
ORIGINAL ARTICLE

Using neural-genetic hybrid systems for complex decision support

Pi-Sheng Deng1 • Tzu-Man Huang2

Received: 9 May 2022 / Accepted: 16 January 2023 / Published online: 3 February 2023
� The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2023

Abstract
We propose a hybrid system for supporting complex decisions through integrating neural networks (NNs) and genetic

algorithms (GAs). We investigate the feasibility of leveraging the synergistic effect of integrating NNs and GAs to support

stock market investment decisions. Utilizing 10-year daily US stock market data, we identified a set of effective attributes

to predict stock market. The results suggest that our system is capable of exhibiting learning behavior and is a promising

tool for stock market prediction. Though NNs have been successfully applied to a variety of pattern recognition appli-

cations, the connection weights generation process is highly computationally demanding. We apply GAs to search

stochastically for connection weights. This alleviates an NN’s lengthy training problem so that our hybrid system is more

applicable to support complex decision making. Another contribution of our research is parameter setting for GAs.

Parameter setting is a long-time thorny issue for GA implementation. We focus on one of the most difficult issues—the

setting for the mutation rate. Using the stock market prediction as an application area, we have helped shed light on the role

and importance of the mutation rate, as well as the complementary effect of mutation and crossover functions. Our findings

favor ‘‘low-mutation-rates.’’

Keywords Exploitation-and-exploration � Genetic operators � NN-GA Hybrid system � Stochastic search �
Fundamental analysis � Technical analysis

1 Introduction

One of the recent developments in artificial intelligence

(AI) is the innovative employment of different AI tech-

niques in a hybrid manner. It gave rise to an emerging

computational approach called soft computing, including

fuzzy logic, neural networks (NNs), genetic algorithms

(GAs), simulated annealing, and chaotic systems [1]. These

techniques are resilient to errors, imprecision, fuzziness,

and uncertainty, while traditional techniques find accurate

and optimal solutions to problems. The synergistic

integration of these computing paradigms empowers soft

computing-based hybrid systems to adapt to changing

environment for better performance.

For most of the multi-dimensional decisions, we can

only approximate the optimal solutions. Optimal solutions

are usually unachievable due to multiple local optima in a

complex solution space [2]. Researchers have been

experimenting with soft computing as a promising tool for

this problem by leveraging the exploration-and-exploita-

tion capability of soft computing [2].

In this research we propose a system for supporting

complex decisions through the synergistic integration of

neural networks and genetic algorithms. Neural networks

have been successfully applied to a variety of pattern

recognition-related applications. In many practical appli-

cations, the most difficult part of neural networks is the

highly computation-demanding process for computing

connection weights. We apply GAs to stochastically search

for connection weights. This would alleviate a neural net-

work’s lengthy training problem so that the NN-GA hybrid

system would be more applicable to support complex

decision making.

& Pi-Sheng Deng

pdeng@csustan.edu

Tzu-Man Huang

thuang@csustan.edu

1 Department of Management Information Systems, College of

Business Administration, California State University,

Stanislaus, Turlock, CA 95382, USA

2 Department of Accounting and Finance, College of Business

Administration, California State University,

Stanislaus, Turlock, CA 95382, USA

123

Neural Computing and Applications (2023) 35:11403–11416
https://doi.org/10.1007/s00521-023-08305-6(0123456789().,-volV)(0123456789().,- volV)

http://orcid.org/0000-0001-8925-651X
http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-023-08305-6&domain=pdf
https://doi.org/10.1007/s00521-023-08305-6

We investigate the feasibility of leveraging the syner-

gistic effect of a NN-GA system to support stock market

investment decisions. Stock market is such a dynamic and

volatile system that no model can predict its highly com-

plicated behavior perfectly. Utilizing 10-year daily US

stock market data, we identified a set of effective attributes

for our model to predict stock market. Our empirical results

suggest that our hybrid system serves as a promising tool

for stock market prediction. In addition, our research

results show that our system is capable of exhibiting

learning behavior, i.e., improving performance as the

solution searching process develops. Another major con-

tribution of our research is that we help shed light on an

open issue about GA parameter settings, especially for the

mutation rate.

Next section describes the concept, operations, and

characteristics of GAs and NNs. We present our hybrid

system’s conceptual model in section three and the struc-

tural design of our system in section four. Design imple-

mentation is discussed in section five. Section six is the

application of our system for predicting stock market

movement. We also present the result of ANOVA and

performance analysis in this section. Section seven con-

cludes this research.

2 Methodology

Soft computing is characterized by its synergistic effect

through innovative integration of two or more techniques

together. Many studies have shown that synergistic inte-

gration is a promising approach to effective decision sup-

port [11].

2.1 Genetic algorithms

Genetic algorithms (GAs) are population genetics-inspired

search algorithms which improves solutions gradually

based on previous solutions [3–5]. Unlike traditional opti-

mization tools, which strive to find the optimal solutions,

GAs are most suitable for finding near-optimal solutions.

The solution space consists of syntactic patterns of solu-

tions [5]. A solution space consists of a set of patterns of

genes, and each patter represents an area in the solution

space [10, 11]. Genetic operators are applied to the most

promising solutions to exploit the solution space and

explore new regions in the solution space [10, 11].

According to Goldberg [3], the operational cycle of GAs

consists of the following stages:

• Generating solution population;

• Defining objective function;

• Evaluating each solution;

• Selecting two solutions for regeneration by applying

crossover operator and mutation operator;

• New solutions will be formed and consequently replace

existing solutions.

This process will repeat until the termination conditions

are met or until the decision maker terminates the search

process. When searching for solutions in the solution space,

GA operators interact with each other and enable GAs to

explore and exploit different regions in the solution space

concurrently [6, 7]. Through the interaction of GA opera-

tors, GAs are capable of exploring and exploiting the

solution space for better solutions [6, 7]. This capability

allows GAs to avoid the local optima problem through

mutating gene values stochastically [6, 7].

Some studies asserted that mutation was not as effective

as crossover in the solution search process [3, 8]. However,

Muhlenbein [9] experimented a set of non-derivative

functions and achieved an opposite conclusion about the

effectiveness of mutation. Deng [10] investigated a dif-

ferent application domain than Muhlenbein [9] by imple-

menting a GA-based flexible manufacturing system for the

batch selection problem and achieved the similar result

regarding the importance of mutation. To investigate

whether the similar conclusion about GA parameter set-

tings also holds for different computational paradigms,

Deng & Tsacle [11] coupled a rule-based system and a GA

for the same batch selection problem of Deng [10]. Their

result showed the same conclusion regarding the role of

mutation in GA implementation [11]. The result was also

similar to that of Muhlenbein [9].

In this study, we changed the computational paradigm

further by implementing a GA-driven NN hybrid system

for stock market prediction, a more challenging application

domain than those of Deng, Deng & Tsacle [10, 11]. Fol-

lowing the parameter settings suggested by Muhlenbein,

Deng, Deng & Tsacle [9–11] for a new hybrid system, our

study reached the similar conclusion to the aforementioned

studies and showed that the power of mutation seemed to

have been underestimated. Thus, the parameter settings,

especially for the mutation rate, as proposed by Muhlen-

bein [9], seem to hold for different application domains and

different computational paradigms as well.

2.2 Neural networks

A neural network (NN), a different computational para-

digm than that of GAs, is a gradient-based optimization

technique, which is good at ‘‘digging into’’ an applied

solution region for the best solution. NNs are one of the

most effective learning algorithms for approximating

complex functions. In addition, NNs can explore multiple

promising areas in the solution space concurrently. NNs

11404 Neural Computing and Applications (2023) 35:11403–11416

123

consist of a large number of interconnected neurons. Each

neuron consists of a summation function and a nonlinear

transformation function. A neuron is connected to other

neurons by links with adjustable strengths. The distribution

of weights on the entire network represents a knowledge

structure.

Structurally, an NN is a composite function consisting of

layers of computational nodes, including one input layer,

several hidden or intermediate layers, and one output layer.

The major function of the hidden layers is to develop useful

intermediate representation for capturing major character-

istics of the input instances. The output layer would use

this internal representation to compute the target output.

This ability to automatically discover useful representa-

tions at the hidden layers enables multilayer NNs to make

generalization or draw inferences based on incomplete

information.

The development of intermediate representation by

multilayer NNs is achieved through the application of

learning algorithms to search for optimal weights in a huge

multi-dimensional hypothesis space. Learning algorithms

equip NNs with adaptability through adjusting neural

interaction weights by repeatedly applying gradient descent

to search the solution space of weights in finding the

weights that would yield minimum prediction error.

However, the gradient descent-based learning process is

usually highly computationally demanding which results in

slow process in converging asymptotically to a final solu-

tion. In addition, for a complex solution space with mul-

tiple local minima, this gradient descent-based learning

process is usually trapped in some local minimum and

cannot converge to the global minimum [12].

In order to alleviate the problem of local minima, we

apply GAs to learn the near-optimal weights for NNs.

Since GAs are stochastic explore-and-exploit search algo-

rithms, they are more likely to escape from local minima

[5, 7]. In this research, we harness the stochastic search

power of GAs in searching for a near-optimal set of con-

nection weights with the purpose to both speed up the

learning process and increase the classification effective-

ness for our system. Through the integration of GAs and

NNs techniques, our genetic-neural hybrid system is able to

support decision makers with the adaptation and learning

capabilities for effective decision making.

3 A NN-GA hybrid system for stock market
prediction

To demonstrate the applicability of our system, we design a

neural-genetic hybrid model for stock market prediction.

Though efficient market hypothesis states that stock prices

behave as random walks [13] and are unpredictable, there

have been many empirical studies showing the opposite

[14].

In fact, stock prices are influenced by numerous factors.

Traditionally, financial professionals use fundamental and

technical analysis to predict stock returns. Fundamental

analysis involves the utilization of firm financial informa-

tion, as well as industry outlook and broad economic

conditions. Technical analysis involves the utilization of

historical trading statistics, such as charting techniques

[15], the expected return factor model [16], and even

artificial intelligence techniques [17].

In this research, we utilize a neural-genetic hybrid

model to predict stock market movement. Generally, the

prediction period could range from daily [18–24], monthly

[25, 26], to annual [27] predictions. As the stock market

changes rapidly, we predict daily stock market movement

in this study.

The predicting variables for stock market could include

macroeconomic factors, financial information, and techni-

cal indicators. The macroeconomic factors usually include

interest rates, inflation, unemployment rates, money sup-

ply, oil and commodity prices, exchange rates, foreign

stock markets, and many more [24, 26–28]. Financial

information includes firm specific financial statements and

ratios, as well as the overall industry outlook [25, 28].

Technical indicators include various trading statistics, such

as open, close, the highest, the lowest, price change, trad-

ing volume, simple moving average, exponential moving

average, momentum, relative-strength index, on-balance-

volume, moving average convergence/divergence, the band

system, and many more [18, 20–23, 26, 29].

As we predict daily stock market movement, we have to

use daily variables. Most financial information under fun-

damental analysis is not daily variables and thus not

included in this study. We focus on technical indicators and

available daily macroeconomic variables. We use the S&P

500 Index as the proxy for the US stock market. The daily

variables we generated include open price (Open), close

price (Close), net change of the price (Net), percentage

change (Chang), the lowest price (Low), the highest price

(High), trading volume (Volume), five-day simple moving

average (MA5D), 20-day simple moving average

(MA20D), 21-day exponential moving average

(EMA21D), 14-day relative-strength index (RSI14D),

moving average convergence/divergence (MACD), as well

as the one-year Treasury Security interest rate (INT1YR).

We also include European Stock Market Index (STXE600)

and Euro currency exchange rate (EUR) to incorporate

international considerations.

We collected a data set of 10 years daily data from

January 2010 to December 2019, consisting of 2,497

records, from Datastream. The collected data set consists of

the following daily attributes for the S&P 500 Index: Open,

Neural Computing and Applications (2023) 35:11403–11416 11405

123

Close, Net, Chang, Low, High, Volume, MA5D, MA20D,

EMA21D, RSI14D, MACD, as well as the one-year

interest rate (INT1YR), European Stock Market Index

(STXE600), and Euro currency exchange rate (EUR).

In many cases, the accuracy of prediction can be

improved by inventing more appropriate features to

describe the available data [30]. Thus, we also derive

attributes from charting techniques and meaningful com-

binations to form new input factors. We found the range of

the highest index values in the past one month (HH), the

range of the lowest index values in the past one month

(LL), the five-day exponential moving average (EMA5D),

European Stock Market Index daily return (STXE600R),

S&P 500 Index daily return (SP500R), and one-day lag

S&P 500 Index daily return (SP500RL1) relatively pre-

dictive and included them in the analysis. On the other

hand, the one-year interest rate (INT1YR), European Stock

Market Index (STXE600), and the Euro currency exchange

rate (EUR) did not have predicting power and therefore

were dropped from the model. In addition, MA20D,

EMA21D, and MACD were also dropped for the same

reason.

Finally, we established our model based on the follow-

ing attributes: Open, Close, Net, Chang, Low, High, Vol-

ume, MA5D, EMA5D, RSI14D, HH, LL, STXE600R,

SP500R, and SP500RL1. Open next day is our target

variable, while the rest are predicting variables.

4 Structural design of an NN-GA hybrid
model

When designing a hybrid system, we need a technique for

integrating its subsystems. There are three techniques we

can consider: loose coupling, tight coupling, and fully

integrated [17, 31]. Among these three techniques, loose

coupling is the easiest one to implement. Through a com-

mon data base, loose coupling connects different modules

through sharing the content of the common data base [31].

This allows easy and flexible maintenance of the integrity

of module structure. In addition, loosely coupled systems

are more reliable than tightly coupled systems [17].

Tight coupling model requires structural compatibility

between the interacting modules [31]. This restriction leads

to structural inflexibility and functional rigidity for the

interacting modules. In a full integration environment, each

module interacts and affects the working of any other

module potentially [31]. The complexity of interaction

grows exponentially as the number of modules grows.

With the consideration of flexibility and simplicity, we

choose loose coupling for our GA-based NN system. Our

NN-GA hybrid model is a three-layer feedforward network

structure with one input layer, one hidden layer, and one

output layer. Each node in each layer is connected to every

node in the next layer. Each input record is passed through

this three-layer network in generating the corresponding

output. Structurally, an NN with two or more hidden layers

is called a deep learning NN [32] or deep neural network

[33], and it has better function approximation capability, if

given long enough training time. The additional hidden

layers have the effect of causing an NN to move a smaller

step each time in the solution space. In other words, the

system becomes more ‘‘cautious’’ moving in the solution

space, and thus causes the system to converge very slowly.

Instead of using the traditional backpropagation algo-

rithm for fine-tuning the connection weights, we apply

genetic algorithms to identify the near-optimal connection

weights. GAs are well known by their parallel search

capability [7]. This characteristic increases the chance for

GAs to discover optimal solutions. However, due to the

stochastic search process, the solutions-finding process

tends to be very slow, and solutions found are usually near-

optimal, especially for highly complex decisions [2, 7]. The

stochasticism also leads to oscillation of the search process

and makes it difficult to fine-tune genetic operators during

the solution search process [11].

5 Design implementation

We collected a 10-years daily data set, with 12 attributes

associated with the S&P 500 Index, one macroeconomic

variable, and two international considerations. We found

new attributes within the data with predicting power; we

also removed some attributes that do not have predicting

power. At the end, we established our model based on 14

predictive attributes.

The structure of our NN-GA hybrid model includes a

three-layer NN module: one input layer, one hidden layer,

and one output layer. Each neuron in the hidden layer and

the output layer consists of one adder operator and one

Tanh activation function. Output from the output layer is

entered into the Trend Detector module to be compared

with the output of the day before. The Adder module would

calculate the total number of correct predictions which

would be sent to the GA module for maximization.

(1) The input layer is a large database

D ¼ ½ x1 x2 ::: x Dj j �T , where each record xd
consists of |K| attributes:xd ¼
½ xd1 xd2 ::: xdjKj �, where d = 1, 2, …, |D|.

Let K be the set of attributes, and |K| is the number

of attributes. Since our input variables are not based

on the same numerical scale and extreme values

might introduce biases, we normalize or standardize

our input data. The input value xdk of attribute k of

11406 Neural Computing and Applications (2023) 35:11403–11416

123

record d is transformed into a z-value, zdk, of range

[- 1,1] by

zk ¼ 2
xk �Mink

Maxk �Mink

� �
� 1; where k¼ 1; 2;:::; jKj:

After the z-score standardization, each record xd is

converted into a set of standardized values zd¼
½ zd1 zd2 ::: zdjKj �: In an NN, each neuron is charac-

terized by two functions: one is a summation function, and

the other is a nonlinear activation function as shown in

Fig. 1.

(2) For each neuron h on the hidden layer, there is a

connection weight between attribute k and neuron h,

wkh ¼ ½w1h w2h ::: wjKjh�; for h = 1, 2, …, |H|.

For the dth record, the summation function of neuron

h multiplies normalized inputs zk by weights wkh and

summed up together with a constant bias wh, as:

XjKj

k¼1

wkhzk þ wh

To allow our system to develop estimation for nonlinear

functions, each neuron is equipped with a nonlinear

parameterized function H as the activation function of a

neuron. Usually, H is chosen to be a sigmoidal function or

hyperbolic tangent (tanh) to transform the weighted sum of

input data to the hidden layer nonlinearly into the range

[–1,1]. Sigmoidal or hyperbolic tangent normalization has

been shown to be especially appropriate for including very

large outliers without overly compressing the real range of

data values [37]. We let H be a hyperbolic tangent as

tanhðaÞ ¼ 1� e�a

1þ e�a
;

where a is the parameter representing the weighted sum of

input.

Thus, the output of neuron h in the hidden layer is:

yh ¼ H
XjKj

k¼1

wkhzk þ wh

 !
¼ tanhð

XjKj

k¼1

wkhzk þ whÞ

¼ 1� e
�
P
k¼1

jKjwkhzkþwh

,
1þ e

�
P
k¼1

jKjwkhzkþwh

For each neuron o in the output layer, where o = 1, 2,

…, |O|, its summation function computes weighted sumPjHj
h¼1 whoyh þ wo as input to the activation function H

which will, in turn, transform this weighted sum into the

output as generated from this output node o:

yo ¼ H
XjHj

h¼1

whoyh þ wo

 !

¼ H
XjHj

h¼1

who H
XjKj

k¼1

wkhzk þ wh

 ! !
þ wo

 !

This output yo is the prediction of the target variable,

which is the stock market price in our case.

(3) Another design consideration is the number of layers

in the network. Cybenko [34] and Hornik et al. [35]

have shown that every bounded continuous function

can be approximated with arbitrarily small error by

an NN with three layers of neurons. As mentioned

earlier, number of hidden layers not only affects the

function approximation accuracy of an NN, but also

causes an NN to converge very slowly in the solution

space [32, 33]. We balance the considerations of

training efficiency and prediction effectiveness for

our network design. As a result, our NN-GA model is

Fig. 1 Structure of a neuron

Neural Computing and Applications (2023) 35:11403–11416 11407

123

a three-layer feedforward network structure as shown

in Fig. 2.

According to Mitchell [12] and Brownlee [36], using too

many nodes on the hidden layer often increases the ten-

dency of the network to overfit the training data, and thus

reduces generalization accuracy. A good rule of thumb is to

use a number of hidden nodes on the order of the square

root of the number of training examples or lower [37].

(4) The task for our hybrid system is to predict stock

market one day ahead. The training data set D consists of

|D| days of stock market movement. For the dth day, the

predicted output generated by the activation function of

the oth neuron in the output layer is y
predict
do . Since our

model has only one neuron in the output layer, we

represent this prediction as ypredictd . The Comparator

function compares prediction for the dth day with the

prediction for the day before, y
predict
d�1 . The stock market

movement direction from one day to the next is denoted

by the result of applying the difference operator (D) to yd
and yd-1. Note that we are predicting the market

movement direction, yd - yd-1, instead of the stock

price. When the predicted market movement direction is

the same for the actual market movement direction, this

is a correct prediction. On the other hand, if the predicted

market movement trend is not the same as the actual

market movement trend, it is a wrong prediction. We

apply the multiplier operator (P) to ytargetd � ytargetd�1 and

ypredictd � ypredictd�1 , and let the result

(ytargetd � ytargetd�1)(ypredictd � ypredictd�1) be the input to the

Heaviside step function (H):

H ¼
1; ðytargetd � ytargetd�1 Þðypredictd � ypredictd�1 Þ� 0

0; ðytargetd � ytargetd�1 Þðypredictd � ypredictd�1 Þ\0

8<
:

Through summation of the H function output for the

entire training set D, we obtain the frequency of accuracy

(i.e., rate of accuracy) of our model in predicting the stock

market movement trend. Our objective is to maximize

XjDj
d¼1

H ¼
XjDj
d¼1

ðytargetd � ytargetd�1 Þðypredictd � ypredictd�1 Þ:

Note that ytargetd ; ytargetd�1 ; and ypredictd�1 are not variables, for

they are obtainable from the training set. Thus, MaxPjDj
d¼1 H can be approached, without loss of generality, by

Fig. 2 Structure of our genetic-neural hybrid system

11408 Neural Computing and Applications (2023) 35:11403–11416

123

Max
PjDj

d¼1 y
predict
d . Note that yd, when the number of neu-

rons |O|C 2, is denoted as ydo. Thus,

Max
XjDj
d¼1

H ¼ Max
XjDj
d¼1

ypredictd

¼ Max
XjDj
d¼1

H
XjHj

h¼1

who H
XjKj

k¼1

wkhzk þ wh

 ! !
þ wo

 !

¼ Max
XjDj
d¼1

Tanh
XjHj

h¼1

who Tanh
XjKj

k¼1

wkhzk þ wh

 ! !
þ wo

 !
:

This maximization is based on the adjustment of the

entire set of weight of connections, W, for the neural net.

This weight adjustment would be performed by the GA

module for learning the most effective connection weights

to maximize the total prediction accuracy for movement

direction. The learning problem faced by the GA module is

to search a huge hypothesis space, with dimension

|K| 9|H| 9|O|, defined by all possible connection weight

values for all the nodes in the network. The objective

function for our GA module is to maximize the total sum of

H values. This whole process is conceptually shown in

Fig. 2.

(5) Performance of a GA depends upon many factors. In

our hybrid system, the GA module maximizes the

objective function through modifying the connection

weights between layers, including the input layer to

hidden layer, hidden layer to next hidden layer, and

hidden layer to output layer.

In this study we treat the GA module as the maximizer

or minimizer of a constrained optimization problem.

Searching for optimal solutions for a complex decision is

an NP-complete task, which also applies to parameter

settings for genetic operators [6]. Research has not found

agreed conclusions on population size yet. While many

studies [3, 10, 11, 38, 39] advocated using population of

medium- to large-sized population, Grefenstette, Schaffer

et al. [4, 40] suggested the use of a very small-sized pop-

ulation. A large population suffers from a lengthy search

process. In the meanwhile, a small population might cause

insufficient evaluations of sampled solutions before mov-

ing onto other promising solution areas. For our study, we

adopt the suggestions by Mitchell, Deng, Deng & Tsacle

[6, 10, 11] and set the population size at 100.

Another operator is crossover. This operator is applied

to a pair of good solutions in the current generation of

population for generating new solutions to replace two low

performance solutions. As generations passed by, the

average performance of the population of solutions grad-

ually improves, suggesting that GAs are capable of learn-

ing. This can be attributed to the crossover operator which

exchanges part of the good solution strings with another

good solution string. According to Mitchell [6], crossover

is one of the most effective operators of GAs, and it usually

interacts with other operators, selection strategies, diffi-

culty level of applications, etc. Former research findings

suggest the use of a medium to high value for the crossover

rate [4, 10, 38–40]. In this research, we follow Deng, Deng

& Tsacle [10, 11] and set the crossover rate at 0.9.

For new solution strings generated by the crossover

operator in a new generation, the mutation operator will

modify each gene probabilistically. So far, there is still no

definitive conclusion for the power of mutation yet. When

the crossover rate is almost one, there will be a possibility

of degenerating into a population consisting of identical

solutions. Though there is no consensus regarding how

effective mutation is during the solution-finding process, it

is certain that mutation helps alleviate this problem [6, 7]

via altering the gene value of a solution string only occa-

sionally. Many studies show that mutation alone does not

improve the search for a solution [3].

De Jong [39] experimented with five problems on

function minimization and found the best mutation rate to

be 0.001. However, the study of parameter optimization for

GAs by Grefenstette [4] suggested a mutation rate of 0.01.

Contrary to common practices, Croitoru [41] conducted

experiments on numerical functions and bit-block func-

tions by using very high mutation rates and found high

mutation rates performing well on most test functions, even

outperforming low-mutation rates on some of them. Still,

according to Deng, Deng & Tsacle [10, 11], high mutation

rate would result in much worse performance than medium

rate or low rate would.

In this study, we followed the suggestion of Mitchell,

Deng, Deng & Tsacle [6, 10, 11] and experimented with

the mutation rate at three levels: 0.001 (Low), 0.01

(Medium), and 0.5 (High), while holding the crossover

rate, population size, selection strategy, and termination

condition constant, to compare their stock market predic-

tion performance. We investigated the aforementioned

three mutation rates, the learning rates, prediction accu-

racy, and the number of generations past before the pre-

diction rate stabilized in one run of simulation. We also

tested the significant difference among those three muta-

tion rates. We showed that our hybrid system was capable

of exhibiting learning behavior as it moved from genera-

tion to generation. When the best solution found did not

improve for more than 100 generations, our simulation run

would stop. With a population size of 100 per generation,

there were 10,000 evaluations performed before the solu-

tion search process stopped. We performed the search

process 40 times, due to time constraint, by setting the

mutation rate at 0.001, 0.01, and 0.5, in order to obtain

average performance.

Neural Computing and Applications (2023) 35:11403–11416 11409

123

6 Application to stock market prediction
and performance comparisons

In order to identify a set of effective predictors for stock

market movement, we conducted a sequence of

experiments.

Stage One: preliminary analysis on original dataset

In Stage One, our input set was based on the attributes of

the original data file, including Close, Net, Chang, Low,

High, Volume, MA5D, MA20D, EMA21D, RSI14D,

MACD, INT1YR, STXE600, and EUR. The purpose of

this stage was to understand whether these attributes were

predictive or not.

We conducted a preliminary analysis in order to identify

a set of seed input variables. We perform simulation runs

for each set of input variable combinations. We set the

threshold at 80 percent accuracy and removed one at a time

if the presence or absence of the variable did not affect

much of the performance. We ended up removing MA20D,

EMA21D, MACD, INT1YR, STXE600, and EUR from our

input variables.

Stage Two: further analysis on input variables

Based on our preliminary analysis, the set of input

variables that yields prediction accuracy rate above 80

percent includes Close, Net, Chang, Low, High, Volume,

MA5D, and RSI14D. We tried to improve the predicting

accuracy by deriving attributes from charting techniques

and meaningful combinations to form new input factors.

We found that the range of the highest index values in the

past one month (HH), the range of the lowest index values

in the past one month (LL), the 5-day exponential moving

average (EMA5D), European Stock Market Index daily

return (STXE600R), S&P 500 Index daily return

(SP500R), and one-day lag S&P 500 Index daily return

(SP500RL1) were relatively predictive factors and thus

were included in the analysis.

Stage Three: identification of the most effective indica-

tors for stock market prediction

We conducted analysis to identify the most effective

predicting input variables for stock market prediction.

Based on the simulation results, the best set of input

variables included: Close, Net, Chang, Low, High, Vol-

ume, MA5D, RSI14D, HH, LL, EMA5D, STXE600R,

SP500R, and SP500RL1. These were the input predictors

to the NN module. The final data set of 2,497 records was

split into two data sets, training dataset (D) and validation

dataset (TD), by using the ratio roughly 70:30. Based on

the training dataset, we conducted training for our con-

nectionist hybrid system. We then applied the trained

system to measure the prediction performance for both the

training dataset and the validation dataset.

6.1 Stock market prediction

We investigated the prediction performance of our model

for the training set at three levels of the mutation rate:

0.001, 0.01, and 0.5, while holding crossover rate at 0.9,

population size at 100, and the termination condition as

100 generations of no improvement. Our experiment

showed that our model was capable of exhibiting learning

behavior for each of the mutation rates. We compared the

predicted value with the actual target value. When the

predicted value and the actual value move in the same

direction, the prediction is considered accurate, and vice

versa. The average prediction rate over generations for

each of the mutation rates is shown in Fig. 3. Our experi-

ment results suggested that mutation rate of 0.5 had the

worst learning performance, which was the first one to slow

down its pace of improvement, and its highest accuracy

rate never exceeded 85 percent. On the other hand, the

other two curves were quite similar to each other. It

showed that mutation rate of 0.001 started to slow down its

learning rate slightly earlier than the mutation rate of 0.01

and performed not as well as the mutation rate of 0.01 did

in early generations (roughly the tenth generation to the

fifty-fifth generation). However, it passed the curve of 0.01

mutation rate later and kept being the best thereafter. Our

findings favor small mutation rates when all other param-

eters are held constant.

6.2 Performance comparisons for mutation rates

To gain deeper insight among different levels of mutation

rates, we conducted simulation of 40 runs for each level of

mutation rate investigated in this research. Each run of

simulation usually required several hundred generations

before a stable solution was found. Figure 4 documents the

result of 40 simulation runs on training set for mutation

rates of 0.001, 0.01, and 0.5, with the rest of parameters

held constant.

According to Fig. 4, the mutation rate of 0.001 was the

best setting. There were only two instances when the

mutation rate of 0.01 was slightly better than the mutation

rate of 0.001, and the mutation rate of 0.5 was worse than

the other two cases, except only one time almost tied with

the mutation rate of 0.01. Thus, in terms of the 40 runs of

average prediction performance, we concluded that the

mutation rate of 0.001 was the best setting for mutation

rate, and the mutation rate of 0.01 the runner up, based on

the training set.

Similarly, we applied our model to the validation set for

prediction at the mutation rates of 0.001, 0.01, and 0.5. The

11410 Neural Computing and Applications (2023) 35:11403–11416

123

Fig. 3 Comparing the learning behavior at three levels of mutation

Fig. 4 Market prediction performance for the training set with three mutation rates of 0.001, 0.01, and 0.5

Neural Computing and Applications (2023) 35:11403–11416 11411

123

result is shown in Fig. 5. Since the validation set was not

used for training our system, we expect lower prediction

rates, compared to the results from the training set. The

prediction accuracy for the three mutation rates was very

close on the validation set. However, we could still rec-

ognize 0.001 being the best among the three rates

investigated.

The data we collected were time dependent and had the

characteristics of time sequentiality and continuity. Thus,

we could not conduct random sampling to form training or

validation datasets. Our training set consists of the first

1,697 records in their time sequence order, while our val-

idation dataset has the most recent 800 records also in time

sequence order. We trained our system by using the

training data (D), and then applied it back to the training

data (D) and the validation data (TD).

Table 1 shows the prediction performance results of 40

simulation runs for the training set at the mutation rates of

0.001, 0.01, and 0.5, with the same population size of 100

and the crossover rate of 0.9. We included in Table 1 the

maximum, the minimum, the standard deviation, and the

average prediction rate obtained based on the 40 runs of

computation. From Table 1, it seemed mutation rate of

0.001 was the best choice.

Similarly, the prediction performance for the 40 runs of

experiment for the validation set (TD) at the same three

levels of mutation rate is presented in Table 2, with the

same population size of 100 and the crossover rate of 0.9.

From Table 2, difference among the three levels was

smaller. However, the mutation rates of 0.001 and 0.01

seem to be slightly better than the mutation rate of 0.5.

Each simulation run usually required a large number of

generations in finding the best solution before the termi-

nation condition was reached. We also showed the maxi-

mum, the minimum, and the average number of

generations elapsed before a final solution was obtained.

Our 40 runs of result for generations past is shown in

Table 3. From Table 3, the mutation rate of 0.01 seemed to

Fig. 5 Market prediction performance for the validation set with mutation rates of 0.001, 0.01, and 0.5

Table 1 Stock market prediction for the training set (D) based on 40

runs of simulation (pop size = 100, crossover rate = 0.9)

Mutation rate Accuracy rate (for training set).

Average (%) Stdev (%) Max. (%) Min. (%)

0.001 93.78 0.76 94.81 91.75

0.01 92.41 1.01 94.23 89.45

0.5 83.28 2.88 89.75 77.31

11412 Neural Computing and Applications (2023) 35:11403–11416

123

be the best among the three levels. On average, the muta-

tion rate of 0.01 took the smallest amount of generations in

reaching a stable solution.

Figure 6 also shows that in most of the simulation runs,

the mutation rate of 0.5 took much longer in finding a final

solution than the other two cases which were quite com-

petitive with each other.

When comparing the training (D) data accuracy rates

and the validation (TD) data accuracy rates, though we

expected inferior results on the validation data, a large

difference in training and validation performance might be

indicative of overfitting. To investigate whether there is

any significant difference between training accuracy and

validation accuracy, we conducted the t test to compare the

difference of averages for these two data sets, at mutation

rates of 0.001, 0.01, and 0.5, as follows.

t ¼

P
x1

N1
�
P

x2

N2ffi
s2pð 1

N1
þ 1

N2
Þ

q ; where

Pooled Sample Variance ¼ s2p

¼
P

x21 �
P

x1ð Þ2
N1

þ
P

x22 �
P

x2ð Þ2
N2

ðN1 � 1Þ þ ðN2 � 1Þ

Based on the model, we had t value of 31.71 for the

mutation rate of 0.001, t value of 28.91 for the mutation

rate of 0.01, and t value of 25.95 for the mutation rate of

0.5. Since each t is higher than t0.9995(40) of 3.55, we con-

cluded that the difference of average accuracy rates of the

training set and those of validation set reached the 99.5

percent significance level. We had enough evidence to

reject the null hypothesis that the accuracy rates are the

same between the training and validating data sets (H0:

ltrain � lvalid ¼ 0). This implies that there is overfitting in

training data set at each mutation rate we studied.

We also performed ANOVA hypothesis testing on the

prediction accuracy among the three mutation rates from

the training set (H0: l0:001 ¼ l0:01 ¼ l0:5). Shown in

Table 4, we have F value of 393.98, which is higher than

F0.995(2,120) of 5.54. Thus, we cannot accept H0. This

implies that at least one pair of mutation rates has signifi-

cant difference.

We also prepared Table 5 for testing the prediction

accuracy on the validation set (H0: l0.001 = l0.01 = l0.5).
From Table 5, F value was 1.97 and it is lower than

F0.95(2,120) of 3.07. Thus, we did not have enough evidence

to reject H0. For the validation set, different mutation rates

had no significantly different influences on the prediction

accuracy.

In addition, we tested the hypothesis about the equiva-

lence of the time taken before a stabilized final solution

was found for the three levels of mutation rates. The result

is shown in Table 6. The F-value achieved the 97.5 percent

significance level, and thus H0 should be rejected.

We investigated the mutation rates of 0.01, 0.1, and 0.5.

Our experiment results suggested that the lowest mutation

rate had the best predicting result on the training dataset

and the difference among different mutation rates is sta-

tistically significant. However, such superior performance

is not statistically significant on the validating dataset. Our

results also showed that the predicting accuracy is different

from the training dataset to the validating dataset. We also

investigated the number of generations needed in finding

the best solution before the termination condition was

reached. The lowest mutation rate did not necessarily have

the highest number of generations needed. In fact, the

highest mutation rate of 0.5 had the highest number of

generations needed in our simulation. When we consider

the predicting accuracy and simulation efficiency, our

experiment results favor low-mutation rates.

6.3 Prediction performance

After identifying the most effective mutation rate, we

predicted the stock market value utilizing the 14 predictive

variables in our model. The training dataset and the vali-

dating dataset remained the same ratio of roughly 70:30.

We compared the predicted value to the actual value in the

validating dataset by examining the difference of the pre-

dicted and the actual value. We then divided the difference

by the actual value to get to a percentage deviation. If the

predicted value is higher than the actual value, the

Table 2 Stock market prediction for the validation set (TD) based on

40 runs of simulation (pop size = 100, crossover rate = 0.9)

Mutation rate Accuracy rate (for validation set)

Average (%) Stdev (%) Max. (%) Min. (%)

0.001 65.50 5.58 79.88 57.38

0.01 66.65 6.10 78.75 55.88

0.5 64.09 5.57 74.25 55.00

Table 3 Number of generations past before a stable solution is found

based on 40 runs of simulation (pop size = 100, crossover rate = 0.9)

Mutation rate Number of generations

Average Stdev Max Min

0.001 322 80 585 194

0.01 295 110 560 101

0.5 378 181 808 157

Neural Computing and Applications (2023) 35:11403–11416 11413

123

deviation would be positive. On the other hand, if the

predicted value is lower than the actual value, the deviation

would be negative. To evaluate the predicting result, we

took the absolute values of the deviations and presented the

average, the standard deviation, the maximum, and the

minimum of the predicting deviations, shown in Table 7.

We utilized our model to predict the next day open value in

the validating dataset. With 800 observations in the vali-

dating dataset, the predicted value is on average 0.5094

percent away from the actual value. Our model exhibited

superior predicting performance.

In our model, we predicted the next day open value.

With the latest trading information, the predicted value can

be transformed into return. With the predicted value and

return, it helps investors incorporate transaction costs and

other trading considerations to make informed investment

decisions. In addition, we utilized the S&P500 Index as our

example, as the S&P 500 Index is the proxy for the US

stock market. The model can be applied to any stocks or

other investment vehicles. Stocks are usually more volatile

than the overall market, so the model is even more valuable

when applied to stock prediction. In addition, we are able

to generate more predicting variables to increase the pre-

dicted accuracy in the process. We argue that our NN-GA

model is more flexible and applicable. Our experiment

evidence suggested that the NN-GA model adds value to

the stock market prediction and is a promising tool to help

make complex investment decisions.

Fig. 6 Number of generations past before final solutions are found

Table 4 ANOVA for testing the equivalence of average accuracy rate

for the training set (mutation rates of 0.001, 0.01, and 0.5)

Source SS df MS F

Between 2605.82 2 1302.91 393.98

Within 386.91 117 3.30

Total 2992.74 119

F0.995(2,120) = 5.54

Table 5 ANOVA for testing the equivalence of average accuracy rate

for the validation set (mutation rates of 0.001, 0.01, and 0.5)

Source SS df MS F

Between 131.12 2 65.56 1.97

Within 3882.15 117 33.18

Total 4013.27 119

F0.95(2,120) = 3.07

Table 6 ANOVA for testing the equivalence of average number of

generations past before a stable final prediction rate was found

Source SS df MS F

Between 143,441 2 71,720.72 4.17

Within 2,010,622 117 17,184.80

Total 2,154,063 119

F0.975(2,120) = 3.80 F0.99(2,120) = 4.79

11414 Neural Computing and Applications (2023) 35:11403–11416

123

7 Conclusion

In this research, we propose a three-layer genetic-neural

hybrid system with a trend detector and a maximizer for

stock market prediction. We collected 10 years US stock

market daily data. We identify a set of useful predictors

through a sequence of experiments in refining and

expanding the original predictors. The data set consists of

training and validation datasets. Our hybrid system’s

average predicting accuracy reaches as high as 95 percent,

with the predicted value very close to the target value. With

the predicted value, investors can further incorporate

transaction costs and other trading considerations to make

informed investment decisions. Our research results sug-

gest that our model serve as a promising tool for stock

market prediction. In addition, our system is capable of

exhibiting learning behavior and gradual performance

improvement in the basis of experience. We argue that our

NN-GA model is more flexible and adds value to the stock

market prediction.

This set of our predictors is based on the time period

studied in this research. The most effective set of predictors

might vary at different time period, for important political

or economic events might happen during different period

of time. In addition, the data we used to train our system

represent just a small sample in the entire data universe. It

is worth further investigation to include more economic,

political, business, and other environmental factors in the

future research.

Parameter setting has been a long-time thorny issue for

GA implementation. In this research we have focused on

one of the most difficult issues, i.e., the setting for the

mutation rate. Our research lends one more support to the

‘‘low-mutation-rate’’ school of researchers and practition-

ers. Using the stock market prediction as an application

domain for our hybrid model, we have helped shed light on

the role and importance of the mutation, and the possible

complementary effect of mutation and crossover functions.

We plan to investigate how the crossover rate might

interact with the decision task complexity level, selection

strategies, population size, and mutation rates with the

ultimate goal to make contributions to establishing a

guideline for the design of GA parameters.

Data availability The datasets generated during and/or analyzed

during the current study are available from the corresponding author

on reasonable request.

Declarations

Conflict of interest The authors have no relevant financial or non-

financial interests that are directly or indirectly related to the work

submitted for publication.

References

1. Zadeh LA (1994) Fuzzy logic, neural networks, and soft com-

puting. Commun ACM 37(3):77–84

2. Baker R (1998) Genetic algorithms in search and optimization.

Financ Eng News 2(3)

3. Goldberg DE (1989) Genetic algorithms in search, optimization

and machine learning. Addison-Wesley, San Francisco

4. Grefenstette JJ (1993) Introduction to the special track on genetic

algorithms. IEEE Expert Intell Syst Appl 8(5):5–8

5. Back T, Hammel U, Schwefel H (1997) Evolutionary computa-

tion: comments on the history and current state. IEEE Trans Evol

Comput 1(1):3–17

6. Mitchell M (1996) An introduction to genetic algorithms. MIT

Press, Cambridge

7. Holland JH (1992) Genetic algorithms. Sci Am 267:66–72

8. Spears WM (1993) Crossover or mutation? In: LD Whitley (ed)

Foundation of genetic algorithms, 2. Morgan Kaufmann, San

Francisco

9. Muhlenbein H (1992) How genetic algorithms really work:

mutation and hill climbing. In: R Manner, B Manderick (eds)

Parallel problem solving from nature, vol. 2. North-Holland

10. Deng PS (1999) Using genetic algorithms for batch selection

decisions. Expert Syst Appl 17:183–194

11. Deng PS, Tsacle EG (2000) Coupling genetic algorithms and

rule-based systems for complex decisions. Expert Syst Appl

19(3):209–218

12. Mitchell TM (1997) Machine learning. McGraw-Hill, New York

13. Fama EF (1970) Efficient capital markets: a review of theory and

empirical work. J Financ 5(2):383–417

14. Haugen RA (1998) The inefficient stock market. Prentice Hall,

Upper Saddle River

15. Bodie Z, Kane A, Marcus AJ (1995) Investments, 3rd edn.

McGraw-Hill, New York

16. Haugen RA (1998) Beast on wall street. Pearson

17. Chorafas DN (1994) Chaos theory in the financial markets.

McGraw-Hill, New York

18. Chen CC, Liu YS, Hsu TH (2019) An analysis on investment

performance of machine learning: an empirical examination on

Taiwan stock market. Int J Econ Financ Issues 9(4):1–10

19. Mallikarjuna M, Rao RP (2019) Evaluation of forecasting

methods from selected stock market returns. Financ Innov

5(1):1–16

20. Zhong X, Enke D (2019) Predicting the daily return direction of

the stock market using hybrid machine learning algorithms.

Financ Innov 5(1):1–20

21. Liew JKS, Mayster B (2018) Forecasting ETFs with machine

learning algorithms. J Altern Invest 20(3):58–78

22. Pimenta A, Nametala CAL, Guimaraes FG, Carrano EG (2018)

An automated investing method for stock market based on multi-

objective genetic programming. Comput Econ 52(1):125–144

Table 7 Stock market

prediction with NN-GA model
Average (%) Stdev (%) Max. (%) Min. (%)

Predicting deviation 0.5094 0.5466 4.8289 0.0001

Neural Computing and Applications (2023) 35:11403–11416 11415

123

23. Singh R, Srivastava S (2017) Stock prediction using deep

learning. Multimed Tools Appl 76(18):18569–18584

24. Siddiqui TA, Abdullah Y (2015) Developing a nonlinear model

to predict stock prices in India: an artificial neural networks

approach. IUP J Appl Financ 21(3):36–49

25. Jan MN, Ayub U (2019) Do the Fama and French five-factor

model forecast well using ANN. J Bus Econ Manag

20(1):168–191

26. Macchiarulo A (2018) Predicting and besting the stock market

with machine learning and technical analysis. J Internet Bank

Commer 23(1):1–22

27. Kyriakou I, Mousavi P, Nielsen JP, Scholz M (2021) Forecasting

benchmarks of long-term stock returns via machine learning. Ann

Oper Res 297(1):221–240

28. Safa M, Panahian H (2018) P/E model and prediction of firms

listed on the Tehran stock exchange: a new approach to harmony

search algorithm and neural network hybridization. Iran J Manag

Stud 11(4):769–793

29. Nti IK, Adekoya AF, Weyori BA (2020) A comprehensive

evaluation of ensemble learning for stock-market prediction.

J Big Data 7(1):1–40

30. Mitchell TM (1999) Machine learning and data mining. Commun

ACM 42(11):30–36

31. Liebowitz J (1993) Roll your own hybrids. Byte 18(9):113–115

32. Goodfellow I, Bengio Y, Courville A (2016) Deep learning. MIT

Press, Cambridge

33. Knox SW (2018) Machine learning: a concise introduction.

Wiley & Sons, Hoboken

34. Cybenko G (1989) Approximation by superpositions of a sig-

moidal function. Math Control Signals Syst 2:303–314

35. Hornik K, Stinchcombe M, White H (1989) Multilayer feedfor-

ward networks are universal approximators. Neural Netw

2:359–366

36. Brownlee J (2021) Better deep learning: Train faster, reduce

overfitting, and make better predictions. Machine Learning

Mastery

37. Kennedy RL, Lee Y, van Roy B, Reed C, Lippmann RP (1997)

Solving data mining problems through pattern recognition.

Prentice Hall, Upper Saddle River

38. Spears WM, DeJong KA (1995) On the virtues of parameterized

uniform crossover. In: RK Belew, LB Booker (eds.) Proceedings

of the fourth international conference on genetic algorithms.

Morgan Kaufmann, San Francisco

39. DeJong KA (1975) An analysis of the behavior of a class of

genetic adaptive systems. Ph.D. thesis, University of Michigan,

MI

40. Schaffer JD, Caruana RA, Eshelman LJ, Das R (1989) A study of

control parameters affecting online performance of genetic

algorithms for function optimization. In: JD Schaffer (ed.) Pro-

ceedings of the third international conference on genetic

algorithm

41. Croitoru NE (2014) High-probability mutation in basic genetic

algorithm. In: 16th international symposium on symbolic and

numeric algorithms for scientific computing

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds

exclusive rights to this article under a publishing agreement with the

author(s) or other rightsholder(s); author self-archiving of the

accepted manuscript version of this article is solely governed by the

terms of such publishing agreement and applicable law.

11416 Neural Computing and Applications (2023) 35:11403–11416

123

	Using neural-genetic hybrid systems for complex decision support
	Abstract
	Introduction
	Methodology
	Genetic algorithms
	Neural networks

	A NN-GA hybrid system for stock market prediction
	Structural design of an NN-GA hybrid model
	Design implementation
	Application to stock market prediction and performance comparisons
	Stock market prediction
	Performance comparisons for mutation rates
	Prediction performance

	Conclusion
	Data availability
	References

