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Abstract
In this article, the issue of neural adaptive decentralized finite-time prescribed performance (FTPP) control is investigated

for interconnected nonlinear time-delay systems. First, to bypass the potential singularity difficulties, the hyperbolic

tangent function and the radial basis function neural networks are integrated to handle the unknown nonlinear items. Then,

an adaptive FTPP control strategy is developed, where an improved fractional-order filter is applied to tackle the

tremendous ‘‘amount of calculation’’ and eliminate the filter error simultaneously. Furthermore, by considering the impact

of bandwidth limitation, an adaptive self-triggered control law is designed, in which the next trigger instant is determined

through the current information. Ultimately, it can be demonstrated that the proposed control scheme not only guarantees

that all states of the closed-loop system are semi-globally uniformly ultimately bounded, but also that the system output is

confined to a small area in finite time. Two simulation examples are carried out to verify the effectiveness and superiority

of the proposed method.

Keywords Decentralized control � Finite-time prescribed performance � Input quantization � Interconnected nonlinear time-

delay systems � Self-triggered � Unmodeled dynamics

1 Introduction

Given that some practical systems, such as robotic systems

and industrial process systems, etc, are modeled as inter-

connected nonlinear systems. Therefore, the investigation

of interconnected nonlinear systems has attracted wide-

spread interest from scholars. Initially, the centralized

control approach is impractical and suffers from the com-

putational burden of redundancy due to the utilization of

overall state information. Notably, the decentralized-based

adaptive backstepping control schemes [1–3] in each sub-

system have capable of independently handling the control

assignment of the interconnected system via its local

information. Meanwhile, the majority of existing decen-

tralized control results require that the interconnection term

of the interconnected system contains all states of the entire

interconnected system, which is referred to as strong

interconnections. Hence, an adaptive decentralized control

method was investigated for interconnected nonlinear

systems with strong interconnections in [4]. Due to the

existence of unknown nonlinearities in interconnected

nonlinear systems, with the aid of radial basis function

neural networks (RBFNNs) and fuzzy logic systems, the

adaptive decentralized control schemes were presented in

[2, 3]. Generally, the backstepping technique entails the

issue of complexity in analytical computation stemming

from the iterative calculation of the virtual control func-

tion. To this end, the dynamic surface control (DSC)

schemes [5–7] were proposed to address the explosive

calculation by introducing a first-order filter. Although the

above DSC methods solve the above issues, filter errors

between the filter output and the virtual control function

were not eliminated. Thus, the command filter backstep-

ping control (CFBC) methods [8, 9] were constructed by

means of an error compensation signal. Meanwhile, Song
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et al. [10] developed an adaptive fuzzy secure control

solution for nonlinear systems, where a fractional-order

filter (FOF) was introduced to eradicate the effect of filter

errors. Noteworthy, the above CFBC-based control results

neglect the impact of the communication burden.

Until today, event-triggered control (ETC) plays an

important role in the realm of transmission resource con-

straints, where the measurement error satisfies the trigger

criterion, the control signal will be updated and applied to

the system. Targeting the aircraft wing rock motion [11],

an adaptive event-triggered control was presented to

economize communication resources. [12] discussed the

prescribed-time synchronization issue for nonlinear sys-

tems via ETC strategy. Unfortunately, the event-triggered

mechanism is imposed to continuously monitor the trigger

criteria, which requires relatively unavailable hardware

situations for industrial applications. With this in mind, an

adaptive self-triggered control solution was investigated in

[13], which can calculate the next trigger instant following

the current information. Meanwhile, [14] reported a neural

adaptive self-triggered control method for nonlinear sys-

tems with unmeasurable states.

To further handle the limitation of bandwidth in net-

worked control, quantized control was used to degrade the

communication rate to satisfy that the system can operate

normally within the specified bandwidth. Initially, a loga-

rithmic quantizer was investigated in [15], where the

bandwidth of the constrained transmission was alleviated.

However, the chattering phenomenon will inevitably occur

in the quantization control of continuous-time systems.

Soon afterward, the hysteresis quantizer was developed in

[16], which can decrease the risk of chattering. In [17], an

adaptive fuzzy quantized control was proposed for non-

linear systems. In addition, networked control may result in

discontinuous control signals at two trigger instants, which

will drastically affect the control system’s performance.

Hence, it is imperative to concentrate on the trade-off

between communication cost and tracking precision.

It is widely acknowledged that prescribed performance

control (PPC) enables tracking errors to converge to a

predefined range. Particularly, Sun et al. [18] and Song

et al. [19] investigated the adaptive CFBC methods for the

different nonlinear systems, where transient and steady

performances were maintained. In [20], an adaptive PPC

scheme was analyzed for nonlinear systems. Soon after-

ward, an improved performance function in comparison to

PPC is proposed, called the finite-time prescribed perfor-

mance (FTPP) function, which guarantees that the tracking

error is confined to a small origin in finite time. In par-

ticular, [21] developed a fuzzy adaptive FTPP control

strategy for nonlinear systems with dynamic uncertainty.

Nevertheless, the above results do not both consider the

time delay and unmodeled dynamics that are ubiquitous in

modern industrial applications.

Naturally speaking, if this obstacle is not overcome, the

system performance will deteriorate and even resulting in

the instability of the closed-loop system. Thus, many

remarkable results have been reported to ensure the sta-

bility of the systems (see [22–26] and reference therein).

Among them, by introducing a dynamic signal, an adaptive

decentralized tracking control strategy was addressed for

nonlinear systems with dynamical uncertainties in [23]. In

[24], with the help of Lyapunov–Krasovskii functional, an

adaptive neural control scheme was discussed for inter-

connected nonlinear systems with time delay. Meanwhile,

Li et al. [26] developed an adaptive CFBC method for

nonlinear time-delay systems.

Guided by the foregoing analysis, this paper developed

the neural adaptive FTPP quantized control strategy by

utilizing the FOF for interconnected nonlinear time-delay

systems with unmodeled dynamics and self-triggered input.

The highlights of this article are enumerated below:

1. Different from the event-triggered mechanism

[10, 11, 26], the investigated self-triggered control

solution was developed, where the next trigger instant

was determined by the current information. In addition,

the effect of bandwidth limitation was synthesized in

the interconnected nonlinear time-delay system as a

challenging issue in comparison to [7, 16, 17]. How-

ever, the networked control mentioned above may

affect the performance of the system. Tactfully, the

FTPP function was considered to optimize the transient

and steady-state performance of the interconnected

nonlinear system.

2. In contrast to the integer-order filter in [9, 18, 26, 27],

an improved FOF was introduced such that the

tremendous ‘‘ amount of calculation ’’ was avoided

and the filter performance was skillfully enhanced.

Unlike [7, 21, 28], which only considered the PPC

issue or error compensation signal, the proposed self-

triggered quantized control scheme in this paper takes

FTPP and error compensation signal into account to

eliminate the filter errors simultaneously.

3. To address the potential singularity problem that may

exist in interconnected nonlinear systems, hyperbolic

tangent functions, and RBFNNs were introduced in

[16, 26]. Furthermore, this article extends both

time delay and unmodeled dynamics to interconnected

nonlinear systems, which makes it applicable to more

general situations [3, 7, 23].
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2 System formulation

Consider the following interconnected nonlinear time-de-

lay plant

_wm ¼ qmðwm; �xmÞ;
_xm;i ¼ xm;iþ1 þ fm;ið�xm;iÞ þ gm;ið�yÞ þ Dm;ið�xm;wiÞ

þhm;ið�xm;iðt � sm;iðtÞÞÞ;
_xm;nm ¼ qðumÞ þ fm;nmð�xm;nmÞ þ gm;nmð�yÞ þ Dm;nmð�xm;wiÞ

þhm;nmð�xm;nmðt � sm;nmðtÞÞÞ;
ym ¼ xm;1;

8
>>>>>>>>><

>>>>>>>>>:

ð1Þ

where �xm;i ¼ ½xm;1; . . .; xm;i�T 2 Ri and ym 2 R are the state

vector and output vector of the mth subsystem, respec-

tively. �xm ¼ ½xm;1; . . .; xm;nm �
T 2 Rnm ,

�y ¼ ½y1; . . .; yM�T 2 RM . fm;ið�Þ and hm;ið�Þ with 1�m�M

and 1� i� nm are the unknown smooth nonlinear func-

tions, gm;ið�yÞ denotes the unknown smooth interconnected

term between the mth subsystem and other subsystems.

sm;iðtÞ represents the time-varying delay satisfying j
sm;iðtÞ j � �sm;i\1 and j _sm;iðtÞ j � �sm;i\1, where �sm;i [ 0

and �sm;i [ 0 are constants. The wm-dynamics and Dm;ið�Þ
denote the unmodeled dynamics and dynamic disturbances,

respectively. qm and Dm;ið�Þ indicate the Lipschitz contin-

uous functions. qðumÞ and um indicate the quantized control

signal and quantized input signal. Meanwhile, the hys-

teresis quantizer is described as follow:

qðumÞ ¼

uwmsgnðumÞ;
uwm

1þ h�m
\ j um j � uwm; _um\0; or

uwm\ j um j � uwm
1� h�m

; _um [ 0

uwm#m; uwm\ j um j � uwm
1� h�m

; _um\0; or

uwm
1� h�m

\ j um j � uwmð1þ h�mÞ
1� h�m

; _um [ 0

0; 0� j um j \ umin
m

1þ h�m
; _um\0; or

umin
m

1þ h�m
� j um j � umin

m ; _um [ 0

qðumðt�ÞÞ; other case;

8
>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>:

where #m ¼ ð1þ h�mÞsgnðumÞ, uwm ¼ d1�w
m umin

m ðw ¼
1; 2; . . .Þ with 0\dm\1 stands for a measure of quanti-

zation density and h�m ¼ 1�dm
1þdm

, umin
m indicates the scope of

the dead-zone for qðumÞ and qðumÞ is in the set
S

m ¼ ð0;�uwm;�uwmð1þ h�mÞÞ.
To support the controller design, we need the following

assumptions, lemmas, and definitions.

Definition 1 [29] Assume FðtÞ : ½t0;þ1Þ ! R is a con-

tinuous function together with its fractional derivative of

order Pm under Caputo’s definition is expressed as:

DPmFðtÞ ¼ 1

Cðnm � PmÞ

Z t

0

FnmðsÞ
t � sð ÞPmþ1�nm

ds;

where nm denotes an integer such that nm � 1�Pm � nm.

CðxÞ ¼
Rþ1
0

sx�1e�sdsðx[ 0Þ denotes Euler’s Gamma

function with Cð1Þ ¼ 1.

Definition 2 [28] A smooth finite-time performance

function (FTPF) ‘mðtÞ satisfies the following characteris-

tics: ð1Þ ‘mðtÞ[ 0, ð2Þ _‘mðtÞ� 0; ð3Þ limt!Tf ‘mðtÞ ¼
‘mTf [ 0 and ‘mðtÞ ¼ ‘mTf [ 0 for any t[ Tf with Tf and

‘mTf are the settling time and the arbitrarily small constant,

respectively.

Lemma 1 [30] To further analyze the quantization impact,

the hysteretic quantizer is reconstructed as qðumðtÞÞ ¼
ð1� �jmÞumðtÞ þ �jm�1mðtÞ such that the nonlinearity func-

tion �1mðtÞ satisfies the following inequalities:

�1mðtÞð Þ2 � �jm þ h�m
�jm

umðtÞ
� �2

; 8 j umðtÞ j � umin
m ;

�1mðtÞð Þ2 � 1� �jm
�jm

umin
m

� �2

; 8 j umðtÞ j � umin
m ;

where 0\�jm\1 is an adjustable constant to be designed.

Assumption 1 [31] There exist unknown non-negative

smooth functions um;i1ðk�xm;ikÞ and um;i2ðkwikÞ, the

dynamic disturbance Dm;iðwi; �xmÞ satisfying
Dm;iðwi; �xmÞ�um;i1ðk�xm;ikÞ þ um;i2ðkwikÞ:

Assumption 2 [32] Let us consider the unmodeled

dynamics _wm ¼ qmðwm; �xmÞ, which is exponentially input-

to-state practically stable (exp-ISpS). Meanwhile, VmðwmÞ
is an exp-ISpS Lyapunov function (LF) satisfying

!m;1ðj wm jÞ �VmðwmÞ�!m;2ðj wm jÞ;
oVmðwmÞ
owm

qmðwm; �xmÞ� � rm;1VmðwmÞ þ pm0ðkxm;1kÞ þ rm;2;
ð2Þ

where !m;1;!m;2, and pm0 are class K1-functions and

rm;1 [ 0 and rm;2 [ 0 denote known constants.

Assumption 3 [4] The interconnected term gm;ið�yÞ has the
form of j gm;ið�yÞ j �

PM
l¼1 jm;l@ið�xl;iÞ, with @ið�xl;iÞ ði ¼

1; . . .; nmÞ and jm;l denote the unknown continuous function

and unknown constant, respectively.

Lemma 2 [31] Assume exp-ISpS LF VmðwmÞ satisfies the

equation condition (2), then, for 8�rm;1 2 ð0; rm;1Þ, the initial
condition wm0 ¼ wmðt0Þ, c0 [ 0, and the function
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�pm0ðkymkÞ� pm0ðkymkÞ, there exist a finite time

Tm0 ¼ Tm0ð�rm;1; c0;wm0Þ, a non-negative function

Qðt0; tÞðt� t0Þ, and a dynamic signal expressed as:

_km ¼ ��rm;1km þ �pm0ðkxm;1ðtÞkÞ þ rm;2; kmðt0Þ ¼ km0;

satisfying Qðt0; tÞ ¼ 0 for 8t� t0 þ Tm0

VmðwmðtÞÞ� kmðtÞ þ Qðt0; tÞ; 8t� t0;

where t0 denotes the initial time and assume that

�pm0ðkxm;1ðtÞkÞ ¼ pm0ðkxm;1kÞ.

Lemma 3 [33] For variable . 2 R and 8|[ 0, one has

�.tanh
.
|

� �

� 0; 0� j . j �.tanh
.
|

� �

� 0:2785|:

Lemma 4 [34] The compact set Xmk
is defined in

Xmk
¼ sm;k jj sm;k j \0:2554mk

� �
. Next, for the case of

8sm;k 62 Xm;k, the term 1� 16tanh2ðsm;k=mkÞ� 0 holds.

Lemma 5 [35] Consider the unknown smooth nonlinear-

ities fm;ið�zm;iÞ on the compact set XX , which can be

approximated by RBFNNs

fm;ið�zm;iÞ ¼ WT
m;iSm;ið�zm;iÞ þ em;i;

where Wm;i and Sm;ið�zm;iÞ ¼ ½wm;i1ð�zm;iÞ; . . .;wm;iKð�zm;iÞ�
T

are, respectively, the weight vector and basic function

vector, with �zm;i is the input of the RBFNNs, K� 1 is the

number of neuron, em;i is the approximation error. There

exists a positive constant e�m;i [ 0 such that kem;ik� e�m;i.

Meanwhile, the Gaussian function is expressed as:

wi
m;ið�zm;iÞ ¼ exp

�ð�zm;i � hm;iÞTð�zm;i � hm;iÞ
b2m;i

" #

;

where hm;i ¼ hm;i1; . . .; hm;iM
� �T

and bm;i denote the center

and width of the basis function, respectively.

This paper aims at synthesizing a decentralized-based

adaptive neural quantized control algorithm for the inter-

connected nonlinear time-delay system in (1) such that all

signals of the resulting closed-loop system (CLS) are semi-

globally uniformly ultimately bounded (SGUUB), the

system output is confined to a small adjustable region in a

finite time interval, and as well as the Zeno phenomenon is

ruled out.

3 Main results

In this section, a decentralized-based adaptive self-trig-

gered neural control scheme will be put forward for

interconnected nonlinear time-delay systems.

3.1 State transformation

To confine the system output xm;1 to the range ð�‘m; ‘mÞ,
the FTPF can be chosen from Definition 2.

‘mðtÞ ¼ ‘m0 �
t

Tf

� �

e
1� Tf

Tf �t

� 	

þ ‘mTf ; t 2 ½0; Tf Þ;

‘mTf ; t 2 ½Tf ;þ1Þ;

8
><

>:

ð3Þ

where ‘m0 [ 0 and ‘mTf [ 0 are design parameters.

Furthermore, it can be obtained that ‘mð0Þ ¼ ‘m0 þ ‘mTf
from Definition 2 and (3). The error transformation func-

tion with the transformed error om is selected as:

TðomÞ ¼
eom � e�om

eom þ e�om
; ð4Þ

The transformation is defined as:

xm;1 ¼ ‘mðtÞTðomÞ; ð5Þ

om ¼ T�1 xm;1
‘m

� �

¼ 1

2
ln

xm;1=‘m þ 1

1� xm;1=‘m

� �

; ð6Þ

and

_om ¼ pm;1 _xm;1 �
_‘mxm;1
‘m

 !

; ð7Þ

where pm;1 ¼ 1
2‘m

1
xm;1=‘mþ1

� 1
xm;1=‘m�1

� 	
.

3.2 Controller design

In contrast to the advancement of integer-order calculus

[9, 18, 26, 27], fractional-order calculus [36–39] possesses

the property of the favorable filter and enhances the free-

dom of control design attributed to its distinctive historical

memory characteristics. In a nutshell, we propose a FOF-

based adaptive self-triggered control algorithm for inter-

connected nonlinear time-delay systems in (1), which can

not only overcome the complicated ‘‘ amount of calculation

’’ but also effectively upgrade the filter performance of the

existing results in [9, 18, 26, 27].

Now, the fractional-order filter (FOF) are constructed:

DPmbm;1 ¼ Im;1;

Im;1 ¼ � km;l1dbm;1 � am;i�1c
1
2

� km;l2dbm;1 � am;i�1c
3
2 þ bm;2;

DPmbm;2 ¼ � km;l3dbm;1 � am;i�1c
1
2;

8
>>>>>>><

>>>>>>>:

ð8Þ

where DPm indicates the fractional operator with 0\Pm\1

and km;li ði ¼ 1; 2; 3Þ is the design parameter. The virtual
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control function am;i�1 indicates the filter input, fm;i ¼ bm;1
and DPmfm;i ¼ Im;1 are the filter output.

Define the change of coordinate as follows:

zm;1 ¼ om;

zm;i ¼ xm;i � fm;i; 1�m�N;

nm;i ¼ fm;i � am;i�1; i ¼ 2; . . .; nm;

8
>><

>>:

ð9Þ

where zm;i denotes the error surface and nm;i denotes the

filter error. Additionally, the compensated error signal sm;i
with i ¼ 1; . . .; nm is designed as follows:

sm;i ¼ zm;i � mm;i; ð10Þ

where mm;i is the error compensation signal, which can be

specifically designed as:

_mm;1 ¼ �cm;1mm;1 þ pm;1mm;2 þ pm;1nm;2;

_mm;i ¼ �cm;imm;i � pm;i�1mm;i�1 þ mm;iþ1 þ nm;iþ1;

_mm;nm ¼ �cm;nmmm;nm � pm;nm�1mm;nm�1;

8
>><

>>:

ð11Þ

where mm;ið0Þ ¼ 0; pm;i ¼ 1 and cm;i [ 0 ði ¼ 2; . . .; nmÞ
denotes the positive design parameters.

The virtual control functions and the adaptive laws are

designed for each subsystem ði ¼ 2; . . .; nm � 1Þ as

follows:

am;1 ¼ � cm;1
pm;1

zm;1 �
pm;1sm;1
2a2m;1

Ĥm;1S
T
m;1ð�ÞSm;1ð�Þ

þ
_‘mxm;1
‘m

;

ð12Þ

am;i ¼ � cm;izm;i �
sm;i
2a2m;i

Ĥm;iS
T
m;ið�ÞSm;ið�Þ

� pm;i�1zm;i�1;

ð13Þ

am;nm ¼ 1

ð1� �jmÞfm0
�cm;nmzm;nm
�

� ð1� �jmÞsgnðsm;nmÞumin
m

� sm;nm
2a2m;nm

Ĥm;nmS
T
m;nm

ð�ÞSm;nmð�Þ

�pm;nm�1zm;nm�1

�
;

ð14Þ

_̂Hm;1 ¼ lm;1
p2m;1s

2
m;1

2a2m;1
STm;1ð�ÞSm;1ð�Þ � qm;1Ĥm;1

 !

; ð15Þ

_̂Hm;i ¼ lm;i
s2m;i
2a2m;i

STm;ið�ÞSm;ið�Þ � qm;iĤm;i

 !

; ð16Þ

where cm;i and qm;i are positive design parameters. Let us

define that Ĥm;i denotes the estimates of Hm;i. ~Hm;i ¼
Hm;i � Ĥm;i being the parameter estimation error with

Hm;i ¼ max1� i� nm W�
m;i














2

� �

. Analogous to (16),
_̂Hm;nm

can be expressed by replacing i with nm.

For simplicity, the corresponding abbreviations are

considered: fm;i indicates fm;ið�xm;iÞ, Dm;i indicates

Dm;ið�xm;wiÞ, gm;i indicates gm;ið�yÞ, hm;iðxm;isÞ indicates

hm;ið�xm;iðt � sm;iðtÞÞÞ, and STm;ið�ÞSm;ið�Þ indicates

STm;ið�zm;iÞSm;ið�zm;iÞ.

Proof The specific control design procedures of this paper

are expressed in detail as follows.

Step m, 1: From (7) and (9), the time derivative of zm;1
yields

_zm;1

¼ pm;1 zm;2 þ nm;2 þ am;1 þ fm;1 þ Dm;1 þ gm;1 þ hm;1ðxm;1sÞ �
_‘mxm;1
‘m

 !

:

ð17Þ

It follows from (10)–(11) that

_sm;1 ¼ pm;1 sm;2 þ mm;2 þ nm;2 þ am;1 þ fm;1 þ Dm;1




þgm;1 þ hm;1ðxm;1sÞ �
_‘mxm;1
‘m

!

� _mm;1:
ð18Þ

Now, we consider the following Lyapunov function:

V1 ¼
XM

m¼1

1

2
s2m;1 þ

1

2lm;1
~H2
m;1 þ

km
.m0

þ �Vm;1

" #

;

where lm;1 and .m0 are positive constants. The Lyapunov–

Krasovskii functional is formulated as �Vm;1 ¼
½ejm;1 �sm;1=2ð1� �sm;1Þ�

R t
t�sm;1ðtÞ e

�jm;1ðt�sÞh2m;1ðxm;1ðsÞÞds to

tackle the time delay challenge, where jm;1 [ 0 denotes a

constant.

Through calculation, one has

_�Vm;1 � � jm;1 �Vm;1 þWm;1 �
1

2
h2m;1ðxm;1sÞ;

pm;1sm;1hm;1ðxm;1sÞ�
1

2
p2m;1s

2
m;1 þ

1

2
h2m;1ðxm;1sÞ;

ð19Þ

where Wm;1 ¼ ½ðejm;1 �sm;1Þ=2ð1� �sm;1Þ�h2m;1ðxm;1Þ:
By utilizing Assumption 3 and Young’s inequality

yields
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pm;1sm;1gm;1 �
1

2
p2m;1s

2
m;1 þ

XM

l¼1

�-m;l@2
1ð�xl;1Þ

�
p2m;1
2

s2m;1 þ 16 tanh2
sm;1
rm;1

� �
XM

l¼1

�-m;l@2
1ð�xm;1Þ

þ 1� 16 tanh2
sm;1
rm;1

� �� �
XM

l¼1

�-m;l@2
1ð�xm;1Þ

þ
XM

l¼1

�-m;lð@2
1ð�xl;1Þ � @2

1ð�xm;1ÞÞ;

ð20Þ

where �-m;l ¼ ð1=2ÞMj2m;l.
In light of Assumption 1 and Lemma 3 holds

pm;1sm;1Dm;1 � pm;1 j sm;1 j �um;11ðkxm;1kÞ þ 0:2785|m;11

þ pm;1 j sm;1 j um;12ðkwikÞ;
ð21Þ

where |m;11 [ 0 denotes a constant and �um;11ðkxm;1kÞ ¼
um;11ðkxm;1kÞ tanh ðpm;1 j sm;1 j um;11ðxm;1ÞÞ=|m;11


 �
.

In view of Assumption 2 and Lemma 3, one obtains

pm;1 j sm;1 j um;12ðkwikÞ�
1

2
u2
m;12ð#�1

m;1ð2 �Dmðt0; tÞÞÞ

þ
p2m;1s

2
m;1

2

þ pm;1sm;1 �um;12ðxm;1; kmÞ
þ 0:2785|m;12;

ð22Þ

where |m;12 [ 0 denotes a constant and �um;12ðxm;1; kmÞ ¼
um;12ð#�1

m;1ð2kmÞÞ tanhððpm;1sm;1um;12 #�1
m;1ð2kmÞÞÞ=|m;12

� 	
.

Calculating _V1, one obtains

_V1 �
XM

m¼1

pm;1sm;1 sm;2 þ mm;2 þ nm;2 þ am;1

�

þ 3

2
pm;1sm;1 þ fm;1 �

_‘mxm;1
‘m

� _mm;1
pm;1

�

� l�1
m;1

~Hm;1
_̂Hm;1 �

�rm;1km
.m0

� jm;1 �Vm;1 þ pm;1sm;1-m;1

þ16 tanh2
sm;1
rm;1

� �
XM

l¼1

�-m;l@2
1ð�xm;1Þ

!

þ �pm0ðkxm;1ðtÞkÞ
.m0

þ 1� 16 tanh2
sm;1
rm;1

� �� �
XM

l¼1

�-m;l@2
1ð�xm;1Þ þWm;1

þ
XM

l¼1

�-m;lð@2
1ð�xl;1Þ � @2

1ð�xm;1ÞÞ þ vm;1

#

;

ð23Þ

where -m;1 ¼ �um;11ðkxm;1kÞ þ �um;12ðxm;1; kmÞ and vm;1 ¼
0:2785xm;11 þ 0:2785xm;12 þ rm;2=.m0 þ 1

2
u2
m;12ð#�1

m;1ð2
�Dmðt0; tÞÞÞ.
The hyperbolic tangent function 16 tanh2ðsm;1=rm;1Þ is

utilized to solve the Wm;1;
PM

l¼1 �-m;l@2
i ð�xl;1Þ, and

ð�pm0ðkxm;1ðtÞkÞ=.m0Þ.

_V1 �
XM

m¼1

pm;1sm;1 sm;2 þ mm;2 þ nm;2 þ am;1

�

þ 3

2
pm;1sm;1 þ fm;1 �

_‘mxm;1
‘m

� _mm;1
pm;1

þ 16

pm;1sm;1
tanh2

sm;1
rm;1

� �

Gm;1

�

� l�1
m;1

~Hm;1
_̂Hm;1 �

�rm;1km
.m0

þ pm;1sm;1-m;1 þ 1� 16 tanh2
sm;1
rm;1

� �� �

Gm;1 � jm;1 �Vm;1

þ
XM

l¼1

�-m;lð@2
1ð�xl;1Þ � @2

1ð�xm;1ÞÞ þ vm;1

#

;

ð24Þ

where Gm;1 ¼ Wm;1 þ ð�pm0ðkxm;1ðtÞkÞÞ=.m0þ
PM

l¼1 �-m;l@2
i

ð�xm;1Þ and rm;1 [ 0 denotes a constant. h

Remark 1 Since limsm;1!0½Gm;1=ðpm;1sm;1Þ� ¼ 1, the

lumped terms Gm;1=ðpm;1sm;1Þ cannot be directly approxi-

mated by the RBFNNs. To tackle this obstacle, a hyper-

bolic tangent item ð16=pmsm;1Þ tanh2ðsm;1=rm;1ÞÞGm;1 is

used to prevent the singularity of the potential challenge.

Meanwhile, two different cases will be further elaborated

to handle the term ð1� 16 tanh2ðsm;1=rm;1ÞÞGm;1 in Sect.

3.3.

To further simplify the _V1 in (24), the RBFNNs is

employed to approximate the unknown item Fm;1ð�zm;1Þ ¼
fm;1 þ ð16=pmsm;1Þ tanh2ðsm;1=rm;1ÞGm;1 þ -m;1 þ 2pm;1
sm;1, where the RBFNNs input vector

�zm;1 ¼ ½xm;1; sm;1; pm;1; k1ðtÞ�T.
Thus, one has

Fm;1ð�zm;1Þ ¼ W�T
m;1Sm;1ð�zm;1Þ þ em;1;

pm;1sm;1Fm;1ð�zm;1Þ�
p2m;1s

2
m;1

2a2m;1
Hm;1S

T
m;1ð�ÞSm;1ð�Þ þ

a2m;1
2

þ 1

2
p2m;1s

2
m;1 þ

e�2m;1
2

;

ð25Þ

where em;1 is the approximation error with j em;1 j � e�m;1.
Substituting (11), (12), (15), and (25) into (24) becomes
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_V1 �
XM

m¼1

�cm;1s
2
m;1 þ pm;1sm;1sm;2 þ qm;1 ~Hm;1Ĥm;1 �

�rm;1km
.m0

�

þ 1� 16 tanh2
sm;1
rm;1

� �� �

Gm;1 � jm;1 �Vm;1 þ vm;1

þ
e�2m;1
2

þ
a2m;1
2

þ
XM

l¼1

�-m;lð@2
1ð�xl;1Þ � @2

1ð�xm;1ÞÞ
#

:

ð26Þ

Step m, i. From (10) and (11), it deduces that

_sm;i ¼ sm;iþ1 þ mm;iþ1 þ nm;iþ1 þ am;i þ fm;i þ Dm;i

þ gm;i þ hm;iðxm;isÞ � _fm;i � _mm;i:
ð27Þ

By utilizing Assumption 3 and Young’s inequality holds

sm;igm;i �
1

2
s2m;i þ 16 tanh2

sm;i
rm;i

� �
XM

l¼1

�-m;l@2
i ð�xm;iÞ

þ 1� 16 tanh2
sm;i
rm;i

� �� �
XM

l¼1

�-m;l@2
i ð�xm;iÞ

þ
XM

l¼1

�-m;lð@2
i ð�xl;iÞ � @2

i ð�xm;iÞÞ:

ð28Þ

Select the following Lyapunov function candidate:

Vi ¼ Vi�1 þ
XM

m¼1

1

2
s2m;i þ

1

2lm;i
~H2
m;i þ �Vm;i

" #

;

where jm;i [ 0 denotes a constant and �Vm;i ¼ ðejm;i �sm;i=
2ð1� �sm;iÞÞ

R t
t�sm;iðtÞ e

�jm;iðt�sÞh2m;iðxm;iðsÞÞds:
Through calculation, one has

_�Vm;i � � jm;i �Vm;i þWm;i �
1

2
h2m;iðxm;isÞ;

sm;ihm;iðxm;isÞ�
1

2
s2m;i þ

1

2
h2m;iðxm;isÞ;

ð29Þ

where Wm;i ¼ ðejm;i �sm;i=2ð1� �sm;iÞÞh2m;iðxm;iÞ.
Similar to (21) and (22) yields

sm;iDm;i � j sm;i j um;i1ðk�xm;ikÞ tanh
j sm;i j um;i1ð�xm;iÞ

|m;i1

� �

þ 0:2785|m;i1þ j sm;i j um;i2ðkwikÞ;
ð30Þ

where |m;i1 [ 0 denotes a constant.

j sm;i j um;i2ðkwikÞ� sm;i �um;i2ð�xm;i; kmÞ

þ 0:2785|m;i2 þ
s2m;i
2

þ 1

2
u2
m;i2ð#�1

m;ið2 �Dmðt0; tÞÞÞ;

ð31Þ

where |m;i2 [ 0 denotes a constant and �um;i2ð�xm;i; kmÞ ¼
um;i2ð#�1

m;ið2kmÞÞ tanhððsm;ium;i2ð#�1
m;ið2kmÞÞÞ=|m;i2Þ.

The time derivative of Vi can be obtained

_Vi � _Vi�1 þ
XM

m¼1

sm;i sm;iþ1 þ mm;iþ1 þ
3

2
sm;i

��

þ nm;iþ1 þ am;i � _fm;i

þ 16

sm;i
tanh2

sm;i
rm;i

� �
XM

l¼1

�-m;l@2
i ð�xm;iÞ þ fm;i

� _mm;i
�
� jm;i �Vm;i

� l�1
m;i

~Hm;i
_̂Hm;i þ 1� 16 tanh2

sm;i
rm;i

� �� �

XM

l¼1

�-m;l@2
i ð�xm;iÞ

þ sm;i-m;i þWm;i þ
XM

l¼1

�-m;lð@2
i ð�xl;iÞ

�@2
i ð�xm;iÞÞ þ vm;i

�
;

ð32Þ

where -m;i ¼ um;i1ðk�xm;ikÞ tanh ðj sm;i j um;i1ð�xm;iÞÞ=



|m;i1Þþ �um;i2ð�xm;i; kmÞ and vm;i ¼ 1
2
u2
m;i2ð#�1

m;ið2 �Dmðt0; tÞÞÞ þ
0:2785|m;i1þ 0:2785|m;i2:

By applying the hyperbolic tangent function, _Vi

becomes

_Vi � _Vi�1 þ
XM

m¼1

sm;i sm;iþ1 þ mm;iþ1 þ nm;iþ1 þ
3

2
sm;i

��

� _fm;i � _mm;i

þfm;i þ am;i þ
16

sm;i
tanh2

sm;i
rm;i

� �

Gm;i

�

� l�1
m;i

~Hm;i
_̂Hm;i

þ sm;i-m;i � jm;i �Vm;1 þ 1� 16 tanh2
sm;i
rm;i

� �� �

Gm;i

þ
XM

l¼1

�-m;lð@2
i ð�xl;iÞ � @2

i ð�xm;iÞÞ þ vm;i

#

;

ð33Þ

where Gm;i ¼ Wm;i þ
PM

l¼1 �-m;l@2
i ð�xm;iÞ:

The RBFNNs is utilized to approximate the unknown

item Fm;ið�zm;iÞ ¼ fm;i þ ð16=sm;iÞ tanh2ðsm;i=rm;iÞGm;iþ
-m;i � _fm;i þ 2sm;i in (33), where the RBFNNs input vector

�zm;i ¼ ½xm;i; sm;i; kiðtÞ; _fm;i�T. Therefore, one obtains

Fm;ið�zm;iÞ ¼ W�T
m;iSm;ið�zm;iÞ þ em;i;

sm;iFm;ið�zm;iÞ�
s2m;i
2a2m;i

Hm;iS
T
m;ið�ÞSm;ið�Þ þ

a2m;i
2

þ 1

2
s2m;i þ

e�2m;i
2

;

ð34Þ

where em;i is the approximation error with j em;i j � e�m;i.
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Substituting (11), (13), (16), and (34) into (33) yields

_Vi �
XM

m¼1

�
Xi

k¼1

cm;ks
2
m;k þ sm;ism;iþ1 þ

Xi

k¼1

qm;k ~Hm;kĤm;k

"

�
Xi

k¼1

jm;k �Vm;k

þ
Xi

k¼1

1� 16 tanh2
sm;k
rm;k

� �� �

Gm;k �
�rm;1km
.m0

þ
Xi

k¼1

e�2m;k
2

þ
Xi

k¼1

a2m;k
2

þ
Xi

k¼1

XM

l¼1

�-m;lð@2
kð�xl;kÞ � @2

kð�xm;kÞÞ þ
Xi

k¼1

vm;k

#

:

ð35Þ

Step m; nm. In industrial process, the existence of actuator

saturation nonlinearity will affect the system stability.

Therefore, the following saturation function is considered:

um ¼ satð�umÞ ¼
signð�umÞuMax

m ; j �um j � uMax
m ;

�um; j �um j \uMax
m ;

(

where uMax
m is the bound of um and �um is the input of the

following saturation nonlinearity:

�bmð�umÞ ¼ uMax
m � e

�um
uMax
m � e

� �um
uMax
m

e
�um

uMax
m þ e

� �um
uMax
m

:

Meanwhile the quantized parameters satisfy

ð1� �jmÞumin
m =ð�jm þ h�mÞ� uMax

m . Referring to [40], satð�umÞ
becomes

um ¼ satð�umÞ ¼ �bmð�umÞ þ �.mð�umÞ; ð36Þ

where j �.ð�umÞ j
¼j satð�umÞÞ � �bmð�umÞ j � uMax

m ð1� tanhð1ÞÞ ¼ �.
m
:

According to the mean-value theorem, �bmð�umÞ can be

expressed as:

�bmð�umÞ ¼ �bmð�um0Þ þ
o �bmð�Þ
o�um

j �um¼ �ucmm ð�um � �um0Þ; ð37Þ

where �ucmm ¼ cm �um þ ð1� cmÞ�um0 and 0\cm\1.

Let �um0 ¼ 0, (37) becomes

�bmð�umÞ ¼
o �bmð�Þ
o�um

j �um¼ �ucmm �um ¼ fm0ð�ucmm Þ�um: ð38Þ

For the positive constants f
m0

and �fm0, the expression

f
m0
\fm0ð�ucmm Þ\�fm0 holds. Thus, (36) becomes

um ¼ satð�umÞ ¼ fm0ð�ucmm Þ�um þ �.mð�umÞ: ð39Þ

According to (9)–(11) and (39), _sm;nm can be expressed as:

_sm;nm ¼ð1� �jmÞfm0 �um þ ð1� �jmÞ�.m þ �jm�1m
þ fm;nm þ Dm;nm

þ hm;nmðxm;nmsÞ þ gm;nm � _fm;nm � _mm;nm :

ð40Þ

Let us construct the Lyapunov function candidate as Vnm ¼

Vnm�1þ
PM

m¼1

1
2
s2m;nm þ

1
2lm;nm

~H2
m;nm

þ �Vm;nm

h i
:

By utilizing Young’s inequality, one has

sm;nmð1� �jmÞ�.m � 1

2
s2m;nm þ

1

2
ð1� �jmÞ2�.2m: ð41Þ

Then, it can be deduced that

_Vnm � _Vnm�1 þ
XM

m¼1

sm;nmðð1� �jmÞfm0 �um þ 2sm;nm þ fm;nm � _fm;nm

h

þ 16

sm;nm
tanh2

sm;nm
rm;nm

� �
XM

l¼1

�-m;l@2
nm
ð�xm;nmÞ � _mm;nm

þ 1� 16 tanh2
sm;nm
rm;nm

� �� �
XM

l¼1

�-m;l@2
nm
ð�xm;nmÞÞ þ �jm�1m

�jm;nm �Vm;nm þ sm;nm-m;nm � l�1
m;nm

~Hm;nm
_̂Hm;nm

þWm;nm þ
XM

l¼1

�-m;lð@2
nm
ð�xl;nmÞ � @2

nm
ð�xm;nmÞÞ þ vm;nm

#

;

ð42Þ

where

Wm;nm ¼ ½ejm;nm �sm;nm h2m;nmðxm;nmÞ=2ð1� �sm;nmÞ�;
-m;nm ¼um;nm1ðk�xm;nmkÞ tanhððj sm;nm j um;nm1ð�xm;nmÞÞ=|m;nm1Þ

þ �um;nm2ð�xm;nm ; kmÞ;
vm;nm ¼ 0:2785|m;nm1 þ 0:5u2

m;nm2
ð#�1

m;nm
ð2 �Dmðt0; tÞÞÞ

þ 0:2785|m;nm2 þ 0:5ð1� �jmÞ2�.2m:

Define Gm;nm ¼ Wm;nm þ
PM

l¼1 �-m;l@2
nm
ð�xm;nmÞ yields

_Vnm � _Vnm�1 þ
XM

m¼1

sm;nm ð1� �jmÞfm0 �um þ �jm�1m þ fm;nm � _fm;nm

�h

þ 16

sm;nm
tanh2

sm;nm
rm;nm

� �

Gm;nm þ -m;nm � _mm;nm þ 2sm;nm

�

� l�1
m;nm

~Hm;nm
_̂Hm;nm þ 1� 16 tanh2

sm;nm
rm;nm

� �� �

Gm;nm

þ vm;nm � jm;nm �Vm;nm þ
XM

l¼1

�-m;lð@2
nm
ð�xl;nmÞ

�@2
nm
ð�xm;nmÞÞ

i
:

ð43Þ

The RBFNNs is employed to approximate the unknown

function
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Fm;nmð�zm;nmÞ ¼ fm;nm þ ð16=sm;nmÞ tanh2ðsm;nm=rm;nmÞGm;nm

þ -m;nm � _fm;nm þ 2:5sm;nm

in (43), where the RBFNNs input vector

�zm;nm ¼ ½xm;nm ; sm;nm ; knmðtÞ; _fm;nm �
T
. Therefore, one obtains

Fm;nmð�zm;nmÞ ¼W�T
m;nm

Sm;ið�zm;nmÞ þ em;nm ;

sm;nmFm;nmð�zm;nmÞ�
s2m;nm
2a2m;nm

Hm;nmS
T
m;nm

ð�ÞSm;nmð�Þ

þ
a2m;nm
2

þ 1

2
s2m;nm þ

e�2m;nm
2

:

ð44Þ

where em;nm is the approximation error with

j em;nm j � e�m;nm .

Meanwhile, the self-triggered scheme is developed as

follows:

�umðtÞ ¼ vmðtkÞ; 8t 2 ½tk; tkþ1Þ;

tkþ1 ¼ tk þ
Km j �umðtÞ j þEm

max Lm; j _vmðtÞ jf g ;
ð45Þ

where tk; tkþ1 2 Zþ; 0\Km\1, Em and Lm are positive

constant. Km j �umðtÞ j þEm denotes control signal interval

between two successive triggered instants; Lm and j _vmðtÞ j
are change rates of control signal interval.

When the conditions of (45) are satisfied, �umðtÞ ¼ vmðtkÞ
will be used to the control plant in (1). The next trigger

point tkþ1 will be obtained, and control signal �umðtÞ holds
as a constant vmðtkÞ in the period interval ½tk; tkþ1Þ.

vmðtkÞ is constructed as follows:

vm ¼ � ð1þ KmÞ am;nm tanh
sm;nmam;nm

|m

� ��

þ �Em tanh
sm;nm �Em

|m

� ��

;

ð46Þ

where |m [ 0 and �Em [Em=ð1� KmÞ.
From (45), it has

j �umðtkþ1Þ � umðtÞ j �Km j �umðtÞ j þEm. There exist the

continuous time-varying parameters hm;1; hm;2 satisfying

hm;1ðtkÞ ¼ hm;2ðtkÞ ¼ 0; hm;1ðtkþ1Þ ¼ hm;2ðtkþ1Þ ¼ �1 and

j hm;1 j � 1, j hm;2 j � 1; 8t 2 ½tk; tkþ1Þ,

�um ¼ vm � hm;2Em

1þ hm;1Km
: ð47Þ

Therefore, _Vnm can be expressed as:

_Vnm � _Vnm�1 þ
XM

m¼1

sm;nm ð1� �jmÞfm0
vm � hm;2Em

1þ hm;1Km

��

þ �jm�1m � _mm;nm

þ sm;nm
2a2m;nm

Hm;nmS
T
m;nm

Sm;nm

!

� l�1
m;nm

~Hm;nm
_̂Hm;nm þ

a2m;nm
2

� jm;nm �Vm;nm þ 1� 16 tanh2
sm;nm
rm;nm

� �� �

Gm;nm

þ
e�2m;nm
2

þ
XM

l¼1

�-m;lð@2
nm
ð�xl;nmÞ � @2

nm
ð�xm;nmÞÞ þ vm;nm

#

:

ð48Þ

On the basis of (46) and Lemma 3, it has sm;nmvm\0. In

light of 0\½ðsm;nmvmÞ=ð1þ hm;1KmÞ�\½ðsm;nmvmÞ=ð1þ
KmÞ� and �½ðsm;nmhm;2EmÞ=ð1þ hm;1KmÞ�� j sm;nmEm=1�
Km j � j sm;nm �Em j; the following inequality holds

sm;nmð1� �jmÞfm0
vm � hm;2Em

1þ hm;1Km
� am;nm

� �

� sm;nmð1� �jmÞfm0vm
1þ Km

þ j sm;nmð1� �jmÞfm0 �Em j

� sm;nmð1� �jmÞfm0am;nm
� 0:557|mð1� �jmÞfm0:

ð49Þ

Since ~Hm;iĤm;i � � ð ~H2
m;i=2Þ þ ðH2

m;i=2Þ and invoking

(11), (14), (48) and (49) results in

_Vnm �
XM

m¼1

�
Xnm

k¼1

cm;ks
2
m;k �

Xnm

k¼1

qm;k
2

~H2
m;k �

�rm;1km
.m0

"

�
Xnm

k¼1

jm;k �Vm;k

þ
Xnm

k¼1

1� 16 tanh2
sm;k
rm;k

� �� �

Gm;k � ð1� �jmÞsm;nmumin
m

þsm;nm �jm�1m þ �vm þ
Xnm

k¼1

XM

l¼1

�-m;lð@2
kð�xl;kÞ � @2

kð�xm;kÞÞ
#

;

ð50Þ

where �vm ¼
Pnm

k¼1 vm;k þ
Pnm

k¼1ðqm;k=2ÞH2
m;k þ

Pnm
k¼1

ða2m;k=2Þ þ
Pnm

k¼1ðe�2m;k=2Þ þ 0:557|mð1� �jmÞfm0.
From the analysis in [16, 41], the Lyapunov function is

designed as V ¼ �dmVnm , where �dm [ 0 refers to the

cofactor of the mth diagonal element by instead of rm;l with

�-m;l. Thus, (50) becomes
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_Vnm �
XM

m¼1

�dm �
Xnm

k¼1

cm;ks
2
m;k �

Xnm

k¼1

qm;k
2

~H2
m;k �

�rm;1km
.m0

"

�
Xnm

k¼1

jm;k �Vm;k þ
Xnm

k¼1

1� 16 tanh2
sm;k
rm;k

� �� �

Gm;k

� ð1� �jmÞsm;nmumin
m

þsm;nm �jm�1m þ �vm þ
Xnm

k¼1

XM

l¼1

�-m;lð@2
kð�xl;kÞ � @2

kð�xm;kÞÞ
#

:

ð51Þ

In light of [4],
PM

m¼1

Pnm
k¼1

PM
l¼1

�dm �-m;lð@2
kð�xl;kÞ �

@2
kð�xm;kÞÞ ¼ 0 holds. Therefore, (51) arrives at

_V �
XM

m¼1

�dm �
Xnm

k¼1

cm;ks
2
m;k �

Xnm

k¼1

qm;k
2

~H2
m;k �

�rm;1km
.m0

"

þ
Xnm

k¼1

1� 16 tanh2
sm;k
rm;k

� �� �

Gm;k � ð1� �jmÞsm;nmumin
m

þsm;nm �jm�1m �
Xnm

k¼1

jm;k �Vm;k þ �vm

#

:

ð52Þ

To this end, the adaptive self-triggered neural control

scheme was preliminary accomplished. The results are

summarized in the following Theorem 1.

3.3 Stability analysis

Theorem 1 Let us consider the interconnected nonlinear

time-delay system in (1), under Assumptions 1–3, the error

compensation signals in (11), the virtual control functions

in (12)–(14), the adaptive updating law in (15)–(16), then

the decentralized-based adaptive quantized control algo-

rithm guarantees the following features:

• The system output was confined to a small adjustable re-

gion in finite time.

• All the signals of the CLS remain SGUUB.

• The Zeno phenomenon was ruled out.

Proof Let us select the Lyapunov function �Vm ¼
PM

m¼1

Pnm
i¼1

1
2
m2m;i to prove the boundedness of mm;i.

_�Vm ¼
XM

m¼1

�cm;1m
2
m;1 þ pm;1mm;1mm;2 þ pm;1mm;1nm;2

h

� cm;2m
2
m;2 � pm;1mm;1mm;2 þ mm;2mm;3 þ mm;2nm;3

þ � � � � cm;nmm
2
m;nm

� pm;nm�1mm;nm�1mm;nm
i

¼
XM

m¼1

�
Xnm

l¼1

cm;lm
2
m;l þ

Xnm�1

l¼1

plmm;lnm;lþ1

" #

;

ð53Þ

where pl ¼ max pm;1; 1
� �

.

From [27], one has nm;lþ1 ¼j fm;lþ1 � am;l j �Dm;l ðl ¼
1; � � � ; nm � 1Þ and define

D1 ¼ minfðcm;1 � p2m;1=2Þ; ðcm;2 � 1=2Þ; . . .;
ðcm;nm � 1=2Þg and D2 ¼ 1

2
D2
m;l. Thus, (53) yields

_�Vm �
XM

m¼1

�
Xnm

l¼1

cm;lm
2
m;l þ

Xnm

l¼1

plDm;l j mm;l j
" #

� � D1
�Vm þ D2:

ð54Þ

Therefore, the boundness of mm;i can be obtained. This

completes the proof. h

Let A ¼ min �dm 2cm;k; qm;klm;k; �rm;1; jm;k
� �

and

vnm ¼
PM

m¼1
�dm�vm, (52) is further simplified as:

_V � � AV þ vnm þ
XM

m¼1

Xnm

k¼1

�dm 1� 16 tanh2
sm;k
rm;k

� �� �

Gm;k

þ
XM

m¼1

ðsm;nm �jm�1m � ð1� �jmÞsm;nmumin
m Þ:

ð55Þ

Firstly, by using Lemma 1, let us discuss the following two

cases about
PM

m¼1ðsm;nm �jm�1m � ð1� �jmÞsm;nmumin
m Þ.

Case I: umin
m � uMax

m , there exist two probabilities, i.e.,

(a): j um j � umin
m ,based on Lemma 1 with

j �1mðtÞ j � ð1� �jmÞumin
m =�jm, it can be obtained

_V � � AV þ
XM

m¼1

Xnm

k¼1

�dm 1� 16 tanh2
sm;k
rm;k

� �� �

Gm;k þ vnm :

ð56Þ

(b): j um j � umin
m , based on Lemma 1 and

j �1mðtÞ j � ð�jm þ h�mÞ j um j =�jm, one has

_V � � AV þ vnm þ
XM

m¼1

Xnm

k¼1

�dm 1� 16 tanh2
sm;k
rm;k

� �� �

Gm;k

þ
XM

m¼1

sm;nmð�jm þ h�mÞ j um j �ð1� �jmÞsm;nmumin
m


 �
:

ð57Þ

Since ð1� �jmÞumin
m =ð�jm þ h�mÞ� uMax

m , then we can obtain

j um j � uMax
m �ð1� �jmÞumin

m =ð�jm þ h�mÞ. By invoking

(57), the similar results with the form in (56) can be

derived.

Case II umin
m � uMax

m , then j um j � umin
m . The similar result

can be derived by referring to (a) in Case I.

In a nutshell, by combining with the Case I and II, the

inequality (56) can be obtained accordingly.
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Next, let us discuss the sign of
PM

m¼1

Pnm
k¼1

�dmð1� 16 tanh2ðsm;k=rm;kÞÞGm;k, two cases

exist as follows:

Case A sm;k 2 Xmk
¼ sm;k jj sm;k j \0:2554mk

� �
for

1�m�M and 1� k� nm. Thus, sm;k is bounded.

According to zm;k ¼ sm;k þ mm;k and the boundedness of

mm;k, zm;k is bounded. Because of (16), Ĥm;k is bounded.

Due to Hm;k being constant, the estimation error ~Hm;k is

also bounded. Thus, the boundedness of am;k and um are

bounded, and fm;k is also bounded. According to (9), xm;k
and om are bounded. Since Gm;k is a non-negative function,

�dm 1� 16 tanh2
sm;k
rm;k

� 	� 	
Gm;k is bounded and suppose Gm0

is its upper bound. On the basis of (56), one obtains

_V � � AV þ v̂nm ; ð58Þ

where v̂nm ¼ vnm þ Gm0. Furthermore, it can be obtained

that 0�V � ½Vð0Þ � ðv̂nm=AÞ�e�At þ ðv̂nm=AÞ. Conse-

quently, all signals of the CLS are regulated to a compact

set N1.

N1 ¼ ðxm;k; zm;k; sm;k; ~Hm;kÞ jj V �
v̂nm
A

� �

:

Case B sm;k 62 Xmk
for 1�m�M and 1� k� nm. In light

of Lemma 4, one has �dmð1� 16tanh2ðsm;k=mkÞÞGm;k � 0.

Thus, (56) yields

_V � � AV þ vnm : ð59Þ

The same as Case A, all signals of the CLS are regulated to

a compact set N2.

N2 ¼ ðxm;k; zm;k; sm;k; ~Hm;kÞ jj V �
vnm
A

n o
:

To sum up the above, it can be concluded that all signals in

the CLS remain SGUUB. According to the above discus-

sions, the parameters selection guideline of the proposed

control solution is given in Algorithm 1.

Remark 2 In contrast to the classical ETC utilized in

References [10, 11, 26], which requires continuous moni-

toring of the measurement error to determine whether it

needs to be triggered, the developed self-triggered control

scheme avoids the use of an additional observer by

obtaining the next trigger moment from the current one. In

addition, although the self-triggered control approach can

reduce the transmission cost, the stabilization performance

of the control system may be weakened based on the

control signal being discontinuous between two consecu-

tive trigger moments. In particular, the interconnected

nonlinear time-delay system has a relatively complicated

structure. To this end, the FTPF is introduced to achieve

the stabilization control goal, which also increases the

challenges and difficulties of control design to a certain

extent.

Remark 3 In this brief, the trial-and-error-based tactic for

choosing the design parameters is utilized to achieve sat-

isfactory control performance. By increasing the design

parameters cm;i; lm;k; �rm;1, and jm;k or decreasing the design

parameters Km;Em, and qm;i such that the stabilization error

is as small as possible. Theoretically speaking, provided

that the design parameters are larger, it may result in a

larger amplitude of the control input. Therefore, it is

essential to make a trade-off between control performance

and control energy by choosing the design parameters

appropriately.

Remark 4 Following the above discussion, we can derive

that the control input �um is bounded. Hence, ðKm j �umðtÞ j
þEmÞ=ðmax Lm; j _vmðtÞ jf gÞ is also bounded. Given the

circumstances of (45), it is available that the lower bound

for inter-execution intervals satisfies t� ¼ tkþ1 � tk [ 0,

that is, excluding the Zeno-behavior.
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4 Simulation example

In this section, two simulation examples are used to vali-

date the effectiveness of the proposed adaptive self-trig-

gered quantized control scheme.

Example 1 In the background of the chemical industry,

two-stage chemical reactors are universally prevalent.

However, it is well known that interconnected nonlinear

systems consisting of two two-stage chemical reactors have

significant application potential, which not only models

more complex chemical reaction systems but also improves

the overall conversion rate. To sum up, the nonlinear sys-

tems composed of two two-stage chemical systems have

certain practical implications to some extent.

Fig. 1 Structure chart of a two-

stage chemical reactors
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Let us consider two-stage chemical reactors with

dynamic uncertainly and delayed recycle streams, as

exhibited in Fig. 1. As in [42], the mathematical model

of the reactors can be expressed as:

_w1 ¼ � w1 þ 0:5x21;1 þ 0:5;

_x1;1 ¼ � 1

Y1;1
x1;1 �

1

Y1;1
x1;1ðt � s1;1Þ þ

1� T1;2
M1;1

x1;2

� H1;1x1;1 þ 0:1sinðx1;1 þ x2;1Þ þ w1x1;1sinðx1;1Þ;

_x1;2 ¼ � 1

Y1;2
x21;2 þ

T1;1
M1;2

x1;1ðt � s1;1Þ �
2Q�

1;2

Y1;2
x1;2

þ E1

M1;2
qðu1Þ � H1;2x1;2 þ

T1;2
M1;2

x1;2ðt � s1;2Þ

þ 0:2sinðx2;1Þ þ w1x1;1x1;2;

_w2 ¼ � w2 þ 0:5x22;1 þ 0:5;

_x2;1 ¼ � 1

Y2;1
x2;1 �

1

Y2;1
x2;1ðt � s2;1Þ þ

1� T2;2
M2;1

x2;2

� H2;1x2;1 þ 0:1sinðx1;1Þ þ w2x2;1sinðx2;1Þ;

_x2;2 ¼ � 1

Y2;2
x22;2 þ

T2;1
M2;2

x2;1ðt � s2;1Þ �
2Q�

2;2

Y2;2
x2;2

þ E2

M2;2
qðu2Þ � H2;2x2;2 þ

T2;2
M2;2

x2;2ðt � s2;2Þ

þ 0:2sinðx1;1 � x2;1Þ þ w2x2;1sinðx2;2Þ;

8
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

where xm;1 and xm;2 ðm ¼ 1; 2Þ are the compositions to be

controlled; qðumÞ is the quantized signal; the representation

and values of the system parameters are shown in Table 1.

To confirm the validity of Assumption 2 for wm-dy-

namic, let us choose �VmðwmÞ ¼ w2
m, then

_�VmðwmÞ ¼ 2wmð�wm þ 0:5x2m;1 þ 0:5Þ

� � 2w2
m þ 1

4lm
w2
m þ 1

lm
w2
m þ lmx

4
m;1 þ

1

4
lm:

By selecting lm ¼ 2:5, results in

_�VmðwmÞ� � 1:5w2
m þ 2:5x4m;1 þ 0:625:

Define !m;1ðj wm jÞ ¼ 0:6w2
m;!m;2ðj wm jÞ ¼ 0:5w2

m; rm;1 ¼
1:5; rm;2 ¼ 0:625, and pm0ðkxm;1kÞ ¼ 2:5x4m;1, Assumption

2 is certified successful. On the basis of Lemma 1 and

taking �rm;1 ¼ 1:2 2 ð0; rm;1Þ, a dynamic signal km is rep-

resented as:

_km ¼ �1:2km þ 2:5x4m;1 þ 0:625:

Following the control design in Sect. 3, the corre-

sponding design parameters are identified in Table 2. To

intuitively show the superiority of the proposed method-

ology, a comparison simulation between the proposed

approach and the algorithm in [16] is exhibited in Figs. 2,

3, 4, 5, and 6. Specifically, the states xm;1 and xm;2 ðm ¼
1; 2Þ are shown for each subsystem in Fig. 2. Figure 3 plots

the profiles of system output xm;1 for each subsystem. From

Figs. 2 and 3, it is evidence obtained that the system states

are SGUUB and system output xm;1 can converge better to

a predetermined range ð�‘m; ‘mÞ than the method in [16] in

finite time. Furthermore, the response curves of the adap-

tive parameters Ĥm;1 and Ĥm;2 are depicted for each sub-

system in Fig. 4. Figure 5 illustrates the graphs of the

Table 1 The model parameters

Notation Representation Value Unit

Tm;1=Tm;2 The recycle flow rates 0.5 m3=s

Hm;1=Hm;2 The reaction constants 0.5 1/s

Mm;1=Mm;2 The reactor volumes 0.5 m3

Q�
m;2 The equilibrium point 7/3 m3

Em The feed rate 0.5 m3=s

Ym;1=Ym;2 The reactor residence times 2 s

Table 2 The design parameters

The initial conditions

x1;1ð0Þ ¼ x2;1ð0Þ ¼ 0:35; x1;2ð0Þ ¼ x2;2ð0Þ ¼ 1;w1ð0Þ ¼ w2ð0Þ ¼ 0;

Ĥm;1ð0Þ ¼ Ĥm;2ð0Þ ¼ 0; mm;1ð0Þ ¼ mm;2ð0Þ ¼ 0; k1ð0Þ ¼ k2ð0Þ ¼ 0:1

The controller parameters

c1;1 ¼ 5; c1;2 ¼ 4; c2;1 ¼ c2;2 ¼ 7; a2m;1 ¼ a2m;2 ¼ 0:5;

Km ¼ 0:1; Lm ¼ 0:12;

qm;1 ¼ qm;2 ¼ 2; umin
m ¼ 0:5; dm ¼ 0:2; |m ¼ 1;Em ¼ 0:1;Pm ¼ 0:9;

‘m0 ¼ 1; Tf ¼ 1; ‘mTf ¼ 0:1;lm;1 ¼ lm;2 ¼ 1; �Em ¼ 1;

The time delays

sm;1 ¼ 0:2þ 0:08sinð2tÞ; sm;2 ¼ 0:3þ 0:12sinð2tÞ.

The Gaussian functions

wi
m;ið�zm;iÞ ¼ exp �ðð�zm;i þ iÞ2=1Þ

h i
; i ¼ 1; 2; i ¼ 0;�1;�2;�3;�4;

�zm;1 ¼ ½xm;1; sm;1; pm; k1ðtÞ�T; �zm;2 ¼ ½xm;2; sm;2; k2ðtÞ; _fm;2�T.
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control input vm and quantized input qðumÞ for each sub-

system. It can be seen that the quantization amplitude of

the proposed control method is relatively small. Figure 6

expresses the trigger interval for each subsystem. To sum

up, the proposed FTPP quantized control approach is

superior to that investigated in [16] for achieving a better

trade-off between the networked control and stability per-

formance, and also excluding the Zeno phenomenon.

Example 2 Consider the following interconnected nonlin-

ear time-delay plants:

_w1 ¼ � w1 þ 0:5x21;1 þ 0:5;

_x1;1 ¼ x1;2 þ
x1;1 � x31;1
1þ x21;1

þ 0:1sinðx1;1 þ x2;1Þ

� 0:5x1;1ðt � s1;1Þ þ w1x1;1sinðx1;1Þ;

_x1;2 ¼ qðu1Þ � ðx21;1 þ 2x1;2Þsinðx1;1Þ þ x1;2ðt � s1;2Þ

þ 0:2sinðx2;1Þ þ w1x1;1x1;2;

_w2 ¼ � w2 þ 0:5x22;1 þ 0:5;

_x2;1 ¼ x2;2 þ
x2;1 � x32;1
1þ x22;1

� 0:5x2;1ðt � s2;1Þ þ 0:1sinðx1;1Þ

þ w2x2;1sinðx2;1Þ;

_x2;2 ¼ qðu2Þ � ðx22;1 þ 2x2;2Þsinðx2;1Þ þ x2;2ðt � s2;2Þ

þ 0:2sinðx1;1 � x2;1Þ þ w2x2;1sinðx2;2Þ;
_w3 ¼� w3 þ 0:5x23;1 þ 0:5;

_x3;1 ¼ x3;2 þ
x3;1 � x33;1
1þ x23;1

� 0:5x3;1ðt � s3;1Þ

þ 0:1sinðx1;1 þ x3;1Þ þ w3x3;1sinðx3;1Þ;

_x3;2 ¼ qðu3Þ � ðx23;1 þ 2x3;2Þsinðx3;1Þ þ x3;2ðt � s3;2Þ

þ 0:2sinðx2;1 � x3;1Þ þ w3x3;1sinðx3;2Þ;

8
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

where fm;1 ¼ ðxm;1 � x3m;1Þ=ð1þ x2m;1Þ; fm;2 ¼ �ðx2m;1þ
2xm;2Þsinðxm;1Þ: g1;1 ¼ 0:1sinðx1;1þ x2;1Þ; g1;2 ¼
0:2sinðx2;1Þ; g2;1 ¼ 0:1sinðx1;1Þ; g2;2 ¼ 0:2sinðx1;1�
x2;1Þ; g3;1 ¼ 0:1sinðx1;1 þ x3;1Þ; g3;2 ¼ 0:2sin ðx2;1 �
x3;1Þ: D1;1 ¼ w1x1;1sinðx1;1Þ; D1;2 ¼ w1x1;1x1;2; D2;1 ¼
w2x2;1sinðx2;1Þ; D2;2 ¼ w2x2;1 sinðx2;2Þ; D3;1 ¼
w3x3;1sinðx3;1Þ; D3;2 ¼ w3x3;1sinðx3;2Þ:
sm;1 ¼ 0:2þ 0:08sinð2tÞ; sm;2 ¼ 0:3þ 0:12sinð2tÞ.

We select the wm-dynamic, the RBFNN basis function,

virtual control signals, and adaptive laws of the numerical

simulations like Example 1. The different parameters

related to Example 1 are selected as follows:xm;1ð0Þ ¼
0:2; xm;2ð0Þ ¼ 1:2; cm;1 ¼ cm;2 ¼ 5 ðm ¼ 1; 2; 3Þ. To

further illustrate the stabilization performance investigated

in this paper, the responses of the states xm;1 and xm;2 ðm ¼
1; 2; 3Þ are exhibited for each subsystem in Fig. 7. Figure 8

depicts the graphs of system output xm;1 for each subsys-

tem. The investigated self-triggered control scheme can

guarantee that the system states in the resulting CLS are

SGUUB and system output xm;1 can regulated to a prede-

termined range ð�‘m; ‘mÞ in finite time. In addition, the

response curves of the adaptive parameters Ĥm;1 and Ĥm;2

Fig. 2 System states xm;1 and xm;2

Fig. 3 System output xm;1
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are shown for each subsystem in Fig. 9. Figure 10 plots the

graphs of the control input vm and quantized input qðumÞ
for each subsystem. Figure 11 exhibits the trigger interval

for each subsystem. To sum up, the presented self-triggered

control approach can achieve a better trade-off between

networked control and stability performance, and the Zeno

phenomenon is also ruled out.

5 Conclusion

Self-triggered-based adaptive neural decentralized control

strategy for interconnected nonlinear time-delay systems

involving finite-time prescribed performance has been

Fig. 4 Adaptive parameters Ĥm;1 and Ĥm;2

Fig. 5 Control signal vm and quantized signal qðumÞ

Fig. 6 Inter-event intervals

Fig. 7 System states xm;1 and xm;2
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developed. By utilizing the hyperbolic tangent function and

RBFNNs, the potential singularity issue has been elimi-

nated. Meanwhile, an improved FOF was incorporated into

the controller design, which can avoid the tremendous ‘‘

amount of calculation ’’ and the adverse impact of filter

error has been excluded. Besides, the effect of bandwidth

limitation was considered in the self-triggered adaptive

FTPP control scheme, achieving a trade-off between sta-

bility performance and networked control. The presented

controller ensured all signals in CLS are SGUUB, and the

system output fluctuated to a small adjustable range within

a finite time interval. Last but not least, the effectiveness

and superiority of the proposed scheme have been verified

by two simulation examples. In the future, the author will

work to consider the self-triggered adaptive secure control

issue for interconnected nonlinear time-delay systems with

cyberattacks. In addition, inspired by [43] in dealing with

the tracking of small-amplitude signals, a straightforward

and effective nonlinearity is implemented in the controller,

resulting in better signal-to-noise ratio performance, which

will be another topic for our future research.

Fig. 8 System output xm;1

Fig. 9 Adaptive parameters Ĥm;1 and Ĥm;2

Fig. 10 Control signal vm and quantized signal qðumÞ

Fig. 11 Inter-event intervals
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