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Abstract
Visual object tracking (VOT) is a fundamental and complex problem in computer vision field. In the past few years, the

research focus has been shifted from template matching to deep learning models. Especially, the Siamese networks

dominate tracking domain in recent years, which take the first frame as the reference and perform object detection and

localization in the following frames. However, most of them could not capture target changes due to the lack of strong

feature representation abilities. To address these issue, we propose an advanced tracking network in this paper based on

recurrent historical localization information. Unlike traditional symmetric structures, we utilize two convolution layers to

perform target classification that predicts the initial target center. Then, we apply a gated recurrent unit that fuses multi-

resolution features with historical localization information to yield the final optimized target position. Extensive experi-

ments have been conducted on six mainstream datasets: OTB100, GOT-10k, TrackingNet, LaSOT, VOT2018 and NFS,

where our tracker exhibits state-of-the-art performances.

Keywords Visual tracking � State estimation � Feature fusion � Recurrent historical localization

1 Introduction

Visual object tracking (VOT) has been spotlighted in

recent years with wide industrial applications (e.g., intel-

ligent surveillance [1], autonomous driving [2] and thermal

tracking [3, 4], etc.). Given the target location in the first

frame with no prior knowledge about the target itself, the

tracker aims to locate the same target in subsequent frames

using a bounding box. Previously, the correlation filter is

the main approach for visual tracking, which distinguishes

the target from the background using Fast Fourier Trans-

form (FFT). Later, deep convolution neural networks

(DCNNs) begin to dominate and become the indispensable

part of the tracking pipeline. Typically, a tracking problem

is decomposed into classification and regression tasks,

which are implemented by two separate branches. The

classification branch generates a scope map to estimate the

target’s initial position. The regression branch further

refines the target position. The two branches are usually

deployed in either parallel or serial ways. Although an

astonishing advancement has been made around DCNNs

(e.g., deeper structure [5], online updating strategies [6],

extended data sets [7], etc.), regression of the target state is

still the most challenging and critical step due to unpre-

dictable situations, including deformation, occlusion,

lighting changes and rotation, etc.

Luckily, the Siamese networks have been put forward to

overcome the above difficulties. SiamFC [8] is a corner-

stone of Siamese networks by developing the classical two-

branch structure with equal weights for target tracking,

wherein one branch acquires the template from the first

frame, the other branch takes a search patch from the

current frame and produces a response map to reflect the

degree of relevance between the template and the search

patches.SiamRPN [9] organically combined Siamese net-

work with Region Proposal Network (RPN), where the

former extracts image features and the latter estimates
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target position. Inspired by this, various multi-scale

searching strategies have been developed afterward

[10–12]. But most of them ignored the fact that regression

requires high-level knowledge of the type and pose of the

object (the shape of the object may change significantly

due to pose changes). And the feature extracted by their

shallow networks is unreliable, causing data drifting or

target lost under complex situations (refer to Fig. 8 on page

17). Considering this, some online training schemes were

presented to update the target changes. Among them,

ATOM [13] elucidated a novel tracking architecture with

well-designed target estimation and classification compo-

nents. However, it is trained by a lot of labeled training

data and it involves large number of candidate regions with

many redundant overlapped areas, which gives rise to high

computation cost.

Aiming to design a lightweight and robust tracker with

higher estimation accuracy, we propose RHL-Track in this

paper. To be specific, our classification branch includes a

simple 2-convolutional layers structure with updating

strategy. And a gated recurrent unit (GRU) is employed in

the estimation branch to optimize the target position. The

main contributions of this paper could be summarized as

follows:

1. we only calculate and derive the target position with

the highest score on the classification branch without

computing the traditional back propagation, which

ensures the computational efficiency.

2. we devise a feature fusion module (FF), where the

shallow and deep features are matched to realize the

fusion of spatial and semantic information.

3. we develop a historical localization unit (HLU) to

excavate historical target information, so as to improve

the tracking accuracy via iterative predictions. Exten-

sive experiments have been conducted on six prevalent

tracking benchmarks to demonstrate the effectiveness

of our tracker.

2 Related works

In early years, template matching algorithms are traditional

means for visual tracking, which calculated similarities

between image pairs to estimate target location and han-

dled target variation problem via multi-scale searching

schemes. However, they are time-consuming and not

flexible. Later, correlation filters began to take their places.

An adaptive multi-branch correlation filter tracking method

was provided by Li et al. [14] to solve temporal target

changes by suppressing the background region. A self-su-

pervised learning-based correlation framework was

described by Yuan et al. [15] with a multi-cycle

consistency loss. An adaptive spatial-temporal context-

aware model [16] was tailored for UAV tracking tasks by

reducing the boundary effect. In the meantime, with the

growing popularity of deep learning, the Siamese networks

begin to prevail and keep setting new records, which attract

wide attentions of both researchers and engineers. SiamFC

[8] is the pioneering work for Siamese network. SiamRPN

[9]improved SiamFC [8] by presenting regional proposal

network (RPN). SiamRPN?? [10] further improved

SiamRPN [9] by performing depth-wise and layer-wise

aggregations. Encouraged by their success, some following

works further investigated Siamese networks from different

aspects, including deeper backbones [10], more compli-

cated tracking frameworks [17], online updating mecha-

nisms [18, 19], high-speed network [20] and target state

estimation oriented methods [21].

More recently, a large number of studies have been

published focusing on state estimation, which could be

broadly divided into two types: single-stage optimization

[22] and multi-stage optimization [23]. Single-stage

methods can be further classified into anchor-based

regression methods [24] and anchor-free regression meth-

ods [25]. The anchor-based regression methods predict one

target bounding box within each sliding window with

various sizes and aspect ratios (each candidate bounding

box corresponds to an offset). A distractor-aware Siamese

network with incremental learning was developed by

DaSiamRPN [11] to handle long-term tracking. SiamDW

[26] leveraged deeper and wider CNNs and devised a new

residual module to eliminate the negative impact of pad-

ding with controlled receptive field and stride. Albeit

effective for some datasets, anchor-based methods need

prior knowledge of the anchors, which inevitably leads to

higher computation cost. In comparison, anchor-free

methods localize the target based on corner or center

points. SiamBAN [27] combined classification and

regression problems into a unified framework and proposed

elliptical fitting. Ocean [28] introduced a feature alignment

module to learn an object-aware feature from predicted

bounding boxes. SiamCAR [12] is a novel fully convolu-

tional Siamese network with low hyper-parameters. As a

typical example of multi-stage optimization method, SPM

[21] put forward a coarse-to-fine matching strategy to

enhance the robustness and discrimination power. C-RPN

[29] declared a cascaded RPNs to fuse features of different

levels. High level knowledge was incorporated into the

target estimation branch of ATOM [13] through extensive

offline learning to measure the prediction accuracy.

The above-mentioned methods push forward the state-

of-the-art tracking records. However, the general limitation

for Siamese networks is their inability to incorporate

background information into the model prediction.

Although this problem has been partially solved by using
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online training and other template update techniques, they

rely on complicated online learning modules which could

not be easily implemented in real applications under an

end-to-end learning framework. In this background, we

analyze the intrinsic attribute of multi-level optimization

approach for state estimation in object tracking and present

a recurrent optimization scheme to refine the target local-

ization. Unlike symmetric structure, our state estimation

branch is trained offline and the classification branch is

trained online. Different from some existing methods,

which perform multiple matching operations for all can-

didate regions during reasoning. We estimate the target

position from only eight candidate boxes. Our network will

be described in Section 3 in details.

3 Method description

Similar to other Siamese networks, our tracker also consists

of backbones, the classification branch and the state esti-

mation branch. The classification branch takes the features

from both template and search images (that are processed

by the backbones) as its input to yield a score map of

confidence. To simulate the perturbation in tracking sce-

nario, we add random noise to the ground-truth target

location (GT). Then, the state estimation branch outputs

eight candidate bounding boxes, and the average position

of them is used for the final prediction of the target. As

shown in Fig. 1, we use ResNet18 as the backbone for both

branches, which is pre-trained on ImageNet for the

extraction of target features.

3.1 Target state estimation branch

The main objective of a multi-level optimization network is

to minimize the deviation between predicted target box and

ground-truth box. To this end, we propose a loop opti-

mization architecture, which derive and update historical

target information in a recurrent way. The recurrent state

estimation module is shown in Fig. 2 below, which consists

of two main components, the feature fusion module (FFM)

and the historical localization unit (HLU), in which the

HLU performs loop optimization. Information exchange is

carried out between the FFM and the HLU. Meanwhile, the

deviation of target position is updated iteratively to

improve the accuracy of regression. More specifically,

given the initial state bk for the kth iteration, the iterative

unit would yield a hidden state hk in each iteration on the

basis of two inputs: vk (feature fusion results) and hk�1,

which will be fed to the head to obtain a predicted devia-

tion of target position 4d. And the output bkþ1 of the

current iteration is updated as bkþ1 = bk ? 4d.

Unlike ATOM, which strove to gain a more accurate

target state through maximizing Interaction over Union

(IoU) indirectly, we update the target state in an iterative

way and output the final optimized state.

3.1.1 Feature fusion module (FFM)

Existing Siamese networks cropped a patch (with back-

ground contextual information) from the template image

and apply a matching algorithm to search for the most

relevant patch in the candidate region via convolution (or

channel-wise convolution) operations. The centers of the

candidate regions on search image are uniformly dis-

tributed. For anchor-free regression algorithms, there are

Nprop candidate regions. For anchor-based regression

methods, there are k � Nprop candidate regions, where k

refers to the number of anchor boxes. Previously, the

existing methods performed multiple matching operations

for all candidate regions in the last stage of reasoning along

with additional optimization process to improve the accu-

racy of regression, which slowed down the tracking speed.

Moreover, the incompatible feature matching and bounding

box prediction algorithms may further degrade the

Fig. 1 Overall network

architecture
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tracker’s performance. Therefore, a well-designed feature

matching method is required to boost the performance of

the state estimation module.

The general design principle of a feature fusion module

(FFM) should include the following points:

1. It should pay more attention to the selected candidate

regions;

2. Suppose the features of the search region and template

patch are represented by f and v, respectively. Then, the

following equation holds: match(v, f[C]) =

match(v, f)[C], where C denotes a certain position on

the search region, and match( ) stands for a well-

designed matching function;

3. The template feature should not include background

information, which is regarded as noise;

4. Spatial encoding information should be added into

FFM to enhance the spatial information modeling

ability.

Guided by the above principles, our feature fusion module

(FFM) is comprised of a position encoder (PE), a shallow

feature matching module (SFM) and a deep feature

matching module (DFM) (as illustrated in Fig. 3 below).

As their names imply, SFM and DFM receive the shallow

and deep features from the backbone, respectively, to yield

more detailed spatial information and constant semantics.

Meanwhile, they project the template features and features

of searching image (that are extracted by the weight-shar-

ing backbone) to different embedding spaces. Finally, we

perform precise ROI pooling operation on the template

patch by using only the target information (to obey the

third principle).

For position Encoder (PE), to meet the second principle,

we perform precise ROI pooling and depth-wise convolu-

tion (�) on the search feature f and feature vector v as

Precision ROI Poolingðf ;CÞ
� v ¼h iPrecision ROI Poolingðf � v;CÞ:

ð1Þ

In the meantime, PE only extracts the feature of the search

image within the output area of HLU (to meet the first

principle). Besides, the Deviation module (inside PE)

attains vkþ1
3 as vkþ1

3 ¼ bk � b0, here bk is the predicted

bounding box after the kth iteration (to meet the fourth

principle). Then, v1, v2 and v3 are concatenated into

vkþ1 ¼ concatðvkþ1
1 ; vkþ1

2 ; vkþ1
3 Þ: ð2Þ

Here, vkþ1 is the final feature fusion results, which will be

sent to HLU. We deploy fully connected layers in SFM,

DFM and PE to produce global features.

3.1.2 Historical localization unit (HLU)

To realize multi-level optimization, we propose a reusable

optimization structure to excavate historical information in

a recurrent way. The HLU has an iterative unit and a head.

The core block of the iterative unit is a single-stage gated

recurrent unit (GRU), which filters historical iteration

information. And the head is composed of a fully con-

nected layer, which takes the hidden state from the updated

iterative unit as its input, and output the update direction of

the target box in current iteration to approach ground-truth

annotation.

Our proposed HLU takes the output of FFM to predict a

sequence of target states b1, b2,..., bK based on b0. For each

iteration, a new updated direction 4d would be generated

to optimize the predicted value as bkþ1 ¼ bk þ4d. The

processing flow is as follows:

1. Initialization:

Initially, we set v13 ¼ 0.

2. Input:

Given the current target state bk, the fused feature is

derived by FFM (as shown in Fig. 3).

Fig. 2 Flowchart of recurrent

state estimation module
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3. State update:

Given the input feature [vkþ1, hk], the GRU in

iterative unit updates the target states as follows:

rkþ1 ¼ rðWrvðk þ 1Þ þ UrhkÞ
zkþ1 ¼ rðWzvðk þ 1Þ þ UzhkÞ
~hkþ1 ¼ tanhðWhvðk þ 1Þ þ Uhðhk � rkþ1ÞÞ
hkþ1 ¼ ð1� zkþ1Þ � ~hkþ1 þ zkþ1 � ~hk:

ð3Þ

here, update gate zkþ1 defines how much of the pre-

vious memory to keep around. Reset gate rkþ1 deter-

mines how to combine the new input with the previous

memory. hk is the hidden state after the kth iteration. r
is a Sigmoid function. Wr, Wz, Wh are parameters of

the linear model for matrix multiplications. 4, Update

the prediction of direction:

The hidden state of the output from the iterative unit

predicts the updated direction 4d, which updates the

state asbkþ1 ¼ bk þ4d

3.1.3 Sequence loss function

We assign the prediction sequence b1, b2,..., bK the weights

with exponential decay to calculate the error between the

result of each iteration and the ground truth. The loss value

is defined as

loss ¼
XK

k¼1

aK�k � kbk � bbox gtk: ð4Þ

Here,bbox gt is the ground-truth target box on the search

image. In our experiment, we set a ¼ 0:8;K ¼ 5. a

represents the weight of loss of the predicted state obtained

in the kth iteration, K denotes the number of iterations [13].

3.2 Target classification branch

Although precise target bounding box could be generated

by state estimation branch, it lacks discrimination ability to

distinguish the target from the distractions in the back-

ground. For this reason, our classification branch aims to

boost the discrimination ability. Unlike state estimation

branch, the classification branch firstly provides a rough

location of the target and then implements online training

to adapt to unpredictable target variations over time, which

is robust to changing target scales. Considering this, our

classification branch takes the features (that is extracted by

the third layer of ResNet18) as its input to create useful

semantic information. Meanwhile, since we only have the

target information in the first frame (sparse sample), thus

we only place two convolution blocks in this branch and

make the predicted frame as the new sample to estimate the

target position in the following frames as follows:

sðx; hÞ ¼ conv2ðconv1ðx; h1Þ; h2Þ: ð5Þ

In (5), x is the feature of the search image, output by the

third layer of the backbone; s is the output score map of the

target classification branch; h denotes the network param-

eter, and conv represents a convolution layer (including the

activation function). Then, we locate the position on the

search image that corresponds to the point on the score map

with the highest confidence score. With the size of the

bounding box in previous frame, we could attain the initial

value of the target state estimation branch b0 through the

Uniform Random Noise module (as shown in Fig. 1).

Fig. 3 The structure of feature

fusion module
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3.2.1 Learning objectives

Similar to traditional Siamese networks, in our classifica-

tion branch, each candidate region on the input frame has a

unique score, reflecting its probability of being the target

center, which forms the score map s. Since the ground-truth

target position is annotated by a bounding box, we thereby

model the confidence score using Gaussian distribution.

The loss function for online learning is expressed as

l ¼
Xm

k¼1

ak
X

ði;jÞ2Dk

ðsi;j � yi;jÞ2 þ
X2

k¼1

kkkhkk2: ð6Þ

Here, Dk represents the score map region of sample k. (i, j)

denotes a point on the score map with si;j as its score. yi;j is

the value of the Gaussian distribution obtained at the

annotated target location, which is highest at the target

center, and decreases from the center to its surrounding

areas. M is the total number of samples. ak refers to the

weights for each sample [30]. During update, the parame-

ters of the convolution layers in the classification branch

are constrained by the Euclidean norm.

3.2.2 Online updating

The most popular optimization method is stochastic gra-

dient descent (SGD) method, which is a first-order method

and has a fast descent speed but slow convergence. Instead,

we choose Gauss–Newton (GN) method as our approxi-

mation method. Although it is a second-order method, it

has fast convergence speed, since we only need to calculate

the first derivative instead of the complex Hessian matrix.

The advantage of GN over SGD is proved by ablation

experiment in the following Sect. 3.6.3. The residual

function is defined as follows:

rkðhÞ ¼
ffiffiffiffiffi
ak

p ðsk � ykÞ; k 2 f1; 2; . . .;mg: ð7Þ

where ak is the same weights for the samples in (5). xk is

the kth sample, sk is the predicted score map of xk by the

network, yk is the corresponding score label of xk.

Furthermore,

rmþ1ðhÞ ¼
ffiffiffiffiffi
k1

p
h1

rmþ2ðhÞ ¼
ffiffiffiffiffi
k2

p
h2:

ð8Þ

Here, k1, k2 are the regularization weight coefficients

corresponding to the parameters of different convolution

layer in (6). Then,

rðhÞ ¼ concatðr1ðhÞ; r2ðhÞ; . . .; rmðhÞ; rmþ1ðhÞ; rmþ2ðhÞÞ:
ð9Þ

The loss function in (6) could be written as

lðhÞ ¼ krðhÞk2: ð10Þ

We make use of the quadratic Gauss–Newton approxima-

tion ~lx ¼ lðxþ4xÞ, which is calculated by the first-order

Taylor expansion of the residuals rðxþ4xÞ ¼ rx þ Jx 4
x at the current x:

~lð4xÞ ¼ 4xTJTxJx 4 xþ 24 xTJTxrx þ rxrx: ð11Þ

here, we define rx ¼ rðxÞ and Jx ¼ or=ox as the Jacobian

of r at x. 4x is the increment of parameter x. Equa-
tion (11) forms a positive definite quadratic function, which

could be solved via conjugate gradient method.

3.2.3 Network architecture

The conv1 in (5) is comprised of 64 1�1�256 convolution

blocks without any activation functions. conv2 in (4) has 1

4�4 convolution block, and it utilizes the following non-

linear activation functions:

aðtÞ ¼
t; t[ ¼ 0

0:05 � ðet=0:05 � 1Þ; t\0

(
ð12Þ

3.3 Implementation details

In this section, we will describe the training and reasoning

processes in details.

3.3.1 Training

We adopt ResNet18 as our backbone, which is pre-trained

on ImageNet, and the parameters keep unchanged after-

ward (including the initial values of the hidden states of

GRU). The entire network is trained end-to-end using

image pairs, especially the state estimation branch is

trained offline and the classification branch is trained

online. Besides, we add Gaussian noise on the annotated

results to simulate the initial rough estimation results so as

to yield eight candidate bounding boxes, where the IoU of

any of them to the ground-truth box is larger than 0.1. The

training objective is to calculate the deviations between the

eight boxes and the real target position. We train our model

50 epochs using ADAM optimizer. The initial learning rate

is set to 10�3, and the learning rate decays by a factor of

0.2 for every 20 epochs. Similar to existing Siamese

tracking networks, we use LaSOT, TrackingNet, GOT-10k

and COCO as the training sets.

3.3.2 Reasoning

We perform online training to update classification branch.

For the first frame, we carry out translate, rotation,
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blurring, etc., for data augmentation purpose to produce 30

initial training samples and optimize the last convolution

layer of our network. We set the first frame as the template.

Based on classification branch, the tracker is able to derive

the position with the highest confidence score, which is

combined with the width and height of the bounding box in

the previous frame to generate the initial target box. During

reasoning, we perform five iterations of optimization to

yield eight candidate boxes. Then, the average position of

them is regarded as the final position of the target.

3.4 Experiment and analysis

In this section, we test the performances of our tracker on

six benchmarks and compare with other popular trackers,

including SiamRPN?? [10], SiamFC?? [31], ATOM

[13], DiMP [32], SiamBAN [27], PrDiMP-18 [33],Siam-

CAR-Staple [34], SiamET [35] and SiamLAN [20]. We use

Ubuntu 20.04, GeForce GTX 2080Ti GPU,

Intel(R) Xeon(R) CPU E5-2678 v3 @ 2.50GHz as our

hardware platform. We achieve a running speed of 32 fps,

while ATOM has only 26 fps.

3.4.1 OTB100

OTB100 [36] is a popular tracking dataset, which consists

of 100 short-term videos of complex scenes. We compare

our results with other state-of-the-art tracker (including

SiamFC??, DiMP, SiamRPN?? and newly published

SiamET, etc.) in terms of success rate and precision. The

experimental results are listed in Table 1 and Figure 4. We

rank 3rd in both success and precision.

SiamRPN?? utilized a spatial aware sampling strategy

and performed layer-wise and depth-wise aggregation to

ensure the tracking accuracy. SiamET developed a tem-

plate enhancement module to keep track of the target

variations. Therefore, they achieved better results in short-

term tracking. In addition, they all adopt ResNet-50 as their

Fig. 4 Comparison of performances on OTB100

Table 1 Comparative results on OTB100

Trackers SUCC Precision

GradNet [37] 0.639 0.861

UpdateNet [38] 0.647 0.861

ATOM [13] 0.671 0.882

SiamFC?? [31] 0.682 0.896

GCT [18] 0.639 0.853

DiMP-50 [32] 0.660 0.899

TRAT-18 [30] 0.663 0.873

DaSiamRPN [11] 0.658 0.880

SiamLAN [20] 0.667 0.891

E.T.Track [39] 0.678 –

HCAT [40] 0.681 –

Lighttrack [41] 0.662 –

Zhou [42] 0.677 0.891

Gao [43] 0.667 0.784

SiamRPN?? [10] 0.696 0.915

SiamET [35] 0.701 0.914

Ours 0.694 0.902
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Fig. 5 Comparisons of different attributes on OTB100
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backbones, while we use ResNet18. Therefore, they

achieved slightly better results than us in short-term

tracking.

To further validate the effectiveness of our tracker, we

compare the performances of different trackers on OTB100

in dealing with various unpredictable challenges (shown in

Fig. 5), including (a) Deformation, (c) Scale variation and

(c) Occlusion. Compared with other popular methods, we

also achieve competitive performances.

3.4.2 VOT2018

VOT2018 [44] (Visual Object Tracking Challenge 2018)

[44] includes 60 different kinds of challenging videos. The

performance of each tracker is evaluated by two indexes:

Accuracy (average overlap over successfully tracked

frames) and robustness (failure rate). Additionally, a

comprehensive index called EAO is formed by combining

the above two indexes. The experimental results are shown

in Table 2, our tracker ranks first in accuracy and second in

EAO. Besides, a comparison of all attributes on VOT2018

is shown in Fig. 6. The attributes include camera motion,

illumination change, occlusion, size change and motion

change, which are all annotated per-frame. These results

indicate that our tracker is adaptable to complex situations

by capturing target changes.

3.4.3 LaSOT

LaSOT [7] is a large-scale dataset including 1,400 videos

of long sequences (with 2,512 frames on average) with

different unpredictable challenges (e.g., partial occlusions,

temporal disappearances, etc.). It has 70 categories, and

each of them has 20 individual videos. We evaluate our

tracker on its 280 testing videos in terms of success rate,

precision plots and normalized precision plots. In this test,

DiMP-50 wins the first place in all 3 metrics, while our

tracker ranks second. It is worth noting that SiamET and

Table 2 Comparative results on VOT2018

Trackers Accuracy Robustness EAO

SiamFC [8] 0.512 0.670 0.201

DRT [45] 0.355 0.201 0.355

RCO [44] 0.507 0.155 0.376

UPDT [46] 0.536 0.184 0.379

MFT [44] 0.505 0.140 0.385

ATOM 0.590 0.203 0.401

ASC-DCF [47] 0.511 0.155 0.403

SiamSMDFFF [48] 0.532 – 0.398

SiamRPN?? [10] 0.600 0.234 0.414

SiamFC?? [31] 0.587 0.183 0.426

SiamLAN [20] 0.596 0.258 0.384

SiamET [35] 0.596 0.155 0.480

Ours 0.601 0.164 0.427

Fig. 6 Comparison of EAO on

VOT2018
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SiamRPN?? achieved higher results than ours on

OTB100 (short videos). However, we outperform them on

LaSOT (long videos) by some safe margins. This result

reflects the general shortcomings of existing Siamese net-

works in updating target changes in long time duration. By

contrast, our proposed historical localization unit (HLU)

captures the target changes in a more precisely and timely

manner.

Table 3 Comparative results on LaSOT

Trackers Succ. (AUC) Prec Norm. Prec

ECO [49] 0.324 0.301 0.338

ATOM [13] 0.516 0.506 0.577

MDNet [50] 0.397 0.373 0.461

SiamRPN?? [10] 0.496 0.492 0.570

SiamBAN [27] 0.515 0.522 0.599

UpdateNet [38] 0.476 0.459 0.564

SiamCorners [51] 0.480 – 0.555

DiMP-18 [32] 0.534 0.534 0.613

SiamLAN [20] 0.469 0.467 0.551

Lighttrack [41] 0.555 0.561 –

SiamET [35] 0.521 0.527 0.604

Zhou [42] 0.520 0.530 0.603

Gao [43] 0.469 0.467 0.551

SiamFC?? [31] 0.544 0.547 0.623

DiMP-50 [32] 0.571 0.569 0.652

Ours 0.557 0.555 0.644

bFig. 7 Comparisons of different attributes on LaSOT

Table 4 Comparative results on GOT-10k

Trackers AO SR0:5 SR0:75

SiamFC [8] 0.348 0.353 0.098

ECO [49] O.316 0.309 0.111

ATOM [13] 0.556 0.634 0.402

MDNet [50] 0.299 0.303 0.099

SiamRPN?? [10] 0.518 0.618 0.325

ROAM [53] 0.436 0.466 0.164

ROAM?? [53] 0.465 0.532 0.236

SiamTPN [54] 0.598 – –

TRAT [30] 0.608 0.720 0.467

DiMP-18 [32] 0.579 0.672 0.446

SiamFC?? [31] 0.595 0.695 0.479

DiMP-50 [32] 0.611 0.717 0.492

Ours 0.614 0.718 0.504
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It’s worth noting that SiamET and SiamRPN??

achieved higher results than ours on OTB100. We out-

perform them on LaSOT by some safe margins. The reason

is that we rely on HLU to update the template so as to

localize the target more precisely. This results demonstrate

the robustness of our tracker in dealing with long-term

videos.

As shown in Fig. 8, we select three video sequences

(four frames for each) from LaSOT and compare our

results with other state-of-the-art methods (including

C-RPN [29], ATOM [13], SiamFC?? [31], SiamBAN

[27] and UpdateNet [38]). For the video sequences in the

first row, initially, all bounding boxes are targeted at the

tank (first column). When the second tank approaches the

target tank (second column), UpdateNet (blue) and C-RPN

(purple) enlarge their initial bounding boxes to embrace

them together. Next, when the tanks change their poses

(third column), ATOM (light blue) only captures the head

of the tank, while SiamFC?? basically loses the target.

For the second sequence (in the second row), the rider is

blocked by the slope. ATOM (light blue) enlarges its

searching scope, trying to enclose the target. When the

target shows up again, all other methods lose track of the

rider by drifting to other parts of the background, only our

method still sticks to it. For the third video (the third row),

Fig. 8 Qualitative comparison of tracking results on LaSOT among other popular methods. Ground truth: Yellow; SiamBAN: White;

SiamFC??: Green; UpdateNet: Blue; ATOM Light blue; C-RPN: Purple; Ours: Red (Color figure online)

Table 5 Comparative results on TrackingNet

Trackers Succ. (AUC) Prec Norm. Prec

SiamFC [8] 0.559 0.518 0.652

ECO [49] 0.554 0.492 0.618

ATOM [13] 0.703 0.648 0.771

MDNet [50] 0.606 0.565 0.705

DiMP-18 [32] 0.723 0.666 0.785

UpdateNet [38] 0.677 0.625 0.752

C-RPN [29] 0.699 0.619 0.746

SiamCorners [51] 0.695 0.647 0.763

Lighttrack [41] 0.725 0.695 0.779

SiamRPN?? [10] 0.733 0.694 0.800

DiMP-50 [32] 0.740 0.687 0.801

Ours 0.734 0.683 0.797

Table 6 Comparative results on NFS

Trackers AUC

MDNet [50] 0.422

C-COT [57] 0.488

UPDT [46] 0.536

ECO [49] 0.466

ATOM [13] 0.584

SiamCorners [51] 0.537

HDT [58] 0.398

FCNT [59] 0.391

DaSiamRPN [11] 0.395

TRAT-18 [30] 0.585

E.T.Track [39] 0.590

Lighttrack [41] 0.553

SiamBAN [27] 0.594

DiMP-18 [32] 0.610

SiamCAR [12] 0.618

DiMP-50 [32] 0.619

Ours 0.623
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when the tracked target is occluded by human hands, other

methods are confused by surrounding similar targets and

lose the initial matrix. Apparently, compared with other

methods, our tracker manifests appealing performance in

dealing with interference, partial occlusions and target pose

changes.

3.4.4 GOT-10k

GOT-10k [52] is a large-scale dataset with 10,000 videos

for training, 180 videos for validation and 180 videos for

testing. The main challenge provided by GOT-10k is that

there are no duplicated object classes between the training

and testing sets. To ensure the fairness of the testing pro-

cess, we comply with the principle of this benchmark and

only use its training set to train our tracker. There are three

metrics on GOT-10k, namely AO, SR0:5 and SR0:75,

wherein AO calculates the average overlaps between the

predicted bounding box and ground truth. SR measures the

percentage of videos that exceeds the preset threshold (e.g.,

0.5) of overlaps between the predicted bounding box and

ground truth. As shown in the following Table 4, our

tracker achieves the best scores for all three metrics (AO,

SR0:5, SR0:75), while DiMP-50 and SiamFC?? rank 2nd

and 3rd; respectively. The results on GOT-10k demonstrate

the robustness of our tracker, especially its strong gener-

alization ability in handling unseen target classes during

the training phase, which matches the demand of generic

tracking.

3.4.5 TrackingNet

TrackingNet [55] is a large-scale dataset for object tracking

in wild scenes. It has 30,132 videos for training, and 511

videos for testing. It contains more than 14 M dense

bounding box annotations of rich categories of classes. The

evaluation metrics include precision, normalized precision

and success rate (also known as AUC). The precision index

measures the percentage of frames whose error of center

position is less than the specified threshold, while AUC

measures the ratio of frames whose overlap between the

predicted target box and the ground-truth box is higher than

the specified threshold. To make fair comparisons, we

exclude Youtube-BB videos from the training set. As

shown in Table 5, we achieve comparable results with

SiamRPN?? and is only slightly lag behind DiMP-50.

This shows the potentiality of our tracker to be independent

of large offline training data.

3.4.6 NFS

NFS [56] contains 100 videos of multiple targets captured

by higher speed cameras. Comparative results are listed in

Table 7 Ablation study on historical localization unit

Component Success Precision

Fully connected layers 0.578 0.857

HLU 0.694 0.902

Bold denotes better results in comparison

Fig. 9 Illustration of failure case (Color figure online)
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Table 6 between our tracker and other 11 popular methods.

Again, our tracker reaches the highest AUC value. This

result shows the robustness of our tracker in capturing fast

moving targets with large amplitude of motions. In com-

parison, some recently published methods (LightTrack [41]

and SiamCorners [51]) that are famous for their fast motion

extraction abilities are far behind us.

3.5 Analysis of failure cases

We place much emphasis on the ability to capture the

target changes. However, we find that our tracker is still

prone to interference in dealing with similar targets. As

shown in Fig. 9 (the yellow box indicates the ground truth,

the red box denotes the tracking results of our model), we

originally track one of the wild goose in the first frame, but

it is distracted by another similar goose in the following

frames, and finally lose the target. The reason for this

failure is that we adopt feature concatenation scheme,

which reserves features of distractors and therefore could

not differentiate similar targets in some scenarios.

3.6 Ablation study

In this section, ablation studies are conducted on OTB100

to verify the effectiveness of the proposed modules in our

tracker. For fair comparisons, we use the training set with

the same parameter settings.

3.6.1 Historical localization unit (HLU)

In this section, we replace the proposed HLU with fully

connected layers and compare the performances with and

without HLU, as shown below:

Based on the experimental results, HLU improves the

success and precision by 16.7% and 5%, respectively,

which proves the effect of HLU.

3.6.2 Feature fusion module (FFM)

In this section, we replace the proposed feature fusion

module with popular deep cross-correlation module and

compare their success and precision on OTB100, as shown

in Table 8. Apparently, compared with deep cross-corre-

lation module, our proposed feature fusion module

increases the success and precision by 10.5% and 1.8%,

respectively.

3.6.3 Gauss–Newton method

In this section, an ablation experiment is carried out on

OTB100 to compare the performance between Gauss–

Newton method and the traditional Stochastic Gradient

Descent method. Based on the results in Table 9, Gauss–

Newton method achieves both higher success and

precision.

4 Conclusions

In this paper, we analyze the intrinsic attribute of multi-

level optimization method for state estimation in visual

object tracking and propose a recurrent optimization

scheme based on historical target locations along with four

design principles for feature fusion. Specifically, we use

ResNet18 as our backbone and deploy only two convolu-

tion layers in the classification branch. Our proposed

architecture not only simplifies the original multi-level

network, but also utilizes the target location information in

previous step to facilitate current localization.

Extensive experiments have been conducted on six

prevailing benchmarks, in which our tracker exhibits

competitive performance against other state-of-the-art

approaches.

Data availability The raw/processed data required to reproduce these

findings will be shared once this paper has been accepted.
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Table 8 Ablation study on feature fusion module

Component Success Precision

Deep cross-correlation 0.589 0.884

Feature fusion module 0.694 0.902

Bold denotes better results in comparison

Table 9 Ablation study on Gauss–Newton

Component Success Precision

Stochastic gradient descent 0.685 0.887

Gauss–Newton 0.694 0.902

Bold denotes better results in comparison
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