
ORIGINAL ARTICLE

DL-DARE: Deep learning-based different activity recognition
for the human–robot interaction environment

Sachin Kansal1 • Sagar Jha1 • Prathamesh Samal1

Received: 27 June 2022 / Accepted: 25 January 2023 / Published online: 18 February 2023
� The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2023

Abstract
This paper proposes a deep learning-based activity recognition for the Human–Robot Interaction environment. The

observations of the object state are acquired from the vision sensor in the real-time scenario. The activity recognition

system examined in this paper comprises activities labeled as classes (pour, rotate, drop objects, and open bottles). The

image processing unit processes the images and predicts the activity performed by the robot using deep learning methods

so that the robot will do the actions (sub-actions) according to the predicted activity.

Keywords RGB sensor � VGG-16 � Resnet-50 � Hyper-parameters � Deep learning � Visual tracking � Feature extraction

1 Introduction

Deep neural network (DNN) implementations of deep

learning (DL) approaches have been widely accepted

because of their high-staging processing power. With

unstructured data, deep learning can process a wide range

of features, giving it enormous power and reliability. The

issue of object posture prediction in real-time tracking has

become a significant concern. Real-time tracking is now

possible because of sophisticated sensors, intelligent chips

and control theory, much like in the 1990s. As a result of

the soaring image capture rate, the activity recognition

framework’s vision systems continued to struggle with

posture estimation. Robots must do the actuation in that

amount of time. Parallel robots have a larger load-carrying

capacity than serial robots and are extensively employed

for grabbing goods. To create a deep learning-based model,

several different algorithms were put out. This research

proposes to implement a deep learning framework for

activity recognition. The primary focus of this research is

on developing an activity recognition system based on deep

learning. Repositioning an object skillfully has been

defined as manipulation [1]. These systems have a wide

range of uses, ranging from heavy industry to smart homes

(Figs. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12).

A combination of Random Forests and Hidden Markov

Models (HMM) performs the best, according to the work of

Roitberg et al. [2], who developed various machine learn-

ing algorithms utilizing leave-one-out cross-validation. The

construction of feature vectors that are appropriate for

activity recognition and a comparison of several machine

learning methods for feature importance estimation and

classification make up their two-step methodology. Recent

computer vision research has largely employed data from

2D videos to focus on the identification of human activities

[3–5]. The use of 3D skeleton data for activity detection

has grown in popularity over the past few years [6, 7], due

to Shotton et al. [8] development of a reliable real-time

approach for skeleton capturing with random forests.

On 2D ? X data volumes, the article found two issues

with ML (machine learning). 2D picture observation is X,

and 2D is a variable associated with depth, wavelength,

& Sachin Kansal

sachin.kansal@thapar.edu

1 Computer Science Engineering Department, Thapar Institute

of Engineering Technology Patiala, Patiala, Punjab 147004,

India

123

Neural Computing and Applications (2023) 35:12029–12037
https://doi.org/10.1007/s00521-023-08337-y(0123456789().,-volV)(0123456789().,-volV)

http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-023-08337-y&domain=pdf
https://doi.org/10.1007/s00521-023-08337-y

time, etc. [9]. DLA-based medical image recognition,

classification, and segmentation are discussed in this work.

Medical image analysis using DLA is made easier with the

help of this guide [10]. It introduces the concept of sparse

representation into the architecture of deep learning net-

works in this paper (Multilayer nonlinear mapping is

reported to complete the complicated function approxi-

mation in deep learning [11]. Research in this paper

examines how to use a convolutional neural network

(CNN) to classify pneumonia based on a chest X-ray

dataset [12].

This paper inputs pre-therapy lung CT images into Deep

Profiler. This multi-task deep neural network incorporates

radionics into the training process to generate an image

fingerprint that predicts time-to-event treatment outcomes

and approximates the classical technique’s radiomic fea-

tures [13]. This paper defines image-based deep learning to

predict complexity as the need for component separation

and pulmonary and wound complications after Abdominal

Wall Reconstruction (AWR) reported in [14].

In [15], the researchers have proposed a technique that

employs action proposals to first extract and categorize

useful motion characteristics using a ConvNet framework

and then use action proposals to identify one human action

in videos, independent of camera movement. Convolution-

basedmodels are very powerful for solving image and

video recognition problems; hence, we can use such

models for our task of predicting the activity from a given

video sequence.

Algorithm Predict the activity recognition from the given

MIME dataset using the deep learning approaches. The

real-time estimation and prediction of the activities are

performed specifically to the activity predicted by the

robot.

Algorithm Predict the activity recognition from the given MIME dataset using the deep
learning approaches. The real-time estimation and prediction of the activities are performed
specifically to the activity predicted by the robot.

Input: Captured image (RGB)
Output: Predict the activity recognition from the given MIME dataset using the deep
learning approaches.
Begin
While (true)
1. Compute the pose of the object(s) involved in the scene.

2. Model Training (Can be iterated for n batches)
For i in batch_size:

For video, label in video_dataset:
N←num_frames(video)
for frame_no in range(0,N,skip_by):

temp_frame ← extract_frame(frame_no,video)
temp_frame ← temp_frame.reshape(224,224,3)

video_frames ← append(temp_frame)
video_labels ←append(label)

class_probabilites ← model(video_frames)
classification_loss ← loss_fn(class_probabilities,video_labels)

3. Performing the Deep Learning (DL) based pose prediction after the model training.

N ← num_frames(test_video)
for frame_no in range(N):

temp_frame ← extract_Frame(frame_no,test_video)
temp_frame ← temp_frame.reshape(224,224,3)
class_probability ← append(model(temp_frame))

class_prediction ← maxFrequency(class_probability)

3. Robots perform the task predicted by the proposed framework.
End while
Begin
The offline training of the model using the Deep learning methods is done.
End

2 Methodology

2.1 Proposed method

Videos contain very rich semantic information. Inspired by

the huge success of the deep learning methods in analyzing

the image, audio, and text data, significant efforts are

recently being devoted to the design of deep nets for video

Fig. 1 Activity classification framework
Fig. 2 Activity classification images extracted from the training video

(class: POUR)

12030 Neural Computing and Applications (2023) 35:12029–12037

123

analytics. Video classification serves as a fundamental and

essential step in the process of analyzing video content.

Instead of processing images initially, here, we have to

classify videos into four tasks given above.

We can notice two features in videos, i.e., the temporal

and spatial aspects, also known as spatial-temporal fea-

tures. The temporal motion is converted to successive

frames so that the conventional CNN and related archi-

tectures designed for images can be directly deployed. The

detailed technique has been explained below:

(i) Each video contains multiple frames in time; hence,

we initially extract all the frames. Once the frames are

extracted, their name is saved along with a correspond-

ing tag in the CSV file. This file helps to read the frames

while processing and training them.

(ii) The next step is to create training and validation sets.

In order to generate the validation set, it must be ensured

that the distribution of each class in both the training and

validation sets is similar. To accomplish so, we may

employ the stratify parameter of the sci-kit-learn pack-

age, which maintains a consistent distribution of classes.

(iii) Due to the large dataset, a custom CNN model made

from scratch may not work. So, pre-trained models have

been used to define the architecture of the model. For our

research, we used VGG16 and ResNet-50 for learning

rich representations from the frames.

(iv) For the training and validation frames, features are

extracted from the pre-trained models. We find the shape

of the frames to be changed from (224, 224, 3) to (7, 7,

512) for each frame after passing it through the pre-

trained network.

(v) For the final predictions, a Multi-Layered Perceptron

(MLP) is used, which is a fully connected class of

artificial neural network. It takes input in a single

dimension. Hence, the features are reshaped resulting in

a size of 25,088. It is to be also mentioned that the pixel

values are normalized between 0 and 1 to aid the model

for faster convergence.

(vi) Multiple FC layers are used along with dropout

layers to prevent overfitting. The number of neurons in

the final layer is equal to the number of classes to be

predicted. In our case, it is four.

The model is now trained using the training frames. The

optimum model is selected based on the validation loss.

2.2 Video pre-processing

Videos is a collection of frames, we check the video fps

and then, treat each frame as an image and save it in the

corresponding class folder. We skip some frames to reduce

the time complexity. The spatial resolution of the frames is

also converted into the shape (224, 224, 3) for uniformity.

2.3 Train-validation-split

We explored the dataset and created training and validation

splits. We use a training set to train the model and a val-

idation set to evaluate the trained model.

2.4 Model usage

We have used the Transfer Learning technique. This

technique helps achieve the results faster and more accu-

rately as the architecture of the models is already proven

upon several previous tasks. The base architectures are

downloaded from the TensorFlow hub. We must modify

the end layers according to our problem statement of four

classes.

3 Deep learning techniques

This section implements deep learning-based activity

recognition for the Human–Robot Interaction environment.

3.1 Background

This section discusses the background of various deep

learning techniques to make the vision-based pose predic-

tion. Deep learning methods perform better than simple

ANN, even though the training time of deep structures is

higher than ANN. However, training time can be reduced

using transfer learning GPU computing methods.

3.2 CNN

This section examines various deep learning techniques to

predict the object’s shape, and accordingly, catching can be

performed based on the frames captured by the calibrated

vision sensor. Convolutional Neural Networks (CNN)

assign weights and biases to various objects in the image

and differentiates one from another. It requires less pre-

processing than other classification algorithms [16, 17].

CNN uses relevant filters to capture an image’s spatial and

temporal dependencies [18, 19]. The CNN architectures

include LeNet, GoogleNet, AlexNet, VG-GNet, and

ResNet.

Consider a real-time case of various activity recognition

and implementation of the Deep Learning-based algorithm.

Largest and most diverse ever demonstration dataset. It

comprises 8260 human–robot demonstrations. There are 04

classes, namely, ‘Pour’, ‘Rotate’, ‘Drop objects’, and

‘Open bottle’. The sequence of activity classification

images was extracted from the training video (class:

POUR).

Neural Computing and Applications (2023) 35:12029–12037 12031

123

3.3 ResNet-50

ResNet-50 is a convolutional neural network that is 50

layers deep. It is a subclass of convolutional neural net-

works, with ResNet most popularly used for image clas-

sification. We can load a pre-trained version of the network

trained on more than a million images from the ImageNet

database [20–23]. The pre-trained network can classify

images into 1000 object categories. As a result, the network

has learned rich feature representations for various images.

The network has an image input size of 224-by-224.

(Table 1)

3.4 VGG16

It is a Convolutional Neural Network (CNN) model pro-

posed by Karen Simonyan and Andrew Zisserman at the

University of Oxford. First and foremost, compared to the

large receptive fields in the first convolutional layer, this

model proposed the use of a very small 3 9 3 receptive

field (filters) throughout the entire network with the stride

of 1 pixel.

3.5 Testing methodology

We will take each video from the test set, extract frames,

and save them in a temporary folder. At each iteration, we

shall delete all other files from this folder. Next, we will

read all of the frames from the temporary folder, use the

pre-trained model to extract features from these frames,

predict tags, and then, use the mode to assign a tag to that

specific video and append it to the result. The model is then

evaluated based on predicted and actual tags. We have used

the accuracy score as the performance metric. It is to be

noted that the training and testing videos are different, i.e.,

the testing videos are entirely new to the model. In short,

we are passing a video for testing, converting the video into

frames, assigning each frame a label, and then taking a

Fig. 3 Convolutional neural networks [28]

Fig. 4 (a–e). The sequence of activity classification images was

extracted from the training video (class: POUR)

Fig. 5 ResNet50 (ADAM,0.0001)

12032 Neural Computing and Applications (2023) 35:12029–12037

123

mode to give a single label to the entire video since the task

was of video classification.

3.6 GPU-enabled performance evaluation

In this section, GPU-enabled deep learning techniques

using the Mixed Precision with Apex and Monitor-

ing with Wandb are implemented to extract the appropriate

state observations from the grabbed frames by the pre-

calibrated camera. In this approach, torches are assigned to

the GPU rather than copied from the CPU, i.e., We can

reduce the time using the first approach. Hyperparameter

tuning is choosing a set of optimal hyperparameters for a

learning algorithm. A hyperparameter is a model argument

whose value is set before the learning process begins. The

optimal hyperparameters control the underfitting and

overfitting of the model. The key to machine learning

algorithms is hyperparameter tuning, as shown in Table 2.

(a) Taken the training and testing dataset.

(b) Tuning the hyperparameters.

(c) Data splitting into training and testing.

(d) Apply data transform that includes augmenta-

tions and processing.

(e) Doing the custom dataset and Dataloader for the

catching images.

(f) Implementing the optimizers:

(i) Stochastic Gradient Descent bs = 1; ‘n’ number of

examples. ‘n / 1’ number of data loader/steps for 1

Epoch.

(ii) Mini-Batch Gradient Descent bs = 32; ‘nnumber of

examples. ‘n /32’ number of data loaders/step for 1

Epoch.

(iii) Full Batch Gradient Descent bs = total_num-

ber_of_samples number of data loader/steps = 1 for 1

Epoch.

(g) Loading the model.

(h) Computing the CrossEntropyLos (cel).

cel = Softmax(final activation function for normalizing

the output of the FC Layer) ? Negative Log-Likelihood

(NLL) Loss.

(i) Train the model.

(j) Saving the model.

3.7 Various optimization parameters tuning
and its performance evaluation

In this section, various optimization parameters tuning

approaches are used with the GPU-enabled deep learning

techniques using the Mixed Preci-

sion with Apex and Monitoring with Wandb are imple-

mented to extract the appropriate state observations from

the grabbed frames by the pre-calibrated camera. In this

approach, torches are assigned to the GPU rather than

copied from the CPU, i.e., We can reduce the time using

the first approach. Hyperparameter tuning is choosing a set

of optimal hyperparameters for a learning algorithm.

Mixed precision uses 32-bit and 16-bit floating-point types

in a model during training to make it run faster and use less

Fig. 7 ResNet50 (ADAM,0.001)Fig. 6 ResNet50 (ADAM,0.1)

Neural Computing and Applications (2023) 35:12029–12037 12033

123

memory. Using mixed-precision training requires three

steps:

1. To convert the model to the float16 data type where

possible.

2. Keeping float32 master weights to accumulate per-

iteration weight updates.

3. Using loss scaling to preserve small gradient values.

Frameworks that support fully automated mixed-preci-

sion training also support:

(a) Automatic loss scaling and master weights integrated

into optimizer classes,

(b) The automatic casting between float16 and float32

maximizes speed while ensuring no loss in task-specific

accuracy. The key to machine learning algorithms is

hyperparameter tuning, as shown in Table 3.

(a) Taken the training and testing dataset.

(b) Tuning the hyperparameters with performance

tuning.

(c) Data splitting into training and testing.

(d) Apply data transform that includes augmenta-

tions and processing.

Fig. 9 VGG16 (ADAM,0.0001)

Fig. 10 VGG16 (ADAM,0.01)

Fig. 11 VGG16 (ADAM,0.001)

Fig. 8 VGG-16 Architecture

12034 Neural Computing and Applications (2023) 35:12029–12037

123

(e) Doing the custom dataset and Dataloader for the

catching images.

(f) Create tensors directly on the target device.

(g) Enabling the TF32 on Ampere GPU.

(h) Enable channels_last memory format for computer

vision models. This format is meant to be used with

Automatic Mixed Precision (AMP) to further accelerate

convolutional neural networks with Tensor Cores.

(i) Apex for Fused Optimizer and the AMP is used.

(j) Train the model.

(k) Saving the model

3.8 Multi-GPU with optimization parameters
tuning enabled performance evaluation

In this section, various optimization parameters tuning

approaches are used with the Multi-GPU-enabled deep

learning techniques using the Mixed Precision with Apex

are implemented to extract the appropriate state observa-

tions from the grabbed frames by the pre-calibrated cam-

era. The key to machine learning algorithms is

hyperparameter tuning, as shown in Table 4.

(a) Taken the training and testing dataset.

(b) Tuning the hyperparameters with performance

tuning.

(c) Data splitting into training and testing.

(d) Apply data transform that includes augmenta-

tions and processing.

(e) Doing the custom dataset and Dataloader for the

catching images.

Fig. 12 Training performance

Table 1 Tuning Hyperparameters for performance tuning

Parameters Value

Learning Rate 0.001

Epochs 10

BATCH_SIZE 8

IMAGE_SIZE 224

TRAIN_VALID_SPLIT 0.2

SEED 42

pin_memory True

num_workers 0

channels_last False

USE_AMP True

Table 2 Tuning Hyperparameters

Parameters Value

Learning Rate 0.001

Epochs 10

BATCH_SIZE 32

IMAGE_SIZE 224

TRAIN_VALID_SPLIT 0.2

Table 3 Tuning Hyperparameters for performance tuning

Parameters Value

Learning Rate 0.001

Epochs 10

BATCH_SIZE 8

IMAGE_SIZE 224

TRAIN_VALID_SPLIT 0.2

SEED 42

pin_memory True

num_workers 0

channels_last False

USE_AMP True

Table 4 Tuning Hyperparameters for performance tuning

Parameters Value

Learning Rate 0.001

Epochs 10

BATCH_SIZE 8

IMAGE_SIZE 224

TRAIN_VALID_SPLIT 0.2

SEED 42

pin_memory True

num_workers 0

channels_last False

USE_AMP True

Distributed True

World_size 2

Neural Computing and Applications (2023) 35:12029–12037 12035

123

(f) Create tensors directly on the target device.

(g) For distributed systems, after amp. initialize()

function, wrap the model with apex.paral-

lel.DistributedDataParallel() function.

(h) Enable channels_last memory format for computer

vision models. This format is meant to be used with

Automatic Mixed Precision (AMP) to further accelerate

convolutional neural networks with Tensor Cores.

(i) Apex for Fused Optimizer and the AMP is used.

(j) Train the model.

(k) Saving the model.

4 Results

5 Conclusion

This paper uses deep learning-based modeling of the

activity recognition system examined in this paper com-

prises activities labeled as classes (pour, rotate, drop

objects, and open bottle). This paper also discussed the

performance of the deep learning implementation in vari-

ous architectures like CPU, GPU, optimized GPU, and

multi-GPU optimization for the activity recognition

framework. This research can be applied in the automation

industry to track and manipulate goods while packaging.

Acknowledgements We hereby acknowledge the support of the

Computer Science Engineering Department, Thapar Institute of

Engineering Technology, Patiala, Punjab, for providing the facility.

Data availability The datasets analyzed during the current study are

available in the [MIME Dataset] repository: [https://sites.google.com/

view/mimedataset/dataset?authuser=0].

Declarations

Conflict of interest The authors do not have any conflict of interest.

References

1. David A, Chapman K, Weigelt M, Weiss D, Wel R (2012)

Cognition, action and object manipulation. Psycholl Bull

138(5):924–946

2. Roitberg A, Perzylo A, Somani N, Giuliani M, Rickert M, Knoll

A (2014) Human activity recognition in the context of industrial

human-robot interaction, signal and information processing

association annual summit and conference (APSIPA). Asia-

Pacific 2014:1–10. https://doi.org/10.1109/APSIPA.2014.

7041588

3. Poppe R (2010) A survey on vision-based human action recog-

nition. Image Vis Comput 28(6):976–990

4. Turaga P, Chellappa R, Subrahmanian VS, Udrea O (2008)

Machine recognition of human activities: A survey. IEEE Trans

Circuits Syst Video Technol 18(11):1473–1488

5. Niebles JC, Wang H, Fei-Fei L (2008) Unsupervised learning of

human action categories using spatial-temporal words. Int J

Comput Vis 79(3):299–318

6. Ofli F, Chaudhry R, Kurillo G, Vidal R, Bajcsy R (2014) The

sequence of the most informative joints: a new representation for

human skeletal action recognition. J Vis Commun Image Rep-

resent 25(1):24–38

7. Papadopoulos GT, Axenopoulos A, Daras P (2014) Real-time

skeleton-tracking-based human action recognition using kinect

data. MultiMedia modeling. Springer, Berlin, pp 473–483

8. Shotton J, Sharp T, Kipman A, Fitzgibbon A, Finocchio M, Blake

A, Cook M, Moore R (2013) Real-time human pose recognition

in parts from single-depth images. Commun ACM 56(1):116–124

9. Mahamane A, Benoit A, Lambert P (2020) Timed-image-based

deep learning for action recognition in video sequences. Pattern

Recognit 104:107353

10. Mualikrishna P, Ravi S (2021) Medical image analysis based on

deep learning approach. Multimed Tools Appl 80:24365–24398

11. Liu JE, An FP (2020) Image classification algorithm based on

deep learning-kernel function. Sci Program 2020:1–14

12. Samir Y, Shivajirao J (2019) Deep convolutional neural network-

based medical image classification for disease diagnosis. J Big

Data 6(1):1–18

13. Lou B, Doken S, Wingerter T, Gidwani M, Mistry N, Ladic L,

Kamen A, Abazeed M (2019) An image-based deep learning

framework for individualizing radiotherapy dose: a retrospective

analysis of outcome prediction. Lancet Digit Health 1(3):e136–

e147

14. Adib S, Eva B, Sullivan A (2021) Development and validation of

image-based deep learning models to predict surgical complexity

and complications in abdominal wall reconstruction. JAMA Surg

156:933–940

15. Rezazadegan F, Shirazi S, Upcrofit B, Milford M (2017) Action

recognition: from static datasets to moving robots. IEEE Int Conf

Robot Autom (ICRA) 2017:3185–3191. https://doi.org/10.1109/

ICRA.2017.7989361

16. Mathew A, Amudha P, Sivakumar S (2021) Deep learning

techniques: an overview. In: Hassanien A, Bhatnagar R, Darwish

A (eds) Advanced machine learning technologies and applica-

tions. Springer, Singapore

17. Mathew A, Amudha P, Sivakumar S (2021) Deep learning

models for medical Imaging In: Biomedical imaging devices and

systems

18. Le QV et al (2015) A tutorial on deep learning part 2: autoen-

coders, convolutional neural networks and recurrent neural net-

works. Google Brain 20:1–20

19. Yamashita R, Nishio M, Do RKG, Togashi K (2018) Convolu-

tional neural networks: an overview and application in radiology.

Insights Imaging 9(4):611–629. https://doi.org/10.1007/s13244-

018-0639-9

20. ImageNet. http://www.image-net.org. Accessed 28 May 2022

21. He K, Zhang X, Ren S, Sun J (2015) Deep residual learning for

image recognition. Archives Cornell University, New York

22. He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for

image recognition In: Proceedings of the IEEE conference on

computer vision and pattern recognition, pp 770–778

23. https://keras.io/api/applications/resnet/#resnet50-function.

Accessed 28 May 2022

12036 Neural Computing and Applications (2023) 35:12029–12037

123

https://sites.google.com/view/mimedataset/dataset?authuser=0
https://sites.google.com/view/mimedataset/dataset?authuser=0
https://doi.org/10.1109/APSIPA.2014.7041588
https://doi.org/10.1109/APSIPA.2014.7041588
https://doi.org/10.1109/ICRA.2017.7989361
https://doi.org/10.1109/ICRA.2017.7989361
https://doi.org/10.1007/s13244-018-0639-9
https://doi.org/10.1007/s13244-018-0639-9
http://www.image-net.org
https://keras.io/api/applications/resnet/#resnet50-function

24. https://towardsdatascience.com/a-comprehensive-guide-to-con

volutional-neural-networks-the-eli5-way-3bd2b1164a53. Acces-

sed 28 May 2022

25. Kao ST, Ho MT (2021) Ball-catching system using image pro-

cessing and an omni-directional wheeled mobile robot. MDPI

Sens J 21(9):3208

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds

exclusive rights to this article under a publishing agreement with the

author(s) or other rightsholder(s); author self-archiving of the

accepted manuscript version of this article is solely governed by the

terms of such publishing agreement and applicable law.

Neural Computing and Applications (2023) 35:12029–12037 12037

123

https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53
https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53

	DL-DARE: Deep learning-based different activity recognition for the human--robot interaction environment
	Abstract
	Introduction
	Methodology
	Proposed method
	Video pre-processing
	Train-validation-split
	Model usage

	Deep learning techniques
	Background
	CNN
	ResNet-50
	VGG16
	Testing methodology
	GPU-enabled performance evaluation
	Various optimization parameters tuning and its performance evaluation
	Multi-GPU with optimization parameters tuning enabled performance evaluation

	Results
	Conclusion
	Data availability
	References

