
ORIGINAL ARTICLE

KO: Modularity optimization in community detection

Furkan Öztemiz1 • Ali Karcı1

Received: 18 August 2022 / Accepted: 6 January 2023 / Published online: 18 January 2023
� The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2023

Abstract
Many algorithms have been developed to detect communities in networks. The success of these developed algorithms

varies according to the types of networks. A community detection algorithm cannot always guarantee the best results on all

networks. The most important reason for this is the approach algorithms follow when dividing any network into com-

munities (sub-networks). The modularity of the network determines the quality of communities in networks. It is concluded

that networks with high modularity values are divided into more successful communities (clusters, sub-networks). This

study proposes a modularity optimization algorithm to increase clustering success in any network without being dependent

on any community detection algorithm. The basic approach of the proposed algorithm is to transfer nodes at the community

boundary to neighboring communities if they meet the specified conditions. The method called KO (Karcı–Oztemiz)

optimization algorithm maximizes the modularity value of any community detection algorithm in the best case, while it

does not change the modularity value in the worst case. For the KO algorithm’s test, in this study, Walktrap, Cluster Edge

Betweenness, Label Propagation, Fast Greedy, and Leading Eigenvector community detection algorithms have been

applied on three popular networks that were unweighted and undirected previously used in the literature. The community

structures created by five community detection algorithms were optimized via the KO algorithm and the success of the

proposed method was analyzed. When the results are examined, the modularity values of the community detection

algorithms applied on the three different networks have increased at varying rates (0%, …,14.73%).

Keywords Community modularity � Community detection algorithms � Graph network � Modularity optimization

1 Introduction

Community detection algorithms perform clustering oper-

ations on networks. Identifying communities in the net-

work provides many advantages and benefits, from pattern

discovery to community management [1]. Due to the

unique solution approaches of the developed community

detection algorithms, different successes were exhibited in

dividing the network. One of the most popular accepted

metrics for measuring the clustering success of communi-

ties in a network is the modularity value [2]. We can say

that the algorithm with a high modularity value is more

successful in separating the network into communities [3].

In this study, a modularity optimization algorithm was

proposed that rises the quality of clustering by increasing

the modularity value independently of the network and the

algorithm. The proposed algorithm performs transfers the

nodes of the communities in the border regions to the

neighboring communities as a result of the determined

conditions. This algorithm is named KO (Karci & Oztemiz)

Optimization Algorithm. The KO algorithm guarantees that

the modularity value of any community detection algo-

rithm does not change with the worst case and reaches the

optimum value with the best case. All stages of the pro-

posed algorithm were presented with an explanation. For

the KO algorithm’s test processes, in the study, Walktrap

[4], Cluster Edge Betweenness [5], Label Propagation [6],

Fast Greedy [7], Leading Eigenvector [8] community

detection algorithms were implemented on weightless and

directionless Complex [9], Zachary Kareta club [10] and

Dolphins [11] networks. The clustering successes of algo-

rithms on different networks were examined, and the

results of their comparisons were included in this study.

This way, the KO algorithm’s success on different

& Furkan Öztemiz

furkan.oztemiz@inonu.edu.tr

1 Department of Software Engineering, Inonu University,

44210 Battalgazi, Malatya, Turkey

123

Neural Computing and Applications (2023) 35:11073–11087
https://doi.org/10.1007/s00521-023-08284-8(0123456789().,-volV)(0123456789().,- volV)

http://orcid.org/0000-0001-5425-3474
http://orcid.org/0000-0002-8489-8617
http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-023-08284-8&domain=pdf
https://doi.org/10.1007/s00521-023-08284-8

networks and community detection algorithms has been

tested.

In the literature, there are many studies on community

detection methods, which include improving the modular-

ity value of communities and developed based on modu-

larity. The related works section provides brief information

about the original studies in the literature.

2 Related works

When the studies are examined, some methods improve the

community detection algorithms, while others focus on

increasing the modularity value directly. These studies

were tested on real and simulated networks, and their

success and performance were determined. Algorithms

with the Greedy approach are commonly used due to their

performance and ability to provide successful solutions. In

terms of performance, the speed-oriented FPMQA [12]

method in online networks with the Greedy approach is a

satisfactory algorithm. Furthermore, in studies aiming for

high modularity [25], the vertex transport process was used

to optimize community quality within specific criteria. The

GRASP [28] method, which employs a matrix class to

characterize the clustering family in the graph, outper-

formed well-known heuristics methods. Algorithms such as

Bipartite [16] that only give successful results in private

networks have been developed. Two novel fine-tuned [26]

algorithms using the division and merge approach were

compared to greedy approach algorithms and improved the

modularity value in classical clique and LFR benchmark

networks. Although many eigenvector-based studies do not

achieve maximum modularity, there are studies that

achieve above-average success [13, 17]. The modularity of

the convolutional neural network-based approach [23]

applied with the spatial eigenvector of the neighborhood

matrix was higher than that of the basic deep learning

methods. There are numerous studies in the literature that

offer specific solutions to certain algorithms. The VLPA

[14] and LPAm ? [22] methods, which were developed

specifically for the label propagation community detection

algorithm, were designed to increase modularity. While

VLPA provides success in high-dimensional networks,

LPAm ? accelerates network segmentation with the inte-

gration of multistep greedy agglomerative approach. The

artificial bee colony-based MABC [29] algorithm, which is

one of the popular metaheuristic methods, has been suc-

cessful in real-world networks, except for private networks.

Some metaheuristic-based methods require high memory

and processing power for successful results. For this reason

[18], the desired clear solution cannot be provided in large

networks. Metaheuristic method performance evaluations

are frequently encountered in the literature. Mod CSA [19]

algorithm produced a more successful modularity result

than the simulated annealing method in terms of accuracy

and efficiency. While the smart local moving [24] method,

developed with the approach known as local moving

heuristic, shows success in small and medium networks, it

does not give the same successful results in large networks.

The causes of weak communities were investigated and

optimized using the convex optimization framework [20]

in studies on frameworks and schemas. In another study,

modularity improvement studies based on machine learn-

ing were carried out on networks using the Louvain opti-

mization scheme with the state-of-the-art technique [21].

Although the results are successful according to many

algorithms in the literature, the network training process

has a negative impact on performance. Mean field methods

[27] produced successful results when compared to the

results of the deterministic algorithm. Although the DSML-

Mod and DSLM-Map methods [15] cannot achieve maxi-

mum modularity, they are effective for clustering in large

graphs.

Many optimization methods using various solution

methods have been presented in the literature to increase

the modularity value. These methods are typically opti-

mization studies performed on a specific algorithm or

network [30, 31]. There is no stable method that can be

applied to any community detection algorithm or network

in general. This is a significant disadvantage. Because

some methods produce successful results only in specific

networks. Such algorithms are unlikely to be implemented

in real-world networks. Furthermore, most methods either

produce insufficient results or consume a significant

amount of memory and time. Reaching the max modularity

value of the results of the community detection methods

and optimizing the modularity value to the maximum value

was defined as the NP-Complete problem [32, 33]. The KO

algorithm we presented aims to optimize the modularity

values of any community detection algorithm in any type

of network that is weightless and directionless. The KO

algorithm does not perform community detection on its

own. The presented algorithm’s main goal is to improve

the clustering quality of communities formed by any

community detection algorithm in the literature. In this

study, five community detection algorithms with different

clustering techniques were chosen for the KO algorithm

testing process. The time complexity of the KO optimiza-

tion algorithm that we presented is O(mn2). Here, n rep-

resents the set of nodes and m represents the boundary

nodes. The algorithm was created and visualized using the

R programming language and the igraph library [34].

11074 Neural Computing and Applications (2023) 35:11073–11087

123

3 Material and method

The methods and processes applied in the study are sum-

marized in 4 basic stages. In the image given in Fig. 1,

information is shown about the process stages of the

application in the study. As stated in Stage 1, three dif-

ferent networks were used in the study. Complex, Zachary

Karate Club, and Dolphins networks are popular networks

used in the literature [35–38]. The three networks are

weightless and undirected graphs. Complex network con-

sists of 70 nodes and 133 edge connections and contains

special graphs such as linear, circular, star, and grid.

Wayne Zachary picked up the Zachary Karate Club net-

work in 1977 from a university’s karate club members. It

consists of 34 nodes and 78 edge relations. Each node

represents one member of the club, while each edge rep-

resents the relation between the two members of the club.

The Dolphin network is a social network of bottlenose

dolphins observed between 1994 and 2001. While nodes

refer to bottlenose dolphins living in Doubtful Sound in

New Zealand, Edge correlations refer to the relationship

between dolphins [39]. It consists of 62 nodes and 159 edge

relations. Walktrap, Cluster Edge Betweenness, Label

Propagation, Fast Greedy, Leading Eigenvector community

detection algorithms given in Stage 2 were applied to three

networks, and the modularity values of the networks were

calculated according to the communities formed. In Stage

3, The Karcı & Oztemiz (KO) modularity optimization

algorithm was applied, which we suggested in this study.

Stage 3 was explained in detail in the next section. At this

stage, it aims to increase the modularity values of the

communities in the network by performing the transfer

operations of the border nodes in line with the algorithm’s

criteria. The flowchart indicated in the image in Stage 3 is

the minimalist situation of the KO algorithm

flowchart given in Fig. 5. In Stage 4, the current state of the

communities after the community optimization process

was given visually.

3.1 Community detection algorithms

Community detection is used in many fields like identify-

ing individuals with specific interests in social networks,

discovering groups that perform manipulative transactions

on the stock exchange, detecting intersections with similar

profiles in transportation networks, etc. [40–42]. Many

algorithms with different approaches have been developed

for community detection in the literature [43]. These

algorithms are evaluated under the headings indicated in

Fig. 2 This study primarily aims to increase the modularity

values of the algorithms under the headings of traditional

and dynamic and to increase the quality of community

classification. In addition, an algorithm under the headings

of modularity-based algorithms was included in the anal-

ysis, and the results of the KO method under three headings

were examined.

Walktrap algorithm firstly generates a transition proba-

bilities matrix for each pair of nodes. Each element of this

Stage 3
KO Modularity Op�miza�on Methods

Complex
Network

Zachary Kareta
Club Network

Dolphins
Network

Leading Eigenvector

Fast Greedy

Label Propaga�on

Walktrap

Edge Betweenness

Stage 2
Community Detec�on Algorithms

Stage 4
New Op�mized Modularity
Score for Each Algorithms

Stage 1
Graph Networks

Tradi�onal Process Proposed Process

Miniaturized versions of the Fig 6,7,8 inputs

KO Op�miza�on Algorithm
Flowcart (Miniaturized Fig. 5)

Fig. 1 Community modularity optimization process

Neural Computing and Applications (2023) 35:11073–11087 11075

123

matrix represents the probability of passing from a node to

each given node with a random walk for a certain period of

time. Passing probabilities are used to arrive at a measure

of distance based on node degree or strength for each pair

of nodes. This distance is then applied as a traditional

hierarchical clustering technique (Ward’s method). Com-

munities are formed by minimizing the sum of the squares

of the distances of each node from other nodes in its

community [44]. The basic idea in this algorithm is: If two

nodes are in the same community, they must both be the

same distance from another third node with respect to the

random walkway [45]. The formula of the Walktrap

algorithm has been given in Eqs. 1 and 2.

D i; jð Þ ¼

ffi

X

N

n¼1

Pm
in � Pm

jn

� �2

dn

v

u

u

u

t ð1Þ

D Ck;Ck0ð Þ ¼

ffi

X

N

n¼1

Pm
Ckn

� Pm
Ck0n

� �2

dn

v

u

u

u

t ð2Þ

Pm
Ckj

¼ 1
Nk

P

i2Ck
Pm
ij is the probability of going from Ck

to nj in m steps (nj 62 Ck). N is community and Dði; jÞ
distances are calculated for each pair [45].

Cluster Edge Betweenness algorithm is one of the first

algorithms used to identify communities in networks [46].

This algorithm finds edges that are frequently between

other nodes in the network, known as edge betweenness. It

performs this operation based on betweenness centrality.

For each network, the in-between edge value is calculated,

and the edge with the highest value is subtracted. All edges

affected by this removal have their edge betweenness

values recalculated. This process iteratively repeats until

there are no edges left. This status makes the algorithm

significantly slower than other algorithms. Modularity is

used to determine the optimum cut [5]. The modularity

formula of the algorithm is given in Eq. 3.

Q ¼
X

i

eii � a2i ¼ Tre� e2
�

�

�

�

�

�

�

� ð3Þ

ai represents the edge ratio to which the nodes in the

community i are connected. Tr e specify the trace of this

matrix (Tre ¼
P

i eii).

Label Propagation is a desirable method because it is

easy to implement, and the time complexity is linear [47].

Label Propagation Algorithm starts by giving each node a

unique label, such as a character and number. In each

iteration, each node replaces its label with the label of the

node with the largest number of neighbors. If there is more

than one maximum number of nodes, these nodes are

changed randomly with the label of one of them. In this

iterative process, dense node groups change their different

tags to the same label, and nodes with the same label are

grouped in the same community [48]. The label update

formula is as in Eq. 4.

ci ¼
argmax

l

X

j2Nl ið Þ
wij: ð4Þ

When Formula 4 is examined, Nl ið Þ represents the

neighboring set of vi labeled l. wij specifies the edge weight

between vi and vj [48, 49].

The Fast Greedy algorithm starts with a subnet of con-

nections between highly connected nodes. Next comes a

hierarchical clustering algorithm. The algorithm then con-

tinues iteratively by joining neighboring communities with

greedy approach. Each node moves into a community that

maximizes its modularity functionality. As long as the

modularity value of these collective communities increa-

ses, they continue to be combined [46, 50]. The formula of

the algorithm is given in Eq. 5.

1

2m

X

vw

Avwd cv; cwð Þ ð5Þ

Avw represents the relationship between the vand w

nodes. If there is a correlation, its value is 1. Otherwise, it

is 0. The d i; jð Þ function takes the value 1 if i = j;otherwise,

it takes the value 0. cv represents the community of node v.

Leading Eigenvector uses modularity to create the

optimal community structure like the fast greedy algorithm

[46]. To improve modularity, the algorithm first computes

the first eigenvector of the modularity matrix before

dividing the network into two communities. This process

continues until there is no improvement in modularity

anymore. The group separation formula of the algorithm is

given in Eq. 6 [51]. s is a vector index. If i and j are in the

same group, d gi; gj
� �

is 1; otherwise, 0.

Community Detection
Algorithms

Disjoint Community
Detection Algorithms

Overlapping Community
Detection Algorithms

Traditional Algorithms Modularity based
Algorithms Dynamic Algorithms

Fig. 2 Community detection

algorithms classification

headings [43]

11076 Neural Computing and Applications (2023) 35:11073–11087

123

d gi; gj
� �

¼ 1

2
sisj þ 1
� �

ð6Þ

3.2 Modularity in community detection

Modularity is a quality function. It detects whether the

network is divided with good quality [52]. Modularity

measures community strength by comparing the fraction of

edges within the community to fractions like this. The

rationale is that a community should have more connec-

tions among themselves than a random collection of nodes

[26]. Improving the modularity value is an NP-complete

problem [33]. There is no deterministic algorithm that

gives the highest modularity value. In the literature, there

are algorithms that reach the max modularity value in

specific networks and are applied by testing all possibilities

[53]. Such algorithms do not enable community segrega-

tion as the network grows [32]. Practical algorithms are

based on methods that give approximate results such as

greedy, simulated annealing, or spectral optimization.

Different approaches offer different balances between

speed and accuracy [54]. The modularity Q of a network

with n nodes and m connections is expressed mathemati-

cally as in Eq. 7 [55].

Q ¼ 1

2m

X

ij

Aij �
kikj
2m

� 	

dCiCj
ð7Þ

A is the neighborhood matrix of the network, ki is the

degree of node i, Ci is the community to which node i is

assigned, and dij is the Kronecker delta. The modularity

measure in Eq. 7 only applies to unweighted and undi-

rected graphs. The connections in the networks express the

relationships at times, and the strength of the relationships

at other times. In these cases, the modularity operation for

weighted and directed graphs is performed as stated in

Eq. 8.

Q ¼ 1

Ej j
X

ij

Aij �
kini k

out
j

Ej j

 !

dCiCj
; Ej j ¼ 1

2

X

ij

Aij ð8Þ

Here kini denotes the input degree and koutj denotes the

output degree. Q value close to 0 indicates that the fraction

of edges within the community is poor, whereas a Q value

close to 1 indicates that a mesh community structure

approaches the maximum possible power [26].

3.3 KO modularity optimization algorithm
(Proposed Methods)

The KO optimization algorithm aims to increase the

modularity value independently of any network or com-

munity detection algorithm. In other words, the proposed

method aims to improve the community quality of any

community detection algorithm. In summary, the KO

algorithm works by transferring the border nodes of com-

munities in a network. The working logic of the algorithm

was explained under several headings with sample figures.

The working process of the algorithm was described in

detail with a flow diagram and pseudocode.

3.3.1 Separation of the graph into communities
and detection of boundary nodes

The algorithm’s first stage starts with applying any com-

munity detection method to the graph. An example graph

structure is given in Fig. 3a Nodes that are connected to

different communities are called boundary nodes. An

example of community structure was shown in Fig. 3b. The

nodes A, B, E, X, and Z indicated as yellow in Fig. 3b are

the boundary nodes.

3.3.2 Transfer degrees of boundary nodes

Transfer operations will be carried out in line with the

transfer degrees of the boundary nodes. Figure 4 represents

the edge relations between the two communities. Two

transfer degrees are calculated for nodes A, B, E, X, and Z

associated with these red edges within its own community

and neighboring community. If the neighbor transfer

degree of the boundary node is higher than its own transfer

degree, it is added to the transfer list to transfer to the

neighboring community. If its own transfer degree is less

than or equal from the neighboring transfer degree, It

remains in its own community. The transfer degree (own

transfer degree) is the sum of edges that the related

boundary node is connected to within two edge hops in its

community. Neighbor transfer degree is the sum of edges

the related boundary node is connected to within two edge

hops in the neighbor community. The green arrows in

Fig. 4 represent the one hop distance for the yellow node,

and the blue arrows represent the two hop distance. If we

examine the boundary node E in Fig. 4a, the transfer

degree has been determined as 12, and the neighbor

transfer degree has been determined as 4. Since node E’s

own transfer degree is higher than its neighbor’s transfer

degree, It is said to be highly committed to its community

for node E and is not added to the transfer list. Node X in

Fig. 4b has its own transfer degree of 4 and its neighbor

transfer degree of 8. Because of node X has a stronger

connection with the neighboring community, it is added to

the transfer list.

The mathematical formula of transfer degrees is given in

Eqs. 9 and 10. While in Við Þ gives the own transfer degree

of nodeV , out Við Þ gives the neighbor transfer degree of

nodeV . N in Við Þ represent the node degree of node V in its

Neural Computing and Applications (2023) 35:11073–11087 11077

123

own community, N Vj

� �
 �

denotes the node degree of the

neighbors of node V in its own community (except for links

with node V). Nout Við Þ refer to the number of nodes that

node V is connected to in the neighboring community.

in Við Þ ¼
X

Vj2Nin Við Þ
N Vj

� �
 �

þ Nin Við Þ ð9Þ

out Við Þ ¼
X

Vj2Nout Við Þ
N Vj

� �
 �

þ Nout Við Þ ð10Þ

3.3.3 Creation of the transfer list and realization
of the transfer

After calculating the transfer degrees of all border nodes,

the boundary nodes to be added to the transfer list are

determined. When adding boundary nodes to the transfer

list, priority is given to the community and its nodes with a

high total node degree in the network. In other words,

communities with high correlation are added to the transfer

list before low correlation communities. If there are

boundary nodes to be added to more than one transfer list

in the same community, priority is given to the node with

the higher node degree. Transfer operations are performed

according to the node order in the transfer list. Each node

in the list is transferred to the community with the high

neighbor transfer degree, and the modularity value is cal-

culated. If the transfer increases the modularity of the

network, the transfer is confirmed. If the transfer decreases

the modularity value, the transfer operation is canceled,

and the operation is taken back. This operation is per-

formed for all boundary nodes in the transfer list.

3.3.4 Transfer list control

Boundary nodes whose transfer has been approved are

removed from the transfer list. The transfer list is emptied,

and a new transfer list is created in the next iteration by

determining the boundary nodes again. As long as the

transfer of at least one of the nodes in the transfer list is

approved by making this check in each iteration, the

approved nodes are removed from the transfer list, and the

transfer list is emptied. In case of no transfer confirmation

for the nodes in the transfer list in any iteration, the com-

munities are checked. All nodes of the communities where

more than half of the community members are on the

transfer list are merged and act as a single node. The pri-

mary purpose of this process is to include small commu-

nities in large communities in a way that increases the

modularity value. If the transfer of the community in which

most of the members are on the transfer list to the neigh-

boring community is approved, the transfer is carried out,

and community members are removed from the transfer

list. The execution of the KO algorithm continues with the

next iteration. In any iteration, if the transfer of at least one

of the nodes in the transfer list is not approved or the

A

B

E
F

X
Y

Z

T
K

CG

D

B

E
F

Y

Z

T
K

CG

D

A
X

a Example graph structure b Boundary nodes

Fig. 3 Community structure and

boundary nodes, a Example

graph structure b Boundary

nodes

A

B

E
F

X
Y

Z

L
K

CG

D

Neighbor transfer
degree for E : 3

E's own transfer
degree: 12

A

B

E
F

X
Y

Z
K

CG

D

L

X's own transfer
degree: 4

Neighbor transfer
degree for X : 8

a Transfer status for E b Transfer status for X

Fig. 4 Example transfer degree display a Transfer status for E b Transfer status for X

11078 Neural Computing and Applications (2023) 35:11073–11087

123

transfer of the communities whose majority of the mem-

bers are on the transfer list is not approved, the algorithm

stops working. The pseudocode, which includes all the

stages of the KO optimization algorithm we have pre-

sented, is given in Table 1, and the flowchart is given in

Fig. 5

4 Experimental results

The proposed KO modularity optimization algorithm was

applied on three popular graphs with five community

detection algorithms. These networks, known as Complex,

Zachary Karate Club, and Dolphins in the literature, are

weightless and undirected graphs. In Fig. 6, clustering

modularity values of five community detection algorithms

before and after applying the KO algorithm on the complex

network were given. In addition, information on which

nodes the KO algorithm takes to the transfer list in each

iteration and which nodes are transferred are given. When

Fig. 6 was examined, the modularity value of the Walktrap

algorithm on the complex network has been determined as

0.670134. With the application of the KO algorithm, nodes

24, 37, 57, 56, and 12 were added to the transfer list in the

first iteration. Nodes 37 and 57, indicated in red color in the

transfer list, were transferred to neighboring communities

Table 1 KO pseudocode

KO Modularity Optimization Algorithms

G : (V,E) // input graph
u : a node of graph
C <- Community Detection(G) // Any Community Detection Algorithm Cluster
Q <- Modularity(G,C) // Modularity of G with respect to C community
Cu : Nodes at the community boundary
Un : Neighboring nodes of node u
CUn: Community of neighbor of node u
while(Cu != null){

Td <- TransferDegree(Cu) // (Equation 9) Computing transfer values for border nodes
Tun <- TransferDegree(Un) // (Equation 10) Neighbour nodes transferring degrees
// Sort boundary nodes by community size and node degrees in the transfer list

if(Td > Tun)
MultipleTransfers()

TransferCount <- Count(NodeTransfer(Cu,Un))
if(TransferCount > 1)

if(Count(Maximum(Tun)) <= 1) // Are the number of nodes which have maximum
// transfering degrees, more than one?

MaxCommunity <- Max(TransferDegree).CUn
NodeTransfer(Cu,MaxCommunity) = True // Add border node to neighbour node’s

//community
Mod()

Qcurrent <- Modularity(G,C)
if(Qcurrent > Q)

NodeTransfer(Cu,MaxCommunity) = Accept; // Commit transfering.
Q <- Qcurrent

else
NodeTransfer(Cu,MaxCommunity) = Cancel; // Cancel transfering

else if(TransferCount == 1)
TransferList <- Add (Cu) as ordered Array //Add nodes to transfer list in order
NodeTransfer(Cu,MaxCommunity) = True
if(All nodes of C in TransferList)

Cu <- Combine(All nodes of C) // Corresponding community is considered as unique
MultipleTransfers();

else
Mod();

else
if(NodeDegree(Cu) == 1) // Are number of corresponding nodes odd?

MultipleTransfers();
else

if(TransferCount == 0)
KO algorithm process complete

else
Pass Next Iteration

Neural Computing and Applications (2023) 35:11073–11087 11079

123

by obtaining transfer approval. After this transfer, the

modularity value of the new community increased to

0.6863305. In the second iteration of the KO algorithm,

nodes 24 and 12 were added to the transfer list. Since these

two nodes do not receive transfer approval, the algorithm

stops working.

The biggest optimization on the complex network has

been on the communities created by the Leading Eigen

Algorithm. The modularity value, which was 0.6074679

before the KO algorithm, increased to 0.6859065 after

applying the KO algorithm. When we examine the results

of the leading eigen algorithm. In the first iteration, nodes

56, 6, 44, 48, 20, 12, 57, 67, 49, 37, 38 were added to the

transfer list, since the transfer of nodes 56, 6, 44, 48, 20,

and 67 from these nodes increased the modularity value,

the transfer was approved, and as a result of the first iter-

ation, the modularity value increased to 0.6555486. In the

2nd iteration, the boundary nodes were redetermined, and

the transfer list was created. The modularity value

increased to 0.6714625 with the transfers of nodes 5, 47,

and 12. In the third iteration, the modularity increased to

0.6772288 with the transfer of node 36. In the fourth

iteration, nodes 49, 37, and 38 in the transfer list represent

a community with three nodes. If more than half of the

community is in the transfer list, which is one of the

important criteria of the KO algorithm, the condition that

the community is considered a node is applied. Since nodes

49, 37, and 38 are in the same community, they were

transferred as a single node to the community with a high

neighbor transfer degree. After this transfer process, the

modularity increased to 0.6859065. In the next iteration,

the algorithm finishes because no nodes can be added to the

transfer list.

The KO modularity optimization results of the Zachary

Karate club network are shown in Fig. 7. According to

these results, the KO algorithm improved the communities

formed by the Walktrap algorithm at the highest rate. The

modularity value, which was 0.3532216 before the KO

algorithm, increased to 0.4052433 after applying the KO

algorithm. The slightest improvement has been in the

communities created by the fast greedy algorithm. The

modularity value of 0.3806706 obtained with the applica-

tion of the fast greedy algorithm increased to 0.3813281

with the application of the KO algorithm. After the transfer

Detection of nodes remaining at
the community boundary

Calculate the transfer degree of
each node in the boundary

Is the neighboring transfer
degree of the relevant boundary

node greater than its own
transfer degrees?

YesNo

Add the nodes sequentially to the Transfer list
and transfer them sequentially to the

neighboring community.

Stay in
existing

community

Is
modularity

rising?
Confirm the

transfer.
Cancel the
transfer.

YesNo

Is there a transfer
status to more than
one community?

No Yes

Don't perform
any action.

Are there multiple
nodes with a maximum

transfer rating?

Transfer to the
community with the

highest transfer rating.

YesNo

Calculate
Modularity

Any Community
Algorithm

Is the
community

comprise of a
node?

YesNo

Are most of the
nodes of any

community on the
transfer list?

NoYes

The related community is
considered as a single node.

Finish
Are there any
nodes in the

transfer state?

No Yes

Any
Network

Sort boundary nodes by community
size and node degrees in transfer list

Start
Fig. 5 KO algorithm flowchart

11080 Neural Computing and Applications (2023) 35:11073–11087

123

Walktrap Algorithm
Modularity

1.Iteration modularity: 0.6863305, Transfer list: 24,37,57,56,12

2.Iteration transfer list: 24,12 -> Transfer didn’t happen

1.Iteration modularity:0.6647069, Transfer list: 21, 20, 30,36, 28, 40,49,70
2.Iteration modularity:0.669944, Transfer list: 21, 20, 30,36, 29, 40,49, 70
3.Iteration modularity:0.6782181, Transfer list 21, 20, 30, 36, (40,49,70,39)

0.670134 0.6863305

Fast Greedy
Modularity

0.6706145 0.6797445

Label Propagation
Modularity

0.608005 0.6609757
Leading Eigen

Modularity

0.6074679 0.6860761

Cluster Edge Betwenness
Modularity

0.6582905 0.6782181

1.Iteration modularity: 0.6797445, Transfer list: 24,12,30,36,21,60,70
2.Iteration transfer list: 21,36 -> Transfer didn’t happen

1.Iteration modularity: 0.608429, Transfer list: 69,37,38,30,23,27,40,49,9,50

2.Iteration modularity: 0.6153824, Transfer list: 37,60,30,70,23,27,40,49,9,50
3.Iteration modularity: 0.6609757, Transfer list 37,30,70,(23,27,25),(40,49),(9,50)

1.Iteration modularity: 0.6501498, Transfer list: 56, 6, 57,44,48,20,12,67,49,37,38
2.Iteration modularity: 0.6668268, Transfer list: 5, 49, 37, 38, 47, 12, 20
3.Iteration modularity: 0.6725931, Transfer list: 49, 37, 38, 36, 20
4.Iteration modularity: 0.6860761, Transfer list: (49,37,38), 20

Modularity Score

After KO OptimizationBefore KO Optimization

Modularity Score
Before KO Optimization

Modularity Score Modularity Score

After KO Optimization

Before KO Optimization After KO Optimization

Modularity Score Modularity Score

Before KO Optimization After KO Optimization

Modularity Score Modularity Score
Before KO Optimization After KO Optimization

Modularity Score Modularity Score

4.Iteration transfer list: 21, 20, 30, 36 -> Transfer didn’t happen

4.Iteration transfer list: 37,30,70 -> Transfer didn’t happen

Fig. 6 KO modularity optimization results of Complex network

Neural Computing and Applications (2023) 35:11073–11087 11081

123

Walktrap Algorithm
Modularity

Fast Greedy
Modularity

0.3806706

Label Propagation
Modularity

0.3744247 0.3990796

Leading Eigen
Modularity

0.3934089 0.4197896

Cluster Edge Betwenness
Modularity

0.4012985

1.Iteration modularity: 0.3792735, Transfer list: 3,9,29,10,31,14,32,5,6,7,11,24,28
2.Iteration modularity: 0.3998192, Transfer list: 9,29,3,10,32,5,6,7,11,24,28

3.Iteration modularity: 0.4052433, Transfer list: 6,7,5,11,28,24,32,29,10

4.Iteration transfer list: 6,7,5,11,28,24,32,29 -> Transfer didn’t happen

2.Iteration transfer list: 32,28,29,6,7,5,11 -> Transfer didn’t happen

1.Iteration modularity: 0.4174063, Transfer list: 32,28,29,3,6,7,5,11,10

1.Iteration modularity: 0.3813281, Transfer list: 20,3,10,13,18,22,1
2.Iteration transfer list: 20,3,14,10,22 -> Transfer didn’t happen

1. Iteration modularity: 0.3990796, Transfer list: 3,14,6,7,5,11
2. Iteration transfer list: 6,7,5,11 -> Transfer didn’t happen

1. Iteration modularity: 0.410503, Transfer list: 1,14,13,20,32,28,24,29
2. Iteration modularity: 0.4197896, Transfer list: 9,6,7,5,11,12,32,28,24,29
3. Iteration transfer list: 9,6,7,5,11,32,28,24,29 -> Transfer didn’t happen

After KO OptimizationBefore KO Optimization

0.3532216Modularity Score 0.4052433Modularity Score
After KO OptimizationBefore KO Optimization

Modularity Score Modularity Score
After KO OptimizationBefore KO Optimization

Modularity Score
After KO OptimizationBefore KO Optimization

After KO OptimizationBefore KO Optimization

Modularity Score Modularity Score

0.4174063

0.3813281

Modularity Score

Modularity Score

Modularity Score

Fig. 7 KO modularity optimization results of Zachary Karate club network

11082 Neural Computing and Applications (2023) 35:11073–11087

123

Walktrap Algorithm
Modularity

0.4888454 0.4935129

Fast Greedy
Modularity

0.4954907 0.4954907

Label Propagation
Modularity

0.510324 0.5202919
Leading Eigen

Modularity

Cluster Edge Betwenness
Modularity

0.5193821 0.5202919

1.Iteration modularity: 0.4892607, Transfer list: 31,29,37,33
2.Iteration modularity: 0.4935129, Transfer list: 31,29,37,61
3.Iteration transfer list: 31,29,37 -> Transfer didn’t happen

2. Iteration transfer list: 1,29 -> Transfer didn’t happen
1. Iteration modularity: 0.5202919, Transfer list: 1,29,(54,62)

1. Iteration transfer list: 31,29,4,37,40 -> Transfer didn’t happen

1. Iteration modularity: 0.5171275, Transfer list: 60,1,3,29,47,50
2. Iteration modularity: 0.5202919, Transfer list: 60,1,29,(47,50)

1. Iteration modularity: 0.5093351, Transfer list: 38,45,21,62,55

3. Iteration modularity: 4,37,21,1,45,2,31,29 -> Transfer didn’t happen

3. Iteration modularity: 60,1,29 -> Transfer didn’t happen

After KO OptimizationBefore KO Optimization

Modularity Score Modularity Score
After KO OptimizationBefore KO Optimization

After KO OptimizationBefore KO Optimization

After KO OptimizationBefore KO Optimization

After KO OptimizationBefore KO Optimization

Modularity Score Modularity Score

Modularity Score Modularity Score

Modularity Score Modularity Score

0.4911989Modularity Score Modularity Score 0.5128951

2. Iteration modularity: 0.5128951, Transfer list: 4,37,21,62,1,45,2,31,29

Fig. 8 KO modularity optimization results of Dolphins network

Neural Computing and Applications (2023) 35:11073–11087 11083

123

of nodes 13 and 18 in the first iteration, the algorithm

stopped working in the second iteration.

In Fig. 8, the optimization results of the Dolphins net-

work were given. When the results are examined, it is seen

that the KO algorithm cannot improve the communities

created by the Fast Greedy algorithm on the Dolphins

network. In the first iteration, since the transfer of nodes 31,

29, 4, 37, and 40 in the transfer list was not approved, the

transfer process wasn’t carried out to increase the

modularity value. The algorithm stops working after the

first iteration and does not interfere with the network’s

community structure. The most significant improvement

was in the community created by the Leiden Eigen algo-

rithm. The modularity value of the Dolphin network on

which the Leiden Eigen algorithm is applied is 0.4911989.

After implementing the KO algorithm, the modularity

value increased to 0.5128951. Nodes 38 and 55 in the first

iteration and node 62 in the second iteration were

a Complex network’s nodes transfer process

b Zachary karate club network’s nodes transfer process

0.56

0.58

0.6

0.62

0.64

0.66

0.68

0.7

0 1 2 3 4 5 6 7 8 9 1 0 1 1
M

O
DU

LA
RI

TY
 V

AL
U

ES

ALL NODES TRANSFER STEP

Walktrap Edge Betweenness Fast Gready Label Propaga�on Leading Eigenvector

0.3
0.32
0.34
0.36
0.38

0.4
0.42
0.44

0 1 2 3 4 5

M
O

DU
LA

RI
TY

 V
AL

U
ES

ALL TRANSFER STEP

Walktrap Edge Betweenness Fast Gready

Label Propaga�on Leading Eigenvector

c Dolphin network’s nodes transfer process

0.47

0.48

0.49

0.5

0.51

0.52

0.53

0 1 2 3

M
O

DU
LA

RI
TY

 V
AL

U
ES

ALL TRANSFER STEP

Walktrap Edge Betweenness Fast Gready

Label Propaga�on Leading Eigenvector

Fig. 9 The effect of the node

transfer process on modularity

in all networks

11084 Neural Computing and Applications (2023) 35:11073–11087

123

transferred. In the third iteration, since no transfer occur-

red, the algorithm finished its work.

In Fig. 9, the graph of the increase in the modularity

values of the algorithms in three different networks after

each node transfer was given. In Fig. 9a, the modularity

increase trend of the algorithms on the Complex network

was presented. When the graph is examined, 11 node

transfers were carried out by applying the KO algorithm to

the communities formed by the Leading Eigenvector

algorithm. After these transfers, the modularity value

increased from 0.6074679 to 0.6860761. Figure 9a depicts

the graph of the modularity value that changes after each

node transfer in the Complex network.

In Fig. 9b, the alteration of the modularity value after

each node transfer in the Zachary karate club network was

given. When the graph of the Walktrap algorithm is

examined, the modularity value increased from 0.3532216

to 0.4052433 after transferring five nodes.

Figure 9c shows the changes in modularity value after

each node transfer in the Dolphin network. When the graph

of the Leading Eigenvector algorithm is examined, three

nodes have been transferred, and the modularity has

increased from 0.4911989 to 0.5128951.

In Fig. 10, after applying the KO optimization algo-

rithm, the improvement rates in all the community detec-

tion algorithms and all networks applied in the study were

given. When the results were examined, the KO algorithm

increased the (modularity value) clustering quality of the

Walktrap algorithm applied on the Zachary network by

14.73%. In another review, the KO algorithm increased the

modularity value of the Leiden Eigen algorithm by 6.71

percent in the Zachary Karate club network, 4.42 percent in

the Dolphin network, and 12.94 percent in the Complex

network.

5 Results

The present study proposes an effective method to improve

the clustering quality of any community detection algo-

rithm applied to any graph. The proposed method aims to

increase the modularity of community detection algo-

rithms. According to the determined criteria, the method,

which focuses on the transfer of nodes on the boundary of

the communities on the graph, has a unique approach in

this respect. All stages of the proposed method were given

in detail in the study. On three well-known graphs previ-

ously used in the literature, communities were determined

by applying Walktrap, Cluster Edge Betweenness, Label

Propagation, Fast Greedy, and Leading Eigenvector com-

munity detection algorithms. These community structures

were tried to be improved with the KO optimization

algorithm. The algorithm’s success was also emphasized in

the results of the transfer operations for each iteration in the

optimization process. In 14 of the 15 different experimental

studies in which the KO algorithm was applied, an increase

in the modularity value of the community was achieved in

varying proportions from 0 to 14.73%. While the KO

algorithm significantly increased the modularity results of

the Label Propagation and Leading Eigenvector algo-

rithms, it slightly improved the results of the Fast Greedy

algorithm. Community detection algorithms in the litera-

ture have been developed with their own unique approa-

ches to producing a solution to a specific problem.

Therefore, community detection algorithms can’t have

optimal modularity in every network. At this point, the KO

algorithm has eliminated a significant deficiency. It is a

successful modularity optimization method that works

independently of graph and community detection algo-

rithms. We are working on some questions to improve the

method we propose. To mention the important ones, can

the time spent detecting the boundary nodes be reduced?

Walktrap Edge Betweenness Fast Greedy Label Propaga�on Leiden Eigen
Zachary 14.73% 4.01% 0.17% 6.58% 6.71%
Dolphin 0.95% 0.18% 0.00% 1.95% 4.42%
Complex 2.42% 3.03% 1.36% 8.71% 12.94%

0.00%

2.00%

4.00%

6.00%

8.00%

10.00%

12.00%

14.00%

16.00%

Zachary Dolphin Complex

Fig. 10 KO algorithm

modularity optimization rates

Neural Computing and Applications (2023) 35:11073–11087 11085

123

Studies continue on which types of graphs the KO algo-

rithm gives more successful results. Can a preflight

mechanism be added so that nodes whose transfers are not

approved do not occupy a place in the Transfer list? It is

anticipated that this control mechanism will reduce the

memory and time consumed by the algorithm. The KO

algorithm currently works on unweighted and undirected

graphs. The algorithm is being tested in weighted and

directed graphs, and it is expected that it will be published

in the future.

Data Availability The datasets used in the study are presented in many

different sources. Relevant data can be accessed at www.konect.cc/

networks/ and www.kaggle.com (public repository). At the same

time, the datasets generated during and/or analyzed during the current

study are available from the corresponding author on reasonable

request.

Declarations

Conflict of Interest The authors declare that they have no conflict of

interest. Researches are not related to human participants and/or

animals.

References

1. Fortunato S, Hric D (2016) Community detection in networks: a

user guide. Phys Rep 659:1–44. https://doi.org/10.1016/j.physrep.

2016.09.002

2. Chakraborty T, Dalmia A, Mukherjee A, Ganguly N (2018)

Metrics for community analysis: a survey. ACM Comput Surv

50(4):37. https://doi.org/10.1145/3091106

3. Kaur S, Singh S, Kaushal S, Sangaiah AK (2016) Comparatıve
analysis of quality metrics for community detection in social

networks using genetic algorithm. Neural Network World

26(6):625–641. https://doi.org/10.14311/NNW.2016.26.036

4. Akbari H (2021) Exploratory social-spatial network analysis of

global migration structure. Social Networks 64:181–193. https://

doi.org/10.1016/j.socnet.2020.09.007

5. Newman MEJ, Girvan M (2004) Finding and evaluating com-

munity structure in networks. Phys Rev E 69:026113. https://doi.

org/10.1103/PhysRevE.69.026113

6. Mengdi L, Ying X (2022) Community detection via network

node vector label propagation. Phys A: Statis Mech Appl

593:126931. https://doi.org/10.1016/j.physa.2022.126931

7. Labatut V, Balasque J-M (2012) Detection and interpretation of

communities in complex networks. Pract Method Appl. https://

doi.org/10.1007/978-1-4471-4048-1_4

8. Zarei M, Samani KA (2009) Eigenvectors of network comple-

ment reveal community structure more accurately. Physica A

388(8):1721–1730. https://doi.org/10.1016/j.physa.2009.01.007

9. Öztemiz F (2021) Karmaşık ağlarda hakim düğümlerin belir-

lenmesi için yeni bir yöntem. İnönü University Institute of Sci-

ence Ph.D. Thesis

10. Chintalapudi SR, Prasad MHMK (2015) A survey on community

detection algorithms in large scale real-world networks. In: 2nd

international conference on computing for sustainable global

development (INDIACom) 2015, pp. 1323–1327

11. Dickinson B, Hu W (2015) The effects of centrality ordering in

label propagation for community detection. Social Networking

4:103–111. https://doi.org/10.4236/sn.2015.44012

12. Bu Z, Zhang C, Xia Z, Wang J (2013) A fast parallel modularity

optimization algorithm (FPMQA) for community detection in

online social network. Knowl-Based Syst 50:246–259. https://doi.

org/10.1016/j.knosys.2013.06.014

13. Shırzad M, Feızı-Derakhshı M-R (2016) Communıty detection in

social networks based on modularity optimization. Int J Adv

Electron Comput Sci Vol. 3 (4)

14. Fang W, Wang X, Liu L, Wu Z, Tang S, Zheng Z (2022)

Community detection through vector-label propagation algo-

rithms. Chaos, Solitons & Fractals 158:456. https://doi.org/10.

1016/j.chaos.2022.112066

15. Hamann M, Strasser B, Wagner D, Zeitz T (2018) Distributed

graph clustering using modularity and map equation. Lect Notes

Comput Sci 11014:688–702. https://doi.org/10.1007/978-3-319-

96983-1_49

16. Souam F, Aı̈telhadj A, Baba-Ali R (2014) Dual modularity

optimization for detecting overlapping communities in bipartite

networks. Knowl Inf Syst 40:455–488. https://doi.org/10.1007/

s10115-013-0644-8

17. Newman MEJ (2006) Modularity and community structure in

networks. Proc Natl Acad Sci 8577–8582(103):23. https://doi.

org/10.1073/pnas.0601602103

18. Aloise D, Caporossi G, Hansen P, Liberti L, Perron S, Ruiz M

(2012) Modularity maximization in networks by variable neigh-

borhood search. Graph Partitioning Graph Clustering. https://doi.

org/10.1090/conm/588/11705

19. Lee J, Gross SP, Lee J (2012) Modularity optimization by con-

formational space annealing. Phys Rev E 85:056702. https://doi.

org/10.1103/PhysRevE.85.056702

20. Zhang XS, Wang RS, Wang Y, Wang J, Qiu Y, Wang L, Chen L

(2009) Modularity optimization in community detection of

complex networks. EPL (Europhysics Letters). https://doi.org/10.

1209/0295-5075/87/38002

21. Hollocou A, Bonald T, Lelarge M (2019) Modularity-based

Sparse Soft Graph Clustering. In: Proceedings of the Twenty-

Second international conference on artificial intelligence and

statistics in proceedings of machine learning research 89:

323–332. Available from https://proceedings.mlr.press/v89/hollo

cou19a.html

22. Liu X, Murata T (2010) Advanced modularity-specialized label

propagation algorithm for detecting communities in networks.

Physica A 389(7):1493–1500. https://doi.org/10.1016/j.physa.

2009.12.019

23. Wu L, Zhang Q, Chen C, Guo K, Wang D (2020) Deep learning

techniques for community detection in social networks. IEEE

Access 8:96016–96026. https://doi.org/10.1109/ACCESS.2020.

2996001

24. Waltman L, van Eck NJ (2013) A smart local moving algorithm

for large-scale modularity-based community detection. Eur Phys

J B 86:471. https://doi.org/10.1140/epjb/e2013-40829-0

25. Schuetz P, Caflisch A (2008) Efficient modularity optimization

by multistep greedy algorithm and vertex mover refinement. Phys

Rev E 77:046112. https://doi.org/10.1103/PhysRevE.77.046112

26. Chen M, Kuzmin K, Szymanski BK (2014) Community detection

via maximization of modularity and its variants. IEEE Trans

Comput Social Syst 1(1):46–65. https://doi.org/10.1109/TCSS.

2014.2307458

27. Lehmann S, Hansen L (2007) Deterministic modularity opti-

mization. Eur Phys J B 60:83–88. https://doi.org/10.1140/epjb/

e2007-00313-2

28. Nascimento MCV, Pitsoulis L (2013) Community detection by

modularity maximization using GRASP with path relinking.

11086 Neural Computing and Applications (2023) 35:11073–11087

123

http://www.konect.cc/networks/
http://www.konect.cc/networks/
http://www.kaggle.com
https://doi.org/10.1016/j.physrep.2016.09.002
https://doi.org/10.1016/j.physrep.2016.09.002
https://doi.org/10.1145/3091106
https://doi.org/10.14311/NNW.2016.26.036
https://doi.org/10.1016/j.socnet.2020.09.007
https://doi.org/10.1016/j.socnet.2020.09.007
https://doi.org/10.1103/PhysRevE.69.026113
https://doi.org/10.1103/PhysRevE.69.026113
https://doi.org/10.1016/j.physa.2022.126931
https://doi.org/10.1007/978-1-4471-4048-1_4
https://doi.org/10.1007/978-1-4471-4048-1_4
https://doi.org/10.1016/j.physa.2009.01.007
https://doi.org/10.4236/sn.2015.44012
https://doi.org/10.1016/j.knosys.2013.06.014
https://doi.org/10.1016/j.knosys.2013.06.014
https://doi.org/10.1016/j.chaos.2022.112066
https://doi.org/10.1016/j.chaos.2022.112066
https://doi.org/10.1007/978-3-319-96983-1_49
https://doi.org/10.1007/978-3-319-96983-1_49
https://doi.org/10.1007/s10115-013-0644-8
https://doi.org/10.1007/s10115-013-0644-8
https://doi.org/10.1073/pnas.0601602103
https://doi.org/10.1073/pnas.0601602103
https://doi.org/10.1090/conm/588/11705
https://doi.org/10.1090/conm/588/11705
https://doi.org/10.1103/PhysRevE.85.056702
https://doi.org/10.1103/PhysRevE.85.056702
https://doi.org/10.1209/0295-5075/87/38002
https://doi.org/10.1209/0295-5075/87/38002
https://proceedings.mlr.press/v89/hollocou19a.html
https://proceedings.mlr.press/v89/hollocou19a.html
https://doi.org/10.1016/j.physa.2009.12.019
https://doi.org/10.1016/j.physa.2009.12.019
https://doi.org/10.1109/ACCESS.2020.2996001
https://doi.org/10.1109/ACCESS.2020.2996001
https://doi.org/10.1140/epjb/e2013-40829-0
https://doi.org/10.1103/PhysRevE.77.046112
https://doi.org/10.1109/TCSS.2014.2307458
https://doi.org/10.1109/TCSS.2014.2307458
https://doi.org/10.1140/epjb/e2007-00313-2
https://doi.org/10.1140/epjb/e2007-00313-2

Comput Oper Res 40(12):3121–3131. https://doi.org/10.1016/j.

cor.2013.03.002

29. Aung TT, Nyunt TTS (2020) Modularity based ABC algorithm

for detecting communities in complex networks. Int J Mach

Learn Comput 10(2):323–329. https://doi.org/10.18178/ijmlc.

2020.10.2.938

30. Xu G, Guo J, Yang P (2021) TNS-LPA: An improved label

propagation algorithm for community detection based on two-

level neighbourhood similarity. IEEE Access 9:23526–23536.

https://doi.org/10.1109/ACCESS.2020.3045085

31. Yan M and Guoqiang C (2021) Label propagation community

detection algorithm based on density peak optimization. In: 17th

International conference on computational intelligence and

security (CIS) pp 80–84. https://doi.org/10.1109/CIS54983.2021.

00025

32. Brandes U et al (2008) On modularity clustering. IEEE Trans

Knowl Data Eng 20(2):172–188. https://doi.org/10.1109/TKDE.

2007.190689

33. Trajanovski S, Kuipers FA, Martı́n-Hernández J, Van Mieghem P

(2013) Generating graphs that approach a prescribed modularity.

Comput Commun 36(4):363–372

34. Igraph Library. https://igraph.org/. Accessed 19.08.2022

35. Öztemiz F, Karci A (2022) Bağlı Graflarda Etkili Düğümlerin

Belirlenmesinde Yeni Bir Yaklaşım. Dokuz Eylül Üniversitesi

Mühendislik Fakültesi Fen ve Mühendislik Dergisi

24(70):143–155. https://doi.org/10.21205/deufmd.2022247014

36. Cerdeira JO, Silva PC (2021) A centrality notion for graphs based

on Tukey depth. Appl Math Comput 409:545. https://doi.org/10.

1016/j.amc.2021.126409

37. Laassem B, Idarrou A, Boujlaleb L, Iggane M (2022) Label

propagation algorithm for community detection based on Cou-

lomb’s law. Phys A: Statis Mech Appl 593:35435. https://doi.org/

10.1016/j.physa.2022.126881

38. Acharya DB, Zhang H (2020) Community detection clustering

via gumbel softmax. SN Comput Sci 1:262. https://doi.org/10.

1007/s42979-020-00264-2

39. Konect. http://konect.cc/networks/. Accessed: 20.08.2022

40. Harenberg S, Bello G, Gjeltema L, Ranshous S, Harlalka J, Seay

R, Padmanabhan K, Samatova N (2014) Community detection in

large-scale networks: a survey and empirical evaluation. WIREs

Comput Stat 6:426–439

41. Fortunato S (2010) Community detection in graphs. Phys Rep

486(3–5):75–174

42. Öztemiz F ve Karci A (2021) Topluluk Tespiti Yöntemi ile

Ulaşım Ağında Verimli Yeşil Dalga Koridorlarının Belirlenmesi.

Politeknik Dergisi ss. 1–1. https://doi.org/10.2339/politeknik.

1074962

43. Javed MA, Younis MS, Latif S, Qadir J, Baig A (2018) Com-

munity detection in networks: a multidisciplinary review. J Netw

Comput Appl 108:87–111. https://doi.org/10.1016/j.jnca.2018.02.

011

44. Gates KM, Henry T, Steinley D, Fair DA (2016) A monte carlo

evaluation of weighted community detection algorithms. Front

Neuroinform 10:5435. https://doi.org/10.3389/fninf.2016.00045

45. Hoffman M, Steinley D, Gates KM, Prinstein MJ, Brusco MJ

(2018) Detecting Clusters/communities in social networks. Mul-

tivariate Behav Res 53(1):57–73

46. Newman ME (2004) Fast algorithm for detecting community

structure in networks. Phys Rev E 69(6):066133. https://doi.org/

10.1103/PhysRevE.69.066133

47. Jokar E, Mosleh M (2019) Community detection in social net-

works based on improved label propagation algorithm and bal-

anced link density. Phys Lett A 383(8):718–727. https://doi.org/

10.1016/j.physleta.2018.11.033

48. Xing Y, Meng F, Zhou Y, Zhu M, Shi M, Sun G (2014) A node

influence based label propagation algorithm for community

detection in networks. Sci World J. https://doi.org/10.1155/2014/

627581

49. Cordasco G, Gargano L (2010) Community detection via semi-

synchronous label propagation algorithms. IEEE International

Workshop on: Business Applications of Social Network Analysis

(BASNA) pp. 1–8. https://doi.org/10.1109/BASNA.2010.

5730298

50. Christensen AP, Garrido LE, Golino H (2020) Comparing com-

munity detection algorithms in psychological data: a Monte Carlo

simulation. PsyArXiv. https://doi.org/10.31234/osf.io/hz89e

51. Newman MEJ (2006) Finding community structure using the

eigenvectors of matrices. Phys Rev E 74:036104. https://doi.org/

10.1103/PhysRevE.74.036104

52. Aktunc R, Toroslu IH, Ozer M and Davulcu H (2015) A dynamic

modularity based community detection algorithm for large-scale

networks: DSLM. (ASONAM ‘15) New York USA 1177–1183.

https://doi.org/10.1145/2808797.2808822

53. Optimal Cluster. https://igraph.org/r/doc/cluster_optimal.html.

Accessed: 29.07.2022

54. Danon L, Duch J, Dı́az-Guilera A, Arenas A (2005) Comparing

community structure identification. J Stat Mech 2005(9):P09008.

https://doi.org/10.1088/1742-5468/2005/09/P09008

55. Botta F, del Genio C (2016) Finding network communities using

modularity density. J Stat Mech: Theory Exp. https://doi.org/10.

1088/1742-5468/2016/12/123402

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds

exclusive rights to this article under a publishing agreement with the

author(s) or other rightsholder(s); author self-archiving of the

accepted manuscript version of this article is solely governed by the

terms of such publishing agreement and applicable law.

Neural Computing and Applications (2023) 35:11073–11087 11087

123

https://doi.org/10.1016/j.cor.2013.03.002
https://doi.org/10.1016/j.cor.2013.03.002
https://doi.org/10.18178/ijmlc.2020.10.2.938
https://doi.org/10.18178/ijmlc.2020.10.2.938
https://doi.org/10.1109/ACCESS.2020.3045085
https://doi.org/10.1109/CIS54983.2021.00025
https://doi.org/10.1109/CIS54983.2021.00025
https://doi.org/10.1109/TKDE.2007.190689
https://doi.org/10.1109/TKDE.2007.190689
https://igraph.org/
https://doi.org/10.21205/deufmd.2022247014
https://doi.org/10.1016/j.amc.2021.126409
https://doi.org/10.1016/j.amc.2021.126409
https://doi.org/10.1016/j.physa.2022.126881
https://doi.org/10.1016/j.physa.2022.126881
https://doi.org/10.1007/s42979-020-00264-2
https://doi.org/10.1007/s42979-020-00264-2
http://konect.cc/networks/
https://doi.org/10.2339/politeknik.1074962
https://doi.org/10.2339/politeknik.1074962
https://doi.org/10.1016/j.jnca.2018.02.011
https://doi.org/10.1016/j.jnca.2018.02.011
https://doi.org/10.3389/fninf.2016.00045
https://doi.org/10.1103/PhysRevE.69.066133
https://doi.org/10.1103/PhysRevE.69.066133
https://doi.org/10.1016/j.physleta.2018.11.033
https://doi.org/10.1016/j.physleta.2018.11.033
https://doi.org/10.1155/2014/627581
https://doi.org/10.1155/2014/627581
https://doi.org/10.1109/BASNA.2010.5730298
https://doi.org/10.1109/BASNA.2010.5730298
https://doi.org/10.31234/osf.io/hz89e
https://doi.org/10.1103/PhysRevE.74.036104
https://doi.org/10.1103/PhysRevE.74.036104
https://doi.org/10.1145/2808797.2808822
https://igraph.org/r/doc/cluster_optimal.html
https://doi.org/10.1088/1742-5468/2005/09/P09008
https://doi.org/10.1088/1742-5468/2016/12/123402
https://doi.org/10.1088/1742-5468/2016/12/123402

	KO: Modularity optimization in community detection
	Abstract
	Introduction
	Related works
	Material and method
	Community detection algorithms
	Modularity in community detection
	KO modularity optimization algorithm (Proposed Methods)
	Separation of the graph into communities and detection of boundary nodes
	Transfer degrees of boundary nodes
	Creation of the transfer list and realization of the transfer
	Transfer list control

	Experimental results
	Results
	Data Availability
	References

