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Abstract
Human Activity Recognition (HAR) is a crucial research focus in the body area networks and pervasive computing

domains. The goal of HAR is to examine activities from raw sensor data, video sequences, or even images. It aims to

classify input data correctly into its underlying category. In the current study, machine and deep learning approaches along

with different traditional dimensionality reduction and TDA feature extraction techniques are suggested to solve the HAR

problem. Two public datasets (i.e., WISDM and UCI-HAR) are used to conduct the experiments. Different data balancing

techniques are utilized to deal with the problem of imbalanced data. Additionally, a sampling mechanism with two

overlapping percentages (i.e., 0% and 50%) is applied to each dataset to retrieve four balanced datasets. Five traditional

dimensionality reduction techniques in addition to the Topological Data Analysis (TDA) are utilized. Seven machine

learning (ML) algorithms are used to perform HAR where six of them are ensemble classifiers. In addition to that, 1D-

CNN, BiLSTM, and GRU deep learning approaches are utilized. Three categories of experiments (i.e., ML with traditional

features, ML with TDA, and DL) are applied. For the first category experiments, the best-reported scores concerning the

WISDM dataset are accuracy and WSM of 99.10% and 86.61%, respectively. When concerning the UCI-HAR dataset, the

best-reported scores are accuracy and WSM of 100% and 100%, respectively. For the second category experiments, the

best-reported scores concerning the WISDM dataset are accuracy and WSM of 95.34% and 89.62%, respectively. When

concerning the UCI-HAR dataset, the best-reported scores are accuracy and WSM of 96.70% and 92.57%, respectively.

For the third category experiments, the best-reported scores concerning the WISDM dataset are accuracy and WSM of

99.90% and 99.76%, respectively. When concerning the UCI-HAR dataset, the best-reported scores are accuracy and WSM

of 100% and 100%, respectively. After concluding the final results, the suggested approach is compared with 6 related

studies utilizing the same dataset(s).

Keywords Deep learning (DL) � Human activity recognition (HAR) � Machine learning (ML) � Oversampling �
Topological data analysis (TDA)
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AdaBoost Adaptive boosting

HGB Histogram-based gradient boosting

RF Random forest

DT Decision tree

ETs Extra trees

ADASYN Adaptive synthetic

SOTA State-of-the-art

GS Grid search

GBDT Gradient boosting decision tree

1 Introduction

Recently, artificial intelligence (AI) has been widely used

in several applications (e.g., cancer recognition [1, 2],

burnout analysis [3], exam correction [4, 5], diseases

diagnosis [6–8], sign language interpretation [9], natural

language processing [10], and pattern recognition [11]). AI

accelerated development has paved the way for human

activity recognition (HAR). It is concerned with using

sensor data to recognize a specific action (or movement) of

a person. It has become one of the broadest research topics

because of the sensors and accelerometers availability, less

power consumption, and low cost. It has been widely

employed in smart home [12], medical care [13, 14], image

analysis [15], video surveillance [16], military defense

[17], sleep state detection [18], and behavior monitoring

[19, 20]. In HAR, movements are indoors and outdoors-

performed activities (e.g., talking, walking, running, sit-

ting, and standing). Additionally, they can be more focused

activities such as the activities achieved in a kitchen or on a

factory floor [21]. In short, the fundamental task of HAR is

to choose a suitable sensor and use it to observe and cap-

ture the activities of the user [22] as shown in Fig. 1.

Recently, HAR can be classified into the sensor- and

visual-based recognition [23, 24]. HAR sensor-based data

has become a research focusing-field because of the wide

usage of wearable and portable sensors in daily life. The

HAR sensors mainly include geomagnetic [25], accelera-

tion [26, 27], and gyroscope [28].

Historically, it required custom hardware and was costly

to gather and store data from sensors for activity recogni-

tion. Nowadays, smartphones, smartwatches, and other

personal tracking devices, utilized for health and fitness

monitoring, are inexpensive and omnipresent. As a result,

sensor data collected from these devices are more common

and inexpensive to collect, so, the activity recognition

problem become a wide study field. Smartwatches have

been beneficial in a broad range of healthcare applications,

especially, the ones that are concentrating on health and

fitness monitoring [29, 30]. Compared to other smart

devices, smartwatches are truly wearable without inter-

rupting the daily lives of the user [31]. The growth of

smartwatches in the healthcare field has facilitated people

to monitor their fitness and health [32]. Unfortunately,

wearable sensors-gathered data are time-series data that are

complex, noisy, and imbalanced [33]. Hence, HAR is a

complex procedure, which contains the following steps:

pre-process and segment the time series data, extract the

data features, and then classify them by utilizing a classi-

fication algorithm.

Manual features extraction for HAR, based on classical

machine learning (ML) algorithms, is required [34].

Dimensionality reduction and feature extraction methods

are required for ML algorithms to achieve better perfor-

mance. These methods aspire to find the most informa-

tional and compacted set of features by generating new

ones from the existing features. They represent the most

crucial part of classification because the performance is

decreased significantly if the features are not suitable.

Creating classification models that can classify the less

common activities is a significant challenge. Classification

models designed to classify imbalanced data are biased to

learn about the more frequently occurring classes. This

type of bias happens as the models learn better from classes

containing more data. Different methods were proposed to

deal with the class imbalance problem and these methods

can be split into two main approaches: data-level and

classifier-level methods [35]. Traditional ML methods that

have been used to perform the HAR task include Naive

Bayes and support vector machines (SVM) [36]. Recently,

the evolution of deep learning has resulted in being utilized

widely in HAR [37]. It learns and extracts features auto-

matically without the complex steps of manual feature

extraction, hence, the workload of feature engineering is

significantly decreased [38, 39]. Deep Neural Networks

such as Recurrent Neural Networks and Convolutional

Neural Networks (CNN) have gained significant perfor-

mance across different applications and outperformedFig. 1 The process of human activity recognition (HAR)
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many traditional methods. Lately, Long Short-Term

Memory (LSTM) and CNN provide state-of-the-art results

on HAR tasks with no or little feature engineering [40].

1.1 Research gap

In the HAR research field, a high-quality benchmark

dataset for HAR methods is missing. Most of the publically

available datasets suffer from limited or imbalanced data

problems [33]. Most of the observed activities are sim-

plistic and do not cover the entirety of human actions.

Integrating deep architectures for solving HAR using

context information can be difficult [41]. Although these

methods deliver state-of-the-art performance on benchmark

datasets, they are still overconfident in their predictions.

1.2 Research objectives

The major objective of the current study is to suggest an

approach that is used for Human Activity Recognition

(HAR). The objective is to suggest an analysis of machine

and deep learning algorithms to deal with HAR. Addi-

tionally, extracting the most relevant features from raw

data and reducing their dimensionality in an efficient

manner are two challenging tasks.

1.3 Research contributions

The contributions of the current study can be summarized

as follows:

– Performing human activity recognition tasks using a

detailed comparative analysis of a variety of machine

and deep learning algorithms to determine the optimal

modal.

– Analyzing balancing and sampling techniques to deal

with imbalanced data, hence, determining the best

approaches.

– Reporting state-of-the-art performance metrics and

comparing them with different related studies and

approaches.

1.4 Paper organization

The rest of the current study is organized as follows: Sect.

2 reviews and summarizes the related literature. In Sect. 3,

the background is discussed. It represents imbalanced data

and oversampling techniques, features engineering and

dimensionality reduction, Topological Data Analysis

(TDA), feature scaling, and classification and optimization.

In Sect. 4, a discussion about the methodology, datasets

acquisition, data pre-processing phase, features engineering

and dimensionality reduction techniques, ML classification

and optimization phase, and DL classification phase. Sec-

tion 5 presents the details and discussions of the experi-

ments and results. Section 6 presents the study limitations

and finally, Sect. 7 conclude the paper and present the

future work.

2 Literature review

Classical ML algorithms demand extensive domain

expertise and feature engineering to transform raw sensor

data into features, from which a classifier identifies activ-

ities (e.g., SVM [42] and random forest [43]). In shi et al.

[44], an algorithm based on the standard deviation trend

analysis was utilized to recognize transition activity. For

basic activity, SVM was mainly used for recognition. For

transition activity, the standard deviation value of data was

analyzed to evaluate the trend of the flow of the overall

data to recognize the activity. The achieved accuracy by

their proposed model was over 80% on real data.

In Garcia et. al. [45], their placement-, orientation-, and

subject-independent HAR dataset was introduced. An SVM

algorithm was presented to perform the experiments on the

dataset and accuracy of 74.39% was obtained. Their pro-

posed model was able to tighten the gap between the real-

life application and a model. Ahmed et al. [46] have pro-

posed a hybrid method that contains a filter and a wrapper

for the feature selection process. The process employed a

sequential floating forward search to extract the features

that would be fed to a multi-class SVM. Their model was

validated on a public benchmark dataset [47] and an

average accuracy of 98.13% was delivered. Their proposed

system provided acceptable activity recognition and oper-

ated efficiently with limited hardware resources.

Deep learning algorithms such as recurrent neural net-

works [48] and convolutional neural networks [49] conduct

automatic feature extraction and classification. They have

delivered promising results in different sensor-based HAR

scenarios [50]. Barut et al. [51] used a single wearable

sensor to create a new dataset and utilized a multi-task

LSTM model for intensity evaluation and activity recog-

nition to deliver better outcomes. Accuracy of 97.76% and

F1-score of 83.43% were obtained. Wang and Liu [52]

suggested a Hierarchical-LSTM based on the LSTM for

human activity recognition. Three public UCI datasets

were used to train and evaluate their model and accuracy of

99.15% was achieved.

Furthermore, convolutional neural networks are used for

HAR tasks for temporal features extraction and to produce

significant performance advancement [53–55]. Zhang et al.

[34] utilized the encoder and decoder operations of the

U-Net architecture in creating their proposed HAR

framework. Rather than sliding window labeling, dense
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labeling was used to provide a single label per sample in

the time series data. Additionally, to enhance the perfor-

mance of the dense prediction outcome, a post-correction

algorithm was utilized. Four datasets, including the

WISDM dataset [56], UCI HAPT dataset (HAPT) [47],

UCI OPPORTUNITY Gesture dataset (OPP Gesture) [57],

and the dataset of self-collected Sanitation was used to

conduct experiments. For the OPP Gesture dataset, an

accuracy of 94.78% was obtained by their U-Net_PC

model. Teng et al. [58] used the local loss function to

achieve the layer-wise training of a convolution neural

network for HAR. Their method was evaluated on five

public datasets, namely UCI HAR dataset [42], Opportu-

nity dataset [59], UniMib-SHAR dataset [60], PAMAP2

dataset [61], and WISDM dataset [36]. The reported

accuracy and F1-score were 98.82% and 98.81%,

respectively.

To extract powerful features from raw sensor-based data

automatically and effectively, Ronao and Cho [62] pro-

posed a model formed of alternating convolution and

pooling layers. To predict human activities, the extracted

features from the previous layers were passed to the fully

connected and SoftMax layers. The dataset has been col-

lected from 30 volunteer subjects and the dataset proposed

in [63] was used to train and evaluate their model, reaching

an overall performance of 94.79% on the dataset with raw

sensor data, and 95.75% with further information of tem-

poral fast Fourier transform of the HAR dataset. Bianchi

et al. [64] suggested a CNN model formed of four con-

volution layers and only one fully connected layer for HAR

and performed well on their small training set. Their sys-

tem was designed to recognize nine different activities with

an accuracy of 97%.

A different design paradigm that was very prevalent

among the community of activity recognition was to create

hybrid models [50, 65]. In Ordonez and Roggen [66], a DL

architecture using a combination of convolutional and

recurrent neural networks was proposed to conduct HAR

from wearable sensors. Two public datasets, OPPORTU-

NITY [59] and Skoda [67] were used to evaluate their

proposed approach. For the Skoda dataset, an F1-score of

95.8% was obtained. In Xia et al. [68], two LSTM layers

and cascading convolutional layers were employed to

extract features from time-series data. To maintain the

classification performance while reducing the model

parameters, a global average pooling layer was utilized

rather than the fully connected layer. Three public datasets,

UCI [47], WISDM [56], and OPPORTUNITY [57, 59]

were used to evaluate the model performance. The overall

accuracy of the model for the UCI-HAR dataset was

95.78%, for the WISDM dataset was 95.85%, and for the

OPPORTUNITY dataset was 92.63%.

Ignatov et al. [69] used CNN and statistical features to

extract features from sensor data. The assembled features

vector was handed to the next layers to identify the activ-

ities. The proposed approach was evaluated on two com-

monly used datasets (i.e., WISDM [56] and UCI [47]). The

reported accuracy and F1-score were 97.63% and 97.62%,

respectively. The results indicated that their presented

model delivered state-of-the-art performance while

demanding no manual feature engineering and low com-

putational cost. In Xu et al. [55], the inception module of

GoogLeNet architecture was explored to extract spatial

features from sensor data.

Furthermore, temporal features obtained using the

recurrent neural network and spatial features were com-

bined. Three benchmark datasets were used to conduct

experiments, OPPORTUNITY dataset [59], PAMAP2

dataset [61], and Smartphone database [70]. For the

OPPORTUNITY dataset, an F-measure of 94.6% was

obtained. Khan and Ahmad [71] proposed a multi-head

attention-based model for HAR. Their framework included

three lightweight convolutional heads, each created using

one-dimensional CNN to extract features from input sensor

data. Their model was induced with attention to strength-

ening the representation ability of CNN. Two publicly

available datasets: WISDM [56] and UCI HAR [47] were

used to conduct ablation experiments and studies and

evaluate the proposed model. The achieved F1-score was

97.20% for the WISDM dataset.

When dealing with HAR data, a problem of imbalanced

data may exist. To tackle the imbalance problem, the most

intuitive path is to re-sample the class with the largest

number of samples as done in Alani et al. [33]. Experi-

ments were done using an extensive sensor-based multi-

modal dataset developed from the Sensor Platform for

Healthcare in a Residential Environment [72]. The results

showed that when using the SMOTE oversampling tech-

nique to correct the class imbalance, CNN-LSTM achieved

the highest classification accuracy of 93.67% followed by

CNN of 93.55%, and LSTM of 92.98%. Grzeszick et al.

[73] used two augmentation techniques, Gaussian noises

perturbation, and interpolation to solve the class imbalance

problem. In their study, a CNN was utilized on the multiple

inertial measurement units sequential data. A dataset

introduced in [74] was used to evaluate the proposed model

and classification accuracy of 73.9% ± 4.6% was obtained.

2.1 Related studies summarization

Table 1 presents a comparison between the related studies

and the current study. The related studies are ordered from

the oldest to the latest.
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Table 1 Comparison between the related studies and the current study

Author(s) Year Methodology No. of

Datasets

ML DL Oversampling Undersampling Optimization TDA Feature

reduction

Results

Ordonez

and

Roggen

[66]

2016 CNN ?

LSTM

2 7 U 7 7 7 7 7 F1-score:

95.8%

Ronao and

Cho [62]

2016 CNN 2 7 U 7 7 7 7 7 Accuracy:

95.75%

Grzeszick

et al.

[73]

2017 IMU-CNN 1 7 U U 7 7 7 7 Accuracy:

73.9% ±

4.6%

Ignatov

et al.

[69]

2018 CNN ?

statistical

features

2 U U 7 7 7 7 7 Accuracy:

97.63% and

F1-score:

97.62%

Bianchi

et al.

[64]

2019 CNN 1 7 U 7 7 7 7 7 Accuracy: 97%

Xu et al.

[55]

2019 InnoHAR

model

3 7 U 7 7 7 7 U F-measure:

94.6%

Zhang

et al.

[34]

2019 U-Net 4 7 U 7 7 7 7 7 Accuracy:

94.78%

Teng et al.

[58]

2020 CNN 5 7 U 7 7 7 7 7 Accuracy and

F1-score are

98.82% and

98.81%

Alani

et al.

[33]

2020 CNN-LSTM 1 7 U U U 7 7 7 accuracy:

93.67%

Shi et. al.

[44]

2020 SVM ?

STD-TA

1 U 7 7 7 7 7 U Accuracy: 80%

Garcia et.

al. [45]

2020 SVM 1 U 7 7 7 7 7 U Accuracy:

74.39%

Ahmed et.

al. [46]

2020 SFFS ?

SVM

1 U 7 7 7 7 7 U Average:

98.13%

Barut et.

al. [51]

2020 Multitask

LSTM

1 7 U 7 7 7 7 7 Accuracy:

97.76% and

F1-score:

83.43%

Wang and

Liu [52]

2020 Hierarchical

deep

LSTM (H-

LSTM)

3 7 U 7 7 7 7 U Accuracy:

99.15%

Xia et al.

[68]

2021 CNN ?

LSTM

3 7 U 7 7 7 7 7 Accuracy:

95.85%

Khan and

Ahmad

[71]

2021 Attention

induced

multi-head

CNN

2 7 U 7 7 7 7 7 F1-score:

97.20%

Current

Study

2022 Section 4 2 U U U 7 U U U Section 5
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3 Background

3.1 Imbalanced data and oversampling
techniques

The imbalance problem appears when one of the target

classes has a small instances number compared to other

classes. Normally, a typical classifier neglects to detect a

minority class due to the little number of class samples.

Newly, there is a significant interest to solve the class

imbalance issue. It considers as a challenging issue that

requires more attention to be resolved by several

researchers [75, 76]. Using resampling techniques to make

the dataset balanced is considered one of the common

procedures. Resampling methods can be utilized either by

oversampling or undersampling the dataset [77]. Under-

sampling can be described as the process of decreasing the

amount of majority target samples (i.e., instances) [78]

such as tomeks’ links [79] and cluster centroids [80].

Oversampling can be achieved by increasing the amount of

minority class samples by repeating some instances or

producing new instances [81].

In the current study, only the oversampling approach is

used. They are summarized as follows:

– Synthetic Minority Oversampling Technique

(SMOTE): In a classic oversampling technique, the

number of data is increased, no further variation or

information is given to the ML model. Chawla et al.

presented SMOTE [82] that operates differently. It

creates synthetic data to overcome the overfitting

problem posed by random oversampling. It utilizes

the K-nearest neighbor algorithm. Initially, it starts by

choosing data randomly from the minority class. Then,

the K-nearest neighbors are set from that data.

Synthetic data would be constructed among the selected

K-nearest neighbor and the random data.

– Synthetic Minority Over-sampling Technique for

Nominal (SMOTEN) is a development of SMOTE

which is used for nominal features proposed by Chawla

et al. [82]. In it, the nearest neighbor is calculated using

a modified version of the Value Difference Metric

[83, 84].

– Borderline-SMOTE is a variation of the SMOTE.

Unlike the SMOTE, it generates synthetic data only

along the decision boundary between the two classes

[85].

– Adaptive Synthetic (ADASYN) is a generalized form

of the SMOTE algorithm. Similar to SMOTE, it aims to

oversample the minority class by generating synthetic

instances for it. When compared to Borderline SMOTE,

it takes a different approach. As Borderline SMOTE

aims to synthesize the data around the decision

boundary of the data, while ADASYN creates synthetic

data considering the data density [86].

– K-means SMOTE is an effective and simple oversam-

pling method that is used to solve class-imbalanced data

based on SMOTE and K-means clustering oversam-

pling. It aims to aid classification by developing

minority class instances in crucial and safe areas of

the input space. This method averts the noise generation

and effectively overcomes the imbalances within and

between classes [87].

– Borderline SMOTE SVM (SVM SMOTE) is another

variation of the Borderline SMOTE [88]. The primary

difference between this technique and the other

SMOTE ones, it incorporates the SVM algorithm to

identify the misclassification instead of using K-nearest

neighbors. In the SVM SMOTE, the support vectors are

used to approximate the borderline area after training

SVMs on the original training set.

3.2 Features engineering and dimensionality
reduction techniques

Feature engineering pipeline is the preprocessing step that

extracts features from raw data and transforms them into

formats that can be ingested by the ML algorithms [4, 89].

It helps the ML algorithms to determine patterns in data

that boost their performance. Feature engineering is an

important task to develop predictive solutions [90] but it is

a challenging and the least well-studied topic in ML and

data-mining [91]. Feature engineering is a manual prob-

lem-specific process performed by ML and domain experts

[92]. In ML, feature engineering consists of four main

steps: feature creation, feature transformation, feature

extraction, and feature selection [93, 94].

– Feature Creation: This step includes specifying the

variables that can be useful in the predictive model. It is

a subjective process that requires human creativity and

intervention. Features are incorporated by multiplica-

tion, addition, and subtraction to construct new derived

features with higher predictive power [95]. Usually,

ML experts combine features in a trial-and-error

manner until the generated features fulfill the expecta-

tions [90, 96]. Using automated feature generation

methods takes a long time to produce an outcome and is

computationally expensive [97, 98].

– Feature Transformation: Feature transformation usu-

ally implies simpler modifications over the features

[99]. Transformation involves manipulating the predic-

tor variables to improve model performance. It is used

to ensure that the variables are on the same scale,

guarantee the flexibility of the model in which a variety

of data can be ingested, make the model easier to
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understand, avoid computational errors, and improve

accuracy. Some of the standard transformations are

binning, rounding, scaling, exponential transformations,

logarithmic transformations, and power functions [93].

– Feature Extraction: These techniques aim to find a

smaller set of new variables in which each is a

combination of the input variables, including the same

information as them. Feature extraction is used to

develop new variables by extracting them from raw

data. It aims to reduce the data volume into a more

suitable set for modeling [100]. These methods include

text analytics, cluster analysis, principal components

analysis, and edge detection algorithms.

– Feature Selection: When applied to the original

dataset, only the most relevant variables are kept.

Feature selection algorithms are used to analyze, judge,

and rank a subset of features from the pool of available

features. Selection is employed to determine which

features are irrelevant and redundant to be removed,

and which are the most useful features for the model

and should be prioritized [101]. These methods can be

divided into four high-level categories: filter (i.e.,

ANOVA, Pearson correlation, variance thresholding),

wrapper (i.e., forward, backward, and stepwise selec-

tion), embedded (i.e., Lasso, Ridge, Decision Tree), and

(4) hybrid methods [102, 103].

3.2.1 Features extraction

In the current work, only feature extraction techniques are

applied to perform dimensionality reduction. These tech-

niques are operated to reduce model complexity, overfit-

ting, generalization error, and increase the computation

efficiency of the model [104]. They are:

– Principal Component Analysis (PCA) is a method of

acquiring the important features from a large features-

set available in a dataset. It finds the direction of

maximum variance in high-dimensional data and views

the data onto a further subspace with dimensions equal

to or fewer than the original ones [105].

– Linear Discriminant Analysis (LDA) is a supervised

learning feature extraction technique that targets to

decrease the spreading inside the class itself and

increase the distance between the classes mean

[106, 107].

– Independent Component Analysis (ICA) is a linear

method that takes independent components mixture as

input data and targets to identify each of them correctly

[108].

– Random Projection (RP) is a technique utilized to

perform feature reduction for points set that lie in the

Euclidean space [109].

– Truncated Singular Value Decomposition (T-SVD)

is a matrix factorization technique, similar to PCA, used

to reduce the dimensionality of the data. Opposite to

PCA, the data is not centered before calculating the

singular value decomposition. This means it can be

used efficiently with sparse matrices [110]. The data

matrix is factorized by t-SVD where the number of

columns is equal to the truncation.

3.2.2 Topological data analysis (TDA)

Topology [111] is the study of shapes and their properties.

It deals with properties of the shapes (e.g., the number of

components and loops in shapes). Topological Data Anal-

ysis (TDA) is an approach of datasets analysis using

topological techniques [112]. It exploits the topological and

geometrical properties of data such as shape and connec-

tivity. TDA is inspired by the notion that geometry and

topology deliver a robust approach to infer strong quali-

tative information about the data structure [113]. Datasets

that are incomplete, high-dimensional, and noisy are

challenging to extract information from. TDA provides a

general framework to analyze such sets and provide

robustness to noise and dimensionality reduction [113].

Additionally, TDA inherits functoriality (i.e., a functor is a

mapping between categories), a fundamental concept of

modern mathematics which allows it to adapt to new

mathematical tools [114].

Persistent homology is a central tool of TDA to con-

struct multi-scale invariants of data and represents them

with barcodes or persistence diagrams [115, 116]. It con-

siders data as a point cloud and tries to find the holes in

point clouds using discretization and triangulation of the

initial data space with simplicial complexes. TDA offers:

(1) A compressed mathematical representation of a

dataset: The single data point detail up to the global

structure of a dataset can be studied without bearing a

cognitive overload, (2)Missing data and noise resistance:

TDA maintains important features of the data, (3)

Invariance. The size, orientation, or skew of data does not

change the data as only connectedness matters, (4)

Exploration tool of data: Fetch answers to questions that

have not been asked yet, and (5) Data and manifolds

shape study tool: TDA inherits functoriality and has a

robust theoretical foundation.

TDA creates the persistence diagram which is a 2D plot

that indicates the birth and death of n-dimensional holes in

the induced topological spaces. TDA provides the Mapper

[117]. It is considered as a combination of clustering,

dimensionality reduction, and graph networks techniques

utilized to get a higher-level understanding of the data

structure. It is used to: (1) Visualize the shape of data
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through a particular lens, (2) Detect interesting topological

structures (i.e., clusters) that cannot be found by the tra-

ditional methods, and (3) Select the best features that dis-

criminate data and for model interpretability.

In biological research fields, several publications have

successfully used TDA. These include Type-2 diabetes

(T2D) subgrouping using clinical parameters [118], mod-

eling RNA hairpin folding [117], and gene expression

patterns-based breast cancer classification [119].

3.3 Feature scaling techniques

Feature scaling, also named data normalization, is an

approach employed to normalize the range of data features

or independent variables [120]. In this work, five of the

most commonly used feature scaling techniques are uti-

lized [121].

– Absolute Maximum (Max-Abs) Scaling is used to

compute the absolute maximum value of the feature in

the dataset and then all the values in the column are

divided by that value [122]. The output values will

range between 1 and -1.

– Minimum Maximum (Min-Max) Scaling is achieved

by subtracting the minimum value with all the values in

the dataset and then dividing the output value by the

dataset range (i.e., maximum value - minimum value)

[123].

– Normalization: The maximum value is used to perform

normalization [124]. In the previous cases, the range of

the data is changed while in normalization the distri-

bution shape of the data is changed.

– Standardization (Z-Score Normalization): Z-score is

calculated for each data point and replaces the data

value with the calculated one [124]. As a result, all

features are centered around the mean value with a

standard deviation of 1.

– Robust Scaling is not prone to outliers. In this method,

the median value is subtracted from all the data points

and then the output values are divided by the Inter

Quartile Range (IQR) value [125]. The IQR is the

distance between the 25th and the 75th percentile

points. Hence, the median value is centered at zero.

3.4 Classification, optimization,
and performance evaluation

Machine learning (ML) algorithms are proved to be useful

in a broad variety of applications (e.g., email filtering,

computer vision, speech recognition, and medicine) in

which it is infeasible to design conventional algorithms to

accomplish the required tasks [126]. ML techniques are

gaining huge attention in data mining, leveraging it to

recognize historic trends to deliver future models [127].

Deep learning (DL) is a subset of ML where artificial

neural networks learn from large amounts of data

[128, 129]. DL algorithms are used to solve complex

problems where datasets are diverse, unstructured, and

inter-connected. The more DL algorithms learn, the better

they perform [130]. Several types of DL algorithms have

existed. These include convolutional neural networks

(CNNs) and recurrent neural networks (RNNs). A CNN is

an algorithm designed for object detection and image

processing. The convolution is a unique filtering process

performed through an image to assess every element within

it [131, 132]. The RNN has built-in feedback loops that

allow the algorithms to remember past data points. They

can use this memory to inform their understanding of

current events.

3.4.1 Machine learning classifiers

Simple classifiers include Naive Bayes, Decision Tree,

Logistic Regression, and K-Nearest Neighbor [133]. Then,

there are ensemble classifiers which refer to algorithms that

merge the predictions from two or more models. Their

popularity is because of their ease in implementation and

success on an expansive domain of predictive modeling

problems [134]. In the current study, seven types are used

where six of them are ensemble classifiers, they are:

– Light Gradient Boosting Machine (LGBM) Classi-

fier is a distributed gradient boosting framework

primarily created by Microsoft to be employed in ML

[135, 136]. It is established over decision tree [137]

algorithms and used for classification, ranking, and

further tasks. The development of LightGBM concen-

tration is on scalability and performance [138].

– XGBoost (XGB) Classifier is a distributed scalable

gradient-boosted decision tree algorithm [139]. It is the

leading ML algorithm for ranking, classification, and

regression problems. It delivers parallel tree boosting,

sparse optimization, multiple loss functions, regular-

ization, bagging, and early stopping.

– Adaptive Boosting (AdaBoost) Classifier is a meta-

estimator that starts with fitting a classifier on a set of

data and then additional copies of the classifier are

fitted on the same set [140].

– Histogram-based Gradient Boosting (HGB) Classi-

fier is a gradient boosting method that executes this

technique and customizes the training algorithm around

input variables under this transform. It has native

support for the missing values. The main drawback of

gradient boosting is that training the model is time-
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consuming which appears when using the model on

datasets with tens of thousands of examples.

– Random Forest (RF) Classifier is a method that

merges a large number of independent trees trained by

equally and randomly distributed subsets of the data

[141]. It is one of the most utilized algorithms because

of its simplicity and diversity (i.e., can be used for

regression, classification, and other tasks that function

by building a group of decision trees at the time of

training) [142, 143].

– The Decision Tree (DT) Classifier is a supervised non-

parametric learning algorithm used for classification

and regression [144]. It is a tree-structured classifier, in

which the features of a dataset are represented by

internal nodes, the decision rules are represented by

branches (i.e., decision nodes), and an outcome is

represented by a leaf node. Hence, there are two types

of nodes including decision and leaf nodes [145].

– The Extra Trees (ETs) Classifier is an ensemble

learning method in which the results of numerous de-

correlated decision trees gathered in a forest are

aggregated to output the result of the classification

[146].

3.4.2 Deep learning classifiers

In DL, algorithms use the input distribution to extract

features and useful data patterns during the training pro-

cess. Deep learning models include several algorithms. In

the current study, three types of algorithms are used. They

are 1D Convolutional Neural Network (1D-CNN)

[147, 148], Gated Recurrent Unit (GRU) [149], and Bi-

directional Long Short-Term Memory Network (BiLSTM)

[48]. They are discussed as follows:

– 1D Convolutional Neural Network (1D-CNN) Clas-

sifier is a modified version of CNN that has been

recently developed. In 1D-CNN, the computational

complexity is quite lower than the CNN [148]. Hence,

Fig. 2 Graphical presentation of the suggested methodology
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1D-CNNs are suitable for real-time and low-cost

applications.

– Gated Recurrent Unit (GRU) Classifier is a gating

mechanism in RNNs. It is similar to an LSTM with a

forget gate [150] but with fewer parameters, as the

output gate does not exist [151]. GRUs have been

delivered better performance on less frequent and

smaller datasets [152].

– Bi-Directional Long Short Term Memory Network

(BiLSTM) Classifier is a sequence processing model

that includes two LSTMs: the first processes the input

in a forward direction, and the other in a backward

direction [153]. It increases the available amount of

information to the network effectively, enhancing the

context available to the algorithm.

3.4.3 K-fold cross-validation

Cross-validation [154] is a resampling technique employed

to assess ML models on a limited dataset. Cross-validation

is used to detect overfitting (i.e., failing to generalize a

model) [155]. This approach has only one parameter called

‘‘K’’ where the input data is split into K-fold (i.e., subsets

of data).

3.4.4 Grid search hyperparameter optimization

Hyperparameter optimization (i.e., tuning) is the process of

finding the most suitable values of the hyperparameters and

it is one of the most important parts of ML [156, 157]. A

model with poor performance and wrong results may result

from a wrong choice of the values of the hyperparameters

[158]. Hyperparameters are the parameters of a model

whose values are specified before training and their values

influence the model behavior. For example, the number of

trees in a random forest is a hyperparameter as its value is

set before training. As the optimal values of the hyperpa-

rameters are unknown, hyperparameters optimization

algorithms are required. The current study utilizes the grid

search, also referred to as full factorial design [159]. For

the model with several hyperparameters, the best combi-

nation of hyperparameters values needed to be found by

searching in a multi-dimensional space.

4 Methodology

The suggested methodology is presented and summarized

graphically in Fig. 2 and discussed in detail in the next

subsections.

Table 2 Summary of the datasets used in the current study

Dataset Classes

#

Classes Records

#

Features

#

Is

balanced?

WIrelesss Sensor Data Mining

(WISDM) v1.1 [56]

6 ‘‘Walking’’, ‘‘Jogging’’, ‘‘Sitting’’, ‘‘Standing’’,

‘‘Upstairs’’, and ‘‘Downstairs’’

1,098,208 3 No

Human Activity Recognition Using

Smartphones Data Set v1.0 (UCI-

HAR) [70]

6 ‘‘WALKING’’, ‘‘WALKING_UPSTAIRS’’,

‘‘WALKING_DOWNSTAIRS’’, ‘‘SITTING’’,

‘‘STANDING’’, and ‘‘LAYING’’

10,299 561 No

Table 3 Comparison between the oversampling techniques on the ‘‘WISDM’’ dataset

Technique Crash? Average time Balanced?

Synthetic minority over-sampling technique (SMOTE) 7 11.90 seconds U

Synthetic minority over-sampling technique for nominal (SMOTEN) U N/A N/A

Borderline SMOTE 7 26.95 seconds U

Adaptive synthetic (ADASYN) 7 30.27 seconds 7

K-Means clustering with SMOTE U N/A N/A

Support vector machine (SVM) with SMOTE 7 Too long time N/A
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4.1 Data acquisition phase

The datasets used in the current study are retrieved from

different public sources. They are:

– WIrelesss Sensor Data Mining (WISDM) v1.1: It

consists of 6 columns and 1,098,208 rows (i.e.,

records). The columns are ‘‘user’’, ‘‘activity’’,

‘‘timestamp’’, ‘‘x-acceleration’’, ‘‘y-acceleration’’, and

‘‘z-acceleration’’. There are 6 activities (i.e., ‘‘Walk-

ing,’’ ‘‘Jogging,’’ ‘‘Sitting,’’ ‘‘Standing,’’ ‘‘Upstairs,’’

and ‘‘Downstairs’’). The data were sampled with a

sampling rate of 20Hz (i.e., one sample per 50ms). The

‘‘user’’ field is from 1 to 36. The ‘‘x-acceleration,’’ ‘‘y-

acceleration,’’ and ‘‘z-acceleration’’ fields are from -20

to 20 and are measured by the Android phone’s

Fig. 3 The distribution of each category of the ‘‘WISDM’’ dataset before (left plot) and after (right plot) SMOTE oversampling

Fig. 4 The distribution of each category of the ‘‘Human Activity Recognition Using Smartphones Data Set v1.0 (UCI-HAR)’’ dataset before (left

plot) and after (right plot) SMOTE oversampling
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accelerometer [56]. It can be retrieved from https://

www.cis.fordham.edu/wisdm/dataset.php.

– Human Activity Recognition Using Smartphones

Data Set v1.0 (UCI-HAR): It is applied on 30

volunteers in the age ranged from 19 to 48 years using

‘‘Samsung Galaxy S II’’ Android device. There are 6

activities (i.e., ‘‘WALKING,’’ ‘‘WALKING_UP-

STAIRS,’’ ‘‘WALKING_DOWNSTAIRS,’’ ‘‘SIT-

TING,’’ ‘‘STANDING,’’ and ‘‘LAYING’’). The

dataset is partitioned into two subsets where 70% for

training (i.e., ‘‘train’’ folder) and 30% for testing (i.e.,

‘‘test’’ folder). The number of training data is 7,352

while the number of testing data is 2,947. The features

are 561 and their names are defined in ‘‘features.txt’’

[70]. It can be retrieved from https://archive.ics.uci.edu/

ml/datasets/human?activity?recognition?using?s

martphones. The training and testing subsets are

merged in the current study and partitioned in a later

process.

It is worth noting that the datasets combine static and

dynamic activities. Static activities include sitting, stand-

ing, and lying while dynamic activities include walking,

walking downstairs, and walking upstairs. Table 2 presents

a summary of the datasets used in our study.

4.2 Data pre-processing phase

The datasets are pre-processed before being used in the

later phases. Data balancing and sampling are applied.

4.2.1 Data balancing

The datasets are not balanced and this can lead to overfit-

ting or misclassification issues [160]. The current study

utilized the techniques discussed in Sect. 3.1 to determine

the most suitable technique to use in the experiments. The

techniques are executed for 10 runs on the same dataset to

determine the average time between them. Table 3 shows if

the technique crashes or not, the average time and if the

technique produces balanced data. They are applied to the

‘‘WISDM’’ dataset as it contains a large volume of records

to check if the technique is scalable or not. If the technique

crashes then it is not a scalable technique.

Table 3 shows that the SMOTE method outperforms

other methods as it does not crash, produces balanced

datasets, and consumes less time. Hence, synthetic over-

sampling is applied in the current study on the used data-

sets using the SMOTE technique [82]. Figure 3 shows the

distribution of each category of the ‘‘WISDM’’ dataset

before and after SMOTE oversampling. It reached

2,546,394 records after the SMOTE balancing process.

Figure 4 shows the distribution of each category of the

‘‘Human Activity Recognition Using Smartphones Data

Set v1.0 (UCI-HAR)’’ dataset before and after SMOTE

oversampling. It reached 11,664 records after the SMOTE

balancing process. In both figures, the x-axis is the cate-

gories and the y-axis is the count of each category.

4.2.2 Data sampling

The datasets are time-series data and instead of using row-

by-row in the classification phase, a sampling mechanism

is applied. The sampling is performed vertically which

means that the records are stacked row-by-row after the

sampling process. It is applied using different configura-

tions as shown in Table 4. The second column is the

sampling size, the third column is the step size, the fourth

Table 4 The data sampling criteria

Dataset Sample

size

Step

size

Overlapping Record #

(imbalanced)

Record #

(balanced)

Output shape (balanced

and sampled)

WIrelesss Sensor Data Mining (WISDM) v1.1 [56] 100 50 50% 1,098,208 2,546,394 ð50; 926� 100� 3Þ
100 100 0% 1,098,208 2,546,394 ð25; 463� 100� 3Þ

Human Activity Recognition Using Smartphones

Data Set v1.0 (UCI-HAR) [70]

100 50 50% 10,299 11,664 ð232� 100� 561Þ
100 100 0% 10,299 11,664 ð116� 100� 561Þ

Table 5 The different used hyperparameters of the classifiers

Classifier Hyperparameter Alternatives

LGBM Learning rate [0.01, 0.1, 1.0]

XGB Learning rate [0.01, 0.1, 1.0]

AdaBoost Learning rate [0.01, 0.1, 1.0]

DT Criterion ‘‘Gini’’ and ‘‘Entropy’’

Splitter ‘‘Best’’ and ‘‘Random’’

ETs Criterion ‘‘Gini’’ and ‘‘Entropy’’

RF Criterion ‘‘Gini’’ and ‘‘Entropy’’

HGB – –
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column is the overlapping percentage, the fifth column is

the number of records of the imbalanced dataset, the sixth

column is the number of records of the balanced dataset,

and the seventh column is the output shape of the balanced

dataset after sampling.

4.3 Features engineering and dimensionality
reduction techniques

4.3.1 Features extraction using TDA

The TDA is used to extract the features from the datasets in

nine flavors. They are: (1) Persistence entropy in two

views: normalized and non-normalized, (2) Number of

Points, (3) Bottleneck, (4) Wasserstein where the p in Lp

is set to 2.0, (5) Betti where the p in Lp is set to 2.0 and

number of bins is set to 100, (6) Landspace where the p in

Lp is set to 2.0, the number of bins is set to 100, and the

number of to consider in the persistence landscape is set to

three values: 1, 2, and 3, (7) Persistence Image where the

p in Lp is set to 2.0, sigma value is set to 0.1, and the

number of bins is set to 100, (8) Heat where the p in Lp is

set to 2.0, sigma value is set to 0.1, and the number of bins

is set to 100, and (9) Silhouette where the p in Lp is set to

2.0, the number of bins is set to 100, and the power is set to

two values: 1.0 and 2.0.

The pipeline of extracting the features consists of three

stages: (1) Cubical Persistence resulted from the filtered

cubical complexes, (2) Bottleneck scaler as it makes the

lifetime of the most persistent point across all diagrams and

homology dimensions equal to two, and (3) a filter to

discard the points that have a lifetime less than or equal to a

cutoff value (set to 0.01 in the current study). From that,

the number of extracted features per row is 26.

4.3.2 Dimensionality reduction

The current study utilized five features reduction tech-

niques. They are PCA, LDA, ICA, RP, and T-SVD, as

discussed in Sect. 3.2. The features are reduced to 3 for the

‘‘WISDM’’ dataset. The reason behind this is that the

original dataset consists of 3 columns. Also, the features

are reduced to 100 for the ‘‘UCI-HAR’’ dataset.

4.4 ML classification and optimization phase

The current study uses different classification algorithms to

achieve the state-of-the-art (SOTA) performance metrics.

They are the (1) LGBM, (2) XGB, (3) AdaBoost, (4) HGB,

(5) ETs, (6) DT, and (7) RF classifiers.

4.4.1 Hyperparameters optimization using grid search (GS)

There are different hyperparameters for each used machine

algorithm and hence the GS optimization approach is

implemented to find the best combinations for each clas-

sifier. Table 5 summarizes the different used hyperparam-

eters of each classifier to select from. The used machine

learning algorithms and their hyperparameters:

– LGBM Classifier: The boosting type is set to Gradient

Boosting Decision Tree (GBDT). The max depth is the

maximum tree depth for the base learners and is set to

‘‘None’’ which means that there are no limitations. The

Table 6 Summary of the feature

scaling equations
Technique Equation Specifications

Standardization Xscaled ¼ Xinput�l
r

Zero mean and standard deviation of 1

Normalization Xscaled ¼ Xinput

max ðXÞ
–

Min-Max Xscaled ¼ Xinput�min ðXÞ
max ðXÞ�min ðXÞ

Output range 2 ½0; 1�

Max-Abs Xscaled ¼ Xinput

jmaxðXÞj
Output range 2 ½�1; 1�

Robust Xscaled ¼ Xinput�medianðXÞ
IQR

–

Table 7 Summary of the performance evaluation metrics

Metric Equation

Accuracy TPþTN
TPþTNþFPþFN

Balanced accuracy 0:5� ðRecallþ SpecificityÞ
Precision = PPV TP

TPþFP

Specificity TN
TNþFP

Recall = Sensitivity = Hit Rate = TPR TP
TPþFN

Dice = F1 = Overlap Index 2�Precision�Recall
PrecisionþRecall

IoU = Jaccard Index TP
TPþFPþFN

NPV TN
TNþFN

ROC
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Sensitivity
2þSpecificity2

p

ffiffi

2
p
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learning rate is the boosting learning rate. The number

of estimators is the number of boosted trees to fit and is

set to 300.

– XGB Classifier: The boosting type is set to GBDT. The

number of estimators is set to 300. The max depth is set

to ‘‘None’’.

– AdaBoost Classifier: The number of estimators is set

to 300.

– DT Classifier: The combinations are applied between

criteria to measure the quality of a split and the splitting

mechanism. The max depth is set to ‘‘None.’’

– ETs Classifier: The combinations are applied on the

criterion. The max depth is set to ‘‘None.’’ The number

of estimators is set to 300.

– RF Classifier: The combinations are applied on the

criterion and class weight. The number of estimators is

set to 300. The max depth is set to ‘‘None.’’

– HGB Classifier: The max iteration is set to 100 and the

learning rate is set to 0.1.

Table 8 The experiments configurations

Configuration Details

Datasets Presented in Table 2

Datasets sampling

criteria

Presented in Table 4

Features scaling

techniques

Presented in Table 6

Features reduction

techniques

PCA, LDA, ICA, RP, and T-SVD

Oversampling technique SMOTE

ML classifiers LGBM, XGB, AdaBoost, DT, ETs, RF,

and HGB

Classifiers

hyperparameters

Presented in Table 5

Hyperparameters

optimization approach

Grid Search (GS)

K-fold cross-validation fiveolds

DL classifiers 1D-CNN, BiLSTM, and GRU

Number of DL epochs 64

Performance metrics Presented in Table 7

Scripting language Python

Python packages NumPy, Pandas, SciPy, Giotto-TDA,

Scikit-Learn, and Matplotlib

Fig. 5 The flow of the numerical data and the corresponding experiments categories numbers
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4.4.2 Features scaling

Standardization, normalization, min-max scaling, max-ab-

solute scaling, and robust scaling are used with the grid

search to find the best scaler technique. Table 6 summa-

rizes the used feature scaling equations.

where Xscaled is the scaled output vector while Xinput is

the input vector, IQR is the interquartile range, l is the

mean value, and r is the standard deviation value.

4.4.3 Performance improvement

The train-to-test splitting and K-fold cross-validation are

used to improve the estimated performance of the

Table 9 The best combinations on the reduced ‘‘WISDM’’ dataset ð50; 926� 3Þ using each classifier

Feature reduction

technique

Classifier Scaling

technique

Criterion Splitter Max

depth

Estimators

#

Class weight Learning

rate

PCA DT MinMaxScaler Gini Best None – – –

PCA AdaBoost MinMaxScaler – – – 300 – 0.10

PCA RFC RobustScaler Gini – None 300 Balanced –

PCA ETC MaxAbsScaler Entropy – None 300 – –

PCA HGB MinMaxScaler – – – – – –

PCA XGB MinMaxScaler – – None 300 – 0.10

PCA LGBM MinMaxScaler – – None 300 – 0.10

LDA DT StandardScaler Entropy Best None – –

LDA AdaBoost Normalizer – – – 300 – 0.01

LDA RFC StandardScaler Entropy – None 300 None –

LDA ETC MinMaxScaler Gini – None 300 – –

LDA HGB StandardScaler – – – – – –

LDA XGB MinMaxScaler – – None 300 – 0.10

LDA LGBM StandardScaler – – None 300 – 0.10

ICA DT StandardScaler Entropy Best None – – –

ICA AdaBoost Normalizer – – – 300 – 0.01

ICA RFC RobustScaler Gini – None 300 Balanced

Subsample

–

ICA ETC MaxAbsScaler Gini – None 300 – –

ICA HGB RobustScaler – – – – – –

ICA XGB RobustScaler – – None 300 – 0.10

ICA LGBM RobustScaler – – None 300 – 0.10

T-SVD DT MaxAbsScaler Entropy Best None – – –

T-SVD AdaBoost StandardScaler – – – 300 – 0.10

T-SVD RFC MinMaxScaler Entropy – None 300 Balanced –

T-SVD ETC RobustScaler Entropy – None 300 – –

T-SVD HGB RobustScaler – – – – – –

T-SVD XGB StandardScaler – – None 300 – 0.10

T-SVD LGBM RobustScaler – – None 300 – 0.10

RP DT StandardScaler Entropy Best None – – -

RP AdaBoost StandardScaler – – – 300 – 0.10

RP RFC RobustScaler Entropy – None 300 Balanced –

RP ETC MinMaxScaler Gini – None 300 – –

RP HGB RobustScaler – – – – – –

RP XGB MinMaxScaler – – None 300 – 0.01

RP LGBM RobustScaler – – None 300 – 0.01
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classifiers. The train-to-test splitting partitions the datasets

into train and test subsets. The current study uses 85% to

15% for the train and test subsets, respectively, after

shuffling them. The current study uses fivefold (i.e.,

K ¼ 5).

4.5 DL classification phase

The current study utilized four DL approaches as discussed

in Sect. 3.4.2. The first is the GRU that consists of nine

layers: (1) input layer, (2) three cascaded GRU layers with

32 kernels, 20% dropout, and 20% recurrent dropout, (3)

dense layer with 64 units and LeakyReLU activation

function, (4) dropout layer with a dropout ratio of 50%, (5)

another dense layer with 32 units and LeakyReLU activa-

tion function, (6) another dropout layer with a dropout ratio

of 50%, (7) output layer with a SoftMax activation

function.

The second is the 1D-CNN that consists of 14 layers: (1)

input layer, (2) four cascaded 1D convolutional layers with

Table 10 The corresponding performance metrics using each classifier applied on the reduced ‘‘WISDM’’ dataset ð50; 926� 3Þ

Feature Reduction

Technique

Classifier Elapsed

ttime (s)

Accuracy

(%)

Balanced

accuracy (%)

Precision

(%)

Specificity

(%)

Recall

(%)

F1

(%)

IoU

(%)

ROC

(%)

NPV

(%)

PCA DT 20,795 91.97 85.54 75.91 95.18 75.91 75.91 61.17 86.08 95.18

PCA AdaBoost 716,806 88.09 78.56 64.27 92.85 64.27 64.27 47.35 79.85 92.85

PCA RFC 3832763 93.81 88.85 81.42 96.28 81.42 81.42 68.67 89.16 96.28

PCA ETC 451,381 93.75 88.75 81.26 96.25 81.26 81.26 68.43 89.07 96.25

PCA HGB 178,572 93.87 88.96 81.60 96.32 81.60 81.60 68.91 89.26 96.32

PCA XGB 4,930,503 93.83 88.90 81.50 96.30 81.50 81.50 68.78 89.21 96.30

PCA LGBM 268,647 93.83 88.90 81.50 96.30 81.50 81.50 68.77 89.21 96.30

LDA DT 21,295 89.97 81.95 69.91 93.98 69.91 69.91 53.74 82.83 93.98

LDA AdaBoost 723,000 86.70 76.05 60.09 92.02 60.09 60.09 42.95 77.71 92.02

LDA RFC 4,087,621 92.21 85.97 76.62 95.32 76.62 76.62 62.10 86.48 95.32

LDA ETC 480,904 92.14 85.85 76.41 95.28 76.41 76.41 61.82 86.36 95.28

LDA HGB 163,050 92.44 86.39 77.32 95.46 77.32 77.32 63.03 86.87 95.46

LDA XGB 4,960,229 92.42 86.35 77.26 95.45 77.26 77.26 62.94 86.83 95.45

LDA LGBM 274,763 92.33 86.20 76.99 95.40 76.99 76.99 62.59 86.69 95.40

ICA DT 20,186 91.92 85.46 75.77 95.15 75.77 75.77 61.00 86.01 95.15

ICA AdaBoost 735,040 89.57 81.23 68.72 93.74 68.72 68.72 52.35 82.19 93.74

ICA RFC 3,920,886 93.82 88.88 81.46 96.29 81.46 81.46 68.72 89.19 96.29

ICA ETC 451,598 93.80 88.84 81.40 96.28 81.40 81.40 68.64 89.15 96.28

ICA HGB 183,653 93.88 88.99 81.64 96.33 81.64 81.64 68.98 89.29 96.33

ICA XGB 4,933,501 93.87 88.97 81.61 96.32 81.61 81.61 68.94 89.27 96.32

ICA LGBM 267,109 93.86 88.95 81.59 96.32 81.59 81.59 68.91 89.26 96.32

T-SVD DT 28,717 79.06 62.31 37.19 87.44 37.19 37.19 22.84 67.19 87.44

T-SVD AdaBoost 744089 81.82 67.28 45.47 89.09 45.47 45.47 29.42 70.73 89.09

T-SVD RFC 5,391,457 81.88 67.39 45.65 89.13 45.65 45.65 29.58 70.81 89.13

T-SVD ETC 694,845 81.82 67.27 45.46 89.09 45.46 45.46 29.41 70.72 89.09

T-SVD HGB 96,698 82.65 68.78 47.96 89.59 47.96 47.96 31.54 71.86 89.59

T-SVD XGB 5,195,648 82.70 68.85 48.09 89.62 48.09 48.09 31.65 71.92 89.62

T-SVD LGBM 309,397 82.76 68.97 48.29 89.66 48.29 48.29 31.83 72.01 89.66

RP DT 20,546 91.99 85.58 75.96 95.19 75.96 75.96 61.24 86.12 95.19

RP AdaBoost 739,715 89.01 80.22 67.04 93.41 67.04 67.04 50.42 81.30 93.41

RP RFC 3,888,200 93.84 88.91 81.52 96.30 81.52 81.52 68.81 89.22 96.30

RP ETC 458,880 93.80 88.84 81.40 96.28 81.40 81.40 68.63 89.15 96.28

RP HGB 187,493 93.87 88.97 81.61 96.32 81.61 81.61 68.94 89.27 96.32

RP XGB 4,899,129 93.92 89.06 81.76 96.35 81.76 81.76 69.15 89.36 96.35

RP LGBM 276611.3 93.91 89.04 81.74 96.35 81.74 81.74 69.12 89.34 96.35
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32, 64, 128, and 256 filters (i.e., kernels), respectively,

kernel size of 3, same padding, and LeakyReLU activation

function, (3) 1D max-pooling layer with pooling size of 3,

a stride of 2, and same padding, (4) dropout layer with a

dropout ratio of 50%, (5) dense layer with 256 units and

LeakyReLU activation function, (6) dropout layer with a

dropout ratio of 50%, (7) flatten layer, (8) another dense

layer with 512 units and LeakyReLU activation function,

(9) another dropout layer with a dropout ratio of 50%, (10)

a third dense layer with 1024 units and LeakyReLU acti-

vation function, and (11) output layer with a SoftMax

activation function.

The third is the BiLSTM that consists of 3 layers: (1)

input layer, (2) bi-directional LSTM with 4 units and

LeakyReLU activation function, and (3) output layer with a

SoftMax activation function. All of the DL models used the

Adam parameters optimizer, Categorical Crossentropy loss

function, and 64 epochs. The models’ architecture came

out after a set of try-and-error trials as there are no specific

rules to define the architectures because of the dataset

dependency.

4.6 Performance evaluation

The confusion matrix is reported with its TP (i.e., True

Positive), TN (i.e., True Negative), FP (i.e., False Positive),

FN (i.e., False Negative) values. Eqs.1, 2, 3, and 4 show

how to calculate the values of TP, FP, FN, and TN,

respectively, for multi-class problems.

TPi ¼Cði;iÞ ð1Þ

FPi ¼
X

n

l¼1

Cðl;iÞ � TPi ð2Þ

FNi ¼
X

n

l¼1

Cði;lÞ � TPi ð3Þ

TNi ¼
X

n

l¼1

X

n

k¼1

Cðl;kÞ � TPi � FPi � FNi ð4Þ

where C is the confusion matrix, n is the number of classes,

and i is the class number.

Different performance metrics are calculated from them.

They are (1) Accuracy, (2) Balanced Accuracy, (3) Preci-

sion (i.e., PPV), (4) Recall (i.e., Sensitivity, Hit Rate, and

Table 11 Tabular summarization of the WSM metrics using the ‘‘WISDM’’ dataset ð50; 926� 3Þ

AdaBoost (%) DT (%) ETC (%) HGB (%) LGBM (%) RFC (%) XGB (%) Max value (%)

PCA 82.54 74.71 86.37 86.25 86.49 86.43 86.42 86.49

LDA 78.46 71.97 83.03 82.88 83.52 83.47 83.29 83.52

ICA 82.45 77.67 86.40 86.36 86.53 86.50 86.49 86.53

T-SVD 57.54 62.65 62.76 62.64 64.21 64.29 64.42 64.42

RP 82.58 76.54 86.44 86.35 86.50 86.61 86.59 86.61

Max Value 82.58 77.67 86.44 86.36 86.53 86.61 86.59 86.61

All the bold refers to the highest WSM score acquired

Fig. 6 Graphical summarization

of the WSM metrics using the

‘‘WISDM’’ dataset

ð50; 926� 3Þ
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TPR), (5) Specificity (i.e., TNR), (6) F1-score (i.e., Dice

coef. and Overlap Index), (7) IoU (i.e., Jaccard Index), (8)

NPV (Negative Predictive Value), and (10) ROC (i.e.,

Receiver Operating Characteristic). The corresponding

equations for them are presented in Table 7.

To engage all of the calculated metrics together, the

weighted sum metric is calculated as shown in Eq. 5.

WSM ¼ 1

9
� ðAccuracyþ Balanced Accuracyþ Precision

þ Specificityþ Recall þ F1þ IoUþ ROC þ NPVÞ
ð5Þ

4.6.1 Multi-class averaging

During the process of evaluating the performance of multi-

class dataset implementations, it is preferred to use an

Table 12 The best combinations applied on the reduced ‘‘WISDM’’ dataset ð25; 463� 3Þ using each classifier

Feature Reduction

Technique

Classifier Scaling

Technique

Criterion Splitter Max

Depth

Estimators

#

Class Weight Learning

Rate

PCA DT RobustScaler Entropy Best None – – –

PCA AdaBoost StandardScaler – – – 300 – 0.10

PCA RFC MinMaxScaler Entropy – None 300 Balanced –

PCA ETC MinMaxScaler Entropy – None 300 – –

PCA HGB MaxAbsScaler – – – – – –

PCA XGB StandardScaler – – None 300 – 0.10

PCA LGBM StandardScaler – – None 300 – 0.10

LDA DT MaxAbsScaler Entropy Best None – – –

LDA AdaBoost Normalizer – – – 300 – 0.01

LDA RFC StandardScaler Entropy – None 300 None –

LDA ETC MinMaxScaler Gini – None 300 – –

LDA HGB RobustScaler – – – – – –

LDA XGB StandardScaler – – None 300 – 0.10

LDA LGBM MaxAbsScaler – – None 300 – 0.01

ICA DT RobustScaler Gini Best None – – –

ICA AdaBoost Normalizer – – – 300 – 0.01

ICA RFC RobustScaler Gini – None 300 None –

ICA ETC RobustScaler Gini – None 300 – –

ICA HGB MinMaxScaler – – – – – –

ICA XGB MinMaxScaler – – None 300 – 0.10

ICA LGBM MaxAbsScaler – – None 300 – 0.10

T-SVD DT RobustScaler Entropy Best None – – –

T-SVD AdaBoost StandardScaler – – – 300 – 0.10

T-SVD RFC MaxAbsScaler Gini – None 300 Balanced

Subsample

–

T-SVD ETC MaxAbsScaler Entropy – None 300 – –

T-SVD HGB StandardScaler – – – – – –

T-SVD XGB StandardScaler – – None 300 – 0.10

T-SVD LGBM MaxAbsScaler – – None 300 – 0.10

RP DT MaxAbsScaler Gini Best None – – –

RP AdaBoost StandardScaler – – – 300 – 0.10

RP RFC MaxAbsScaler Entropy – None 300 Balanced –

RP ETC StandardScaler Entropy – None 300 – –

RP HGB StandardScaler – – – – – –

RP XGB MaxAbsScaler – – None 300 – 0.01

RP LGBM RobustScaler – – None 300 – 0.01
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averaging method. It is used to average the scores to

acquire a single number describing the overall performance

instead of having multiple scores per class. This includes

micro-, macro-, and macro-weighted averaging methods.

They are discussed as follows:

– Micro Averaging. For each class, the metric will be

computed independently and the average will be taken

hence all classes are treated equally. In the Micro-

average method, the true positives, false positives, and

false negatives are summed individually for different

sets and apply them to get the statistics. For a balanced

dataset, micro averaging is preferred when an under-

standable metric for overall performance regardless of

the class is required. As the more the number of

samples, the more impact the corresponding class has

on the final score, thus favoring majority classes.

– Macro Averaging is straightforward as it is aggregat-

ing the contributions of all classes to calculate the

average metric. Hence, the statistics of the smaller

Table 13 The corresponding performance metrics using each classifier applied on the reduced ‘‘WISDM’’ dataset ð25; 463� 3Þ

Feature Reduction

Technique

Classifier Elapsed

time (s)

Accuracy

(%)

Balanced

accuracy (%)

Precision

(%)

Specificity

(%)

Recall

(%)

F1

(%)

IoU

(%)

ROC

(%)

NPV

(%)

PCA DT 9.8 91.57 84.83 74.71 94.94 74.71 74.71 59.63 85.43 94.94

PCA AdaBoost 363.8 89.36 80.86 68.09 93.62 68.09 68.09 51.62 81.86 93.62

PCA RFC 1,809 93.49 88.28 80.46 96.09 80.46 80.46 67.31 88.62 96.09

PCA ETC 227.3 93.45 88.20 80.34 96.07 80.34 80.34 67.14 88.55 96.07

PCA HGB 107.6 93.53 88.35 80.58 96.12 80.58 80.58 67.48 88.69 96.12

PCA XGB 2,440 93.52 88.33 80.55 96.11 80.55 80.55 67.43 88.67 96.11

PCA LGBM 176.5 93.40 88.13 80.21 96.04 80.21 80.21 66.97 88.48 96.04

LDA DT 10.8 88.88 79.99 66.65 93.33 66.65 66.65 49.98 81.09 93.33

LDA AdaBoost 384.5 84.72 72.50 54.17 90.83 54.17 54.17 37.15 74.79 90.83

LDA RFC 1,922 91.26 84.27 73.78 94.76 73.78 73.78 58.45 84.92 94.76

LDA ETC 247.7 91.21 84.17 73.62 94.72 73.62 73.62 58.26 84.83 94.72

LDA HGB 91.5 91.62 84.91 74.85 94.97 74.85 74.85 59.80 85.50 94.97

LDA XGB 2,490 91.53 84.75 74.59 94.92 74.59 74.59 59.47 85.36 94.92

LDA LGBM 197.8 91.58 84.85 74.75 94.95 74.75 74.75 59.68 85.45 94.95

ICA DT 9.4 91.51 84.71 74.52 94.90 74.52 74.52 59.38 85.32 94.90

ICA AdaBoost 363.2 85.06 73.10 55.17 91.03 55.17 55.17 38.10 75.27 91.03

ICA RFC 1,775 93.43 88.17 80.29 96.06 80.29 80.29 67.07 88.53 96.06

ICA ETC 225.7 93.44 88.19 80.32 96.06 80.32 80.32 67.12 88.55 96.06

ICA HGB 105.8 93.51 88.31 80.52 96.10 80.52 80.52 67.39 88.66 96.10

ICA XGB 2,452 93.49 88.28 80.47 96.09 80.47 80.47 67.32 88.63 96.09

ICA LGBM 192.1 93.41 88.14 80.23 96.05 80.23 80.23 66.99 88.49 96.05

T–SVD DT 9.6 91.60 84.88 74.80 94.96 74.80 74.80 59.75 85.48 94.96

T–SVD AdaBoost 358.9 88.95 80.11 66.85 93.37 66.85 66.85 50.20 81.20 93.37

T–SVD RFC 1,796 93.48 88.26 80.43 96.09 80.43 80.43 67.26 88.60 96.09

T–SVD ETC 228.3 93.45 88.22 80.36 96.07 80.36 80.36 67.17 88.57 96.07

T–SVD HGB 114.1 93.55 88.39 80.65 96.13 80.65 80.65 67.57 88.73 96.13

T–SVD XGB 2,415 93.53 88.35 80.58 96.12 80.58 80.58 67.48 88.69 96.12

T–SVD LGBM 187.6 93.41 88.14 80.23 96.05 80.23 80.23 66.99 88.49 96.05

RP DT 13.1 79.13 62.44 37.40 87.48 37.40 37.40 23.00 67.28 87.48

RP AdaBoost 372.9 81.65 66.98 44.96 88.99 44.96 44.96 29.00 70.50 88.99

RP RFC 2,484 81.79 67.22 45.36 89.07 45.36 45.36 29.34 70.68 89.07

RP ETC 343.6 81.77 67.19 45.31 89.06 45.31 45.31 29.29 70.66 89.06

RP HGB 70.5 82.67 68.81 48.02 89.60 48.02 48.02 31.60 71.88 89.60

RP XGB 2,591 82.71 68.87 48.12 89.62 48.12 48.12 31.69 71.93 89.62

RP LGBM 207.5 82.78 69.00 48.34 89.67 48.34 48.34 31.87 72.03 89.67

Neural Computing and Applications (2023) 35:12793–12831 12811

123



classes are reflected. It is appropriate when the perfor-

mance of all classes is important equally.

– Macro-Weighted Averaging is calculated by weight-

ing the score of each class label by the number of true

instances. It is applied in the situation of an imbalanced

dataset when assigning greater contributions to the

majority classes. It is worth mentioning that using this

type of averaging with balanced data will yield the

same result as macro-averaging.

In the current study, since the datasets used in the evalu-

ating phase are balanced, the micro-averaging method is

utilized.

5 Experiments and discussion

Figure 5 summarizes the flow of the numerical data and the

corresponding experiments categories numbers. This will

facilitate for the reader to trace the experiments categories.

5.1 Experiments configurations, constrains,
and assumptions

Table 8 summarizes the experiments configurations.

In the current study, the constraints and assumptions

applied during the sampling and feature reduction pro-

cesses are: (1) the target is to choose a number of features

equal to or less than the initial number of entry features for

each dataset, (2) constructing features that aware of the

time-series data, and (3) the time-complexity is taken into

account. From that, the current study fixed the number of

the output features to be 3 for the WISDM and 100 for the

UCI-HAR datasets. In the reported results tables, the

‘‘None’’ in the ‘‘Max Depth’’ column means that there is no

limitation in the max tree depth, the ‘‘None’’ in the ‘‘Class

weight’’ column means that there are no weights defined to

the classes.

5.2 First category experiments

The current Section presents the experiments applied on

both datasets after the dimensionality reduction step as

Table 14 Tabular summarization of the WSM metrics using the ‘‘WISDM’’ dataset ð25; 463� 3Þ

AdaBoost (%) DT (%) ETC (%) HGB (%) LGBM (%) RFC (%) XGB (%) Max value (%)

PCA 81.72 77.25 85.70 85.61 85.78 85.76 85.52 85.78

LDA 76.28 68.15 81.08 80.98 81.81 81.63 81.74 81.81

ICA 81.59 68.79 85.58 85.60 85.74 85.70 85.53 85.74

T–SVD 81.78 76.41 85.67 85.63 85.83 85.78 85.54 85.83

RP 57.67 62.33 62.58 62.55 64.25 64.31 64.45 64.45

Max value 81.78 77.25 85.70 85.63 85.83 85.78 85.54 85.83

All the bold refers to the highest WSM score acquired

Fig. 7 Graphical summarization

of the WSM metrics using the

‘‘WISDM’’ dataset

ð25; 463� 3Þ
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presented in Fig. 5. The ‘‘WISDM’’ dataset is sampled and

five features reduction techniques are applied to reduce the

number of features to 3 as described earlier. Table 9 shows

the best combinations and Table 10 shows the corre-

sponding performance metrics applied on the reduced

‘‘WISDM’’ data when applying 50% overlapping

ði:e:; 50; 926� 3Þ using the different mentioned classifiers.

It shows the best of each classifier after the grid searching

process.

Table 10 reports that the best-reported performance

metrics. It shows that the best-reported accuracy, balanced

accuracy, precision, specificity, recall, F1-score, IoU,

ROC, and NPV are 93.92%, 89.06%, 81.76%, 96.35%,

81.76%, 81.76%, 69.15%, 89.36%, and 96.35%, respec-

tively, by the XGB classifier and the RP feature reduction

technique. In terms of the elapsed time, the best-reported

classifier is DT with ICA as a feature reduction technique

with 20,186 seconds. Table 11 and Fig. 6 summarize the

WSM metrics using the ‘‘WISDM’’ dataset when applying

50% overlapping. It shows that the highest WSM value is

86.61% that is produced by the RFC classifier with the RP

feature reduction method.

Table 15 The best combinations on the reduced ‘‘UCI-HAR’’ dataset ð232� 100Þ using each classifier

Feature Reduction

Technique

Classifier Scaling

Technique

Criterion Splitter Max

Depth

Estimators

#

Class

Weight

Learning

Rate

PCA DT RobustScaler Entropy Best None – – –

PCA AdaBoost Normalizer – – – 300 – 0.10

PCA RFC Normalizer Gini – None 300 Balanced –

PCA ETC MaxAbsScaler Gini – None 300 – –

PCA HGB Normalizer – – – – – –

PCA XGB Normalizer – – None 300 – 0.10

PCA LGBM StandardScaler – – None 300 – 0.10

LDA DT Normalizer Gini Best None – – –

LDA AdaBoost Normalizer – – – 300 – 0.10

LDA RFC Normalizer Gini – None 300 Balanced –

LDA ETC Normalizer Gini – None 300 – –

LDA HGB StandardScaler – – – – – –

LDA XGB Normalizer – – None 300 – 0.10

LDA LGBM Normalizer – – None 300 – –

ICA DT StandardScaler Gini Best None – – –

ICA AdaBoost StandardScaler – – – 300 – 0.10

ICA RFC Normalizer Gini – None 300 None –

ICA ETC StandardScaler Gini – None 300 – –

ICA HGB Normalizer – – – – – –

ICA XGB Normalizer – – None 300 – 0.10

ICA LGBM Normalizer – – None 300 – 0.10

T-SVD DT Normalizer Entropy Best None – – –

T-SVD AdaBoost StandardScaler – – – 300 – 0.10

T-SVD RFC Normalizer Gini – None 300 – –

T-SVD ETC RobustScaler Entropy – None 300 – –

T-SVD HGB StandardScaler – – – - – –

T-SVD XGB Normalizer – – None 300 – 0.10

T-SVD LGBM MinMaxScaler – – None 300 – 0.10

RP DT StandardScaler Entropy Best None - - –

RP AdaBoost Normalizer – – - 300 – 0.01

RP RFC Normalizer Gini – None 300 None –

RP ETC MaxAbsScaler Gini – None 300 – –

RP HGB StandardScaler – – – – – –

RP XGB StandardScaler – – None 300 – 0.10

RP LGBM MinMaxScaler – – None 300 – 0.10
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Table 12 shows the best combinations and Table 13

shows the corresponding performance metrics applied on

the reduced ‘‘WISDM’’ data when applying 0% overlap-

ping ði:e:; 25; 463� 3Þ using the different mentioned

classifiers. It shows the best of each classifier after the grid

searching process.

Table 13 reports that the best reported performance

metrics. It shows that the best reported accuracy, balanced

accuracy, precision, specificity, recall, F1–score, IoU,

ROC, and NPV are 93.53%, 88.39%, 80.65%, 96.13%,

80.65%, 80.65%, 67.57%, 88.73%, and 96.13%, respec-

tively, by the HGB classifier and T–SVD feature reduction

technique. In terms of the elapsed time, the best reported

classifier is DT and ICA as feature reduction technique

with 9.4 seconds. Table 14 and Fig. 7 summarize the WSM

metrics using the ‘‘WISDM’’ dataset when applying 0%

overlapping. It shows that the highest WSM value is

85.83% that is produced by the LGBM classifier with the

T–SVD feature reduction technique.

Table 16 The corresponding performance metrics using each classifier applied on the reduced ‘‘UCI-HAR’’ dataset ð232� 100Þ

Feature Reduction

Technique

Classifier Elapsed

time (s)

Accuracy

(%)

Balanced

accuracy (%)

Precision

(%)

Specificity

(%)

Recall

(%)

F1

(%)

IoU

(%)

ROC

(%)

NPV

(%)

PCA DT 1.4 99.28 98.71 97.84 99.57 97.84 97.84 95.78 98.71 99.57

PCA AdaBoost 73.6 99.14 98.45 97.41 99.48 97.41 97.41 94.96 98.45 99.48

PCA RFC 107.2 99.14 98.45 97.41 99.48 97.41 97.41 94.96 98.45 99.48

PCA ETC 18.6 99.28 98.71 97.84 99.57 97.84 97.84 95.78 98.71 99.57

PCA HGB 55.6 99.43 98.97 98.28 99.66 98.28 98.28 96.61 98.97 99.66

PCA XGB 96.3 99.14 98.45 97.41 99.48 97.41 97.41 94.96 98.45 99.48

PCA LGBM 38.1 99.28 98.71 97.84 99.57 97.84 97.84 95.78 98.71 99.57

LDA DT 0.6 97.70 95.86 93.10 98.62 93.10 93.10 87.10 95.90 98.62

LDA AdaBoost 34.8 86.49 75.69 59.48 91.90 59.48 59.48 42.33 77.41 91.90

LDA RFC 71.9 97.99 96.38 93.97 98.79 93.97 93.97 88.62 96.41 98.79

LDA ETC 15.4 97.99 96.38 93.97 98.79 93.97 93.97 88.62 96.41 98.79

LDA HGB 27.2 96.98 94.57 90.95 98.19 90.95 90.95 83.40 94.64 98.19

LDA XGB 57.6 97.56 95.60 92.67 98.53 92.67 92.67 86.35 95.65 98.53

LDA LGBM 18.8 97.70 95.86 93.10 98.62 93.10 93.10 87.10 95.90 98.62

ICA DT 2.1 78.88 61.98 36.64 87.33 36.64 36.64 22.43 66.96 87.33

ICA AdaBoost 73.3 81.32 66.38 43.97 88.79 43.97 43.97 28.18 70.06 88.79

ICA RFC 121.0 88.22 78.79 64.66 92.93 64.66 64.66 47.77 80.05 92.93

ICA ETC 20.2 90.66 83.19 71.98 94.40 71.98 71.98 56.23 83.94 94.40

ICA HGB 77.8 86.78 76.21 60.34 92.07 60.34 60.34 43.21 77.84 92.07

ICA XGB 169.9 86.93 76.47 60.78 92.16 60.78 60.78 43.65 78.06 92.16

ICA LGBM 61.1 87.79 78.02 63.36 92.67 63.36 63.36 46.37 79.38 92.67

T-SVD DT 1.5 99.28 98.71 97.84 99.57 97.84 97.84 95.78 98.71 99.57

T-SVD AdaBoost 76.7 97.70 95.86 93.10 98.62 93.10 93.10 87.10 95.90 98.62

T-SVD RFC 107.9 99.14 98.45 97.41 99.48 97.41 97.41 94.96 98.45 99.48

T-SVD ETC 18.3 99.28 98.71 97.84 99.57 97.84 97.84 95.78 98.71 99.57

T-SVD HGB 55.3 98.56 97.41 95.69 99.14 95.69 95.69 91.74 97.43 99.14

T-SVD XGB 97.0 98.56 97.41 95.69 99.14 95.69 95.69 91.74 97.43 99.14

T-SVD LGBM 37.6 99.28 98.71 97.84 99.57 97.84 97.84 95.78 98.71 99.57

RP DT 1.6 91.09 83.97 73.28 94.66 73.28 73.28 57.82 84.64 94.66

RP AdaBoost 73.5 82.47 68.45 47.41 89.48 47.41 47.41 31.07 71.61 89.48

RP RFC 100.4 97.99 96.38 93.97 98.79 93.97 93.97 88.62 96.41 98.79

RP ETC 18.6 98.42 97.16 95.26 99.05 95.26 95.26 90.95 97.17 99.05

RP HGB 70.4 96.41 93.53 89.22 97.84 89.22 89.22 80.54 93.63 97.84

RP XGB 115.2 95.26 91.47 85.78 97.16 85.78 85.78 75.09 91.64 97.16

RP LGBM 35.6 96.84 94.31 90.52 98.10 90.52 90.52 82.68 94.39 98.10
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The ‘‘UCI-HAR’’ dataset is sampled and five features

reduction techniques are applied to reduce the number of

features to 100 as described earlier. Table 15 shows the

best combinations and Table 16 shows the corresponding

performance metrics applied on the reduced ‘‘UCI-HAR’’

data when applying 50% overlapping ði:e:; 232� 100Þ
using the different mentioned classifiers. It shows the best

of each classifier after the grid searching process.

Table 16 reports that the best reported performance

metrics. It shows that the best reported accuracy, balanced

accuracy, precision, specificity, recall, F1-score, IoU,

ROC, and NPV are 99.43%, 98.97%, 98.28%, 99.66%,

98.28%, 98.28%, 96.61%, 98.97%, and 99.66%, respec-

tively, by HGB classifier with the PCA feature reduction

technique. In terms of the elapsed time, the best reported

classifier is DT with LDA as feature reduction technique

with 0.6 seconds. Table 17 and Fig. 8 summarize the WSM

metrics using the ‘‘UCI-HAR’’ dataset when applying 50%

overlapping. It shows that the highest WSM value is

98.68% that is produced by the HGB with the PCA feature

reduction technique.

Table 18 shows the best combinations and Table 19

shows the corresponding performance metrics applied on

the reduced ‘‘UCI-HAR’’ data when applying 0% over-

lapping ði:e:; 116� 100Þ using the different mentioned

classifiers. It shows the best of each classifier after the grid

searching process.

Table 19 reports that the best reported performance

metrics. It shows that the best reported accuracy, balanced

accuracy, precision, specificity, recall, F1-score, IoU,

ROC, and NPV are 100% by the LGBM classifier with the

T-SVD feature reduction technique. In terms of the elapsed

time, the best reported classifier is DT with LDA as feature

reduction technique with 0.5 seconds. Table 20 and Fig. 9

summarize the WSM metrics using the ‘‘UCI-HAR’’

dataset when applying 0% overlapping. It shows that the

highest WSM value is 100% that is produced by the LGBM

classifier with the T-SVD feature reduction technique.

5.2.1 First category experiments remarks

Does the overlapping appliance during the dataset

sampling process affect the performance? According to

Tables 11 and 14, applying 50% overlapping increases the

best-reported WSM by 0.78%; however, the increase is not

Table 17 Tabular summarization of the WSM metrics using the ‘‘UCI-HAR’’ dataset ð232� 100Þ

DT AdaBoost (%) RFC (%) ETC (%) HGB (%) XGB (%) LGBM (%) Max value (%)

PCA 98.35 98.02 98.02 98.35 98.68 98.02 98.35 98.68

LDA 94.79 71.57 95.43 95.43 93.20 94.47 94.79 95.43

ICA 57.20 61.71 74.96 79.86 72.13 72.42 74.11 79.86

T-SVD 98.35 94.79 98.02 98.35 96.72 96.72 98.35 98.35

RP 80.74 63.87 95.43 96.40 91.94 89.46 92.89 96.40

Max value 98.35 98.02 98.02 98.35 98.68 98.02 98.35 98.68

All the bold refers to the highest WSM score acquired

Fig. 8 Graphical summarization

of the WSM metrics using the

‘‘UCI-HAR’’ dataset

ð232� 100Þ

Neural Computing and Applications (2023) 35:12793–12831 12815

123



considerable. Does the overlapping appliance during the

dataset sampling process affect the performance?

According to Tables 17 and 20, applying 0% overlapping

increases the best-reported WSM by 1.32%. According to

Table 20, is it reasonable to obtain a WSM value of

100%? The answer can be ‘‘YES’’ as this happens because

of the high model complexity and the number of records is

relatively low (i.e., 116).

5.3 Second category experiments

The current Section presents the experiments applied on

both datasets after the TDA feature extraction step as

presented in Fig. 5. Table 21 shows the best combinations

and Table 22 shows the corresponding performance metrics

applied on the four sampled datasets after TDA using the

Table 18 The best combinations applied on the reduced ‘‘UCI-HAR’’ dataset ð116� 100Þ using each classifier

Feature reduction technique Classifier Scaling technique Criterion Splitter Max Depth Estimators # Class weight Learning rate

PCA DT Normalizer Entropy Best None – – –

PCA AdaBoost Normalizer – – – 300 – 0.01

PCA RFC RobustScaler Gini – None 300 Balanced -

PCA ETC StandardScaler Gini - None 300 – –

PCA HGB StandardScaler – - – - – –

PCA XGB Normalizer – - None 300 – 0.10

PCA LGBM Normalizer – - None 300 – 0.10

LDA DT MaxAbsScaler Gini Best None – – –

LDA AdaBoost StandardScaler – – – 300 - 0.10

LDA RFC Normalizer Entropy – None 300 Balanced –

LDA ETC MinMaxScaler Gini – None 300 – –

LDA HGB Normalizer – – – - – –

LDA XGB Normalizer – – None 300 – 0.01

LDA LGBM MinMaxScaler – – None 300 – 0.01

ICA DT MinMaxScaler Gini Random None - – –

ICA AdaBoost RobustScaler – – – 300 – 1.00

ICA RFC MinMaxScaler Gini – None 300 None –

ICA ETC StandardScaler Gini – None 300 – –

ICA HGB Normalizer – – – – – –

ICA XGB StandardScaler – – None 300 – 1.00

ICA LGBM StandardScaler – – None 300 – 1.00

T-SVD DT MinMaxScaler Entropy Best None – – –

T-SVD AdaBoost MinMaxScaler – – – 300 – 0.01

T-SVD RFC StandardScaler Entropy – None 300 None –

T-SVD ETC MaxAbsScaler Gini – None 300 – -

T-SVD HGB StandardScaler – – - - – -

T-SVD XGB StandardScaler – – None 300 – 0.01

T-SVD LGBM MinMaxScaler – – None 300 – 1.00

RP DT RobustScaler Entropy Random None – – –

RP AdaBoost StandardScaler – – – 300 – 0.01

RP RFC RobustScaler Gini – None 300 None -

RP ETC MinMaxScaler Entropy – None 300 – -

RP HGB Normalizer – – – - – -

RP XGB Normalizer – – None 300 – 0.10

RP LGBM MaxAbsScaler – – None 300 – 0.10
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different mentioned classifiers. It shows the best of each

classifier after the grid searching process.

Table 22 reports that the best reported performance

metrics. It shows that for the UCI-HAR dataset with 0%

overlap, the best reported accuracy, balanced accuracy,

precision, specificity, recall, F1-score, IoU, ROC, and NPV

are 95.69%, 92.24%, 87.07%, 97.41%, 87.07%, 87.07%,

77.10%, 92.39%, and 97.41%, respectively, by the LGBM

classifier. In terms of the elapsed time, the best reported

classifier is DT with 0.8 seconds. For the UCI-HAR dataset

with 50% overlap, the best reported accuracy, balanced

accuracy, precision, specificity, recall, F1-score, IoU,

ROC, and NPV are 96.70%, 94.05%, 90.09%, 98.02%,

90.09%, 90.09%, 81.96%, 94.14%, and 98.02%, respec-

tively, by the LGBM classifier. In terms of the elapsed

time, the best reported classifier is DT with 0.9 seconds.

For the WISDM dataset with 0% overlap, the best reported

accuracy, balanced accuracy, precision, specificity, recall,

Table 19 The corresponding performance metrics using each classifier applied on the reduced ‘‘UCI-HAR’’ dataset ð116� 100Þ

Feature Reduction

Technique

Classifier Elapsed

time (s)

Accuracy

(%)

Balanced

Accuracy (%)

Precision

(%)

Specificity

(%)

Recall

()

F1

($)

IoU

(%)

ROC

(%)

NPV

(%)

PCA DT 1.2 99.14 98.45 97.41 99.48 97.41 97.41 94.96 98.45 99.48

PCA AdaBoost 51.2 99.14 98.45 97.41 99.48 97.41 97.41 94.96 98.45 99.48

PCA RFC 82.2 99.14 98.45 97.41 99.48 97.41 97.41 94.96 98.45 99.48

PCA ETC 16.6 99.43 98.97 98.28 99.66 98.28 98.28 96.61 98.97 99.66

PCA HGB 34.3 99.43 98.97 98.28 99.66 98.28 98.28 96.61 98.97 99.66

PCA XGB 72.2 99.14 98.45 97.41 99.48 97.41 97.41 94.96 98.45 99.48

PCA LGBM 18.4 99.14 98.45 97.41 99.48 97.41 97.41 94.96 98.45 99.48

LDA DT 0.5 93.97 89.14 81.90 96.38 81.90 81.90 69.34 89.43 96.38

LDA AdaBoost 33.0 83.91 71.03 51.72 90.34 51.72 51.72 34.88 73.61 90.34

LDA RFC 66.9 96.55 93.79 89.66 97.93 89.66 89.66 81.25 93.88 97.93

LDA ETC 14.8 95.69 92.24 87.07 97.41 87.07 87.07 77.10 92.39 97.41

LDA HGB 17.5 93.10 87.59 79.31 95.86 79.31 79.31 65.71 87.98 95.86

LDA XGB 52.0 95.69 92.24 87.07 97.41 87.07 87.07 77.10 92.39 97.41

LDA LGBM 13.9 95.98 92.76 87.93 97.59 87.93 87.93 78.46 92.88 97.59

ICA DT 1.3 79.60 63.28 38.79 87.76 38.79 38.79 24.06 67.85 87.76

ICA AdaBoost 51.0 75.29 55.52 25.86 85.17 25.86 25.86 14.85 62.94 85.17

ICA RFC 84.4 77.01 58.62 31.03 86.21 31.03 31.03 18.37 64.79 86.21

ICA ETC 17.1 80.17 64.31 40.52 88.10 40.52 40.52 25.41 68.57 88.10

ICA HGB 38.9 76.15 57.07 28.45 85.69 28.45 28.45 16.58 63.84 85.69

ICA XGB 88.1 75.57 56.03 26.72 85.34 26.72 26.72 15.42 63.24 85.34

ICA LGBM 26.3 76.44 57.59 29.31 85.86 29.31 29.31 17.17 64.15 85.86

T-SVD DT 1.2 98.85 97.93 96.55 99.31 96.55 96.55 93.33 97.94 99.31

T-SVD AdaBoost 51.9 99.14 98.45 97.41 99.48 97.41 97.41 94.96 98.45 99.48

T-SVD RFC 81.8 98.85 97.93 96.55 99.31 96.55 96.55 93.33 97.94 99.31

T-SVD ETC 16.4 99.43 98.97 98.28 99.66 98.28 98.28 96.61 98.97 99.66

T-SVD HGB 34.7 99.14 98.45 97.41 99.48 97.41 97.41 94.96 98.45 99.48

T-SVD XGB 70.9 98.56 97.41 95.69 99.14 95.69 95.69 91.74 97.43 99.14

T-SVD LGBM 21.4 100 100 100 100 100 100 100 100 100

RP DT 1.2 85.34 73.62 56.03 91.21 56.03 56.03 38.92 75.69 91.21

RP AdaBoost 51.9 77.87 60.17 33.62 86.72 33.62 33.62 20.21 65.77 86.72

RP RFC 78.9 97.41 95.34 92.24 98.45 92.24 92.24 85.60 95.40 98.45

RP ETC 16.2 97.99 96.38 93.97 98.79 93.97 93.97 88.62 96.41 98.79

RP HGB 38.3 93.68 88.62 81.03 96.21 81.03 81.03 68.12 88.94 96.21

RP XGB 77.3 93.39 88.10 80.17 96.03 80.17 80.17 66.91 88.46 96.03

RP LGBM 19.4 95.40 91.72 86.21 97.24 86.21 86.21 75.76 91.89 97.24
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F1-score, IoU, ROC, and NPV are 95.07%, 91.12%,

85.20%, 97.04%, 85.20%, 85.20%, 74.22%, 91.31%, and

97.04%, respectively, by the LGBM classifier. In terms of

the elapsed time, the best reported classifier is DT with

54.1 seconds. For the WISDM dataset with 50% overlap,

the best reported accuracy, balanced accuracy, precision,

specificity, recall, F1-score, IoU, ROC, and NPV are

95.34%, 91.61%, 86.01%, 97.20%, 86.01%, 86.01%,

75.45%, 91.78%, and 97.20%, respectively, by the LGBM

classifier. In terms of the elapsed time, the best reported

classifier is DT with 114.8 seconds. Table 23 and Fig. 10

summarize the WSM metrics. It shows that the highest

WSM values are 90.38%, 92.57%, 89.05%, and 89.62%

produced by the UCI-HAR ? 0% Overlap, UCI-HAR ?

50% Overlap, WISDM ? 0% Overlap, and WISDM ?

50% Overlap, respectively, by the LGBM classifiers.

5.3.1 Second category experiments remarks

Why was not the TDA feature extraction used over the

flatten features instead of sampled ones directly? The

TDA feature extraction technique accepts data with any

dimension (i.e., n-dimensional data where n� 1) as an

input. Hence, performing two processes is not preferred to

optimize the time. On the contrary, the traditional feature

reduction techniques require 2-dimensional data as an input

and hence the flatten step is crucial. Does the overlapping

appliance during the dataset sampling process affect the

performance? According to Table 23, applying 50%

overlapping with UCI-HAR and WISDM datasets increa-

ses the best-reported WSM by 2.19% and 0.57%,

respectively.

5.4 Third category experiments

The current Section presents the experiments applied on

both datasets after the sampling step as presented in Fig. 5.

The deep learning classifiers are used in this category.

Table 24 shows the reported performance metrics for the

four generated datasets using the 1D-CNN model. It shows

that the highest accuracy, balanced accuracy, precision,

specificity, recall, F1-score, IoU, ROC, NPV, and WSM

values for the (1) ‘‘UCI-HAR ? 50% Overlap’’ are 100%

Table 20 Tabular summarization of the WSM metrics using the ‘‘UCI-HAR’’ dataset ð116� 100Þ

AdaBoost (%) DT (%) ETC (%) HGB (%) LGBM (%) RFC (%) XGB (%) Max value (%)

PCA 98.02 98.02 98.02 98.68 98.68 98.02 98.02 98.68

LDA 86.70 66.59 92.26 90.38 84.89 90.38 91.01 92.26

ICA 58.52 50.73 53.81 59.58 52.26 51.24 52.78 59.58

T-SVD 97.37 98.02 97.37 98.68 98.02 96.72 100 100

RP 69.34 55.37 94.15 95.43 86.10 85.49 89.76 95.43

Max Value 98.02 98.02 98.02 98.68 98.68 98.02 100 100

All the bold refers to the highest WSM score acquired

Fig. 9 Graphical summarization

of the WSM metrics using the

‘‘UCI-HAR’’ dataset

ð116� 100Þ

12818 Neural Computing and Applications (2023) 35:12793–12831

123



that is reported by a batch size of 16, (2) ‘‘UCI-HAR ? 0%

Overlap’’ are 100% that is reported by batch sizes of 64 and

4, (3) ‘‘WISDM ? 50% Overlap’’ are 99.90%, 99.81%,

99.70%, 99.94%, 99.68%, 99.69%, 99.38%, 99.81%,

99.94%, and 99.76% that is reported by a batch size of 512,

and (4) ‘‘WISDM ? 0% Overlap’’ are 99.71%, 99.47%,

99.17%, 99.83%, 99.10%, 99.13%, 98.28%, 99.47%,

99.82%, and 99.33% that is reported by a batch size of 256.

Table 25 shows the reported performance metrics for the

four generated datasets using the GRU model. It shows that

the highest accuracy, balanced accuracy, precision, speci-

ficity, recall, F1-score, IoU, ROC, NPV, and WSM values

for the (1) ‘‘UCI-HAR ? 50% Overlap’’ are 99.86%,

99.74%, 99.57%, 99.91%, 99.57%, 99.57%, 99.14%,

99.74%, 99.91%, and 99.67% that is reported by a batch

size of 32, (2) ‘‘UCI-HAR ? 0% Overlap’’ are 100%,

100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%,

and 100% that is reported by a batch size of 16, (3)

‘‘WISDM ? 50% Overlap’’ are 98.83%, 97.75%, 96.81%,

99.37%, 96.13%, 96.47%, 93.18%, 97.76%, 99.23%, and

97.28% that is reported by a batch size of 256, and (4)

‘‘WISDM ? 0% Overlap’’ are 98.11%, 96.34%, 94.88%,

98.99%, 93.69%, 94.28%, 89.18%, 96.38%, 98.74% and

95.62% that is reported by a batch size of 256.

Table 26 shows the reported performance metrics for the

four generated datasets using the BiLSTM model. It shows

that the highest accuracy, balanced accuracy, precision,

specificity, recall, F1-score, IoU, ROC, NPV, and WSM

value for the (1) ‘‘UCI-HAR ? 50% Overlap’’ are 99.71%,

99.48%, 99.14%, 99.83%, 99.14%, 99.14%, 98.29%,

99.48%, 99.83%, and 99.34% that is reported by a batch

size of 8, (2) ‘‘UCI-HAR ? 0% Overlap’’ are 99.71%,

99.48%, 99.14%, 99.83%, 99.14%, 99.14%, 98.29%,

99.48%, 99.83%, and 99.34% that is reported by a batch

size of 8, (3) ‘‘WISDM ? 50% Overlap’’ are 94.98%,

89.59%, 87.53%, 97.68%, 81.50%, 84.41%, 73.02%,

Table 21 The best combinations applied on the four sampled datasets after TDA

Dataset Keyword Classifier Scaling technique Criterion Splitter Max depth Estimators # Class weight Learning rate

UCI-HAR 0% Overlap DT MaxAbsScaler Entropy Random None – – –

UCI-HAR 0% Overlap AdaBoost RobustScaler – – – 300 – 1.00

UCI-HAR 0% Overlap RFC StandardScaler Gini – None 300 None –

UCI-HAR 0% Overlap ETC MinMaxScaler Entropy – None 300 – –

UCI-HAR 0% Overlap HGB StandardScaler – – – – – –

UCI-HAR 0% Overlap XGB StandardScaler – – None 300 – 0.10

UCI-HAR 0% Overlap LGBM StandardScaler – – None 300 – 0.01

UCI-HAR 50% Overlap DT StandardScaler Gini Best None – – –

UCI-HAR 50% Overlap AdaBoost StandardScaler – – – 300 – 0.01

UCI-HAR 50% Overlap RFC MinMaxScaler Entropy – None 300 Balanced –

UCI-HAR 50% Overlap ETC StandardScaler Gini – None 300 – –

UCI-HAR 50% Overlap HGB StandardScaler – – – – – –

UCI-HAR 50% Overlap XGB StandardScaler – – None 300 – 0.01

UCI-HAR 50% Overlap LGBM MinMaxScaler – – None 300 – 1.00

WISDM ? 0% Overlap DT MaxAbsScaler Entropy Best None – – –

WISDM ? 0% Overlap AdaBoost Normalizer – – – 300 – 0.10

WISDM ? 0% Overlap RFC StandardScaler Entropy – None 300 Balanced –

WISDM ? 0% Overlap ETC RobustScaler Gini – None 300 – –

WISDM ? 0% Overlap HGB RobustScaler – – – – – –

WISDM ? 0% Overlap XGB StandardScaler – – None 300 – 0.10

WISDM ? 0% Overlap LGBM MinMaxScaler – – None 300 – 0.10

WISDM ? 50% Overlap DT StandardScaler Entropy Best None – – –

WISDM ? 50% Overlap AdaBoost Normalizer – – – 300 – 0.10

WISDM ? 50% Overlap RFC RobustScaler Entropy – None 300 Balanced –

WISDM ? 50% Overlap ETC MinMaxScaler Gini – None 300 – –

WISDM ? 50% Overlap HGB RobustScaler – – – – – –

WISDM ? 50% Overlap XGB RobustScaler – – None 300 – 0.10

WISDM ? 50% Overlap LGBM MaxAbsScaler – – None 300 – 0.10
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Table 22 The corresponding performance metrics using each classifier applied on the four sampled datasets after TDA

Dataset

Keyword

Classifier Elapsed time

(s) (%)

Accuracy

(%)

Balanced

accuracy (%)

Precision

(%)

Specificity

(%)

Recall

(%)

F1

(%)

IoU

(%)

ROC

(%)

NPV

(%)

UCI-HAR 0%

Overlap

DT 0.8 92.53 86.55 77.59 95.52 77.59 77.59 63.38 87.01 95.52

UCI-HAR 0%

Overlap

AdaBoost 36.8 82.47 68.45 47.41 89.48 47.41 47.41 31.07 71.61 89.48

UCI-HAR 0%

Overlap

RFC 71.3 94.83 90.69 84.48 96.90 84.48 84.48 73.13 90.90 96.90

UCI-HAR 0%

Overlap

ETC 15.3 94.54 90.17 83.62 96.72 83.62 83.62 71.85 90.41 96.72

UCI-HAR 0%

Overlap

HGB 18.3 91.38 84.48 74.14 94.83 74.14 74.14 58.90 85.11 94.83

UCI-HAR 0%

Overlap

XGB 49.2 93.10 87.59 79.31 95.86 79.31 79.31 65.71 87.98 95.86

UCI-HAR 0%

Overlap

LGBM 16.5 95.69 92.24 87.07 97.41 87.07 87.07 77.10 92.39 97.41

UCI-HAR 50%

Overlap

DT 0.9 94.40 89.91 83.19 96.64 83.19 83.19 71.22 90.16 96.64

UCI-HAR 50%

Overlap

AdaBoost 42.7 77.16 58.88 31.47 86.29 31.47 31.47 18.67 64.95 86.29

UCI-HAR 50%

Overlap

RFC 81.5 95.55 91.98 86.64 97.33 86.64 86.64 76.43 92.14 97.33

UCI-HAR 50%

Overlap

ETC 16.5 96.12 93.02 88.36 97.67 88.36 88.36 79.15 93.13 97.67

UCI-HAR 50%

Overlap

HGB 37.5 95.98 92.76 87.93 97.59 87.93 87.93 78.46 92.88 97.59

UCI-HAR 50%

Overlap

XGB 70.9 95.55 91.98 86.64 97.33 86.64 86.64 76.43 92.14 97.33

UCI-HAR 50%

Overlap

LGBM 23.3 96.70 94.05 90.09 98.02 90.09 90.09 81.96 94.14 98.02

WISDM ? 0%

Overlap

DT 54.1 92.72 86.90 78.16 95.63 78.16 78.16 64.15 87.33 95.63

WISDM ? 0%

Overlap

AdaBoost 1491.9 89.60 81.27 68.79 93.76 68.79 68.79 52.42 82.23 93.76

WISDM ? 0%

Overlap

RFC 5458.8 94.72 90.50 84.17 96.83 84.17 84.17 72.67 90.72 96.83

WISDM ? 0%

Overlap

ETC 338.3 94.74 90.54 84.23 96.85 84.23 84.23 72.75 90.76 96.85

WISDM ? 0%

Overlap

HGB 206.2 94.86 90.74 84.57 96.91 84.57 84.57 73.26 90.95 96.91

WISDM ? 0%

Overlap

XGB 6106.3 94.88 90.78 84.63 96.93 84.63 84.63 73.35 90.99 96.93

WISDM ? 0%

Overlap

LGBM 338.3 95.07 91.12 85.20 97.04 85.20 85.20 74.22 91.31 97.04

WISDM ? 50%

Overlap

DT 114.8 92.90 87.22 78.70 95.74 78.70 78.70 64.89 87.64 95.74

WISDM ? 50%

Overlap

AdaBoost 3024.4 89.75 81.55 69.25 93.85 69.25 69.25 52.96 82.47 93.85

WISDM ? 50%

Overlap

RFC 11858.8 94.99 90.99 84.98 97.00 84.98 84.98 73.89 91.19 97.00

WISDM ? 50%

Overlap

ETC 678.5 95.00 90.99 84.99 97.00 84.99 84.99 73.89 91.19 97.00

WISDM ? 50%

Overlap

HGB 305.0 95.10 91.18 85.30 97.06 85.30 85.30 74.37 91.37 97.06

WISDM ? 50%

Overlap

XGB 13159.5 95.23 91.42 85.70 97.14 85.70 85.70 74.98 91.60 97.14
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89.95%, 96.35%, and 88.33% that is reported by a batch

size of 256, and (4) ‘‘WISDM ? 0% Overlap’’ are 94.78%,

88.98%, 87.36%, 97.68%, 80.29%, 83.68%, 71.94%,

89.41%, 96.12%, and 87.80% that is reported by a batch

size of 256.

Figure 11 shows a graphical comparison of the best

reported results between the three approaches (i.e., 1D-

CNN, GRU, and BiLSTM). It shows that the 1D-CNN

approach outperforms the other two approaches. Also, the

overlapping mechanism shows better results compared

with the non-overlapping approach.

5.4.1 Third category experiments remarks

Does the overlapping appliance during the dataset

sampling process affect the performance? According to

Tables 24, 25, and 26, applying 50% overlapping with

WISDM dataset increases the best-reported WSM values

by (1) 0.43% for the 1D-CNN model, (2) 1.66% for the

GRU model, and (3) 0.53% for the BiLSTM model.

However, it does not increase the best-reported WSM

values for the UCI-HAR dataset.

Table 22 (continued)

Dataset

Keyword

Classifier Elapsed time

(s) (%)

Accuracy

(%)

Balanced

accuracy (%)

Precision

(%)

Specificity

(%)

Recall

(%)

F1

(%)

IoU

(%)

ROC

(%)

NPV

(%)

WISDM ? 50%

Overlap

LGBM 554.3 95.34 91.61 86.01 97.20 86.01 86.01 75.45 91.78 97.20

Table 23 Tabular summarization of the WSM metrics using TDA and the four sampled datasets

Dataset Keyword DT (%) AdaBoost (%) RFC (%) ETC (%) HGB (%) XGB (%) LGBM (%)(%) Max value (%)

UCI-HAR 0% Overlap 83.70 63.87 88.53 87.92 81.33 84.89 90.38 90.38

UCI-HAR 50% Overlap 87.62 54.07 90.07 91.32 91.01 90.07 92.57 92.57

WISDM ? 0% Overlap 84.09 77.71 88.31 88.35 88.59 88.64 89.05 89.05

WISDM ? 50% Overlap 84.47 78.02 88.89 88.89 89.12 89.40 89.62 89.62

All the bold refers to the highest WSM score acquired
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Fig. 10 Graphical

summarization of the WSM

metrics using TDA and the four

sampled datasets
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5.5 Overall remarks

From the experiments performed in the current study and

partitioned into three categories, the best approach is 1D-

CNN concerning the ‘‘WISDM’’ and ‘‘UCI-HAR’’ data-

sets, respectively. Additionally, applying 50% overlapping

with ‘‘UCI-HAR’’ and ‘‘WISDM’’ datasets increases the

best-reported metrics. For the ‘‘WISDM’’ dataset,

concerning the first category of experiments, the accuracy,

balanced accuracy, precision, specificity, recall, F1-score,

IoU, ROC, and NPV had been increased by 0.39%, 0.67%,

1.11%, 0.22%, 1.11%, 1.11%, 1.58%, 0.63%, and 0.22%,

respectively. Concerning the second category of experi-

ments, the accuracy, balanced accuracy, precision, speci-

ficity, recall, F1-score, IoU, ROC, and NPV had increased

by 0.27%, 0.49%, 0.81%, 0.16%, 0.81%, 0.81%, 1.23%,

Table 24 The performance metrics using the 1D-CNN model applied on the four generated datasets

Dataset Keyword BS Accuracy

(%)

Balanced

accuracy (%)

Precision

(%)

Specificity

(%)

Recall

(%)

F1

(%)

IoU

(%)

ROC

(%)

NPV

(%)

WSM

(%)

UCI-HAR ? 50%

Overlap

128 99.43 98.97 98.28 99.66 98.28 98.28 96.61 98.97 99.66 98.68

UCI-HAR ? 50%

Overlap

64 99.86 99.74 99.57 99.91 99.57 99.57 99.14 99.74 99.91 99.67

UCI-HAR ? 50%

Overlap

32 99.14 98.45 97.41 99.48 97.41 97.41 94.96 98.45 99.48 98.02

UCI-HAR ? 50%

Overlap

16 100 100 100 100 100 100 100 100 100 100

UCI-HAR ? 50%

Overlap

8 95.26 86.29 98.26 99.74 72.84 83.66 71.91 87.33 94.84 87.79

UCI-HAR ? 50%

Overlap

4 97.27 94.91 92.17 98.45 91.38 91.77 84.80 94.98 98.28 93.78

UCI-HAR ? 0%

Overlap

128 99.43 98.97 98.28 99.66 98.28 98.28 96.61 98.97 99.66 98.68

UCI-HAR ? 0%

Overlap

64 100 100 100 100 100 100 100 100 100 100

UCI-HAR ? 0%

Overlap

32 98.85 97.93 96.55 99.31 96.55 96.55 93.33 97.94 99.31 97.37

UCI-HAR ? 0%

Overlap

16 98.42 96.98 95.65 99.14 94.83 95.24 90.91 97.01 98.97 96.35

UCI-HAR ? 0%

Overlap

8 98.28 96.90 94.83 98.97 94.83 94.83 90.16 96.92 98.97 96.07

UCI-HAR ? 0%

Overlap

4 100 100 100 100 100 100 100 100 100 100

WISDM ? 50%

Overlap

2048 99.73 99.49 99.20 99.84 99.15 99.18 98.36 99.50 99.83 99.36

WISDM ? 50%

Overlap

1024 99.83 99.68 99.49 99.90 99.47 99.48 98.96 99.68 99.89 99.60

WISDM ? 50%

Overlap

512 99.90 99.81 99.70 99.94 99.68 99.69 99.38 99.81 99.94 99.76

WISDM ? 50%

Overlap

256 99.83 99.69 99.51 99.90 99.48 99.50 99.00 99.69 99.90 99.61

WISDM ? 0%

Overlap

2048 99.33 98.75 98.13 99.63 97.86 98.00 96.07 98.75 99.57 98.45

WISDM ? 0%

Overlap

1024 99.37 98.84 98.18 99.64 98.04 98.11 96.29 98.84 99.61 98.55

WISDM ? 0%

Overlap

512 99.27 98.61 97.96 99.59 97.64 97.80 95.69 98.62 99.53 98.30

WISDM ? 0%

Overlap

256 99.71 99.47 99.17 99.83 99.10 99.13 98.28 99.47 99.82 99.33
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0.47%, and 0.16%, respectively. Concerning the third

category of experiments, the accuracy, balanced accuracy,

precision, specificity, recall, F1-score, IoU, ROC, and NPV

had increased by 0.19%, 0.34%, 0.53%, 0.11%, 0.58%,

0.56%, 0.1%, 0.34%, 0.12%, and 0.43%, respectively. For

the ‘‘UCI-HAR’’ dataset, concerning the second category

of experiments, the accuracy, balanced accuracy, precision,

specificity, recall, F1-score, IoU, ROC, and NPV had

increased by 1.01%, 1.81%, 3.02%, 0.61%, 3.02%, 3.02%,

4.86%, 1.75%, and 0.61%, respectively. However, for the

first and third categories of experiments, the reported

metrics had not been affected when applying the

overlapping.

Why were the original datasets not used directly?

The original datasets, specially the WISDM dataset, are

large and time-demanding (i.e., the training process is

time-consuming) and suffer from imbalanced data issue.

Additionally, the time-series behaviour is not employed.

Why were the resulting datasets from the balancing

phase not used directly? As with the original datasets, the

balancing-resulting datasets are large and time-demanding.

Moreover, time-series behaviour data will not be

employed. Is the TDA better than the traditional ML

features reduction techniques? From Tables 11, 14, 17,

20, and 23, TDA feature extraction is better than traditional

feature reduction techniques. Concerning the WSM value,

Table 25 The performance metrics using the GRU model applied on the four generated datasets

Dataset Keyword BS Accuracy

(%)

Balanced

accuracy (%)

Precision

(%)

Specificity

(%)

Recall

(%)

F1

(%)

IoU

(%)

ROC

(%)

NPV

(%)

WSM

(%)

UCI-HAR ? 50%

Overlap

128 99.71 99.48 99.14 99.83 99.14 99.14 98.29 99.48 99.83 99.34

UCI-HAR ? 50%

Overlap

64 98.99 97.67 98.23 99.66 95.69 96.94 94.07 97.69 99.14 97.57

UCI-HAR ? 50%

Overlap

32 99.86 99.74 99.57 99.91 99.57 99.57 99.14 99.74 99.91 99.67

UCI-HAR ? 50%

Overlap

16 99.14 98.45 97.41 99.48 97.41 97.41 94.96 98.45 99.48 98.02

UCI-HAR ? 50%

Overlap

8 94.25 89.66 82.76 96.55 82.76 82.76 70.59 89.92 96.55 87.31

UCI-HAR ? 50%

Overlap

4 99.28 98.71 97.84 99.57 97.84 97.84 95.78 98.71 99.57 98.35

UCI-HAR ? 0%

Overlap

128 99.71 99.48 99.14 99.83 99.14 99.14 98.29 99.48 99.83 99.34

UCI-HAR ? 0%

Overlap

64 99.71 99.48 99.14 99.83 99.14 99.14 98.29 99.48 99.83 99.34

UCI-HAR ? 0%

Overlap

32 99.43 98.97 98.28 99.66 98.28 98.28 96.61 98.97 99.66 98.68

UCI-HAR ? 0%

Overlap

16 100 100 100 100 100 100 100 100 100 100

WISDM ? 50%

Overlap

2048 96.72 93.36 91.73 98.41 88.30 89.99 81.79 93.49 97.68 92.39

WISDM ? 50%

Overlap

1024 98.02 96.14 94.71 98.96 93.32 94.01 88.70 96.18 98.67 95.41

WISDM ? 50%

Overlap

512 98.27 96.62 95.38 99.09 94.15 94.76 90.05 96.65 98.83 95.98

WISDM ? 50%

Overlap

256 98.83 97.75 96.81 99.37 96.13 96.47 93.18 97.76 99.23 97.28

WISDM ? 0%

Overlap

2048 94.98 89.25 88.23 97.85 80.66 84.27 72.82 89.67 96.20 88.21

WISDM ? 0%

Overlap

1024 95.38 90.63 88.14 97.75 83.50 85.76 75.06 90.91 96.73 89.32

WISDM ? 0%

Overlap

512 97.40 94.97 92.95 98.62 91.32 92.13 85.40 95.04 98.27 94.01

WISDM ? 0%

Overlap

256 98.11 96.34 94.88 98.99 93.69 94.28 89.18 96.38 98.74 95.62
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this conclusion was reached because of the following: (1)

for the WISDM dataset with 50% overlapping, TDA has

outperformed the best reported traditional technique by

3.77% and (2) for the WISDM dataset with 0% overlap-

ping, TDA has outperformed the best reported traditional

technique by 6.74%.

According to Tables 10, 13, 16, 19, and 22, why did

the precision, recall, and F1-score have the same values

and also for the specificity and NPV? As mentioned

before, the micro-average is used as an averaging method.

In this method, if there is a false positive, there will always

also be a false negative and vice versa, as always one class

is predicted. Hence, increasing only FP or FN but not both

is not possible (i.e., the resulting FP and FN have the same

values). According to the equations mentioned in Table 7,

precision, recall, and F1-score will always have the same

values. The same for specificity and NPV values. Is the DL

approach better than the traditional ML approach with

Table 26 The performance metrics using the BiLSTM model applied on the four generated datasets

Dataset Keyword BS Accuracy

(%)

Balanced

accuracy (%)

Precision

(%)

Specificity

(%)

Recall

(%)

F1

(%)

IoU

(%)

ROC

(%)

NPV

(%)

WSM

(%)

UCI-HAR ? 50%

Overlap

128 95.04 88.41 90.55 98.36 78.45 84.06 72.51 88.96 95.80 88.02

UCI-HAR ? 50%

Overlap

64 93.68 87.24 83.33 96.90 77.59 80.36 67.16 87.77 95.58 85.51

UCI-HAR ? 50%

Overlap

32 98.42 96.81 96.05 99.22 94.40 95.22 90.87 96.84 98.88 96.30

UCI-HAR ? 50%

Overlap

16 98.35 96.94 95.24 99.05 94.83 95.03 90.53 96.96 98.97 96.21

UCI-HAR ? 50%

Overlap

8 99.71 99.48 99.14 99.83 99.14 99.14 98.29 99.48 99.83 99.34

UCI-HAR ? 50%

Overlap

4 98.78 97.72 96.54 99.31 96.12 96.33 92.92 97.73 99.22 97.18

UCI-HAR ? 0%

Overlap

128 99.57 99.05 99.13 99.83 98.28 98.70 97.44 99.05 99.66 98.97

UCI-HAR ? 0%

Overlap

64 75.43 51.47 19.78 87.41 15.52 17.39 9.52 62.78 83.80 47.01

UCI-HAR ? 0%

Overlap

32 97.99 96.38 93.97 98.79 93.97 93.97 88.62 96.41 98.79 95.43

UCI-HAR ? 0%

Overlap

16 96.70 93.53 91.15 98.28 88.79 89.96 81.75 93.65 97.77 92.40

UCI-HAR ? 0%

Overlap

8 99.71 99.48 99.14 99.83 99.14 99.14 98.29 99.48 99.83 99.34

UCI-HAR ? 0%

Overlap

4 95.40 91.03 87.50 97.59 84.48 85.96 75.38 91.27 96.92 89.50

WISDM ? 50%

Overlap

2048 93.21 83.35 88.02 98.13 68.58 77.09 62.72 84.65 93.98 83.30

WISDM ? 50%

Overlap

1024 93.65 85.76 86.01 97.60 73.92 79.51 65.99 86.57 94.93 84.88

WISDM ? 50%

Overlap

512 92.47 82.00 85.24 97.70 66.29 74.58 59.46 83.49 93.54 81.64

WISDM ? 50%

Overlap

256 94.98 89.59 87.53 97.68 81.50 84.41 73.02 89.95 96.35 88.33

WISDM ? 0%

Overlap

2048 88.76 70.15 81.41 98.07 42.23 55.61 38.52 75.50 89.46 71.08

WISDM ? 0%

Overlap

1024 91.85 77.03 93.66 99.26 54.81 69.15 52.85 80.18 91.65 78.94

WISDM ? 0%

Overlap

512 93.23 83.83 87.04 97.92 69.74 77.43 63.18 85.01 94.18 83.51

WISDM ? 0%

Overlap

256 94.78 88.98 87.36 97.68 80.29 83.68 71.94 89.41 96.12 87.80
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the traditional ML features reduction techniques? From

Tables 11, 14, 17, 20, 24, 25, and 26, DL approach

achieved better WSM values than the traditional ML

approach with the traditional ML features reduction tech-

niques. Is the DL approach better than the traditional

ML approach with the TDA features? From Tables 23,

24, 25, and 26, DL approach achieved better WSM values

than the traditional ML approach with the TDA features. It

is worth mentioning that when the results were conducted

from the three categories of experiments, the DL algo-

rithms used with both datasets after the sampling step

reported the best results so far.

5.6 Related studies comparison

The performance of the algorithms from the most recent

studies and those proposed was compared. In both datasets,

the suggested approach performed well in terms of classi-

fication. Table 27 shows a comparison between the results

of the related studies and the presented approach con-

cerning the two utilized datasets. In the WISDM dataset,

the best-reported accuracy and F1-score of the proposed

algorithm were 1.08% and 0.88% better than those of

Teng’s layer-wise CNN approach. Concerning the UCI-

HAR dataset, the accuracy score of the proposed approach

was 3.02% and 0.85% better than those of Teng’s layer-

wise CNN and Wang’s hierarchical deep LSTM network,

respectively.

6 Limitations

Although the current study presented the potential of using

machine and deep learning models to perform the Human

Activity Recognition (HAR) task, some limitations are

presented. The main limitation is the instantaneity, the

high-dimensional features results are consuming a consid-

erable amount of time in the classifier training stage.

Additionally, only features extraction using TDA and 5

dimensionality reduction techniques were used. Also, GS is

not utilized with the suggested deep learning models. To

overcome the imbalanced data problem, only the over-

sampling techniques were used.

7 Conclusions

Recently, HAR has earned a lot of interest and emerged as

a promising approach. It has a wide range of possible

applications (e.g., intelligent assistance for people suffering

Table 27 Comparison between the results of the current study and the related studies utilizing the same dataset(s)

Reference WISDM UCI-HAR

Accuracy

(%)

F1-score

(%)

Recall

(%)

Precision

(%)

Accuracy

(%)

F1-score

(%)

Recall

(%)

Precision

(%)

Ignatov et al. [69] 93.32 – – – 97.63 97.62 – –

Zhang et al. [34] 96.4 – – – – – – –

Teng et al. [58] 98.82 98.81 – – 96.98 96.97 – –

Wang and Liu [52] – – – – 99.15 – – –

Xia et al. [68] 95.85 – 95.75 – 95.7 – 95.8 –

Khan and Ahmad [71] 98.18 97.20 97.29 97.12 95.38 95.37 95.42 95.48

Current Study (1st Category

Experiments)

93.92 81.76 81.76 81.76 100 100 100 100

Current Study (2nd Category

Experiments)

95.34 86.01 86.01 86.01 96.70 90.09 90.09 90.09

Current Study (3rd Category

Experiments)

99.90 99.69 99.68 99.70 100 100 100 100

Fig. 11 Graphical comparison of the best reported results between the

three approaches (i.e., 1D-CNN, GRU, and BiLSTM)
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from cognitive disorders and elderly people). In this

research, a comprehensive analysis for recognizing activi-

ties of humans with the help of traditional feature reduction

techniques, feature extraction, ML, and DL algorithms.

The sensor-based data retrieved from two public datasets

(i.e., WISDM and UCI-HAR) are used to train and evaluate

different machine and deep learning models to recognize

several human activities. Nine different oversampling

techniques were utilized to deal with the problem of

imbalanced data. Additionally, a sampling mechanism with

two overlapping percentages (i.e., 50% and 0%) is applied

to each balanced dataset to use the advantage of time-series

data. For feature extraction and dimensionality reduction,

five traditional techniques were applied (i.e., PCA, LDA,

ICA, RP, and T-SVD). Additionally, feature extraction

using Topological Data Analysis (TDA) was used. Seven

types of machine learning algorithms are used where six of

them are ensemble classifiers (i.e., LGBM, XGB, Ada-

Boost, HGB, RF, ETs, and DT). For the DL experiments,

three types of algorithms are used (i.e., 1D-CNN, GRU,

and BiLSTM). Three categories of experiments were cre-

ated. The first category is constructed using traditional

feature reduction techniques and ML algorithms, while the

second category is conducted using TDA feature extraction

and ML algorithms. For the first two categories of exper-

iments, grid search is used to perform the hyperparameter

optimization process. For the third category experiments,

automatic feature extraction is performed using the three

chosen DL algorithms. For the first category experiments,

the best-reported scores concerning the WISDM dataset are

accuracy, F1-score, recall, and precision of 93.92%,

81.76%, 81.76%, and 81.76%, respectively, achieved by

XGB classifier with RP as feature reduction technique.

When concerning the UCI-HAR dataset, the best-reported

scores are accuracy, F1-score, recall, and precision of

100% achieved by LGBM classifier with T-SVD as feature

reduction technique. For the second category experiments,

the best-reported scores concerning the WISDM dataset are

accuracy, F1-score, recall, and precision of 95.34%,

86.01%, 86.01%, and 86.01%, respectively, achieved by

LGBM classifier. When concerning the UCI-HAR dataset,

the best-reported scores are accuracy, F1-score, recall, and

precision of 96.70%, 90.09%, 90.09%, and 90.09%,

respectively, achieved by LGBM. For the third category,

the best-reported scores concerning the WISDM dataset are

accuracy, F1-score, recall, and precision of 99.90%,

99.69%, 99.68%, and 99.70%, respectively, achieved by

1D-CNN classifier. When concerning the UCI-HAR data-

set, the best-reported scores are accuracy, F1-score, recall,

and precision of 100% achieved by 1D-CNN classifier. The

utilized data was gathered through accelerometers that

were worn on various body parts of people. The gathered

information is a time series that depicts the acceleration

along all three dimensions. There are two aspects to the

data (i.e., time steps and the values of the acceleration in

three axes). In the current study, the used time series data

had a strong time locality that can be recovered by con-

volutions, hence 1D-CNN performed the best. This is

understandable given that a 1D convolution on a time

series roughly computes its moving average (using terms

from digital signal processing) and applies a filter to the

time series, giving some hints about the trend of the data.

The reported results were then compared with 6 of prior

related works utilizing the same dataset(s). This showed

that the current study had outperformed all the mentioned

prior works.

7.1 Future work

In future studies, a meta-heuristic optimizer, e.g., Aquila

Optimizer and Sparrow Search Algorithm, can be used to

optimize the hyperparameters of the deep learning models.

The experiments can be applied with different datasets with

more features such as the heart rate. The undersampling

techniques can be tested and compared with the oversam-

pling ones on the datasets. To enhance used datasets,

additional augmentation methods, such as deep learning-

based generative models (e.g., conditional generative

adversarial networks and variationally auto-encoders), will

be incorporated.
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