature. The advantages of the proposed multi-ob-

jective strategy are illustrated using face and ear datasets.

Results from the granular strategy-using modular neural

network were shown to be more trustworthy than those

from the traditional method that did not involve opti-

mization. A new optimization structure is expressed in [32]

by connecting multi-objective and multicriteria decision-

making ideas. The proposed optimization method com-

bined multi-objective ABC, best–worst, and grey relational

methods to address the optimization problem. The out-

comes demonstrated the efficacy of the proposed approach

for resolving problems with multiple objectives.

A new multi-objective hybrid forecasting method is

proposed in [33] using Ant Lion optimizer, which includes

four steps: data preprocessing, optimization, forecasting,

and evaluation steps. The decomposing approach dis-

tributes the initial wind speed data into a finite collection of

segments. The outcomes demonstrated that the suggested

methodology produced lower average mean absolute

errors. For the purpose of resolving multi-objective prob-

lems in rapidly changing environments, an innovative

multi-objective evolutionary PSO has been developed in

[34]. Furthermore, a new optimization structure of multi-

swarm-based PSO is utilized to tackle the given issues in

changing settings. The results showed that the proposed

method got better outcomes for trading with these multi-

objective problems in quickly changing settings.

In [35], it is suggested that a modified version of multi-

objective FA, which consists of six single and multi-ob-

jective optimization problems, may be applied to big data

situations. As seen in the findings, the proposed strategy

outperformed the competitors. This paper introduced a

multi-objective optimizer for addressing the flow shop

scheduling problems considering the energy losses. The

proposed optimizer is compared with other well-known

optimizers by analyzing the results. A novel framework is

introduced in [36] as a multi-objective evolutionary

method. Several multi-objective methods are used in the

proposed framework, which is used to address various

problems. The proposed methodologies had good results,

indicating that the design is feasible and practicable. New

multi-objective feasibility PSO is presented in [37] to

address constrained multi-objective problems. A compar-

ison of the suggested method to the original multi-objective

PSO and other popular methods revealed significant

improvements for the latter.

Khodadadi et al. [38] have created a multi-objective

version of the Crystal Structure Algorithm (Crystal), which

draws its inspiration from crystal structure principles.

Completions on Evolutionary Computation (CEC-09), real-

world engineering, and mathematics multi-objective opti-

mization benchmark problems are used to evaluate the

effectiveness of the given method. If applied to multi-

objective issues, the strategies presented can deliver out-

standing results.

Pereira et al. [39] described the invention of the Multi-

objective Lichtenberg Algorithm, a new metaheuristic

inspired by the propagation of radial intra-cloud lightning

and Lichtenberg figures that can handle multiple objec-

tives. For each iteration, the algorithm uses a Lichtenberg

figure to distribute points for evaluation in the objective

function, which is shot in various sizes with varied rota-

tions. This allows for a great deal of exploration and

exploitation. As the first hybrid multi-objective meta-

heuristic, the Multi-objective Lichtenberg Algorithm

(MOLA) has been tested against classic and current

metaheuristics employing well-known and complicated test

function groups as well as constrained complex engineer-

ing challenges. With expressive values of convergence and

maximum spread, the Multi-Objective Lichtenberg Algo-

rithm stands out as a potential multi-objective algorithm.

Zhong [40] suggested the multi-objective marine

predator algorithm (MOMPA). This approach incorporates

an external archive component storing previously discov-

ered non-dominant Pareto-optimal solutions. The concept

of elite selection serves as the foundation for a technique

that is being developed for selecting top predators. Using

the predator’s foraging strategy as a model, this method

selects the most powerful solutions from the repository to

serve as top predators. Algorithm performance is evaluated

using the CEC2019 multi-modal multi-objective bench-

mark functions and compared to nine current metaheuris-

tics techniques. In addition, the proposed approach is tested

using seven multi-objective engineering design problems.

The findings show that the suggested MOMPA algorithm

outperforms previous algorithms and gives very competi-

tive outcomes.

Multi-objective thermal exchange optimization

(MOTEO) is a physics-inspired metaheuristic approach

suggested by Khodadadi et al. [40] to address problems of

multi-objective optimization. The single version of TEO

has used Newtonian cooling laws to solve single-objective

optimization problems more effectively, and MOTEO is

based on that principle. Different problems are used to

assess MOTEO’s efficacy in this research. In comparison

with existing algorithms, the recommended method may

provide accurate solution, consistency, and coverage for

addressing multi-objective problems, resulting in high-

quality Pareto Fronts.

Dhiman et al. [16] introduce the Multi-objective Seagull

Optimization Algorithm (MOSOA). The non-dominated

Pareto-optimal solutions are supposed to be able to be

cached with the help of the dynamic archive, according to

this method. By driving seagull migration and attacking

behaviors, the roulette wheel selection approach is utilized

in order to select the archive solutions that have the

Neural Computing and Applications (2023) 35:14973–15004 14975

123



greatest potential for success. In order to validate the

suggested algorithm, it is subjected to validation with

twenty-four benchmark test functions, and the performance

of the proposed algorithm is evaluated alongside that of

previously developed metaheuristic algorithms. In order to

determine whether or not the proposed method is suit-

able for use in the process of finding solutions to problems

that occur in the real world, it is tested on six constrained

engineering design problems. Empirical analyses demon-

strate the suggested method outperforms others. The sug-

gested approach also considers those Pareto-optimal

solutions with a high convergence rate.

This research is motivated to develop the multi-objec-

tive version of CGO limitations for the first time in the

literature. In addition, several analyses have been carried

out on the uses of MOO in various fields of study. A survey

of some of the MOO settlement methods reveals that they

employ a complicated mathematical problem and a com-

plex method of solving. The fundamental contribution of

this study is to suggest a MOO settlement approach that

does not involve the use of sophisticated mathematical

calculations to solve the problem. As the majority of extant

optimizers are population-based, they can simultaneously

handle a large number of candidate solutions, whereas

other search methods employ the same procedure to iter-

atively duplicate their solutions. Recent novel optimizers

have distinct optimization procedures to address different

problems with various objectives. However, the well-

known optimization theorem, No Free-Lunch (NFL) [41],

reasonably explained that none of the existing search

methods are approved to tackle all problems efficiently.

This statement is true for both single- and multi-objective

optimization approaches. As a result, it can be concluded

that important problems can be solved by modifying

existing, well-known techniques. Different methods are

better adapted to tackle unconstrained issues than other

constraints, which require careful operators or components.

CGO utilizes a multi-objective particle swarm opti-

mization technique called an archive method in addition to

a leader selection rule. Each of these methods is used to

find the best solution. Heuristic algorithms can be used in

various ways to discover and store Pareto’s optimum

solutions. In this work, Pareto-optimal solutions are stored

in an archive. Evidently, the MOCGO algorithm’s con-

vergence originates from the CGO method. CGO can

enhance the quality of a solution chosen from the

repository.

Nevertheless, it is difficult to identify a set of Pareto-

optimal solutions with an extensive range of variations.

Chaos Game Optimization (CGO) [26] is a novel search

algorithm that handles various optimization challenges.

The CGO optimizer’s concept is based on chaos theory.

3 Multi-objective chaos game optimization
(MOCGO)

The CGO, with its inspiration and the mathematical model

of the optimization technique, is described in the next part.

Then, the multi-objective nature of this method is descri-

bed and its features.

3.1 Chaos game optimization (CGO)

Talatahari and Azizi [26] devised the CGO, a population-

based metaheuristic algorithm that replicates chaos the-

ory’s self-similar and self-organized dynamical systems.

The majority of chaotic processes exhibit fractal graphical

forms. The chaotic game generates fractals by starting with

a polygon form and a randomly chosen beginning point.

The goal is to build a series of points repeatedly in order to

create a picture with a comparable form at various scales.

The number of vertices dictates the primary form of the

polygon. A Sierpinski triangle is formed by combining

three vertices (see Fig. 1). As can be seen in Fig. 1, a

triangle is repeatedly split into sub-triangles.

The CGO method takes into account various solution

candidates that reflect certainly suitable seeds within a

Sierpinski triangle. The beginning positions of eligible

seeds in the search space are picked at random. Each

iteration of the algorithm generates four new seeds (Xnew)

that are eligible for the following iteration based on the

location of each seed. The new seeds are constructed uti-

lizing three vertices in the search space: Xi, XMean, and

Xbest. Xi represents the location of the ith suit-

able seed,XMean represents the mean of a randomly selected

collection of suitable seeds, and Xbest represents the loca-

tion of the finest seed. The temporary triangle is formed by

these three vertices, and each of them is indicated by one of

the colors red (MGi), blue (Xi), and green (GB) colors mark

each of the selected vertices. A dice is taken with two red

faces, two blue faces, and two green faces. Figure 2 shows

the temporary triangle.

It has been shown that there are four ways to control and

change the CGO algorithm’s exploration and exploitation

rate by manipulating the movement constraints of the

seeds. Following is a presentation of four distinct formu-

lations for ai [26]:

ai ¼

rand

2� rand

d� randð Þ þ 1

e� randð Þ þ � eð Þ

8
>><

>>:

ð1Þ

where rand denotes to random number in the interval of

[0,1] with uniformly distributed, while d and e are random

integers in the interval of [0,1]. As the dice are rolled, the

ith seed in its position is moved toward the corresponding

14976 Neural Computing and Applications (2023) 35:14973–15004

123



vertex based on which color comes up. The dice are

modeled using a combination of three random factors ai,
bi, and ci. Each initial seed contributes to the production of

four other seeds, which are based on the other vertices of

the temporary triangles as follows [26]:

X1
new ¼ Xi þ ap 1ð Þ

i � bi � GB� ci �MGið Þ ð2Þ

X2
new ¼ GBþ ap 2ð Þ

i � bi �MGi � ci � Xið Þ ð3Þ

X3
new ¼ MGi þ ap 3ð Þ

i � bi � GB� ci � Xið Þ ð4Þ

X4
new ¼ Xi x

k
i ¼ xki þ R

� �
ð5Þ

where k is a uniformly distributed random integer in the

range [1, d], d is the number of design variables, and R is a

uniformly distributed random number [0, 1]. In addition, bi
and ci are two random integers of 1 or 2. The probability of

rolling the dice is modelled using bi andci. It’s also worth

noting that ai produces four unique random vectors. The

exploration and exploitation rate of the CGO algorithm is

controlled and adjusted by changing their order using a

permutation between integers 1 to 4 as p. Until a termi-

nation requirement is satisfied, the process is carried out for

each seed and repeated each iteration. A schematic repre-

sentation of this procedure is shown in Fig. 3

3.2 Multi-objective chaos game optimization
(MOCGO)

There is a wide variety of multi-objective algorithms and

methods for solving complex challenges. Since no method

or algorithm has ever been employed to solve a multi-

objective problem with 100% efficiency, most academics

are constantly looking for fresh ideas and methods with

improved capabilities. In order to solve multi-objective

issues, we proposed a multi-objective CGO method in this

study. The findings section is where we expect to find a

better function through comparison. Because it was

designed to work with problems involving single-objective

optimization, the CGO cannot be utilized directly for the

purpose of resolving challenges involving multi-objective

optimization. Therefore we introduce the multi-objective

variation of CGO for addressing optimization problems in

a way that simultaneously satisfies several requirements.

The capability of CGO to carry out multi-objective opti-

mization has recently been expanded with the addition of

three new mechanisms. The mechanisms used are similar

to those used by MOGWO [42], but the exploration and

exploitation phases of MOCGO inherit from the CGO

algorithm. Those mechanisms are discussed in detail as

follows:

Fig. 1 The process of creating the Sierpinski triangle

Fig. 2 The temporary triangles in the search space

Fig. 3 The process of forming temporary triangles

Neural Computing and Applications (2023) 35:14973–15004 14977

123



The Archive: A fixed-sized external archive is integrated

into the CGO for saving non-dominated Pareto-optimal

solutions obtained so far. The archive has its own special

controller to decide which solutions are allowed in and

which are not. The number of saved solutions is restricted

in the archive. Archive outputs are measured against iter-

atively generated non-dominated solutions. Three possible

scenarios:

1. It is not possible to add the new solution to the archive

if there is at least one archive member that dominates

the new solution.

2. If the newly proposed solution is superior to at least

one of the existing solutions in the archive, then it may

be considered to be included in the archive. In such a

scenario, the repository will be able to include newly

developed solutions.

3. If the new solution and archive solutions are not

dominant, the new solution is added to the archive.

The grid mechanism: is the second effective mechanism

integrated into CGO to enhance the non-dominated solu-

tions in the archive. In the situation that the archive is

already at full, the grid mechanism needs to be activated so

that the segmentation of the objective space can be reor-

ganized and a search can be conducted to identify the most

congested area so that a solution may be removed from

there. To improve diversity of the final approximated

Pareto-optimal front, position the new solution in the least

crowded area. If there are a greater number of potential

solutions in the hypercube, there is a greater chance that

one of those answers will be eliminated. If there is already

a solution archive full, the most congested areas are found

first, and a solution is intentionally deleted from one of

them. A solution that lies outside of the hypercubes rep-

resents a unique circumstance. Each component of this

scenario has been enhanced so that it can accommodate the

most up-to-date solutions. As a consequence of this,

components of various other solutions can also be altered.

The Leader Selection Mechanism: is the last machine

included in CGO. This leader leads the other search agents

toward areas of the search space that appear to have a good

chance of providing a solution, with the end goal of

obtaining a solution that is close to the global optimum.

However, due to the Pareto optimality principles covered in

the prior paragraph, it is difficult to compare the solutions

in a multi-objective search space. To address this problem,

Fig. 4 Pseudo-code of the MOCGO algorithm

14978 Neural Computing and Applications (2023) 35:14973–15004

123



the leader selection process was created. As was already

indicated, the best non-dominated solutions so far are

archived. The leader selection component selects one of its

non-dominated solutions and puts it in the search space’s

least congested regions. For each hypercube, the selection

is performed by a roulette wheel with the following

probability:

Pi ¼
C

Ni
ð6Þ

where N is the variety of acquired Pareto-optimal solutions

in the i th section and C is a constant number greater than

one.

According to Eq. (6), hypercubes with less congestion

are more likely to employ new leaders. When there are

fewer solutions available in a hypercube, that hypercube

becomes a more likely candidate for leader selection. As

the archive is optimized, its diversity is protected by the

grid mechanism and the selection leader component. A low

chance of selecting leaders from the most populated

hypercubes is also provided by the leader selection com-

ponent’s use of a roulette wheel. This focuses on avoiding

MOCGO at the local front.

Obviously, the MOCGO algorithm derives its conver-

gence from the CGO method. If we pick one of the solu-

tions from the archive, the MOCGO method will have an

even higher level of consistency than it already possesses.

On the other hand, it is difficult to determine which solu-

tions are best according to the Pareto principle when there

is a lot of variability. This issue was resolved by including

the leader function collection and archive maintenance.

The computational complexity of MOCGO is Oðmn2Þ,
where n is the population size and m is the number of

objectives to achieve. There is a significant improvement in

computational complexity over traditional methods such as

NSGA [43] and SPEA [44], which have Oðmn3Þ com-

plexity. MOCGO’s pseudo-code is shown in Fig. 4.

4 Results and discussion

Performance measurements and case studies are used to

figure out how well the methods in this section. These

approaches include advanced multi-modal benchmark

functions, real-world engineering design and mathematics

problems. These problems are used to test how well multi-

objective optimizers can handle non-convex and nonlinear

constraints. Experiments are carried out using MATLAB

software (R2021a) on a Macintosh (macOS Monterey) with

a Core i9 processor and 16 GB of RAM.

4.1 Performance metrics

The algorithms’ performance is evaluated using the fol-

lowing four metrics [45–47]:

Generational Distance is one of the measures that is

utilized on a regular basis for the purpose of determining

whether or not multi-objective metaheuristic optimization

algorithms have converged. It measures the total distances

between solution candidates obtained by different methods

[48].

GD ¼ 1

npf

Xnpf

i¼1

dis2i

 !1
2

ð7Þ

Solution candidates in separate sets achieved by various

optimization techniques are called spacing (S) [49].

S ¼ 1

npf

Xnpf

i¼1

di � d
� �2

 !1
2

Where d ¼ 1

npf

Xnpf

i¼1

di ð8Þ

The maximum spread (MS) in various solution sets

refers to the spread of solution candidates in terms of the

number of distinct optimal options and the number of

possible solutions [50].

MS ¼ 1

m

Xm

i¼1

min fmax
i ;Fmax

i

� �
�max fmin

i ;Fmin
i

� �

Fmax
i � Fmin

i

� �2" #1
2

ð9Þ

The Inverted Generational Distance (IGD) is a statistic

for comparing the Pareto front approximations obtained by

various multi-objective algorithms [51].

IGD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1 d
2
i

p

n
ð10Þ

4.2 Experimental setting

This section compares the proposed multi-objective Chaos

Game optimizer (MOCGO) to other well-known competi-

tive approaches utilizing numerous benchmark problems.

The comparisons were carried out in order to validate the

suggested method’s outcomes in terms of numerous stan-

dard performance measures such as IGD, MS, GD, and S.

Several comparative methods have been used in the com-

parisons, including multi-objective Particle Swarm Opti-

mizer (MOPSO) [17], multi-objective Gray Wolf

Optimizer (MOGWO) [52], multi-objective Ant Lion

Optimizer (MOALO) [53], multi-Objective Crystal Struc-

ture Algorithm (MOCryStAl) [38], multi-objective Harris

Hawks Optimization (MOHHO) [54] and multi-objective

Salp Swarm Algorithm (MSSA) [55]. The population size

(number of tested solutions (N)) and the total number of

Neural Computing and Applications (2023) 35:14973–15004 14979

123



tested iterations (T) of all tested algorithms are fixed as 50

and 1000, respectively. The parameter settings of the

comparative methods are taken from the original paper,

which is presented in Table 1. The used benchmark func-

tions in the experiments are presented in Tables 2, 3, and 8.

4.2.1 Discussion of the CEC-09 test function

The outcomes of the comparison methods using the CEC-

09 are provided in the following section.

Tables 2 and 3 include descriptions of the evaluated Bi-

objective and Tri-objective CEC-09 benchmark functions.

These problems are usually used to evaluate the perfor-

mance of the multi-objective methods in the literature. The

following section contains the findings of the comparison

approaches.

Table 4 provides the statistical findings of CEC-09

benchmark functions in terms of IGD performance mea-

sures. The findings reveal clearly that the suggested

MOCGO produced outstanding outcomes compared to

previous methodologies. MOCGO got the best results in

six out of ten test cases in several problems (i.e., UF2, UF3,

UF4, UF8, UF9, and UF10), followed by MOGWO, which

got the best results in some problems (i.e., UF5, UF6, and

UF7), three out of ten test cases, and MOPSO got the best

results in a problem (i.e., UF1), one out of ten test cases.

The results shown in Table 4 show the strength of the

proposed method in solving various complex problems

with multiple objectives compared to other similar methods

used in the literature. The proposed modifications to the

new MOCGO method clearly helped improve the results

and obtain substantial results in all comparisons, which

confirms the ability of the proposed MOCGO method to

solve such problems. These problems are usually hard to

solve by the traditional method, and the method that gets

excellent results can be considered an advanced search

method to solve any complicated problem.

Table 5 analyzes CEC-09 benchmark functions using

GD performance metrics. The findings clearly demonstrate

that the proposed MOCGO outperformed previous com-

paring approaches. MOCGO consistently achieved the top

outcomes in various challenges in six out of ten test cases,

followed by MOGWO, which acquired the best results in

some problems (i.e., UF1, UF5, and UF6), three out of ten

test cases, and MOPSO got the best results in a problem

(i.e., UF7), one out of ten test cases. The findings in

Table 5 demonstrate the suggested method’s resilience for

handling various complicated situations with multiple

objectives compared to other comparable techniques in the

literature. The proposed new MOCGO method clearly

improved the results and achieved substantial results in all

measurements, confirming the strength of the proposed

MOCGO method in solving such problems. The SD values

showed that the proposed approach produced consistent

results. We concluded from these results that the proposed

multi-objective method is active and can solve complicated

problems.

Table 6 gives the statistical outcomes of CEC-09

benchmark functions in terms of MS performance metrics.

The results show that the suggested MOCGO produced

better than other comparative methods. MOCGO obtained

the best results in several test problems in eight out of ten

test cases. MOPSO got the best results in a few other

problems (i.e., UF3 and UF8), two out of ten test cases. The

results presented in Table 6 confirm the quality of the

obtained results produced by the proposed MOCGO

method for tackling different complex problems with

multiple objectives compared to similar methods employed

in the literature. The proposed novel MOCGO method

developed the results. It produced better results in all

mentioned measurements, proving the robustness of the

proposed MOCGO method to address such problems.

Moreover, according to these results, the proposed method

Table 1 Parameters of methods

Parameters MOPSO MOGWO MOALO MoCrStAl MOHHO MSSA MOCGO

Mutation probability (Pw; orpro) 0.5 – – – 0.5 – –

Population size (Npop) 100 100 100 100 100 100 100

Archive size (Nrep; orTM) 100 100 100 100 100 100 100

Number of adaptive grid (Ngrid) 30 30 30 30 30 30 30

Personal learning coefficient (C1) 1 – – – 1 – –

Global learning coefficient (C2) 2 – – – 2 – –

Inertia weight (w) 0.4 – – – 0.4 – –

Beta 4 4 4 4 4 4 4

Gamma 2 2 2 2 2 2 2

14980 Neural Computing and Applications (2023) 35:14973–15004

123



Ta
bl
e
2

B
i-
o
b
je
ct
iv
e
C
E
C
-0
9
b
en
ch
m
ar
k
fu
n
ct
io
n
s

F
u
n
ct
io
n

M
at
h
em

at
ic
al

fo
rm

u
la
ti
o
n

D
R
an
g
e

U
F
1

f 1
¼

x 1
þ

2 J 1j
jP j2

J 1

x j
�
si
n
ð6
p
x 1

þ
jp n

�
�

�
� 2
;

f 2
¼

1
�

ffiffiffi x
p

þ
2 J 2j
jP

x j
�
si
n
ð6
p
x 1

þ
jp n

�
�

�
�

2

j2
J 2

J 1
¼

jjj
is
o
d
d
a
n
d
2
�
j�

n
f

g;
J 2

¼
fj
jj
is

ev
en

a
n
d
2
�
j�

n
g

3
0

x 1
2
½0

,1
]

x i
2
½-

1
,1
]

i
¼

1
;.
..
;D

U
F
2

f 1
¼

x 1
þ

2 jJ
1
jP j2

J 1

y2 j
;f

2
¼

1
�

ffiffiffi x
p

þ
2 jJ
2
jP j2

J 2

y2 j

J 1
¼

fj
jj
is
o
d
d
a
n
d
2
�
j�

n
g;
J 2

¼
fj
jj
is
ev
en

a
n
d
2
�
j�

n
g

y j
¼

x j
�

0
:3
x2 1

co
sð
2
4
p
x 1

þ
4
jp n

	



þ
0
:6
x 1

�
�

co
s

6
p
x 1

þ
jp n

	



if
j
2
J 1

x j
�

0
:3
x2 1

co
sð
2
4
p
x 1

þ
4
jp n

	



þ
0
:6
x 1

�
�

co
sð
6
p
x 1

þ
jp n
Þif

j
2
J 2

8 > > < > > :

3
0

x 1
2
½0

,1
]

x i
2
½-

1
,1
]

i
¼

1
;.
..
;D

U
F
3

f 1
¼

x 1
þ

2 J 1j
jð
4
P j2
J 1

y2 j
�
2
Q j2
J 1

co
sð

2
0
y j
p ffi j

p
Þþ

2
Þf 2

¼
ffiffiffi
ffiffi

x 1
p

þ
2 J 2j
jð
4
P j2
J 2

y2 j
�
2
Q j2
J 2

co
sð

2
0
y j
p ffi j

p
Þþ

2
Þ

J 1
an
d
J 2

ar
e
th
e
sa
m
e
as

th
o
se

o
f
U
F
1
,y

j
¼

x j
�
x0

:5
1
:0
þ

3
j�

2
ð

Þ
p�

2
ð

Þ
1

;j
¼

2
;3
;:
::
;n

3
0

x i
2
½0

,1
]

U
F
4

f 1
¼

x 1
þ

2 jJ
1
jP

j2
J
1
h
ðy

jÞ;
f 2

¼
1
�
x 2

þ
2 jJ
2
jP

j2
J
2
h
ðy

jÞ

J 1
an
d
J 2

ar
e
th
e
sa
m
e
as

th
o
se

o
f
U
F
1
,y

j
¼

x j
�
si
n
ð6
px

1
þ

jp n
Þ;
j
¼

2
;3
;.
..
;n

h
ðtÞ

¼
jtj

1
þ
e2

jtj

3
0

x 1
2
½0

,1
]

x i
2
½-

2
,2
]

i
¼

1
;.
..
;D

U
F
5

f 1
¼

x 1
þ
ð1 2

N
þ
eÞ
jsi
n
ð2
N
p
x 1
Þj
þ

2 jJ
1
jP

j2
J
1
h
ðy

jÞf
1
¼

1
�
x 1

þ
ð1 2

N
þ
eÞ
jsi
n
ð2
N
px

1
Þj
þ

2 jJ
2
jP

j2
J
2
h
ðy

jÞ

J 1
an
d
J 2

ar
e
id
en
ti
ca
l
to

th
o
se

o
f
U
F
1
,e
[

0
;y

j
¼

x j
�
si
n
ð6
p
x 1

þ
jp n
Þ;
j
¼

2
;3
;:
::
;n

h
ðtÞ

¼
2
t2
�
co
sð
4
p
tÞ
þ
1

3
0

x 1
2
½0

,1
]

x i
2
½-

1
,1
]

i
¼

1
;.
..
;D

U
F
6

f 1
¼

x 1
þ
m
ax

0
;2

1 2
N
þ
e

�
� j
si
n
ð2
N
px

1
Þ

�
�
þ

2 J 1j
j

4
P j2
J 1

y2 j
�
2
Q j2
J 1

co
s

2
0
y j
p ffi j

p



�
þ
1

 
!

 
!

f 2
¼

1
�
x 1

þ
m
ax

0
;2

1 2
N
þ
e

�
� j
si
n
ð2
N
p
x 1
Þ

�
�

2 J 1j
j

4
P j2
J 2

y2 j
�
2
Q j2
J 2

co
sð

2
0
y j
p ffi j

p
þ
1

 
!

 
!

J 1
an
d
J 2

ar
e
id
en
ti
ca
l
to

th
o
se

o
f

U
F
1
,e
[

0
;y

j
¼

x j
�
si
n
ð6
px

1
þ

jp n
Þ;
j
¼

2
;3
;:
::
;n

3
0

x 1
2
½0

,1
]

x i
2
½-

1
,1
]

i
¼

1
;.
..
;D

U
F
7

f 1
¼

ffiffiffi
ffiffi

x 1
5p

þ
2 jJ
2
jP

j2
J
1
y2 j
;f

2
¼

1
�

ffiffiffi
ffiffi

x 1
5p

þ
2 jJ
2
jP

j2
J
2
y2 j

J 1
an
d
J 2

ar
e
id
en
ti
ca
l
to

th
o
se

o
f
U
F
1
,e
[

0
;y

j
¼

x j
�
si
n
ð6
p
x 1

þ
jp n
Þ;
j
¼

2
;3
;:
::
;n

3
0

½x 1
2
½0

,1
]

x i
2
½-

1
,1
]

i
¼

1
;.
..
;D

Neural Computing and Applications (2023) 35:14973–15004 14981

123



Ta
bl
e
3

T
ri
-o
b
je
ct
iv
e
C
E
C
-0
9
b
en
ch
m
ar
k
fu
n
ct
io
n
s

F
u
n
ct
io
n

M
at
h
em

at
ic
al

fo
rm

u
la
ti
o
n

D
R
an
g
e

U
F
8

f 1
¼

co
sð
0
:5
x 1
pÞ
co
sð
0
:5
x 2
p
Þþ

2 jJ
1
jP j2

J 1

ðx
j
�
2
x 2
si
n
ð2
p
x 1

þ
jp n
Þ2
Þ

f 2
¼

co
sð
0
:5
x 1
pÞ
si
n
ð0
:5
x 2
pÞ

þ
2 jJ
2
jP j2

J 2

ðx
j
�
2
x 2
si
n
ð2
p
x 1

þ
jp n
Þ2
Þ

f 3
¼

si
n
ð0
:5
x 1
pÞ

þ
2 jJ
3
jP j2

J 3

ðx
j
�
2
x 2
si
n
ð2
px

1
þ

jp n
Þ2
Þ

J
1
¼

fj
j3
�
j�

n
;a
n
d
j
�
1
is
a
m
u
lt
ip
li
ca
ti
o
n
o
f
3
g

J
2
¼

fj
j3
�
j�

n
;a
n
d
j
�
2
is
a
m
u
lt
ip
li
ca
ti
o
n
o
f
3
g

J
3
¼

fj
j3
�
j�

n
;a
n
d
ji
s
a
m
u
lt
ip
li
ca
ti
o
n
o
f
3
g

3
0

x 1
2
½0

,1
]

x 2
2
½0

,1
]

x i
2
½-

2
,2
]

i
¼

1
;.
..
;D

U
F
9

f 1
¼

0
:5
½m
a
xf
0
;ð
1
þ
eÞ
ð1

�
4
ð2
x 1

�
1
Þ2
Þg

þ
2 jJ
1
jP j2

J 1

ðx
j
�
2
x 2
si
n
ð2
px

1
þ

jp n
Þ2
Þ

f 2
¼

0
:5
½m
a
xf
0
;ð
1
þ
eÞ
ð1

�
4
ð2
x 1

�
1
Þ2
Þg

þ
2
x 1
�x

2
þ

2 jJ
2
jP j2

J 2

ðx
j
�
2
x 2
si
n
ð2
px

1
þ

jp n
Þ2
Þ

f 3
¼

1
�
x 2

þ
2 jJ
3
jP j2

J 3

ðx
j
�
2
x 2
si
n
ð2
px

1
þ

jp n
Þ2
Þ

J
1
¼

fj
j3
�
j�

n
;a
n
d
j1

is
a
m
u
lt
ip
li
ca
ti
o
n
o
f
3
g

J
2
¼

fj
j3
�
j�

n
;a
n
d
j
�
2
is
a
m
u
lt
ip
li
ca
ti
o
n
o
f
3
g

J
3
¼

jj3
�
j�

n
;a
n
d
ji
s
a
m
u
lt
ip
li
ca
ti
o
n
o
f
3

f
g;
e
¼

0
:1

3
0

x 1
2
½0

,1
]

x 2
2
½0

,1
]

x i
2
½-

2
,2
]

i
¼

1
;.
..
;D

U
F
1
0

f 1
¼

co
sð
0
:5
x 1
p
Þc
o
sð
0
:5
x 2
p
Þþ

2 jJ
1
jP

j2
J
1
½4
y2 j

�
co
sð
8
p
y j
Þþ

1
�

f 2
¼

co
sð
0
:5
x 1
p
Þs
in
ð0
:5
x 2
p
Þþ

2 jJ
2
jP

j2
J
1
½4
y2 j

�
co
sð
8
p
y j
Þþ

1
�

f 3
¼

si
n
ð0
:5
x 1
pÞ

þ
2 jJ
3
jP

j2
J
3
½4
y2 j

�
co
sð
8
py

jÞ
þ
1
�

J
1
¼

fj
j3
�
j�

n
;a
n
d
j
�
1
is
a
m
u
lt
ip
li
ca
ti
o
n
o
f
3
g

J
2
¼

fj
j3
�
j�

n
;a
n
d
j
�
2
is
a
m
u
lt
ip
li
ca
ti
o
n
o
f
3
g

J
3
¼

fj
j3
�
j�

n
;a
n
d
ji
s
a
m
u
lt
ip
li
ca
ti
o
n
o
f
3

3
0

x 1
2
½0

,1
]

x 2
2
½0

,1
]

x i
2
½-

2
,2
]

i
¼

1
;.
..
;D

14982 Neural Computing and Applications (2023) 35:14973–15004

123



got more Pareto-optimal solutions than the other compar-

ative algorithms in the decision space.

Table 7 summarizes the statistical findings for CEC-09

benchmark functions in terms of S performance metrics.

The conclusions demonstrated indisputably that the sug-

gested MOCGO approach outperformed previous compa-

rable methodologies. (MOPSO, MOGWO, and MOALO).

MOCGO achieved the most reliable results in various test

problems (i.e., UF2, UF3, UF5, UF8, UF9, and UF10), in

six out of ten test cases. MOALO produced the best results

in other few problems (i.e., UF1, UF4, UF6, and UF7), in

four out of ten test cases. The results shown in Table 7

verify the quality of the acquired results presented by the

proposed MOCGO method for addressing several complex

problems with multiple objectives compared to other

comparable methods used in the literature. The proposed

MOCGO method obviously improved the results. It yielded

clearly better results in terms of all considered measure-

ments, demonstrating the robustness of the suggested

MOCGO method to address such optimization problems.

The SD values also showed that the proposed strategy

consistently produced similar outcomes independent of

evaluation measures.

Figures 5 and 6 represent the best PF obtained on CEC-

09 problems by MOPSO, MOGWO, MOALO, and the

Table 4 Statistical analysis of the CEC-09 benchmark function to

determine IGD performance

Functions Algorithm

MOPSO MOGWO MOALO MOCGO

UF1 Ave 5.3291E-03 6.2723E-03 6.1666E-03 6.7547E-03

SD 2.9590E-03 2.3573E-03 6.0132E-04 3.3961E-04

UF2 Ave 4.1586E-03 3.1171E-03 5.9619E-03 3.0229E-03

SD 4.8128E-04 1.4449E-04 4.6549E-04 1.2127E-04

UF3 Ave 1.7231E-02 1.1759E-02 1.2781E-02 1.1582E-02

SD 1.0806E-03 1.0876E-03 1.6226E-03 9.2291E-04

UF4 Ave 2.8277E-03 2.7729E-03 3.5940E-03 2.4541E-03

SD 2.5695E-04 4.2623E-04 1.0043E-03 1.0026E-04

UF5 Ave 3.4235E-01 3.1605E-01 3.5831E-01 5.3137E-01

SD 1.5317E-01 1.0235E-01 9.7301E-02 2.8499E-02

UF6 Ave 2.9255E-02 1.6384E-02 2.6411E-02 3.8886E-02

SD 9.1394E-03 1.4457E-03 6.2357E-03 3.4148E-03

UF7 Ave 4.3417E-03 4.2653E-03 7.8064E-03 1.0480E-02

SD 2.4234E-03 2.0537E-03 3.6188E-03 1.5310E-03

UF8 Ave 9.2776E-03 4.4972E-03 6.8487E-03 3.3240E-03

SD 1.6147E-03 9.9923E-04 1.4396E-03 2.9643E-04

UF9 Ave 1.2300E-02 4.1086E-03 6.7235E-03 4.0121E-03

SD 2.9460E-03 9.5194E-04 1.1738E-03 4.1190E-04

UF10 Ave 6.3301E-02 3.4391E-02 4.0477E-02 1.1692E-02

SD 1.3765E-02 9.0787E-03 1.2864E-02 3.1689E-03

The bold number is the best result among other methods

Table 5 Statistical analysis of the CEC-09 benchmark function to determine GD performance

Functions Algorithm

MOPSO MOGWO MOALO MOCGO

UF1 Ave 2.7430E-02 3.4966E-02 1.5372E-02 7.7021E-02

SD 2.5390E-02 3.1994E-02 4.1474E-03 3.7672E-02

UF2 Ave 2.0656E-02 1.1215E-02 1.9644E-02 9.3716E-03

SD 4.6831E-03 2.1213E-03 4.0405E-03 2.1178E-03

UF3 Ave 9.6010E-02 7.2062E-02 3.9887E-02 2.4564E-02

SD 2.3482E-02 1.0267E-02 6.2737E-03 1.1926E-03

UF4 Ave 9.2957E-03 1.0169E-02 5.7701E-03 4.1831E-03

SD 9.2862E-04 3.4790E-03 7.4405E-04 3.2217E-04

UF5 Ave 4.2733E-01 2.8272E-01 1.7752E-01 7.4549E-01

SD 2.9837E-01 1.5805E-01 5.7170E-02 1.0797E-01

UF6 Ave 2.0278E-01 1.1532E-01 8.6731E-02 4.6623E-01

SD 1.6569E-01 5.0468E-02 3.0128E-02 1.8945E-01

UF7 Ave 1.7938E-02 9.1316E-03 1.3805E-02 8.3221E-02

SD 1.3813E-02 1.2322E-02 3.3199E-03 3.3881E-02

UF8 Ave 2.6587E-01 3.3914E-02 4.5825E-02 9.4878E-03

SD 8.2205E-02 1.3307E-02 2.9935E-02 3.1263E-03

UF9 Ave 4.0311E-01 5.1960E-02 4.5643E-02 1.4653E-02

SD 7.9920E-02 2.1763E-02 1.1497E-02 9.3088E-03

UF10 Ave 1.3828E?00 6.9388E-01 4.5870E-01 2.7876E-01

SD 2.1017E-01 2.0777E-01 1.6020E-01 9.0385E-02

The bold number is the best result among other methods

Neural Computing and Applications (2023) 35:14973–15004 14983

123



Table 6 Statistical analysis of the CEC-09 benchmark function to determine MS performance

Functions Algorithm

MOPSO MOGWO MOALO MOCGO

UF1 Ave 8.7689E-01 8.9878E-01 9.2888E-01 1.5057E100

SD 4.5456E-01 2.0878E-01 2.3480E-01 7.2921E-01

UF2 Ave 1.1989E?00 1.1436E?00 1.1170E?00 1.2489E100

SD 2.3245E-01 6.4565E-02 1.6472E-01 5.1575E-02

UF3 Ave 1.4879E100 1.3245E?00 8.3938E-01 9.6572E-01

SD 8.9801E-01 8.6759E-02 2.4240E-01 7.2458E-02

UF4 Ave 1.0034E?00 1.0148E?00 8.3622E-01 1.0304E100

SD 3.3432E-02 7.7681E-03 8.1759E-02 1.2536E-03

UF5 Ave 7.7667E-01 1.7603E?00 1.7252E?00 2.3944E100

SD 6.4309E-01 7.7653E-01 4.8531E-01 3.9402E-01

UF6 Ave 9.7689E-01 1.4378E?00 9.8110E-01 2.5381E100

SD 1.3260E?00 4.3259E-02 3.9658E-01 2.0853E ?00

UF7 Ave 1.2435E?00 1.1324E?00 8.8819E-01 1.6926E100

SD 2.5467E-01 5.6578E-02 3.0321E-01 3.5168E-01

UF8 Ave 5.4325E 100 8.9965E-01 5.7743E-01 1.1129E ?00

SD 2.9098E?00 3.3248E-01 4.9527E-01 7.6427E-02

UF9 Ave 6.4379E?00 2.3432E?00 4.1219E-01 8.0200E100

SD 1.2321E?00 3.2332E-01 2.6948E-01 1.4182E-01

UF10 Ave 5.9867E?00 5.9987E?00 3.1496E?00 6.9151E100

SD 3.0934E?00 1.2143E?00 1.1075E?00 1.0023E100

The bold number is the best result among other methods

Table 7 Statistical analysis of the CEC-09 benchmark function to determine S performance

Functions Algorithm

MOPSO MOGWO MOALO MOCGO

UF1 Ave 1.5649E-02 5.8711E-02 3.8318E-03 5.3728E-02

SD 9.9871E-03 4.3083E-02 7.2845E-03 2.7475E-02

UF2 Ave 1.8565E-02 1.4426E-02 1.8319E-02 1.3254E-02

SD 3.1440E-03 4.0894E-03 1.4069E-02 2.5215E-03

UF3 Ave 2.6957E-02 7.3997E-02 1.1187E-02 1.0556E-02

SD 1.5713E-02 2.5622E-02 5.2701E-03 1.8936E-03

UF4 Ave 1.0182E-02 2.0138E-02 3.4636E-03 1.1082E-02

SD 1.7583E-03 1.0792E-02 3.0832E-03 1.6234E-03

UF5 Ave 2.5756E-02 8.9494E-02 1.4277E-02 1.0392E-02

SD 3.3090E-02 7.0701E-02 9.0182E-03 8.7434E-03

UF6 Ave 4.3768E-02 1.3105E-01 4.5527E-03 1.9256E-01

SD 7.4660E-02 1.8372E-01 3.6726E-03 1.2531E-01

UF7 Ave 1.6883E-02 2.6653E-02 6.1348E-03 6.0614E-02

SD 8.2967E-03 4.5707E-02 5.6661E-03 2.1989E-02

UF8 Ave 2.7757E-01 4.4312E-02 2.3043E-02 2.2881E-02

SD 7.9069E-02 1.1641E-02 1.6247E-02 1.0886E-02

UF9 Ave 3.7998E-01 6.6954E-02 1.7566E-02 1.6721E-02

SD 8.9375E-02 2.2886E-02 1.1348E-02 1.0324E-02

UF10 Ave 1.0998E?00 4.1590E-01 2.2214E-01 2.0060E-01

SD 1.9502E-01 1.3872E-01 9.2452E-02 8.5406E-02

The bold number is the best result among other methods

14984 Neural Computing and Applications (2023) 35:14973–15004

123



proposed MOCGO algorithms. Figure 5 depicts the out-

comes of the comparative methodologies on UF1-UF5, and

Fig. 6 illustrates the results on UF6-UF10. Based on these

figures, it can be shown that the proposed MOCGO dis-

plays a perfect convergence as it gets closer and closer to

all of the true Pareto-optimal fronts. Moreover, the

MOPSO, MOGWO, and MOALO methods explain the

worst convergence, corresponding with the obtained

results. The suggested approach is compared to other well-

known comparison methods on the map-based problem to

Fig. 5 The CEC-09 problems (UF1-5) True and obtained Pareto front results

Neural Computing and Applications (2023) 35:14973–15004 14985

123



illustrate its usefulness. MOCGO can cover all Pareto

areas, although the optimum regions reported by others in

the literature are partial, as demonstrated in Figs. 5 and 6.

This demonstrates MOCGO’s excellent performance and

demonstrates its efficacy.

Fig. 6 The CEC-09 problems (UF6-10) True and obtained Pareto front results

14986 Neural Computing and Applications (2023) 35:14973–15004

123



4.2.2 Discussion of the ZDT and DTLZ test function

The advanced multi-modal benchmark functions with

fixed-dimension, including ZDT (i.e., ZDT1-ZDT6) and

DTLZ (DTLZ2 and DTLZ4), are tested to validate further

the performance of the proposed MOCGO algorithm in the

following section. The findings that were achieved using

the proposed approach are compared with the results

acquired using other comparison methods that are well-

known (i.e., MOPSO, MOGWO, and MOCGO). The

descriptions of the tested Multi-modal benchmark func-

tions with fixed-dimension are presented in Table 8.

Benchmark functions ZDT and DTLZ, which measure

GD performance, are statistically compared in Table 9.

When compared to previous approaches, the suggested

MOCGO performed exceptionally well. MOCGO got the

best results in several problems (i.e., ZDT1, ZDT2, ZDT3

and ZDT4,), in five out of seven test cases. Followed by

MOPSO, it got the best results in some problems (i.e.,

ZDT6, DTLZ2), two out of seven test cases, and MOGWO

got the best results in a problem (i.e., DTLZ4), one out of

seven test cases. The results shown in Table 9 compare the

proposed method to similar approaches that have been used

to solve advanced difficult issues with multiple objectives.

According to the findings, the approach that was suggested

is superior to others in this regard. In addition, the standard

deviation values demonstrated that the suggested method is

capable of producing results that are consistent across

multiple instances.

Table 10 summarizes the statistical outcomes for the

ZDT and DTLZ benchmark functions using IGD. Com-

pared to other comparison algorithms, the results show that

MOCGO performed quite well. MOCGO achieved the best

results in five problems (i.e., ZDT1, ZDT2, ZDT3, ZDT4,

ZDT6). MOPSO finished in second place, achieving the

best possible scores in two of the seven tests (DTLZ2 and

DTLZ4). In contrast to other comparable approaches uti-

lized in the literature, Table 10 demonstrates the power of

the suggested method in addressing various advanced

complicated problems with multiple objectives. In addi-

tion, the SD values demonstrated that the suggested method

is capable of producing results that are consistent across a

range of different applications.

Tables 11 and 12 show the ZDT and DTLZ benchmark

functions’ MS and S performance. The findings indicate

that the suggested MOCGO produced outstanding results

compared to previous comparison algorithms. According to

the MS measure results in Table 11, out of seven test

instances, MOCGO achieved the best results in six prob-

lems (i.e., ZDT2, ZDT3, ZDT6, DTLZ2, and DTLZ4).

MOGWO finished in second place, achieving the highest

marks in one of the seven different tests (ZDT4). The

results of the S measure are presented in Table 12, and it

can be seen that out of a total of seven different test cases,

MOCGO got the best results in three of them (i.e., ZDT3,

ZDT6, and DTLZ4). MOPSO came in second, with the

best results in two of the seven test cases (i.e., ZDT2 and

ZDT4). MOGWO got the best results in one case (i.e.,

Table 8 Multi-modal benchmark functions with fixed-dimension

Function Mathematical formulation D Range

ZDT1
F1 ¼ x1;F2 ¼ g 1�

ffiffiffiffi
F1

g

q
 �
; g ¼ 1þ 9

d�1

Pd

i¼2

xi
30 xi 2 ½ 0,1]

ZDT2
F1 ¼ x1;F2 ¼ g 1� F1

g


 �2
	 


; g ¼ 1þ 9
d�1

Pd

i¼2

xi
30 xi 2 ½ 0,1]

ZDT3
F1 ¼ x1;F2 ¼ g 1�

ffiffiffiffiffiffiffiffi
F1g

p
� F1=gð10pF1Þ


 �
; g ¼ 1þ 9

d�1

Pd

i¼2

xi
30 xi 2 ½ 0,1]

ZDT4
F1 ¼ x1; F2 ¼ g 1�

ffiffiffiffiffiffiffiffiffi
F1=g

q
 �
; g ¼ 1þ 10 d � 1ð Þ þ

Pd

i¼2

ðx2i � 10cos 4pxið ÞÞ
10 x1 2 ½ 0,1]

xi 2 ½- 5,5]

i ¼ 1; . . .;D

ZDT6
F1 ¼ 1� exp �4x1ð Þsin6 6px1ð Þ; F2 ¼ g 1� F1=g


 �2
	 


; g ¼ 1þ 9

Pd

i¼2
xi

d�1

	 
0:25 10 xi 2 ½ 0,1]

DTLZ2 F1 ¼ 1þ gð Þcos x1
p
2

� �� �
cos x2

p
2

� �� �
; F2 ¼ 1þ gð Þcos x1

p
2

� �� �
sin x2

p
2

� �� �
;

F3 ¼ 1þ gð Þsin x1
p
2

� �� �
; g ¼

Pd
i¼3 ðxi � 0:5Þ2

12 xi 2 ½ 0,1]

DTLZ4 F1 ¼ 1þ gð Þcos xp1
p
2

� �� �
cos xp2

p
2

� �� �
; F2 ¼ 1þ gð Þcos xp1

p
2

� �� �
sin xp2

p
2

� �� �
;

F3 ¼ 1þ gð Þsin xp1
p
2

� �� �
; g ¼

Pd
i¼3 ðxi � 0:5Þ2

12 xi 2 ½ 0,1]

Neural Computing and Applications (2023) 35:14973–15004 14987

123



DTLZ2), and MOALO got the best results in one case (i.e.,

ZDT1). In contrast to other similar methods utilized in the

literature, these results demonstrated the power of the

suggested approach in addressing various advanced com-

plicated problems with multiple objectives. The SD values

confirmed the suggested technique’s capability to provide

consistent results.

Figures 7 and 8 show the best PF produced by MOPSO,

MOGWO, MOALO, and the proposed MOCGO algo-

rithms on ZDT and DTLZ problems. The results of the

comparison techniques on ZDT (i.e., ZDT1-ZDT6) are

shown in Fig. 7, and the results of the comparative meth-

ods on DTLZ (i.e., DTLZ2 and DTLZ4) are shown in

Fig. 8. These diagrams demonstrate that the proposed

Table 9 Statistical analysis of

the mathematical functions to

determine GD performance

Functions Algorithm

MOPSO MOGWO MOALO MOCGO

ZDT1 Ave 1.7932E-03 5.8093E-05 1.3644E-04 5.0355E-05

SD 5.0496E-03 4.2240E-05 1.7358E-04 1.1710E-05

ZDT2 Ave 1.4749E-01 3.7956E-05 4.0621E-05 3.5936E-05

SD 6.5211E-02 2.0061E-05 1.9757E-05 3.1526E-06

ZDT3 Ave 2.0489E-04 2.0332E-04 1.7253E-03 1.3825E-04

SD 2.7322E-05 9.0168E-05 1.1636E-03 2.0852E-05

ZDT4 Ave 4.1299E?00 6.8746E?00 2.0045E?00 1.2290E100

SD 3.9519E?00 7.4640E?00 9.6098E-01 2.5919E?00

ZDT6 Ave 2.5805E-02 1.3278E-01 3.3034E-02 7.7697E-02

SD 5.8008E-02 3.4317E-01 2.0337E-02 2.0003E-02

DTLZ2 Ave 6.8600E-03 7.2624E-03 2.1134E-02 3.0501E-02

SD 9.0878E-04 5.2125E-04 1.0861E-02 8.8083E-03

DTLZ4 Ave 1.0097E-02 1.8707E-03 3.6328E-02 3.3886E-02

SD 2.4570E-03 3.8729E-04 1.9865E-02 1.6069E-02

The bold number is the best result among other methods

Table 10 Statistical analysis of the mathematical functions to determine IGD performance

Functions Algorithm

MOPSO MOGWO MOALO MOCGO

ZDT1 Ave 8.0879E-04 1.2199E-03 1.5144E-02 3.3448E-04

SD 1.4764E-03 3.4912E-04 2.1178E-03 7.0516E-05

ZDT2 Ave 5.2023E-02 6.4188E-03 2.1623E-02 3.1708E-04

SD 9.5007E-03 8.6889E-03 1.7638E-03 4.3667E-05

ZDT3 Ave 2.6241E-04 4.8548E-04 3.7118E-03 2.5402E-04

SD 3.9884E-05 6.8091E-05 1.6638E-03 3.8345E-05

ZDT4 Ave 7.0747E-01 3.6983E-01 6.1546E-01 6.3264E-02

SD 3.1784E-01 3.3799E-01 2.4280E-01 1.3281E-01

ZDT6 Ave 8.2281E-03 3.5919E-03 3.4649E-03 5.4121E-04

SD 2.4862E-02 8.5585E-03 1.8983E-03 1.1214E-04

DTLZ2 Ave 4.6940E-04 3.0120E-03 3.2518E-03 1.0827E-03

SD 2.6098E-05 3.9605E-04 4.6848E-04 1.0522E-04

DTLZ4 Ave 1.6840E-03 7.3987E-03 1.1027E-02 3.6037E-03

SD 9.4057E-05 3.7323E-04 2.9491E-03 2.0291E-04

The bold number is the best result among other methods

14988 Neural Computing and Applications (2023) 35:14973–15004

123



MOCGO approaches all true Pareto-optimal fronts with

almost complete convergence. Furthermore, the MOPSO,

MOGWO, and MOALO approaches explain the poorest

convergence.

4.2.3 Discussion of engineering problems

This section tests the proposed MOCGO on eight multi-

objective engineering problems (see Appendix) of which

some are discussed as follows:

4.2.3.1 The 4-bar truss In the well-known issue of

structural optimization shown in Fig. 9, [56], the goal is to

reduce both the volume (f 1) and the displacement (f 2) of a

4-bar truss to their smallest possible values. The following

equations link four design variables (x1 � x4) to the cross-

sectional area of members 1 to 4.

Minimize : f1 xð Þ ¼ 200� 2� x1 þ sqrt 2� x2ð Þ þ sqrt x3ð Þ þ x4ð Þ
ð11Þ

Table 11 Statistical analysis of

the mathematical functions to

determine MS performance

Functions Algorithm

MOPSO MOGWO MOALO MOCGO

ZDT1 Ave 9.9870E-01 8.2895E-01 3.0049E-01 9.9964E-01

SD 2.3779E-02 7.4545E-02 5.1645E-02 1.4642E-01

ZDT2 Ave 7.4311E-02 6.3944E-01 3.6133E-02 1.0000E 100

SD 2.3499E-01 3.4118E-01 4.3001E-02 0.0000E 100

ZDT3 Ave 9.9865E-01 9.7302E-01 7.1037E-01 9.9971E-01

SD 1.7888E-03 2.1153E-02 1.1021E-01 5.9020E-03

ZDT4 Ave 4.6863E-01 6.2129E 100 2.3408E?00 1.1529E?00

SD 1.4819E?00 6.9292E?00 4.8105E?00 3.5499E-01

ZDT6 Ave 1.1170E?00 2.1639E?00 1.4199E?00 5.3501E100

SD 5.3983E-01 1.6010E?00 5.8815E-01 1.2843E?00

DTLZ2 Ave 1.0976E?00 8.9087E-02 1.5348E-01 1.7522E100

SD 9.0869E-02 3.3330E-02 6.5189E-02 5.4922E-01

DTLZ4 Ave 1.2437E?00 2.1199E-01 3.3046E-01 1.7613E10

SD 1.4187E-01 6.5198E-02 1.8953E-01 5.9416E-01

The bold number is the best result among other methods

Table 12 Statistical analysis of

the mathematical functions to

determine S performance

Functions Algorithm

MOPSO MOGWO MOALO MOCGO

ZDT1 Ave 1.1319E-02 1.4894E-02 5.1688E-03 1.0769E-02

SD 1.0762E-03 6.1897E-03 1.9499E-03 1.0710E-03

ZDT2 Ave 7.3295E-04 1.1600E-02 8.6826E-04 1.0949E-02

SD 2.3178E-03 7.3141E-03 1.1868E-03 1.0931E-03

ZDT3 Ave 1.3270E-02 1.5123E-02 1.4655E-02 1.2072E-02

SD 2.3561E-03 6.5176E-03 9.2716E-03 2.0699E-03

ZDT4 Ave 4.3804E-03 1.3446E?00 1.4977E-02 1.6506E-01

SD 1.3852E-02 1.6767E ?00 2.5415E-02 3.2301E-01

ZDT6 Ave 1.8109E-02 5.7668E-02 2.4910E-02 1.7675E-02

SD 3.0071E-02 9.3879E-02 1.2571E-02 1.0986E-02

DTLZ2 Ave 5.7741E-02 4.7074E-03 1.1726E-02 1.0259E-01

SD 4.9507E-03 1.2812E-03 5.3284E-03 4.6703E-02

DTLZ4 Ave 6.1316E-02 1.1737E-02 1.8314E-02 1.0162E-02

SD 5.3260E-03 3.3199E-03 1.0509E-02 1.2177E-03

The bold number is the best result among other methods

Neural Computing and Applications (2023) 35:14973–15004 14989

123



Fig. 7 True and obtained Pareto front for ZDT problems

14990 Neural Computing and Applications (2023) 35:14973–15004

123



Minimize : f2 xð Þ ¼ 0:01� 2

x1

	 


þ 2� sqrt 2ð Þ
x2

	 


� 2� sqrt 2ð Þ
x3

	 


þ 2=x1ð Þ1� x1

� 3; 1:4142� x2 � 3 1:4142� x3

� 3; 1� x4 � 3

ð12Þ

4.2.3.2 The welded beam Ray and Liew [57] proposed

four design restrictions for welded beams. Figure 10

illustrates this scenario in further detail. The welded beam

is shown schematically in Fig. 10. The manufacturing cost

(f 1) and beam deflection (f 2) of a welded beam should be

kept to a minimum in this issue. The four design variables

are the weld thickness (x1), the clamped bar’s length (x2),

the clamped bar’s height (x3) and the clamped bar’s

thickness (x4).

Fig. 8 The DTLZ problems True and obtained Pareto front results

Neural Computing and Applications (2023) 35:14973–15004 14991

123



Minimize : f1 xð Þ
¼ 1:10471� x21 � x2 þ 0:04811� x3 � x4

� 14þ x2ð Þ
ð13Þ

Minimize : f2 xð Þ ¼ 65856000= 30� 106 � x4 � x33
� �

ð14Þ
where : g1 xð Þ ¼ s� 13600 ð15Þ
g2 xð Þ ¼ r� 30000 ð16Þ
g3 xð Þ ¼ x1 � x4 ð17Þ
g4 xð Þ ¼ 6000� P ð18Þ
0:125� x1 � 5; 0:1� x2 � 10

0:1� x3 � 10; 0:125� x4 � 5

where : q ¼ 6000 � 14þ x1
2


 �
;D

¼ sqrt
x22
4
þ ðx1 þ x3Þ2

4

 !

ð19Þ

J ¼ 2 � x1 � x2 � sqrt 2ð Þ � x22
12

þ ðx1 þ x3Þ2

4

 ! !

ð20Þ

a ¼ 6000

sqrt 2ð Þ � x1 � x2
ð21Þ

b ¼ Q � D
J

ð22Þ

4.2.3.3 Disk brake According to Ray and Liew [56], there

are many limitations to consider while designing a disc

brake. Two goals need to be attained: reducing stopping

time (f 1) and reducing brake mass (f 2). Figure 11 shows a

schematic representation of the disc brake. Disc’s inner

radius (x1), outer radius (x2), engaging force (x3), the

number of friction surfaces (x4), and five constraints are

given below as equations.

Minimize : f1 xð Þ
¼ 4:9� 10ð Þ �5ð Þ� x

2ð Þ
2 � x

2ð Þ
1


 �
� x4 � 1ð Þ

ð23Þ

Minimize : f2 xð Þ
¼ 9:82� 10ð Þ 6ð Þ

 �

� x
2ð Þ
2 � x

2ð Þ
1


 �
= x2Þ 3ð Þ � x

3ð Þ
1


 �
� x4 � x3


 �

ð24Þ
g1 xð Þ ¼ 20þ x1 � x2 ð25Þ
g2 xð Þ ¼ 2:5þ x4 þ 1ð Þ � 30 ð26Þ

Fig. 9 The schematic view of the four-bar truss

Fig. 10 The welded beam Fig. 11 The disk brakes

14992 Neural Computing and Applications (2023) 35:14973–15004

123



g3 xð Þ ¼ x3ð Þ= 3:14� x
2ð Þ
2 � x

2ð Þ
1


 �2
	 


� 0:4 ð27Þ

g4 xð Þ ¼ 2:22� 10ð Þ �3ð Þ�x3 � x2ð Þ 3ð Þ�x
3ð Þ
1


 �
 �
= x

2ð Þ
2 � x

2ð Þ
1


 �2
	 


� 1

ð28Þ

g5 xð Þ ¼ 900� 2:66� 10ð Þ �2ð Þ�x3 � x4




� x2ð Þ 3ð Þ�x
3ð Þ
1


 ��
= x

2ð Þ
2 � x

2ð Þ
1


 �2
	 
 ð29Þ

55� x1 � 80; 75� x2 � 110

1000� x3 � 3000; 2� x4 � 20

4.2.3.4 Speed reducer It is well knowledge in mechanical

engineering that the design of a speed reducer must mini-

mize the component’s mass (f 1) and stress (f 2) (see

Fig. 12). The details of this example with seven variables

and eleven constraints can be found in [56, 58].

Minimize : f1 xð Þ
¼ 0:7854� x1� x22
� 3:3333� x23þ 14:9334þ x3Þ� 43:0934
� �

. . .

� 1:508� x1� x26þ x27
� �

ð30Þ
_gi ¼ RiðwiÞti i ¼ 1; 2; :::; n
_ti ¼ M�1

i ð�CiðtiÞ � DiðtiÞ � swi þ siÞ
ð31Þ

where : g1 xð Þ ¼ 27= x1 � x22 � x3
� �

� 1 ð32Þ

g2 xð Þ ¼ 397:5= x1 � x22 � x23
� �

� 1 ð33Þ

g3 xð Þ ¼ ð1:93� x34= x2 � x3 � x46
� �

� 1 ð34Þ

g4 xð Þ ¼ ð1:93� x35= x2 � x3 � x47
� �

� 1 ð35Þ

g5 xð Þ ¼ sqrt 745� x4ð Þ=x2 � x3ð Þð Þ2þ16:9e6

 �
 �

= 110� x36
� �
 �

� 1

ð36Þ

g6 xð Þ ¼ sqrt 745� x4ð Þ=x2 � x3ð Þð Þ2þ157:9e6

 �
 �

= 85� x37
� �
 �

� 1

ð37Þ
g7 xð Þ ¼ x2 � x3ð Þ=40ð Þ�1 ð38Þ

s ¼ sqrt a2 þ 2� a� b� x2
2� D

þ b2

 �

ð39Þ

r ¼ 504000

x4 � x23
ð40Þ

tmpf ¼ 4:013� 30� 106

196
ð41Þ

P ¼ tmpf � sqrt x23 �
xð4Þ6

36

 !

� 1� x3 �
sqrt 30

48

� �

28

	 


ð42Þ

4.2.3.5 Comparison of MOCGO with MOPSO, MOALO,
MOGWO In this subsection, a comparison is made

between MOCGO and the algorithms MOPSO, MOALO,

and MOGWO for solving engineering problems based on

the criteria of Ave and SDT. The outcomes of the com-

parison methodologies used in GD, IGD, MS, and S are

presented in Tables 13, 14, 15 and 16, respectively.

Table 13 demonstrates that the proposed strategy achieved

promising outcomes in almost all of the situations that were

put to the test using the GD measure. In comparison with

MOGWO, MOPSO and MOALO achieved some of the

best results; nevertheless, MOGWO did not get any of the

best scores in that table. The findings of the comparison

approaches for all of the problems that were examined are

presented in Table 14, which summarizes IGD. The pro-

posed method also proved its ability to solve real-world

engineering problems effectively, which is also harmo-

nized with the results in terms of MS and S, as shown in

Tables 15 and 16. It can be concluded that the proposed

method can solve complex problems with proven results

using many tested problems. It can be considered an

attractive alternative in this domain to solve multi-objec-

tive problems.

Figures 13 and 14 show the best PF produced by

MOPSO, MOGWO, MOALO, and the proposed MOCGO

algorithms on the given real-world industrial engineering

problems. The results of the comparative methods on BNH,

CONSTR, DISK BRAKE, and 4-BAR TRUSS are shown

in Fig. 13. The results of the comparative methods on

WELDED BEAM, OSY, SPEED REDUCER, and SRN are

shown in Fig. 14. These diagrams confirm that the

Fig. 12 The speed reducer

Neural Computing and Applications (2023) 35:14973–15004 14993

123



proposed MOCGO approaches are very close to the actual

Pareto-optimal fronts with almost complete convergence.

Moreover, the MOPSO, MOGWO, and MOALO

demonstrate the poorest convergence. Finding optimal

Pareto front values using the proposed method is preferable

to alternative methods.

Table 13 Statistical analysis of

the engineering problems to

determine GD performance

Functions Algorithm

MOPSO MOGWO MOALO MOCGO

P1: BNH Ave 3.3894E-02 6.2465E-02 5.3758E-02 3.2599E-02

SD 2.1392E-03 1.5645E-02 1.7132E-02 2.1109E-03

P2: CONSTR Ave 8.3098E-04 8.9220E-04 1.5711E-03 7.2719E-04

SD 3.3369E-05 1.0565E-04 7.7806E-04 8.4147E-05

P3: DISK BRAKE Ave 2.3045E-03 4.3311E-03 4.1887E-02 2.1552E-03

SD 5.6273E-03 1.8074E-03 5.4951E-03 3.8444E-04

P4: 4-BAR TRUSS Ave 1.4095E?01 1.1696E?01 2.5901E ?00 1.1373E 101

SD 5.1580E-01 2.3340E?00 2.2161E ?00 8.6245E-01

P5: WELDED BEAM Ave 1.1946E-02 3.9207E-02 4.4399E-03 5.3823E-03

SD 1.9956E-03 3.8097E-02 6.9956E-04 5.0405E-04

P6: OSY Ave 3.5765E?00 1.2736E?00 7.0760E-01 3.8851E ?00

SD 2.5250E?00 4.0179E-01 2.4932E-01 1.3209E ?00

P7: SPEED REDUCER Ave 8.2516E?01 8.2889E?00 7.6817E?00 7.2212E100

SD 9.8695E?01 1.6129E?00 3.4697E?00 1.5340E100

P8: SRN Ave 3.1617E-02 1.6743E-02 1.5798E-02 1.0058E-02

SD 1.0695E-02 3.9924E-03 3.2892E-03 1.1692E-03

The bold number is the best result among other methods

Table 14 Statistical analysis of

the engineering problems to

determine IGD performance

Functions Algorithm

MOPSO MOGWO MOALO MOCGO

P1: BNH Ave 9.6868E-04 3.3817E-03 1.2198E-02 7.0815E-04

SD 1.7147E-04 1.1513E-03 3.6455E-03 4.3813E-05

P2: CONSTR Ave 5.1838E-04 7.4460E-04 2.5041E-03 4.5869E-04

SD 5.5618E-05 1.7697E-04 9.6528E-04 5.5228E-05

P3: DISK BRAKE Ave 5.8831E-04 7.2091E-04 1.7399E-03 8.1114E-04

SD 5.5995E-05 1.1206E-04 7.7421E-04 7.2077E-05

P4: 4-BAR TRUSS Ave 2.0010E-02 2.1409E-02 2.2004E-02 2.0009E-02

SD 3.9632E-05 1.5445E-04 1.1024E-03 8.0745E-05

P5: WELDED BEAM Ave 5.9705E-04 1.3441E-03 6.1770E-03 5.7676E-04

SD 4.6341E-05 3.9377E-04 2.8159E-03 7.0072E-05

P6: OSY Ave 1.4663E-02 7.6220E-03 8.1016E-03 6.0964E-03

SD 8.6917E-03 6.4006E-04 2.2613E-04 2.2429E-04

P7: SPEED REDUCER Ave 6.0305E-02 1.4243E-02 1.7737E-02 1.0149E-02

SD 7.2130E-02 3.2032E-03 3.3878E-03 3.2001E-03

P8: SRN Ave 4.5146E-04 2.4823E-03 6.2137E-03 2.3639E-04

SD 1.1656E-04 1.0614E-03 1.8810E-03 1.5491E-05

The bold number is the best result among other methods

14994 Neural Computing and Applications (2023) 35:14973–15004

123



4.2.3.6 Comparison of MOCGO with MOCryStAl, MOHHO,
MSSA The effectiveness of the proposed MOCGO is

examined using additional optimization problems since the

new multi-objective algorithms should be assessed using a

few challenging real-world optimization problems. This

subsection compares MOCGO with MOCryStAl [38],

MOHHO [54], and MSSA [55] algorithms by the criterion

of Ave and SDT for engineering problems. The outcomes

of comparative approaches for GD, IGD, MS, and S are

displayed in Tables 17, 18, 19, and 20. According to the

Table 15 Statistical analysis of the engineering problems to determine MS performance

Functions Algorithm

MOPSO MOGWO MOALO MOCGO

P1: BNH Ave 1.0000E 100 8.7156E-01 5.4090E-01 1.0000E 100

SD 0.0000E 100 6.6957E-02 1.0692E-01 0.0000E 100

P2: CONSTR Ave 9.9384E-01 9.7790E-01 7.7822E-01 9.9470E-01

SD 6.8603E-03 2.0113E-02 7.6343E-02 5.2161E-03

P3: DISK BRAKE Ave 9.9928E-01 9.9582E-01 9.1779E-01 9.9933E-01

SD 1.1417E-03 1.2807E-02 2.0904E-01 7.6139E-04

P4: 4-BAR TRUSS Ave 1.4876E?00 1.3787E?00 8.4793E-01 1.4879E 100

SD 5.4502E-04 4.6120E-02 1.2454E-01 2.3406E-16

P5: WELDED BEAM Ave 1.0072E?00 1.1107E100 6.2463E-01 1.0000E?00

SD 6.1053E-02 1.0194E-01 6.9354E-02 6.0679E-02

P6: OSY Ave 3.2390E-01 6.6490E-01 5.7530E-01 1.0671E 100

SD 3.4284E-01 2.5118E-02 2.6351E-02 2.8286E-01

P7: SPEED REDUCER Ave 2.3456E-01 7.6707E-01 6.6868E-01 8.1560E-01

SD 2.9012E-02 2.4182E-02 6.0939E-02 5.2331E-02

P8: SRN Ave 9.0900E-01 7.0014E-01 3.9177E-01 9.8067E-01

SD 4.5463E-02 8.0177E-02 8.2165E-02 1.5671E-02

The bold number is the best result among other methods

Table 16 Statistical analysis of

the engineering problems to

determine S performance

Functions Algorithm

MOPSO MOGWO MOALO MOCGO

P1: BNH Ave 1.0901E?00 1.7477E?00 8.8402E-01 8.9059E-01

SD 1.3631E-01 4.7352E-01 4.4648E-01 8.2898E-02

P2: CONSTR Ave 5.8740E-02 5.4894E-02 6.9071E-02 6.8135E-02

SD 7.8936E-03 8.3095E-03 1.8623E-02 9.7763E-03

P3: DISK BRAKE Ave 1.1452E-01 1.3331E-01 1.4457E-01 1.1247E-01

SD 1.3022E-02 1.9321E-02 1.1754E-02 1.0146E-02

P4: 4-BAR TRUSS Ave 5.3605E ?00 5.9045E?00 4.6988E?00 3.3785E 100

SD 2.6169E-01 1.7462E?00 1.1721E?00 1.0577E ?00

P5: WELDED BEAM Ave 2.3432E-01 4.4716E-01 2.2431E-01 1.9650E-01

SD 2.5702E-02 2.1585E-01 1.3595E-01 2.0170E-02

P6: OSY Ave 1.1278E 100 1.6275E?00 1.4382E?00 7.2702E?00

SD 1.4675E?00 4.7312E-01 4.8498E-01 2.4714E?00

P7: SPEED REDUCER Ave 3.4532E?01 2.0624E?01 3.6722E?01 2.0025E 101

SD 4.4378E?00 3.1861E?00 9.3623E ?00 2.7905E 100

P8: SRN Ave 2.2396E?00 2.6491E?00 1.7386E?00 1.6190E 100

SD 4.7324E-01 1.2558E?00 8.6872E-01 2.3299E-01

The bold number is the best result among other methods

Neural Computing and Applications (2023) 35:14973–15004 14995

123



GD measure in Table 17, the suggested strategy achieved

encouraging outcomes in six out of all evaluated problems.

In contrast MOCGO and MSSA obtained some of the best

outcomes in terms of Ave in this table, whereas

MOCryStAl and MOHHO did not. Table 18 presents the

results that were obtained by making comparisons using

the various techniques for each of the challenges that were

investigated with regard to IGD. Regarding the Ave find-

ings for the IGD measure, which are derived in Table 18,

MOCGO has the capability to achieve acceptable results in

any case. According to Table 19, the MOCryStAl and the

MOHHO are only capable of offering the best results for

Fig. 13 Results of Pareto front results for BNH, CONSTR, DISK BRAKE, and 4-BAR TRUSS with MOCGO, MOPSO, MOALO, and MOGWO

14996 Neural Computing and Applications (2023) 35:14973–15004

123



one or two of the test problems that are taken into con-

sideration when employing the MS metric to deal with

engineering problems. In six of these problems, the sug-

gested MOCGO is able to outperform the other approaches,

proving its ability to handle this class of challenging issues.

Table 20 compares and summarizes the statistical out-

comes of various multi-objective strategies together with

the suggested algorithm. In four of the cases, it was found

that MOCGO can outperform the other approaches in terms

Fig. 14 Results of Pareto front results for WELDED BEAM, OSY, SPEED REDUCER, and SRN with MOCGO, MOPSO, MOALO, and

MOGWO

Neural Computing and Applications (2023) 35:14973–15004 14997

123



Table 17 Statistical analysis of the engineering problems to determine GD performance

Functions Algorithm

MOCryStAl MOHHO MSSA MOCGO

P1: BNH Ave 5.9356E-02 4.1654E-02 6.4575E-02 3.2599E-02

SD 7.6599E-03 3.4567E-03 1.5035E-02 2.1109E-03

P2: CONSTR Ave 1.5219E-03 1.4387E-03 1.6878E-03 7.2719E-04

SD 5.9590E-04 1.5540E-04 5.8950E-04 8.4147E-05

P3: DISK BRAKE Ave 7.5745E-03 9.1759E-03 6.2545E-03 2.1552E-03

SD 1.6833E-03 1.4540E-02 3.3423E-03 3.8444E-04

P4: 4-BAR TRUSS Ave 8.8970E?00 1.3565E ?01 7.7966E100 1.1373E?01

SD 1.2099E?00 7.3564E-01 3.5486E ?00 8.6245E-01

P5: WELDED BEAM Ave 6.6659E-02 2.4582E-02 6.3467E-03 5.3823E-03

SD 1.1624E-01 2.9564E-02 3.0983E-03 5.0405E-04

P6: OSY Ave 6.7807E?00 3.9454E?00 9.4637E-01 3.8851E?00

SD 3.4919E?00 2.5565E?00 1.9612E-01 1.3209E?00

P7: SPEED REDUCER Ave 3.7694E?01 1.5398E?01 7.8657E?00 7.2212E10

SD 1.6132E?01 4.1560E?00 3.6189E?00 1.5340E10

P8: SRN Ave 1.1112E-01 2.8454E-02 4.1566E-02 1.0058E-02

SD 4.7566E-02 1.3896E-02 2.4971E-02 1.1692E-03

The bold number is the best result among other methods

Table 18 Statistical analysis of the engineering problems to determine IGD performance

Functions Algorithm

MOCryStAl MOHHO MSSA MOCGO

P1: BNH Ave 1.5496E-03 3.6978E-03 7.5631E-03 7.0815E-04

SD 2.3504E-04 3.0065E-04 4.5344E-03 4.3813E-05

P2: CONSTR Ave 1.1648E-03 1.1722E-03 2.1706E-03 4.5869E-04

SD 2.6604E-04 2.3570E-04 7.3799E-04 5.5228E-05

P3: DISK BRAKE Ave 9.6085E-04 1.6907E-03 2.5113E-03 8.1114E-04

SD 2.1021E-04 2.4650E-04 1.1615E-03 7.2077E-05

P4: 4-BAR TRUSS Ave 2.0095E-02 2.1202E-02 2.1434E-02 2.0009E-02

SD 4.5863E-05 8.0770E-04 3.8292E-04 8.0745E-05

P5: WELDED BEAM Ave 1.3180E-03 1.6897E-03 4.8242E-03 5.7676E-04

SD 3.4394E-04 4.7980E-04 3.5852E-03 7.0072E-05

P6: OSY Ave 9.2891E-03 1.3466E-02 7.7532E-03 6.0964E-03

SD 2.4468E-03 5.5216E-03 1.2021E-03 2.2429E-04

P7: SPEED REDUCER Ave 3.1325E-02 3.9332E-02 1.4933E-02 1.0149E-02

SD 1.1989E-02 1.2667E-02 5.7981E-03 3.2001E-03

P8: SRN Ave 3.3603E-04 1.4880E-03 2.2308E-03 2.3639E-04

SD 6.6580E-05 2.4660E-04 1.5266E-03 1.5491E-05

The bold number is the best result among other methods

14998 Neural Computing and Applications (2023) 35:14973–15004

123



Table 19 Statistical analysis of the engineering problems to determine MS performance

Functions Algorithm

MOCryStAl MOHHO MSSA MOCGO

P1: BNH Ave 9.9045E-01 9.8754E-01 7.6222E-01 1.0000E 100

SD 2.0236E-02 1.1756E-02 1.3378E-01 0.0000E 100

P2: CONSTR Ave 9.5474E-01 9.5076E-01 9.0536E-01 9.9470E-01

SD 2.8125E-02 2.0265E-02 4.8380E-02 5.2161E-03

P3: DISK BRAKE Ave 1.0000E100 1.0000E 100 7.9510E-01 9.9933E-01

SD 5.2642E-03 1.3966E-02 1.3013E-01 7.6139E-04

P4: 4-BAR TRUSS Ave 1.4436E?00 1.4590E?00 1.2019E ?00 1.4879E10

SD 8.7530E-02 2.9578E-02 1.8532E-01 2.3406E-16

P5: WELDED BEAM Ave 1.0709E?00 1.1190E100 7.9085E-01 1.0000E?00

SD 1.2073E-01 1.1650E-01 1.4645E-01 6.0679E-02

P6: OSY Ave 7.1700E-01 5.5698E-01 6.2048E-01 1.0671E100

SD 2.7281E-01 4.1566E-01 8.0930E-02 2.8286E-01

P7: SPEED REDUCER Ave 3.8453E-01 3.8154E-01 7.2004E-01 8.1560E-01

SD 1.6080E-01 2.1776E-01 6.9034E-02 5.2331E-02

P8: SRN Ave 9.7667E-01 8.7678E-01 7.0583E-01 9.8067E-01

SD 1.9187E-02 3.1567E-02 1.5109E-01 1.5671E-02

The bold number is the best result among other methods

Table 20 Statistical analysis of the engineering problems to determine S performance

Functions Algorithm

MOCryStAl MOHHO MSSA MOCGO

P1: BNH Ave 1.4362E ?00 8.9888E-01 1.2546E ?00 8.9059E-01

SD 4.3676E-01 4.0676E-01 3.9410E-01 8.2898E-02

P2: CONSTR Ave 1.1085E-01 4.2865E-02 5.5908E-02 6.8135E-02

SD 2.6254E-02 2.5756E-02 1.4886E-02 9.7763E-03

P3: DISK BRAKE Ave 1.3453E-01 1.1676E-01 1.2768E-01 1.1247E-01

SD 2.3710E-02 2.2658E-02 7.0776E-02 1.0146E-02

P4: 4-BAR TRUSS Ave 1.1012E?01 5.9945E?00 6.1160E?00 3.3785E100

SD 4.6044E?00 1.7439E?00 1.6605E?00 1.0577E100

P5: WELDED BEAM Ave 3.6825E-01 2.3454E-01 1.8912E-01 1.9650E-01

SD 1.6472E-01 7.0549E-02 8.7588E-02 2.0170E-02

P6: OSY Ave 9.7125E?00 9.1437E-01 1.3502E?00 7.2702E ?00

SD 2.1108E?00 6.6901E-01 6.2967E-01 2.4714E ?00

P7: SPEED REDUCER Ave 8.9121E ?01 3.1545E?01 1.3952E 101 2.0025E ?01

SD 7.6068E?01 3.5450E?00 9.8199E?00 2.7905E 100

P8: SRN Ave 3.0058E?00 1.6546E?00 2.2721E?00 1.6190E 100

SD 7.6260E-01 5.5434E-01 9.3573E-01 2.3299E-01

The bold number is the best result among other methods

Neural Computing and Applications (2023) 35:14973–15004 14999

123



Fig. 15 Results of Pareto front results for BNH, CONSTR, DISK BRAKE, and 4-BAR TRUSS with MOCGO, MOCryStAl, MOHHO, and

MSSA

15000 Neural Computing and Applications (2023) 35:14973–15004

123



Fig. 16 Results of Pareto front results for WELDED BEAM, OSY, SPEED REDUCER, and SRN with MOCGO, MOCryStAl, MOHHO, and

MSSA

Neural Computing and Applications (2023) 35:14973–15004 15001

123



of the S index, although the other approaches, like MSSA

and MOHHO, also generate highly competitive results.

The results of the comparative methods on all engi-

neering problems are shown in Figs. 15 and 16. These

figures can be examined and it can be seen that MSSA and

MOHHO exhibit the worst convergence while having

strong coverage in CONSTR, DISK BRAKE and WEL-

DED BEAM. The MOCryStAl and MOCGO, however,

both offer excellent convergence toward all the real Pareto-

optimal fronts.

5 Conclusion and future works

The multi-objective version of Chaos Game Optimization

(CGO) as one of the newly suggested innovative meta-

heuristic algorithms is developed in this work. The CGO’s

inspiring concept is based on certain chaos theory concepts,

in which the formation of fractals by the chaotic game

concept and the fractal’s self-similarity difficulties are

considered. The proposed approach was compared to well-

known algorithms such as MOPSO, MOGWO, MOALO,

MOCryStAl, MOHHO, and MSSA for result confirmation.

As a consequence, when compared to the previously

described method, the results from this technique are quite

competitive. The Completions on Evolutionary Computa-

tion (CEC-09) benchmark problems with some constrained

mathematical (i.e., ZDT and DTLZ) are utilized for per-

formance evaluation of multi-objective versions of CGO.

Some real-world engineering design problems are tested to

evaluate the MOCGO method’s efficiency. The research

shows that the proposed MOCGO can get higher rankings

than competing methods when evaluating IGD, GD, and S

indices and the MS index. Results showed that the pro-

posed MOCGO technique could get one closer to the

Pareto front in mathematical and engineering issues, which

means better solutions.

In the future, the solution of multi-modal and nonlinear

functionally demanding technical issues and engineering

design obstacles, such as truss structures and the develop-

ment of the structural health evaluation, may be used for

the proposed MOCGO.

Appendix: Used in this work are constrained
multi-objective test cases

CONSTR:

This issue has a convex Pareto front with two constraints

and two design variables.

Minimize : f1 xð Þ ¼ x1 ðA:1Þ
Minimize : f2 xð Þ ¼ 1þ x2ð Þ=x1 ðA:2Þ
where : g1 xð Þ ¼ 6� x2 þ 9x1ð Þ ðA:3Þ
g2 xð Þ ¼ 1þ ðx2 � 9x1Þ ðA:4Þ
0:1� x1 � 1; 0� x2 � 5

SRN:

Srinivas and Deb [59] proposed a continuous Pareto-opti-

mal front for the next challenge.

Minimize : f1 xð Þ ¼ 2þ x1�2ð Þ2þ x2�1ð Þ2 ðA:5Þ

Minimize : f2 xð Þ ¼ 9x1� x2�1ð Þ2 ðA:6Þ

where : g1 xð Þ ¼ x21 þ x22 � 255 ðA:7Þ

g2 xð Þ ¼ x1 � 3x2 þ 10 ðA:8Þ
�20� x1 � 20;�20� x2 � 20

BNH:

Binh and Korn [60] were the first to suggest the following

problem:

Minimize : f1 xð Þ ¼ 4x21 þ 4x22 ðA:9Þ

Minimize : f2 xð Þ ¼ ðx1 � 5Þ2 þ ðx2 � 5Þ2 ðA:10Þ

where : g1 xð Þ ¼ ðx1 � 5Þ2 þ x22 � 25 ðA:11Þ

g2 xð Þ ¼ 7:7� ðx1 � 8Þ2 � ðx2 þ 3Þ2 ðA:12Þ
0� x1 � 5; 0� x2 � 3

OSY:

For the OSY test problem, Osyczka and Kundu [61]

offered five separate zones. There are additional six limi-

tations and six design variables to consider, as listed below:

Minimize : f1 xð Þ ¼ x21 þ x22 þ x23 þ x24 þ x25 þ x26 ðA:13Þ

Minimize : f2 xð Þ
¼ ½25ðx1 � 2Þ2 þ ðx2 � 1Þ2 þ x3 � 1ð Þ þ ðx4

� 4Þ2 þ x5 � 1Þ2

 i

ðA:14Þ
Where: g1 xð Þ ¼ 2� x1 � x2ð Þ ðA:15Þ
g2 xð Þ ¼ �6þ x1 þ x2 ðA:16Þ
g3 xð Þ ¼ �2� x1 þ x2 ðA:17Þ

15002 Neural Computing and Applications (2023) 35:14973–15004

123



g4 xð Þ ¼ �2þ x1 � 3x2 ðA:18Þ

g5 xð Þ ¼ �4þ x4 þ ðx3 � 3Þ2 ðA:19Þ

g6 xð Þ ¼ 4� x6 � ðx5 � 3Þ2 ðA:20Þ
0� x1 � 10; 0� x2 � 10; 1� x3 � 5 ðA:21Þ
0� x4 � 6; 1� x5 � 5; 0� x6 � 10

Funding Open access funding provided by Óbuda University.

Data availability Data will be available upon the request to the cor-

responding author.

Declarations

Conflict of interest The authors declare that they have no conflict of

interest.

Open Access This article is licensed under a Creative Commons

Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as

long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons licence, and indicate

if changes were made. The images or other third party material in this

article are included in the article’s Creative Commons licence, unless

indicated otherwise in a credit line to the material. If material is not

included in the article’s Creative Commons licence and your intended

use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright

holder. To view a copy of this licence, visit http://creativecommons.

org/licenses/by/4.0/.

References

1. Whitley D (1994) A genetic algorithm tutorial. Stat Comput

4(2):65–85

2. J. Kennedy and R. Eberhart, (1995) Particle swarm optimization,

In: Proceedings of ICNN’95-international conference on neural

networks, vol 4, pp 1942–1948.

3. Dorigo M, Blum C (2005) Ant colony optimization theory: a

survey. Theor Comput Sci 344(2–3):243–278

4. Kaveh A, Talatahari S, Khodadadi N (2020) Stochastic paint

optimizer: theory and application in civil engineering. Eng

Comput 38:1921–1952

5. Abdollahzadeh B, Gharehchopogh FS, Khodadadi N, Mirjalili S

(2022) Mountain gazelle optimizer: a new nature-inspired meta-

heuristic algorithm for global optimization problems. Adv Eng

Softw 174:103282

6. Khazalah A et al (2023) Image processing identification for

sapodilla using convolution neural network (CNN) and transfer

learning techniques. Classification Applications with Deep

Learning and Machine Learning Technologies. Springer, Cham,

pp 107–127

7. Abdelhamid AA et al (2022) Classification of monkeypox images

based on transfer learning and the al-biruni earth radius opti-

mization algorithm. Mathematics 10(19):3614

8. Gu Z-M, Wang G-G (2020) Improving NSGA-III algorithms with

information feedback models for large-scale many-objective

optimization. Futur Gener Comput Syst 107:49–69

9. J. D. Schaffer, Multiple objective optimization with vector

evaluated genetic algorithms, In: Proceedings of the first inter-

national conference on genetic algorithms and their applications,
1985, 1985.

10. Zhang Q, Li H (2007) MOEA/D: a multiobjective evolutionary

algorithm based on decomposition. IEEE Trans Evol Comput

11(6):712–731

11. Liu Q, Li X, Liu H, Guo Z (2020) Multi-objective metaheuristics

for discrete optimization problems: a review of the state-of-the-

art. Appl Soft Comput 93:106382

12. H. Ishibuchi, N. Tsukamoto, and Y. Nojima, Evolutionary many-

objective optimization: a short review, In: 2008 IEEE congress on

evolutionary computation (IEEE world congress on computa-

tional intelligence), 2008, pp 2419–2426

13. Murata T, Ishibuchi H (1995) MOGA: multi-objective genetic

algorithms. IEEE Int Conf Evolut Comput 1:289–294

14. Luo J, Liu Q, Yang Y, Li X, Chen M, Cao W (2017) An artificial

bee colony algorithm for multi-objective optimisation. Appl Soft

Comput 50:235–251

15. Khodadadi N, Mirjalili SM, Zhao W, Zhang Z, Wang L, Mirjalili

S (2023) Multi-objective artificial hummingbird algorithm.

Advances in Swarm Intelligence. Springer, Cham, pp 407–419

16. Dhiman G et al (2021) MOSOA: a new multi-objective seagull

optimization algorithm. Expert Syst Appl 167:114150

17. C. A. C. Coello and M. S. Lechuga, 2002 MOPSO: a proposal for

multiple objective particle swarm optimization, In: Proceedings

of the 2002 Congress on Evolutionary Computation. CEC’02

(Cat. No.02TH8600), vol. 2, pp 1051–1056.

18. C.-W. Tsai, Y.-T. Huang, and M.-C. Chiang, 2014 A non-dom-

inated sorting firefly algorithm for multi-objective optimization,

In: 2014 14th International Conference on Intelligent Systems

Design and Applications, pp 62–67.

19. Azizi M, Talatahari S, Khodadadi N, Sareh P (2022) Multi-ob-

jective atomic orbital search (MOAOS) for global and engi-

neering design optimization. IEEE Access 10:67727–67746

20. N. Khodadadi, F. Soleimanian Gharehchopogh, and S. Mirjalili,

2022 MOAVOA: a new multi-objective artificial vultures opti-

mization algorithm, Neural Comput. Appl, pp. 1–39

21. Das AK, Nikum AK, Krishnan SV, Pratihar DK (2020) Multi-

objective Bonobo Optimizer (MOBO): an intelligent heuristic for

multi-criteria optimization. Knowl Inf Syst 62(11):4407–4444

22. Khodadadi N, Abualigah L, Mirjalili S (2022) Multi-objective

Stochastic Paint Optimizer (MOSPO). Neural Comput Appl

34(20):18035–18058

23. Khodadadi N, Mirjalili SM, Mirjalili S (2022) Multi-objective

Moth-Flame Optimization Algorithm for Engineering Problems.

Handbook of Moth-Flame Optimization Algorithm. CRC Press,

Boca Raton, pp 79–96

24. N. Khodadadi, F. S. Gharehchopogh, B. Abdollahzadeh, and S.

Mirjalili, 2022 AMHS: Archive-based multi-objective harmony

search algorithm, In: Proceedings of 7th International Conference

on Harmony Search, Soft Computing and Applications,

pp 259–269.

25. Sharma S, Khodadadi N, Saha AK, Gharehchopogh FS, Mirjalili

S (2022) Non-dominated sorting advanced butterfly optimization

algorithm for multi-objective problems. J Bionic Eng

20(819):843

26. Talatahari S, Azizi M (2021) Chaos game optimization: a novel

metaheuristic algorithm. Artif Intell Rev 54(2):917–1004

27. Cui Y, Geng Z, Zhu Q, Han Y (2017) Multi-objective opti-

mization methods and application in energy saving. Energy

125:681–704

28. Arroyo JEC, dos Santos Ottoni R, de Paiva Oliveira A (2011)

Multi-objective variable neighborhood search algorithms for a

single machine scheduling problem with distinct due windows.

Electron Notes Theor Comput Sci 281:5–19

Neural Computing and Applications (2023) 35:14973–15004 15003

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


29. Zhang W, Liu Y (2008) Multi-objective reactive power and

voltage control based on fuzzy optimization strategy and fuzzy

adaptive particle swarm. Int J Electr Power Energy Syst

30(9):525–532

30. Özkış A, Babalık A (2017) A novel metaheuristic for multi-ob-

jective optimization problems: The multi-objective vortex search

algorithm. Inf Sci (Ny) 402:124–148

31. Melin P, Sánchez D (2018) Multi-objective optimization for

modular granular neural networks applied to pattern recognition.

Inf Sci (Ny) 460:594–610

32. Zhang H, Peng Y, Hou L, Tian G, Li Z (2019) A hybrid multi-

objective optimization approach for energy-absorbing structures

in train collisions. Inf Sci (Ny) 481:491–506

33. Du P, Wang J, Guo Z, Yang W (2017) Research and application

of a novel hybrid forecasting system based on multi-objective

optimization for wind speed forecasting. Energy Convers Manag

150:90–107

34. Liu R, Li J, Mu C, Jiao L (2017) A coevolutionary technique

based on multi-swarm particle swarm optimization for dynamic

multi-objective optimization. Eur J Oper Res 261(3):1028–1051

35. Wang H et al (2018) A hybrid multi-objective firefly algorithm

for big data optimization. Appl Soft Comput 69:806–815

36. Guo W, Chen M, Wang L, Wu Q (2017) Hyper multi-objective

evolutionary algorithm for multi-objective optimization prob-

lems. Soft Comput 21(20):5883–5891

37. Sinan Hasanoglu M, Dolen M (2018) Multi-objective feasibility

enhanced particle swarm optimization. Eng Optim

50(12):2013–2037

38. Khodadadi N, Azizi M, Talatahari S, Sareh P (2021) Multi-ob-

jective crystal structure algorithm (MOCryStAl): introduction

and performance evaluation. IEEE Access 9:117795–117812

39. Pereira JLJ, Oliver GA, Francisco MB, Cunha SS Jr, Gomes GF

(2022) Multi-objective lichtenberg algorithm: a hybrid physics-

based meta-heuristic for solving engineering problems. Expert

Syst Appl 187:115939

40. Khodadadi N, Talatahari S, Dadras Eslamlou A (2022) MOTEO:

a novel multi-objective thermal exchange optimization algorithm

for engineering problems. Soft Comput 26(14):6659–6684

41. Wolpert DH, Macready WG (1997) No free lunch theorems for

optimization. IEEE Trans Evol Comput 1(1):67–82

42. Mirjalili S, Saremi S, Mirjalili SM, L dos S Coelho, (2016) Multi-

objective grey wolf optimizer: a novel algorithm for multi-cri-

terion optimization. Expert Syst Appl 47:106–119

43. Srinivas N, Deb K (1994) Muiltiobjective optimization using

nondominated sorting in genetic algorithms. Evol Comput

2(3):221–248

44. Zitzler E, Thiele L (1998) Multiobjective optimization using

evolutionary algorithms—a comparative case study. International

conference on parallel problem solving from nature. Springer,

Cham, pp 292–301

45. Knowles JD, Corne DW (2000) Approximating the nondomi-

nated front using the Pareto archived evolution strategy. Evol

Comput 8(2):149–172

46. Khodadadi N, Abualigah L, El-Kenawy ESM, Snasel V, Mirjalili

S (2022) An archive-based multi-objective arithmetic optimiza-

tion algorithm for solving industrial engineering problems. IEEE

Access 10:106673–106698

47. Nouhi B, Khodadadi N, Azizi M, Talatahari S, Gandomi AH

(2022) Multi-objective material generation algorithm (MOMGA)

for optimization purposes. IEEE Access 10:107095–107115

48. D. A. Van Veldhuizen and G. B. Lamont, (1998) Multiobjective

evolutionary algorithm research: A history and analysis, Citeseer

49. J. R. Schott, (1995) Fault tolerant design using single and mul-

ticriteria genetic algorithm optimization. Massachusetts Institute

of Technology

50. Zitzler E, Deb K, Thiele L (2000) Comparison of multiobjective

evolutionary algorithms: empirical results. Evol Comput

8(2):173–195

51. C. M. Fonseca, J. D. Knowles, L. Thiele, and E. Zitzler, (2005) A

tutorial on the performance assessment of stochastic multiob-

jective optimizers, In: Third international conference on evolu-

tionary multi-criterion optimization (EMO 2005), vol. 216,

pp 240.

52. Zapotecas-Martinez S, Garcia-Najera A, Lopez-Jaimes A (2019)

Multi-objective grey wolf optimizer based on decomposition.

Expert Syst Appl 120:357–371

53. Mirjalili S, Jangir P, Saremi S (2017) Multi-objective ant lion

optimizer: a multi-objective optimization algorithm for solving

engineering problems. Appl Intell 46(1):79–95

54. Yüzgeç U, Kusoglu M (2020) Multi-objective harris hawks

optimizer for multiobjective optimization problems. BSEU J Eng

Res Technol 1(1):31–41

55. Mirjalili S, Gandomi AH, Mirjalili SZ, Saremi S, Faris H, Mir-

jalili SM (2017) Salp Swarm Algorithm: a bio-inspired optimizer

for engineering design problems. Adv Eng Softw 114:163–191

56. Coello CAC, Pulido GT (2005) Multiobjective structural opti-

mization using a microgenetic algorithm. Struct Multidiscip

Optim 30(5):388–403

57. Ray T, Liew KM (2002) A swarm metaphor for multiobjective

design optimization. Eng Optim 34(2):141–153

58. Kurpati A, Azarm S, Wu J (2002) Constraint handling

improvements for multiobjective genetic algorithms. Struct

Multidiscip Optim 23(3):204–213

59. Srinivasan N, Deb K (1994) Multi-objective function optimisa-

tion using non-dominated sorting genetic algorithm. Evol Comp

2(3):221–248

60. T. T. Binh and U. Korn, (1997) ‘‘MOBES: A multiobjective

evolution strategy for constrained optimization problems,’’ In:

The third international conference on genetic algorithms (Mendel

97), vol 25, pp 27.

61. Osyczka A, Kundu S (1995) A new method to solve generalized

multicriteria optimization problems using the simple genetic

algorithm. Struct Optim 10(2):94–99

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

15004 Neural Computing and Applications (2023) 35:14973–15004

123


	Multi-objective chaos game optimization
	Abstract
	Introduction
	Literature review
	Multi-objective chaos game optimization (MOCGO)
	Chaos game optimization (CGO)
	Multi-objective chaos game optimization (MOCGO)

	Results and discussion
	Performance metrics
	Experimental setting
	Discussion of the CEC-09 test function
	Discussion of the ZDT and DTLZ test function
	Discussion of engineering problems
	The 4-bar truss
	The welded beam
	Disk brake
	Speed reducer
	Comparison of MOCGO with MOPSO, MOALO, MOGWO
	Comparison of MOCGO with MOCryStAl, MOHHO, MSSA



	Conclusion and future works
	Appendix: Used in this work are constrained multi-objective test cases
	CONSTR:
	SRN:
	BNH:
	OSY:

	Open Access
	References




