
ORIGINAL ARTICLE

Innovative modeling techniques including MEP, ANN and FQ
to forecast the compressive strength of geopolymer concrete modified
with nanoparticles

Hemn Unis Ahmed1,2 • Ahmed S. Mohammed1 • Rabar H. Faraj3 • Aso A. Abdalla1 • Shaker M. A. Qaidi4,6 •

Nadhim Hamah Sor5 • Azad A. Mohammed1

Received: 13 December 2021 / Accepted: 13 February 2023 / Published online: 1 March 2023
� The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2023

Abstract
The use of nano-materials to improve the engineering properties of different types of concrete composites including

geopolymer concrete (GPC) has recently gained popularity. Numerous programs have been executed to investigate the

mechanical properties of GPC. In general, compressive strength (CS) is an essential mechanical indicator for judging the

quality of concrete. Traditional test methods for determining the CS of GPC are expensive, time-consuming and limiting

due to the complicated interplay of a wide variety of mixing proportions and curing regimes. Therefore, in this study,

artificial neural network (ANN), multi-expression programming, full quadratic, linear regression and M5P-tree machine

learning techniques were used to predict the CS of GPC. In this instance, around 207 tested CS values were extracted from

the literature and studied to promote the models. During the process of modeling, eleven effective variables were utilized as

input model parameters, and one variable was utilized as an output. Four statistical indicators were used to judge how well

the models worked, and the sensitivity analysis was carried out. According to the results, the ANN model calculated the CS

of GPC with greater precision than the other models. On the other hand, the ratio of alkaline solution to the binder,

molarity, NaOH content, curing temperature and concrete age have substantial effects on the CS of GPC.

Keywords Geopolymer concrete � Modeling � Compressive strength � Artificial neural network � Multi-expression

programming � Sensitivity analysis

1 Introduction

Concrete, after water, is the second most often used sub-

stance on the earth, and it demands massive quantities of

Portland cement (PC). The production of PC necessitates a

huge amount of natural resources, such as limestone and

fossil fuels, but it also produces roughly 0.8 tonnes of CO2

per tonne of cement clinker produced [1, 2]. The cement

industry is second regarding how much CO2 it puts into the

air. Compared to what they are right now, CO2 emissions

are expected to reach a peak of 100% by 2020. By 2050,

the world will make 4.38 billion tons of cement each year,

which is a 5% increase every year [3, 4]. Because of this,

all countries have to think about CO2 emission regulations

and reductions [5]. In response to the expanding sources of

solid waste and the need to minimize climate change, the

most pressing issue in modern material science is discov-

ering and innovating new sustainable and environmentally
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friendly materials [6]. Consequently, substantial research

has been performed to develop a new material that can be

utilized as an alternative to Portland cement [7]; among

them, geopolymer technology was developed in France by

professor Davidovits [8].

Geopolymers are produced via a polymerization process

involving the chemical interaction of alumina silicate

minerals in the presence of an alkaline medium which

results in the formation of a three-dimensional polymeric

chain [9]. The mixed proportions of the GPC consist of

aluminosilicate source binder materials, fine and coarse

aggregates, alkaline solutions and sometimes extra water

[10]. The polymerization between the alkaline solutions

and source binder materials produces solid concrete, almost

like traditional concrete composites [11]. Many factors

influence on the properties and performances of GPC,

including the molarity of NaOH, the ratio of Na2SiO3 to

NaOH, curing regime and ages, water-to-solid ratio, alka-

line solution-to-binder ratio, elemental composition and

type of source binder materials, ratio of Si to Al in the

geopolymer system, mixing time and rest period, super-

plasticizer dosage and extra water contents, and coarse and

fine aggregate contents [12].

Nanotechnology is an emerging revolutionary discipline

in civil engineering that is in its infancy. For GPC com-

posites, nano-materials of various types offer substantial

advantages over other additives, including superior

mechanical properties and long-term durability [13].

Recent initiatives to introduce nanoparticles (NPs) into

construction materials to improve the characteristics and

performance of concrete have been made [14]. NPs were

introduced with geopolymer matrices to enhance durability

issues, physical structure and mechanical properties of the

geopolymer mixture [15]. Because NPs have a higher

surface area-to-volume ratio, they are highly reactive and

have an effect on reaction rates [16]. As a result, NPs

modifies the microstructure of GPC at the atomic level,

resulting in significant improvements in both the fresh and

hardened states and the microstructural behavior of

geopolymer composites [17]. In the literature, a wide range

of NPs like nano-silica (NS), nano-clay, nano-alumina,

carbon nanotubes, nano-metakaolin and nano-titanium

were consumed to improve various properties of the

geopolymer composites, with NS being the most frequent

[13]. This study was focused on presenting several methods

to estimate the CS of GPC composites modified with NS,

since nano-silica was the most widely employed material

among all NP kinds.

When determining the overall quality of concrete, one of

the most important mechanical parameters to look at is

compressive strength (CS). Other mechanical and dura-

bility metrics are connected to CS and can be calculated

based on their indirect correlations with CS [18]. To

figure out the CS of GPCs in real life, multiple cube and

cylinder samples are made and tested at different curing

times. Work on a construction site should not go on until a

certain age, like 28 days, when the CS test results are

known. This slows down building projects and makes the

testing process time-consuming and expensive [19].

Because adjusting the mix proportions and components

can have a substantial effect on the properties of GPC,

estimating its CS without conducting trials has been one of

the most challenging issues in concrete technology for a

very long time [20].

With continued research into the CS for GPC, standard

approaches for determining the CS for normal concrete

may no longer be applicable to GPC mixtures. Some

researchers attempted to use a regression equation to tie the

variables to the CS of GPC. As CS is sensitive to the

proportions of the mixture and depends on various char-

acteristics, engineers should be provided with easier pro-

cedures and mathematical formulas to forecast the

outcomes of experiments. Soft computing approaches

could be considered a viable solution [21]. The best feature

about these methods is that they may be used to generate

alternatives and solutions for linear and nonlinear issues

when mathematical models cannot effectively demonstrate

how the problem’s main aspects are related to one another

[22].

Artificial intelligence systems for analyzing and fore-

casting the mechanical properties of cement-based mate-

rials are a hot topic in the cement-based composites

research sector to provide the construction industry with

new methodologies and strategies for application. Machine

learning has developed as a potent method for determining

structural and material performance. Machine learning

models use a huge amount of acquired or measured actual

data with features with a wide range of values, allowing

such models to be extremely generalizable and resilient.

Adaptive neuro-fuzzy inference systems were utilized by

Bilir et al. [23] to forecast the width of constrained drying

shrinkage cracks in slag mortar composites. The model

allowed for effective steps to be adopted to prevent con-

crete cracking, resulting in increased concrete durability.

The M5P model tree was used by Behnood and Daneshvar

[24] to calculate the dynamic modulus of asphalt concrete.

Ahmed et al. [25] successfully used twelve effective mix-

ture proportions and curing conditions as the model input

parameters to predict the CS of fly ash-based geopolymer

concrete by adapting three common models: linear, non-

linear and multi-logistic regression models.

Due to the limited test data and the number of side

variables addressed, applying these empirical formulas to

other scenarios is challenging. This necessitates the

development of a novel method for accurately estimating

the compressive strength of GPC, taking into account the
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impact of various mixture proportions and curing ages. The

above studies showed that machine learning techniques

could perform excellently with many variables while

overcoming drawbacks like a lack of experimental data and

the inability to generalize the model to other contexts. Even

though GPCs are used in many projects, there are not many

studies on how to predict the CS of GPCs modified with

nano-silica, so it is hard to use them quickly in the building

industry. Also, the construction industry is looking more

and more for new building materials with unique properties

that can make concrete structures last longer. This means

that new models need to be made to predict how these new

materials will act. So, the main purpose of this study is to

figure out how different mixture proportions affect the

compression resistance of GPCs from a young age to a

long-term curing age, including the alkaline solution-to-

binder ratio (l/b), binder content (B), fine (FA) and coarse

(CA) aggregate content, sodium hydroxide (SH) and

sodium silicate (SS) content, the ratio of SS to SH, the

molarity of SH (M), NS content, curing temperatures

(T) and concrete ages (A). In the literature, there is a

shortage of studies examining the impact of different

mixture proportion parameters on the CS of GPC modified

with NS at various curing temperatures and ages. There-

fore, in this study, different model techniques, namely

artificial neural network (ANN), multi-expression pro-

gramming (MEP), full quadratic (FQ), linear regression

(LR) and M5P-tree machine learning techniques, were used

to predict the CS of GPC. Finally, different statistical tools,

such as the root-mean-square error (RMSE), scatter index

(SI), objective value (OBJ) and the correlation coefficient

(R), were used to evaluate the created models’ accuracy.

2 Aim of the study

The purpose of this work is to examine the use of the MEP,

ANN, FQ, M5P and LR models to forecast the compressive

strength of geopolymer concrete with or without nano-sil-

ica with the following aims:

(i) Analyze the acquired data statistically to see how

the mix proportion of GPC incorporated with

nano-silica affects compressive strength.

(ii) Develop a credible model to estimate the com-

pressive strength of GPC enhanced with nano-

silica and determine the models’ sensitivity using

various statistical methodologies.

(iii) Provide the simplest formulae to be used by

engineers and academics in their GPC mix design

projects.

3 Methodology

In total, 207 experimental data from earlier studies were

gathered and statistically evaluated before dividing into

two groups. The first and more prominent group comprised

145 datasets utilized to create the models. Moreover, the

remaining data (62 data) were utilized to test the models

[26]. Table 1 summarizes the GPC mixes database and the

measured CS of GPC produced with various mix propor-

tions incorporated nS. Several databases’ search portals,

such as Google Scholar, Web of Science, Scopus and

Science Direct, were utilized to conduct a comprehensive

literature search as part of the database preparation process.

The majority of prior studies discussing the effect of nS

additions on the characteristics of GPCs were collected,

and their data were retrieved based on the authors’

searches.

Table 1 shows the input dataset, which includes: l/b

ranges from 0.4 to 0.4, B ranges from 300 to 500 kg/m3,

FA ranges from 490 to 990 kg/m3, CA ranges from 810 to

1470 kg/m3, SH ranges from 18.17 to 159.75 kg/m3, SS

ranges from 40.8 to 187.5 kg/m3, M ranges from 4 to

16 M, SS/SH ranges from 0.33 to 3, NS ranges from 0 to

60 kg/m3, T ranges from 23 to 70 �C, A ranges from 0.5 to

180 days, and CS ranges from 3.2 to 81.3 MPa. The given

dataset, which included those mentioned above eleven

independent factors, was utilized to forecast the CS of GPC

produced with different mixtures using several approaches

compared to the measured reported CS (MPa). Figure 1

depicts the procedure used in this investigation in terms of

a flowchart. In addition, the next parts describe and explain

the specifics, such as data gathering, analysis, modeling

and assessment.

4 Statistical assessment

In this part, a statistical study was performed to determine

whether or not there are substantial correlations and his-

tograms between input parameters and CS of GPCs. To do

so, all input variables such as (i) alkaline solution-to-binder

ratio (Fig. 2a), (ii) binder content (Fig. 2b), (iii) fine

aggregate content (Fig. 2c), (iv) coarse aggregate content

(Fig. 2d), (v) sodium hydroxide content (Fig. 2e), (vi)

sodium silicate content (Fig. 2f), (vii) molarity (Fig. 2g),

(viii) sodium silicate-to-sodium hydroxide ratio (Fig. 2h),

(ix) nano-silica content (Fig. 2i), (x) curing temperature

(Fig. 2j) and (xi) specimens age (Fig. 2k) were plotted and

analyzed with actual CS; additionally, the normal distri-

bution of obtained CS from previous studies is shown in

the above figures. In addition, statistical functions such as

minimum, maximum, average, standard deviation,

Neural Computing and Applications (2023) 35:12453–12479 12455

123



Table 1 Summary of the constitutes of geopolymer concrete mixes reported in the literature

Ref l/b B (kg/m3) FA (kg/

m3)

CA (kg/

m3)

SH (kg/m3) SS (kg/m3) M SS/

SH

NS (kg/

m3)

T

(�C)
A

(days)

CS (MPa)

[17] 0.4 440 723 1085 64 112 12 1.75 0–26.4 28–60 3_28 21.7–46.43

[27] 0.45 362.8 990 810 122.4 40.8 4 0.33 0–10.88 25 7–120 35.5–61.8

[28] 0.45 500–460 790 907 62.5 187.5 12 2.33 0–40 28 7_28 29–48

[29] 0.45 486–490 490 1470 73 154 12 2 0–3.675 31.5 3_28 8.95–62.8

[30] 0.45 500 575 1150 64.3 160.7 14 2.5 0–15 70 30 51.63–42.71

[31] 0.45 393–414 692–684 1240–1233 46.6–44.2 139.7–132.6 4 3 0–20.7 23 28–60 52–76.5

[32] 0.6 450 500 970–1150 135 135 10 1 0–13.5 25 7_90 18.6–47.3

[33] 0.45 380.689 554.4 1295 48.945 122.364 8_16 2.5 0–5.71 60 28 38.1

[34] 0.52 370–400 650 1206 60 150 14 2.5 0–30 60 1_28 4.7–45

[35] 0.6 300 800 1200 85 95 12 1.1 0–9 25 7_28 18.9–45.9

[36] 0.5 339–350 720 1305 43.5–45 108.9–112.5 16 2.5 0–21 60 7_28 3.2–24.4

[37] 0.6 450 500 1036–1150 108 162 12 1.5 0–9 60 28 31.6–42.6

[38] 0.45 497 560 1120 159.75 63.9 12 0.4 0–49.7 60 28 24–35

[39] 0.5 450 750 1000 75 150 12 2 0–13.5 25 7_28 21.9–50.4

[40] 0.4 394.29 554.4 1293.6 45.06 112.64 12 2.5 0–3.94 24 28 44.3–48.6

[41] 0.45 450–500 825 825 18.17–28.57 144.65–160.75 10_16 2.5 0–10 60 7_90 41.1–81.3

[42] 0.52 370–400 620–650 1152–1206 60 150 14 2.5 0–60 24 3–180 4.3–61.2

[43] 0.45 405.8–413.8 888 945 53.2 133 12 2.5 0–8.3 29 28–90 37.1–52.3

[44] 0.52 370–400 620–650 1152–1206 60 150 14 2.5 0–60 60 0.5–28 4.9–45.1

Min 0.4 300 490 810 18.17 40.8 4 0.33 0 23 0.5 3.2

Max 0.6 500 990 1470 159.75 187.5 16 3 60 70 180 81.3

St.Div 0.1 51.9 135.3 183.3 33.9 35.6 3.3 0.8 14.6 17.4 31.8 17.5

*l/b = alkaline solution-to-binder ratio, B = binder content (kg/m3), FA = fine aggregate content (kg/m3), CA = coarse aggregate content (kg/

m3), SH = sodium hydroxide content (kg/m3), SS = sodium silicate content (kg/m3), M = molarity (M), SS/SH = ratio of sodium silicate to

sodium hydroxide, NS = nano-silica content (kg/m3), T = curing temperature (�C), A = age (days) and CS = actual compressive strength (MPa)

Fig. 1 Flowchart diagram process followed in this study
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skewness, kurtosis and variance were calculated and are

displayed in Table 2 to show the distribution of each

variable. Regarding the kurtosis parameter, a high negative

value represents the shorter tails relative to the normal

distribution, and a positive value represents the longer tails.

An immense negative value for the skewness parameter

indicates a long-left tail, while a positive value indicates a

right tail [45].

Based on the collected datasets, the ratio of l/b of the

GPC mixtures modified with nS was in the range of 0.4 to

0.6, with the average and standard deviations of 0.49 and

0.05, respectively. Also, regarding other statistical analy-

ses, it was found that the variance was 0.002, skewness was

0.66, and the kurtosis was - 0.25. The ranges of binders

were between 300 and 500 kg/m3, with the average and

standard deviations of 417 kg/m3 and 51.8 kg/m3,
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Fig. 2 Marginal plot for the CS

of GPC mixtures incorporated

nS versus: a: alkaline solution-

to-binder ratio (l/b); b: binder
content (B); c: fine aggregate

content (FA); d: coarse
aggregate content (CA); e:
sodium hydroxide content (SH);

f: sodium silicate content (SS);

g: molarity of sodium hydroxide

(M); h: sodium silicate-to-

sodium hydroxide ratio (SS/

SH); i: nano-silica content (NS);
j: curing temperature (T); k: age
of GPC specimens (A)
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correspondingly. At the same time, other statistical

assessment tools like variance, skewness and kurtosis were

2689, 0.11 and - 0.81, respectively.

Like traditional concrete mixtures, natural and crushed

aggregates were used as the FA and CA in GPC mixtures.

The FA should be satisfied with the requirements of ASTM

standards. According to gathered datasets from the litera-

ture article, it was found that the range of FA was between

490 and 990 kg/m3, with an average of 681 kg/m3 and

standard deviations of 135.2 kg/m3. Furthermore, regard-

ing the ranges of CA, it was concluded that the contents of

CA in past research varied between 810 and 1470 kg/m3

with an average of 1113.8 kg/m3 and standard deviations

of 183.2 kg/m3. On the other hand, the variance, skewness

and kurtosis were 33,580, - 0.19 and - 0.71, respectively.
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Fig. 2 continued
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In this study, according to the collected datasets, the

amount of SH in a 1m3 of GPC mixture incorporated nS

was in the range between 18.1 and 159.7 kg/m3, with an

average of 71.3 kg/m3 and a standard deviation of 33.9 kg/

m3. Also, the range of SS was found in between 40.8 and

187.5 kg/m3, with an average of 134.4 kg/m3 and the

standard deviations of 35.6 kg/m3. Other stats information

like variance, skewness and kurtosis were 1268, - 1.42

and 1.55, respectively. Moreover, the range of SS/SH was

found between 0.33 and 3, with an average of 2.05 and

standard deviations of 0.76, and the other statistical criteria

were found to be 0.59, - 1.2 and 0.22 for the variance,

skewness and kurtosis, respectively. On the other hand, the

molarity of sodium hydroxide was in the range of 4 to

16 M, with an average of 11.9 M and standard deviations

of 3.3 M. Also, it was found that the variance of the

reviewed datasets was 11.1, the skewness was - 1.4, and

kurtosis was 1.3.

 

0 20 40 60 80 100 120 140 160 180

0

10

20

30

40

50

60

70

80

90

C
om

pr
es

siv
e 

St
re

ng
th

, C
S 

(M
Pa

)

Sodium hydroxide, SH (kg/m3)

(e)

20
40
60
80

100
120

C
o
u
n
t

10 20 30 40

Count

20 40 60 80 100 120 140 160 180 200

0

10

20

30

40

50

60

70

80

90

C
om

pr
es

siv
e 

St
re

ng
th

, C
S 

(M
Pa

)

Sodium Silicate, SS (kg/m3)

20

40

60

80

100

C
o
u
n
t

(f)

10 20 30 40

Count

Fig. 2 continued

Neural Computing and Applications (2023) 35:12453–12479 12459

123



Regarding the values of nS content, it was found that the

range of nS was used to improve GPC composites in the

range between 0 and 60 kg/m3, with an average of 11.6 kg/

m3 and the standard deviations of 14.5 kg/m3.

GPC specimens modified with nS were cured in the

temperature ranges between 23 and 70 �C, with an average

of 42.05 �C and the standard deviations of 17.4 �C. Also,
other statistical assessment tolls like variance, skewness

and kurtosis were 303.9, 0.11 and - 1.92, respectively.

The age of GPC specimens incorporated nS was ranged

from 0.5 to 180 days, with an average of 28 days and

standard deviations of 31.8 days. Similarly, the published

datasets’ variance, skewness and kurtosis were 1012.8,

2.36 and 6.96, respectively. Finally, as shown in Table 1,

the range of the CS for the gathered datasets was in the

range between 3.2 and 81.3 MPa, with an average of

36.2 MPa and standard deviations of 17.52 MPa. At the
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same time, other statistical criteria like variance, skewness

and kurtosis were 307, 0.15 and - 0.75, respectively.

5 Modeling

According the correlation matrix (Fig. 3), there is a poor

correlation between independent variables and dependent

variable, the correlations of l/b, B, FA, CA, SH, SS, M, SS/

SH, NS, T and A and with CS are - 0.52, 0.39, 0.24,

- 0.25, - 0.08, - 0.09, - 0.49, - 0.08, - 0.31, - 0.17

and 0.59, respectively. Therefore, different multivariable

models are advanced in the next section to develop an

analytical model to predict the CS of GPC modified with

NS.

The correlation between dependent and independent

variables determines a direct relationship between the

mixture proportion of the GPC and compressive strength.
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The datasets were divided into two categories at random:

training and testing datasets [26]. The training dataset is

used in the model development, and the testing dataset is

used to check the developed model against unobserved data

during training. The forecasts of various models were

compared employing these criteria: (1) The model’s

validity should be established scientifically; (2) between

estimated and tested data, it should have a lower percent-

age of error; and (3) the RMSE and SI values of the sug-

gested equations should be low, while R value should be

high.

5.1 Linear regression model (LR)

Scholars adopted LR as one of the standard methodologies

to estimate and forecast the CS of concrete composites

[46]. As seen in Eq. (1), this model has a broad form [47].

CS ¼ b1 þ b2 x1ð Þ ð1Þ

where CS, x1, b1 and b2 represents the compressive

strength, one of the variable input parameters and model

parameters, respectively. This equation contains just one

variable of input data, so to have more practical and reli-

able investigations, Eq. (2) is suggested, which contains a
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Fig. 2 continued

Table 2 A summary of the statistical analysis of the model’s input parameters

Model parameters No. of data Average Median St.div Min Max Variance Skewness Kurtosis

l/b 207 0.49 0.5 0.1 0.4 0.6 0.0 0.66 - 0.25

B (kg/m3) 207 417.22 400 51.9 300 500 2689.5 0.11 - 0.81

FA (kg/m3) 207 680.96 650 135.3 490 990 18,294.6 0.63 - 0.10

CA (kg/m3) 207 1113.85 1170 183.3 810 1470 33,580.8 - 0.20 - 0.72

SH (kg/m3) 207 71.36 60 33.9 18.17 159.75 1150.6 1.10 0.49

SS (kg/m3) 207 134.43 150 35.6 40.8 187.5 1268.2 - 1.43 1.56

M 207 11.97 12 3.3 4 16 11.1 - 1.43 1.31

SS/SH 207 2.06 2.5 0.8 0.33 3 0.6 - 1.26 0.22

NS (kg/m3) 207 11.65 8 14.6 0 60 211.8 1.85 3.09

T (�C) 207 42.06 31.5 17.4 23 70 304.0 0.12 - 1.93

A (days) 207 28.30 28 31.8 0.5 180 1012.9 2.37 6.96

CS (MPa) 207 36.18 35.8 17.5 3.2 81.3 307.0 0.15 - 0.75
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wide range of input variable data parameters that can cover

all of the geopolymer concrete mixture proportions and

curing conditions, as well as curing ages.

CS ¼ b1 þ b2
l

b

� �
þ b3 bð Þ þ b4 FAð Þ þ b5 CAð Þ þ b6 SHð Þ

þ b7 SSð Þ þ b8 Mð Þ þ b9
SS

SH

� �
þ b10 NSð Þ þ b11 Tð Þ

þ b12 Að Þ
ð2Þ

As mentioned earlier, all these main variables in Eq. (2)

were described except that the b1, b2, b3, ….. and b12 are

the model parameters. Equation (2) is a one-of-a-kind

equation because it incorporates a large number of inde-

pendent variables to generate GPC that may be extremely

useful in the construction industry. On the other hand,

because all variables can be adjusted linearly, the proposed

Eq. (2) can be considered an extension of Eq. (1).

5.2 Multi-Expression Programing model (MEP)

Holland was the first to suggest a genetic algorithm (GA),

which was motivated by evolution theory, comparable to

the genetic programming (GA) developed by Cramer [48].
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Fig. 3 Correlation matrix for

input variables and target

Table 3 Optimal parameters for MEP model

Parameters Value

Subpopulation no. 20

Subpopulation size 120

Code length 300

Crossover probability 1

Mutation probability 0.01

Operator ? , -, *, /

Tournament size 2

Function probability 0.5

Variable probability 0.5

Generations 1000
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Several linear GP modifications have already been pro-

posed to address some of the issues (such as bloat) that tree

representations of GP produce. A few examples are carte-

sian genetic programming, grammatical evolution (GE),

linear GP and gene expression programming [49]. In MEP

individuals, multiple solutions are stored on a different

chromosome. In most cases, the most acceptable choice is

chosen. This is characterized as strong implicit parallelism,

and it is one of the MEP’s distinguishing features [50].

When compared to GE and GEP, this feature does not

make MEP more complex. To establish a generalized

relationship, the MEP model integrates many fitting

parameters. This study used simple arithmetic operators to

produce simple expressions, and the fitting parameters

were determined using a trial-and-error technique, as

depicted in Table 3.

5.3 Full quadratic model model (FQ)

The FQ model was made using the full quadratic formula,

which is shown in Eq. (3). This formula is a relationship

between compressive strength and the first and second

degree of each independent variable and the interaction

between independent variables [51].

where all these main variables in Eq. (3) were described

except that the b1, b2, b3, ….. and b77 are the model

parameters.

5.4 Artificial neural network (ANN)

Multilayer perceptron is a feed-forward artificial neural

network (ANN) model composed of neurons with heavily

weighted interconnections, where signals always move in

CS ¼ b1
l

b

� �
þ b2 Bð Þ þ b3 FAð Þ þ b4 CAð Þ þ b5 SHð Þ þ b6 SSð Þ þ b7 Mð Þ þ b8

SS

SH

� �
þ b9 NSð Þ

þ b10 Tð Þ þ b11 Að Þ þ b12
l

b

� �2

þb13 Bð Þ2þb14 FAð Þ2þb15 CAð Þ2þb16 SHð Þ2

þ b17 SSð Þ2þb18 Mð Þ2þb19
SS

SH

� �2

þb20 NSð Þ2þb21 Tð Þ2þb22 Að Þ2

þ b23
l

b

� �
Bð Þ þ b24

l

b

� �
FAð Þ þ b25

l

b

� �
CAð Þ þ b26

l

b

� �
SHð Þ þ b27

l

b

� �
SSð Þ

þ b28
l

b

� �
Mð Þ þ b29

l

b

� �
SS

SH

� �
þ b30

l

b

� �
NSð Þ þ b31

l

b

� �
Tð Þ þ b32

l

b

� �
Að Þ

þ b33 Bð Þ FAð Þ þ b34 Bð Þ CAð Þ þ b35 Bð Þ SHð Þ þ b36 Bð Þ SSð Þ þ b37 Bð Þ Mð Þ

þ b38 Bð Þ SS

SH

� �
þ b39 Bð Þ NSð Þ þ b40 Bð Þ Tð Þ þ b41 Bð Þ Að Þ þ b42 FAð Þ CAð Þ

þ b43 FAð Þ SHð Þ þ b44 FAð Þ SSð Þ þ b45 FAð Þ Mð Þ þ b46 FAð Þ SS

SH

� �
þ b47 FAð Þ NSð Þ

þ b48 FAð Þ Tð Þ þ b49 FAð Þ Að Þ þ b50 CAð Þ SHð Þ þ b51 CAð Þ SSð Þ þ b52 CAð Þ Mð Þ

þ b53 CAð Þ SS

SH

� �
þ b54 CAð Þ NSð Þ þ b55 CAð Þ Tð Þ þ b56 CAð Þ Að Þ þ b57 SHð Þ SSð Þ

þ b58 SHð Þ Mð Þ þ b59 SHð Þ SS

SH

� �
þ b60 SHð Þ NSð Þ þ b61 SHð Þ Tð Þ þ b62 SHð Þ Að Þ

þ b63 SSð Þ Mð Þ þ b64 SSð Þ SS

SH

� �
þ b65 SSð Þ NSð Þ þ b66 SSð Þ Tð Þ þ b67 SSð Þ Að Þ

þ b68 Mð Þ SS

SH

� �
þ b69 Mð Þ NSð Þ þ b70 Mð Þ Tð Þ þ b71 Mð Þ Að Þ þ b72

SS

SH

� �
NSð Þ

þ b73
SS

SH

� �
Tð Þ þ b74

SS

SH

� �
Að Þ þ b75 NSð Þ Tð Þ þ b76 NSð Þ Að Þ

þ b77 Tð Þ Að Þ

ð3Þ
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the output layer direction. ANN is a powerful piece of

simulation software that was developed for data analysis

and computation. It processes and analyzes data in a

manner that is analogous to that of the human brain. This

tool for machine learning sees extensive application in the

field of construction engineering, namely for predicting the

outcomes of a wide range of numerical issues [52].

The input, hidden and output layers make up ANN. The

input layer captures variables from the outer environment

for use in model training and testing. The hidden layer is

responsible for connecting the input and output layers and

comprises activation functions such as hyperbolic tangent

sigmoid, log-sigmoid and exponential linear units. The

output layer represents the result of the model. Each layer

is composed of multiple parallel neurons (nodes) that are

components of information processing and are weighted

and connected to the next layer of nodes [53].

No standard method exists for building network archi-

tecture. Consequently, the number of hidden layers and

neurons is established via trial and error. One of the key

objectives of the network training procedure is to discover

the optimal number of iterations (epochs) that yield the

lowest RMSE and closest R-value to one. The designed

ANN was trained and tested for different hidden layers to

find the best network structure based on how well the

predicted CS of GPC and the actual CS of the collected

data fit together. To train the developed ANN, the acquired

dataset (a total of 205 data) was separated into two sec-

tions. Approximately 70% of the obtained data was utilized

for training the network as trained data. The dataset was

tested using 30% of the total data [54]. The ANN structure

with one hidden layer, 6 neurons and a hyperbolic tangent

transfer function was found to be the best-trained network

with the highest R and the lowest RMSE. Equations (4), (5)

and (6) reveal the ANN model’s general equations [55].

From linear node 0:

CS ¼ Thresholdþ Node1

1þ e�B1

� �
þ Node2

1þ e�B2

� �
þ . . .

þ Noden

1þ e�Bn

� �
ð4Þ

From sigmoid node 1:

B1 ¼ Thresholdþ R Attribute � Variableð Þ ð5Þ

From sigmoid node 2:

B2 ¼ Thresholdþ R Attribute � Variableð Þ ð6Þ

5.5 M5P-tree model (M5P)

The M5 algorithm was utilized to construct and expand the

M5P algorithm. The M5P algorithm, unlike other decision

tree algorithms, mixes a typical linear regression model

with the nodes of a decision tree. It is possible to store

linear models that forecast the studied object at the tree

nodes. The M5P algorithm is, therefore, a model of seg-

mented linear functions that transforms classification into

functional optimization. M5P is an algorithm for the

numerical prediction that has broad application potential

and many advantages, such as high efficiency and resi-

lience. The M5P supports binary, integer, nominal and

missing attribute values [56].

By using this learner approach, the linear regression

functions are inserted at the terminal nodes. A multivariate

linear regression model is assigned to the subspace by

classifying all datasets into various subspaces. The M5P-

tree technique is capable of handling jobs with a high

number of dimensions and acts on continuous class issues

rather than discrete segments. It provides the produced

information of each linear model component used to esti-

mate the nonlinear correlation between the datasets. The

information regarding the M5-tree model’s division criteria

is obtained by calculating error at each node. Errors are

analyzed using the standard deviation of the class entering

that node at each node. At each node, the attribute that

maximizes the decrease of estimated error is used to

evaluate every task that the node does. This partition of the

M5P tree will result in the generation of a huge treelike

structure, which will lead to overfitting. The massive tree is

pruned in the subsequent stage, and linear regression

functions restore the cut subtrees [45]. The M5P-tree model

has the same general equation form as the linear regression

equation, as seen in Eq. (7).

CS ¼ b1 þ b2
l

b

� �
þ b3 bð Þ þ b4 FAð Þ þ b5 CAð Þ þ b6 SHð Þ

þ b7 SSð Þ þ b8 Mð Þ þ b9
SS

SH

� �
þ b10 NSð Þ þ b11 Tð Þ

þ b12 Að Þ
ð7Þ

where the descriptions of all of the variables in this Eq. (7)

were provided earlier.

6 Model efficiencies

To rate and evaluate the accuracy of the presented models,

several performance statistics techniques including R,

RMSE, SI and OBJ, using the following equations were

utilized:
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R2 ¼
Pp

p¼1 yp � y
� �

xp � x0
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPp
p¼1 yp � y0
� �2h i Pp

p¼1 xp � x0
� �2h ir

0
BB@

1
CCA

2

ð8Þ

R ¼
ffiffiffi
R

2
p

ð9Þ

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPp
p¼1 xp � yp
� �2
n

s
ð10Þ

SI ¼ RMSE

y0
ð11Þ

OBJ ¼ ntr
nall

� RMSEtr þMAEtr

R2
tr þ 1

� �

þ ntst
nall

� RMSEtst þMAEtst

R2
tst þ 1

� �
ð12Þ

where xp and yp are estimated and tested CS values, y0 and
x0 are averages of experimentally tested and the estimated

values from the models, respectively. tr and tst are referred

to like the training and testing datasets, respectively, and

n is the number of datasets. Zero is the optimal value for all

other evaluation parameters except for the R value. How-

ever, one is the highest benefit for R. When it comes to the

SI parameter, a model has bad performance when it is[

0.3, acceptable performance when it is 0.2 SI 0.3, excel-

lent performance when it is 0.1 SI 0.2 and great perfor-

mance when it is 0.1 SI 0.1 [57]. Furthermore, the OBJ

parameter was employed as a performance measurement

parameter in Eq. (12) to measure the efficiency of the

suggested models.

7 Results and analysis

7.1 LR model

This model’s output demonstrated that the l/b and SS/SH

parameters had a bigger influence on the CS of GPC than

any other factors. This result was supported by experi-

mental efforts published in the scientific literature [58].

This model’s output is Eq. (13) weighted by each model

parameter. The weighting of each parameter on the CS of

GPC mixtures, including NS was determined by optimizing

the sum of error squares and the least square approach,

which were implemented in an Excel program using Solver

to calculate the optimum answer for the equation in one

cell called the objective cell. This worksheet object cell

Fig. 4 Comparison between

tested and predicted CS of GPC

mixtures modified with NS

using LR model for training and

testing datasets
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was bound by the values of the cells containing other

equations [46].

CS ¼115:2� 84:5
l

b

� �
þ 0:0559 Bð Þ � 0:0165 FAð Þ

þ 0:01600 CAð Þ � 0:3870 SHð Þ

þ 0:1589 SSð Þ � 2:839 Mð Þ � 18:50
SS

SH

� �

� 0:1992 NSð Þ þ 0:1197 Tð Þ
þ 0:2892 Að Þ

ð13Þ

Figure 4 depicts the relationship between estimated and

real CS of GPC mixtures incorporated nS for training and

testing datasets. Moreover, this model was evaluated by

some statistical assessment tools, and it was observed that

the R (Fig. 5a) and RMSE (Fig. 5b) for the training data-

sets were equal to 0.895 and 7.861 MPa, respectively.

Moreover, as illustrated in Figs. 6 and 7, the other statis-

tical criteria like OBJ and SI were 7.91 MPa and 0.217,

respectively. Finally, utilizing the training and testing

datasets, normalized predicted CS/actual CS versus the

number of datasets for all the models is shown in Fig. 8.

The application of this model is straightforward, the only

limitation is the lower capability to predict the CS with a

higher percentage of errors compared to other models.

7.2 MEP model

Figure 9 displays the correlations between the actual and

predicted CS of GPC mixtures modified with NS for the

training and testing datasets. The graph displayed error

lines ranging from ± 25% for training and testing datasets

with R and RMSE values of 0.948 and 5.64 MPa for

training datasets and 0.945 and 5.68 MPa for testing

datasets. The MEP modeling result was decoded to get

Eq. (14) [59], which can be utilized to estimate the CS of

GPC modified with NS.

Fig. 6 Comparing the OBJ performance parameter of different

developed models

Fig. 7 Comparing the SI performance parameter of different devel-

oped models

Fig. 8 CS of GPC mixes

residual error diagram utilizing

entire datasets for all models
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CS ¼ c1 � c2 �
c3
c4

ð14Þ

c1 ¼

b� b�h
eþ k

gþg

þ 2� f
j
gþkð Þ� 4gþð Þ

eþ k
2g

þ j
gþkþd

b

0
B@

1
CAþ 4g

0
B@

1
CA

gþ c
fþb

ð14� 1Þ

c2 ¼
4g� j

k
2g � 4gþ e

þ i

k þ j
g þ k

 !
þ

j
g þ k
� �

� 4gð Þ

eþ k
2g þ

j
g þ k þ d

b

� h

ð14� 2Þ

c3 ¼
eþ k

2g þ

j
gþkþ4g�j

j
gþkþ4g�j� j

gþkþd
bð Þ

j
gþkþ4g�j� j

gþkþd
bð Þ

4g
ð14� 3Þ

c4 ¼
4g� j

k
2g � 4gð Þ þ e

 !
� c

g � k
2g � 4gð Þ
� �

0
@

1
Aþ a

ð14� 4Þ

where a = l/b, e = SH, i = NS, b = B, f = SS, j = T,

c = FA, g = M, k = A, d = CA, h = SS/SH.

Like the LR model, this model was also assessed by

some statistical criteria. The OBJ and SI were equal to

5.44 MPa and 0.156, respectively, as illustrated in Figs. 6

and 7. Lastly, utilizing the training and testing datasets,

normalized predicted CS/actual CS versus the number of

datasets for all the models is shown in Fig. 8. While this

model has good efficiency to predict the CS of GPC

modified with NS, its equations are somewhat lengthy and

need more calculation procedures.

7.3 FQ model

Equation (15) is the output of the FQ model with various

variable parameters. The most influential independent

factors on the CS of the geopolymer concrete mixtures

altered with NS in the FQ model were binder content, the

SS amount, the age of the specimens and the curing tem-

peratures, which are consistent with previous experimental

results [60].

Using training and testing datasets, the expected and

measured CS correlations for the GPC mixtures adjusted

with NS are illustrated in Fig. 10. In addition, similar to

past models, this model was evaluated using testing data to

establish its applicability to variables not included in the

Fig. 9 Comparison between

actual and predicted CS of GPC

mixtures modified with NS

using MEP model for traing and

testing datasets
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model data (training data). The results show that by plug-

ging the independent variables into the constructed equa-

tion, this model can accurately predict the CS of GPC. This

model was assessed using certain statistical tools, and the

values of R and RMSE were found to be 0.972 and

4.17 MPa, respectively, for the training datasets and 0.95

and 5.667 MPa, respectively, for the testing datasets. In

addition, as shown in Figs. 6 and 7, the values of other

statistical assessment methods such as OBJ and SI were

found to be 4.25 MPa and 0.115, respectively. Finally, the

normalized predicted CS/actual CS versus the number of

datasets for all models was examined using the training and

testing datasets, as shown in Fig. 8. The only limitation of

the current model is its lengthy equation, which can be

easily overcome by training the equation in any software

such as excel program.

CS ¼� 0:0004
l

b

� �
þ 1:483 Bð Þ � 1:2278 FAð Þ þ 0:2606 CAð Þ þ 0:0096 SHð Þ þ 0:3215 SSð Þ

� 0:0088 Mð Þ � 0:0117
SS

SH

� �
þ 0:0154 NSð Þ þ 0:0238 Tð Þ

� 0:0181 Að Þ � 0:0001
l

b

� �2

�0:0009 Bð Þ2þ0:0004 FAð Þ2�0:0001 CAð Þ2

� 0:00005 SHð Þ2�0:00004 SSð Þ2�0:0118 Mð Þ2�0:1756
SS

SH

� �2

� 0:0018 NSð Þ2�0:0389 Tð Þ2�0:0026 Að Þ2�1:6016
l

b

� �
Bð Þ þ 1:0703

l

b

� �
FAð Þ

� 0:0002
l

b

� �
CAð Þ � 0:0936

l

b

� �
SHð Þ � 0:0021

l

b

� �
SSð Þ � 0:0085

l

b

� �
Mð Þ

� 0:0067
l

b

� �
SS

SH

� �
þ 0:0048

l

b

� �
NSð Þ � 0:0011

l

b

� �
Tð Þ þ 0:0027

l

b

� �
Að Þ

þ 0:0001 Bð Þ FAð Þ þ 0:0001 Bð Þ CAð Þ � 0:00002 Bð Þ SHð Þ þ 0:00001 Bð Þ SSð Þ

þ 0:00003 Bð Þ Mð Þ � 0:00007 Bð Þ SS

SH

� �
þ 0:0019 Bð Þ NSð Þ � 0:00003 Bð Þ Tð Þ

þ 0:00003 Bð Þ Að Þ þ 0:00001 FAð Þ CAð Þ � 0:00017 FAð Þ SHð Þ � 0:0005 FAð Þ SSð Þ

þ 0:0008 FAð Þ Mð Þ þ 0:00006 FAð Þ SS

SH

� �
þ 0:0001 FAð Þ NSð Þ þ 0:001 FAð Þ Tð Þ

þ 0:00006 FAð Þ Að Þ þ 0:000008 CAð Þ SHð Þ � 0:00005 CAð Þ SSð Þ � 0:0001 CAð Þ Mð Þ

þ 0:00001 CAð Þ SS

SH

� �
� 0:00007 CAð Þ NSð Þ � 0:00009 CAð Þ Tð Þ þ 0:0004 CAð Þ Að Þ

þ 0:0015 SHð Þ SSð Þ � 0:0793 SHð Þ Mð Þ þ 0:00001 SHð Þ SS

SH

� �

þ 0:000017 SHð Þ NSð Þ þ 0:0107 SHð Þ Tð Þ þ 0:00002 SHð Þ Að Þ þ 0:00016 SSð Þ Mð Þ

þ 0:00006 SSð Þ SS

SH

� �
þ 0:000039 SSð Þ NSð Þ þ 0:0001 SSð Þ Tð Þ þ 0:00068 SSð Þ Að Þ

� 1:2328 Mð Þ SS

SH

� �
� 0:0351 Mð Þ NSð Þ þ 0:1313 Mð Þ Tð Þ þ 0:0016 Mð Þ Að Þ

� 0:02468
SS

SH

� �
NSð Þ þ 0:2652

SS

SH

� �
Tð Þ � 0:02259

SS

SH

� �
Að Þ � 0:0071 NSð Þ Tð Þ

þ 0:0041 NSð Þ Að Þ � 0:0003 Tð Þ Að Þ

ð15Þ
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7.4 ANN model

In this study, the authors applied various numbers of the

hidden layer, neurons, momentum, learning rate and iter-

ation to maximize the ANN’s performance, and it was

discovered that when the ANN has one hidden layer, 6

neurons (as depicted in Fig. 11), 0.2 momentum, 0.1

learning rate and 50,000 iterations, the CS values of GPC

mixtures modified with NS are most accurately predicted.

The output of this proposed model is reported as shown in

Eq. (16), while the results of weights and biases are shown

in the matrix below.

The ANN model was equipped with the training data-

sets, accompanied by testing datasets to predict the CS

values for the correct input parameters. The comparison

between estimated and experimentally tested CS of GPC

mixtures modified with NS for training and testing datasets

is presented in Fig. 12. The consumed data have a ± 15%

error line for the training and testing datasets, which is

better than the other developed models. Furthermore, this

model has a better performance than other models in pre-

dicting the CS of the GPC based on the value of OBJ and

SI illustrated in Figs. 6 and 7. Also, the value of R = 0.994

and RMSE = 1.935 MPa for the training datasets, and the

R-value for the testing data was equal to 0.968, while the

RMSE was equal to 4.69 MPa. Figure 8 depicts the rela-

tionship between the normalized predicted CS/actual CS

and the number of datasets for all models utilizing the

training and testing datasets. While the ANN-based models

are very efficient to be used in the construction sector, the

only significant limitation is the black-box nature of the

model, in which the user can only see the outputs of the

model after using different trials.

CS ¼ 2:016

1þ e�a1
� 2:058

1þ e�a2
� 8:085

1þ e�a3
þ 1:004

1þ e�a4

þ 1:558

1þ e�a5
� 1:672

1þ e�a6
� 0:553 ð16Þ

Fig. 10 Comparison between

actual and predicted CS of GPC

mixtures modified with NS

using FQ model for traing and

testing datasets
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Fig. 11 Optimal network structures of the ANN model

Fig. 12 Comparison between

actual and predicted CS of GPC

mixtures modofoed with NS

using ANN model for traing and

testing datasets
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Fig. 13 Comparison between

tested and predicted CS of GPC

mixtures modified with NS

using M5P-tree model for traing

and testing datasets

Fig. 14 M5P-tree Pruned model tree
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7.5 M5P model

Figure 13 depicts the expected and observed CS of GPC

mixtures adjusted with NS for the entire dataset. Similar to

the other models, it was revealed that the l/b, SH content

and M of the GPC mixtures, including NS have the largest

influence on the CS, which coincides with previous

experimental findings [60, 61]. Figure 14 shows the tree-

shaped branch correlations. Also, the model (in Eq. (17))

parameters are summarized in Table 4, and the model

variables will be selected based on the linear tree regis-

tration function.

CS ¼ b1 þ b2
l

b

� �
þ b3 bð Þ þ b4 FAð Þ þ b5 CAð Þ þ b6 SHð Þ

þ b7 SSð Þ þ b8 Mð Þ þ b9
SS

SH

� �
þ b10 NSð Þ þ b11 Tð Þ

þ b12 Að Þ
ð17Þ

For all of the training and testing datasets, there is

a ± 25% error line. Furthermore, this model’s R, RMSE,

OBJ and SI evaluation criteria are 0.955, 5.29 MPa,

5.42 MPa and 0.146, respectively, for the training datasets.

This model is similar to the LR model regarding its

application. The user can easily input its variables in the

equation proposed above to predict the CS of GPC modi-

fied with NS.

Table 4 M5P-tree model parameters (Eq. (17))

LM CS ¼ b1 þ b2
l
b

� �
þ b3 bð Þ þ b4 FAð Þ þ b5 CAð Þ þ b6 SHð Þ þ b7 SSð Þ þ b8 Mð Þ þ b9

SS
SH

� �
þ b10 NSð Þ þ b11 Tð Þ þ b12 Að Þ

b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 b11

1 1.012 78.015 0.062 0.005 0.002 - 0.129 - 0.056 - 1.035 - 0.139 - 0.102 0.230

2 16.297 78.015 0.062 - 0.004 0.002 - 0.129 - 0.035 - 1.303 - 0.167 - 0.102 0.151

3 52.454 0.763 0.031 0.002 0.002 - 0.129 - 0.028 - 1.413 - 0.100 - 0.029 0.151

4 33.934 31.271 0.053 0.001 0.002 - 0.129 - 0.031 - 1.645 - 0.126 0.010 0.151

5 - 3.694 165.782 0.099 - 0.024 0.002 - 0.037 - 0.174 - 0.453 - 0.033 - 0.216 0.110

6 0.011 165.782 0.108 - 0.027 0.002 - 0.227 - 0.174 - 0.453 0.109 - 0.216 0.110

7 - 1.094 165.782 0.108 - 0.027 0.002 - 0.227 - 0.174 - 0.453 0.174 - 0.216 0.110

8 - 37.214 34.657 0.121 0.008 - 0.015 - 0.079 - 0.021 - 0.428 - 0.113 0.265 0.933

9 - 52.974 34.657 0.169 0.008 - 0.015 - 0.079 - 0.021 - 0.428 - 0.113 0.231 1.226

10 - 42.901 34.657 0.147 0.008 - 0.015 - 0.079 - 0.021 - 0.428 - 0.113 0.231 0.907

11 - 49.467 34.657 0.158 0.008 - 0.015 - 0.079 - 0.021 - 0.428 - 0.113 0.223 0.842

12 - 10.520 34.657 0.051 0.020 - 0.015 - 0.049 - 0.021 - 0.428 - 0.136 0.170 0.572

13 90.862 56.318 - 0.014 – - 0.069 - 0.149 - 0.021 - 0.428 - 0.129 0.178 0.250

� 0:144 � 0:390 2:053 0:207 � 1:147 1:265 0:447 �1:832 1:663 0:992 0:329
0:999 0:675 2:760 5:033 2:172 0:803 � 1:246 �1:846 �0:485 6:039 2:975
1:807 2:558 3:832 4:165 3:128 �0:689 �1:106 1:903 0:817 �19:790 �20:129
2:052 3:892 0:122 3:756 � 0:502 0:365 � 3:831 �0:803 �0:115 �0:060 �5:519
� 0:514 � 1:050 � 3:541 5:953 � 0:183 0:415 �4:354 �4:272 �0:223 7:500 2:440
� 0:818 1:954 5:421 5:098 3:475 1:076 3:667 2:731 3:119 � 1:419 �3:341

											

											
�

											

											

l=bð Þ
ðBÞ
ðFAÞ
ðCAÞ
ðSHÞ
ðSSÞ
ðMÞ
ðSS=SHÞ
ðNSÞ
ðTÞ
ðAÞ
1

																								

																								

¼

a1
a2
a3
a4
a5
a6
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8 Model assessments

As previously stated, the effectiveness of the created

models was assessed using four statistical tools: RMSE, SI,

OBJ and R. In comparison with the LR, MEP, FQ and M5P

models, the ANN model has a higher R, lower RMSE and

lower OBJ and SI values.

The proposed models are compared based on the con-

nection between predicted and actual CS for the training

and testing datasets; the ANN model exhibited less vari-

ance; and the plotted data are close to the Y = X line,

indicating a small error in projected values. Figure 15 also

compares model predictions of the CS of GPC based on

testing datasets. Figure 8 depicts the normalized predicted

CS/actual CS versus the number of datasets for each model,

while Fig. 16 illustrates the scatter interval for residual

errors of the developed models. Figures (8, 15 and 16)

show that the ANN model’s predicted and actual com-

pressive strength values are close, indicating that the ANN

model performs better than other models.

Fig. 15 Compression between

model predictions of CS of GPC

mixtures incorporated nS using

testing datasets

MEP ANN FQ LR M5P-tree

-20

-10

0

10

20

30

R
an

ge

Fig. 16 Scatter interval for residual errors of the developed models
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Fig. 17 Taylor diagram for comparing the developed models based on

standard deviation and correlation coefficient for testing datasets
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Figure 6 shows the OBJ values for all proposed models.

The values for OBJ for LR, MEP, FQ, ANN and M5P are

7.91, 5.44, 4.25, 2.48 and 5.42, correspondingly. Compared

to the LR, MEP, FQ and M5P models, the OBJ value of the

ANN model is 219%, 119%, 71.4% and 118.5% lower,

which emphasizes that this ANN model is superior for

forecasting the compressive strength of GPC mixes.

Figure 7 presents the SI assessment parameter values for

the proposed models during the training and testing phases.

Based on this statistical evaluation tool, the accuracy of the

ANN model for the training dataset was excellent, whereas

the accuracy of the MEP, FQ and M5P models are in a

good situation, while the performance of the LR model is

in the fair condition; these results also demonstrated that

the ANN model is more effective and performed better

than LR, MEP, FQ and M5P for predicting the CS of GPC

modified with NS.

In addition, as depicted in Fig. 17, Taylor diagrams are a

graphical depiction of the degree to which a pattern (or

group of patterns) matches observations. Using their cor-

relation, centered root-mean-square difference and varia-

tion amplitude, the similarity between the two patterns is

determined (represented by their standard deviations).

These diagrams are useful for evaluating multiple facets of

complex models and comparing the relative competence of

multiple models.

9 Sensitivity analysis

For the constructed models, a sensitivity analysis was

undertaken to identify and examine the most impacting

variable that affects the CS [25, 46]. The model’s reaction

to changes in the input values provides insight into the

model’s performance and, therefore, its potential to reflect

reality. A single variable was retrieved from the training

data, and the model was trained; the RMSE was also

reported. The deleted variable in the trail with the highest

RMSE has the most impact on CS prediction. The pro-

portion of model parameter contribution is then calculated.

The sensitivity evaluation result based on ANN and M5P-

tree models is presented in Fig. 18a and b. The results

suggest that the concrete ages are the most important and

influential variable for CS prediction.

10 Conclusions

Distinct soft computing techniques can be utilized to con-

struct accurate models; in this study, four different

approaches were used to establish a trustworthy model for

the prediction of compressive strength of GPC modified

with NS; the key conclusions are as follows:

1. According to the data obtained, the largest amount of

NS utilized by scholars in GPC mixtures was 60 kg/

m3, while the average amount used was 11.65 kg/m3,

which is approximately 3% of the amount of binder.

2. According to statistical evaluation tools, the ANN

model predicts compressive strength more accurately

than the LR, MEP, FQ and M5P-tree models. The

projected compressive strength is less variable than the

actual compressive strength.

3. Based on the results of the scatter index (SI) value, the

performance of the ANN model is excellent, while the

accuracy of the MEP, FQ and M5P is good; however,

the LR model has a fair condition to predict the

compressive strength of GPC modified with nano-

silica.

4. The objective value (OBJ) for the ANN model is

2.48 MPa, which is 219%, 119%, 71.4% and 118.5%

lower than the OBJ value of the LR, MEP, FQ andFig. 18 Contribution of the model parameters in predicting the CS of

GPC mixtures based on: a: M5P-tree model; b: ANN model
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M5P-tree models, respectively, which improves the

higher efficiency of the ANN model compared to the

other models.

5. ANN, FQ, M5P, MEP and LR are the proposed models

in ascending order of suitability and performance

superiority for predicting the compressive strength of

geopolymer concrete modified with nano-silica.

6. Depending on the outcome of the sensitivity analysis,

the GPC specimen ages of the sample is the most

relevant parameter on the compressive strength of GPC

modified with nano-silica.

7. For estimating the CS of GPC mixtures modified by

NS, a one-layer ANN structure network with six

neurons is the optimal model combination.

8. Results indicate that the ratio of alkaline solution to the

binder, the ratio of sodium silicate to sodium hydrox-

ide, the molarity of sodium hydroxide and the ages of

GPC specimens are the most influential variable

parameters for predicting the compressive strength of

GPC mixes modified with NS.

9. To diminish the limitations of the proposed models, the

users can efficiently use the equations and models

proposed with the same variables used in this study to

train the models.

11 Recommendations

Based on the work that has been carried out in this study on

the use of different modeling techniques to forecast the

compressive strength of geopolymer concrete modified

with nano-silica, the scope and gaps for further studies

have been discussed and highlighted in the following:

(a) Use of some modern techniques like dimensional

analysis to reduce the number of input variable

parameters.

(b) Developing empirical models to predict the com-

pressive strength of geopolymer concrete composites

by considering other types of nano-materials like

nano-alumina and nano-clay.

(c) Using these model techniques to propose empirical

equations for other mechanical properties of

geopolymer concrete composites like splitting tensile

strength, flexural strength and modulus of elasticity.

(d) Conducting laboratory experiments to validate the

developed models

(e) Take benefits from these models and other intelli-

gence techniques to standardize the mix design of

geopolymer concrete composites just like traditional

concrete.
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