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Abstract
Human image segmentation has been a practical and active research topic due to its wide range of potential application.

There are some previous studies on manual, semi-automatic and automatic segmentation methods to investigate the

semantic segmentation of human parts fully for real-world human analysis scenarios, but further research is still needed.

This paper presents a novel semantic segmentation network, named TRCA-Net, for human image segmentation tasks.

Having the TransUNet as the backbone, TRCA-Net incorporates Res2Net and Coordinate Attention to improve the

performance. Res2Net blocks and Transformer can obtain better feature maps by encoding the input images. The Coor-

dinate Attention in the decoder aggregates and upsamples the encoded feature maps, and connects to the high-resolution

CNN feature maps for gaining accurate segmentation. The TRCA-Net can enhance finer details by recovering local spatial

information. We compare the TRCA-Net with state-of-the-art (SOAT) semantic segmentation networks: the original

U-Net, DeepLabv3?, and TransUNet. The experiment results have demonstrated that our proposed TRCA-Net outper-

forms these networks.
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1 Introduction

As one of themost fundamental and critical tasks in analyzing

human in the wild, human parsing, or semantic segmentation

has become a key enabling technology nowadays in a large

number of application domains such as video surveillance [1],

human behavior analysis [2], human part segmentation [3],

medical image segmentation [4], and so on.

Semantic segmentation has recently witnessed great

progress driven by the advancement of Convolutional

Neural Networks (CNNs) [5], especially Fully Convolu-

tional Networks (FCNs) [6]. Thanks to deeply learned

features [7] and large-scale annotations [8], U-Net [9], a

CNN-based Network, has become the state-of-the-art

technology for human image segmentation.

Despite the excellent representational capabilities, the

general limitation of CNN-based approaches goes to the

incapability of displaying explicit remote relationship

modeling due to the inherent limitations of convolutional

operations [4]. As a result, these architectures often per-

forms poorly for target structures that exhibit large differ-

ences in texture, shape, and size. To overcome this

limitation, we employ the Res2Net [10] module together

with Transformer [11] in this work. The Res2Net module

builds hierarchical residual class links in a single residual

block and fuses the features extracted by each hierarchical

residual class link to improve the multi-scale capability of

exploring CNN in a larger scope. As stated in [10], it

essentially extends a new dimension (the number of feature

groups in the Res2Net block), namely scale, which is an

important and more effective factor in addition to the

depth, width and cardinality dimensions.

By employing, dispense convolution operators entirely

and relying on attention mechanisms solely, Transformers

have emerged as alternative architectures to design for

sequence-to-sequence prediction [11]. Unlike CNN-based

approaches, Transformers are not only powerful in
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modeling the global environment, but also exhibit excellent

transfer capabilities for downstream tasks in the presence

of large-scale pre-training. This success has been widely

witnessed in the fields of machine translation and natural

language processing [11, 12].

However, using transformer alone in the encoder pro-

cess will lead to feature resolution loss [4]. Though the

CNN-transformer works as a powerful tool to deal with the

feature resolution loss, it can not better extract the features

from the input image. To tackle this problem, in this work,

we use the Res2Net-transformer for encoding, which not

only eliminates the feature resolution loss but also

improves the network layer range of the perceptual field.

To further improve the segmentation performance, we

add Coordinate Attention [13] to the decoder process in the

network. The Coordinate Attention decomposes the chan-

nel attention into two one-dimensional feature encoding

processes, and collect features along two spatial directions,

respectively. This allows a more aggregated feature map of

the encoder. After being upsampled to recover the local

spatial information, the aggregated feature maps are com-

bined with the different high-resolution Res2Net features

in the encoding path to achieve precise localization.

The main contribution of this paper is to put forward a

semantic segmentation neural network with TransUNet as

the backbone and Res2Net and Coordinate Attention.

Compared the TRCA-Net with state-of-the-art (SOAT)

semantic segmentation networks: the original U-Net,

DeepLabv3?, and TransUNet, our proposed TRCA-Net

has following performance advantages.

• Res2Net module is introduced in the feature extraction

process to further improve the feature extraction ability.

• We use the Res2Net-transformer for encoding, which not

only eliminates the feature resolution loss but also

improves the network layer range of the perceptual field.

• We add coordinate attention to the decoder process in

the network to further improve the segmentation

performance.

The remainder of this paper is organized as follows: Sect. 2

provides related work; in Sect. 3, the proposed method and

the baseline network are presented Sect. 4 gives the

acquisition of input data, experimental setup and results. In

Sect. 5, the conclusions of this study are shown.

2 Related work

2.1 Res2Net

Res2Net was first proposed in [10] as a simple yet effective

module to explore the multi-system capabilities of CNNs

over a larger range. It can be conveniently combined with

existing state-of-the-art methods. Deng-Ping Fan et al. [14]

proposed a new network for lung infection image seg-

mentation. They used Res2Net as the backbone network for

CT images to extract two sets of low-level features and

three sets of high-level features. Using the powerful multi-

scale capability of Res2Net, good CT image segmentation

performance was achieved. In [15], a new residual multi-

scale module with an attention mechanism drew on the

multi-scale capability in Res2Net for single-image super

resolution applications. Inspired by Res2Net, Yan Li et al.

[16] developed the multiple temporal aggregation module,

which divided spatiotemporal information and associated

local convolution layers into a number of subsets.

2.2 Transformer

Transformer was first proposed in [11] for machine trans-

lation applications. Without reliance on CNNs, Alexey

Dosovitskiy et al. [17] presented a Vision Transformer,

which only applied a standard Transformer directly to

sequences of image patches and completed image classi-

fication tasks very well in computer vision area. An

improved Transformer architecture named Longformer was

proposed in [18] to address the difficulty that computa-

tional requirements of self-attention increases guadratically

with sequence length. By taking the advantage of the self-

attention, Niki Parmar et al. [19] generalized the previous

proposed Transformer of [11] to a sequence modeling

formulation of image generation called Image Transformer.

While Image Transformer can maintain much larger

receptive fields per layer than traditional CNNs, it increases

the size of images significantly.

2.3 Attention mechanisms

Initially created for machine translation [20], the Attention

Mechanism has gradually grown in significance in the field

of neural networks. An analogy to the human visual system

can be used to explain attention mechanisms. The human

visual system has a propensity to concentrate on specific

details in an image that support judgment and dismiss

irrelevant details. By inserting attention modules into CNN

architectures, the performance of large-scale image clas-

sification tasks is improved substantially [21–23]. An

effective module, called Bottleneck Attention Module

(BAM) which was placed at each bottleneck of models,

was proposed in [21]. By developing an inter-channel

relationship, an attention module which is called as

Squeeze-and-Excite (SE) was presented in [22]. In contrast

to SE, Woo et al. [23] proposed the Convolutional Block

Attention Module (CBAM) where both spatial and chan-

nel-wise attention was exploited. Despite these
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improvements, only a few studies have used attentional

mechanisms for image segmentation tasks.

3 Methods

The whole structure of our proposed TRCA-Net based on

Res2Net [10], Transformers [11], and Coordinate Attention

is shown in Fig. 1.

From Fig. 1, a convolutional layer is used to reduce the

channel size of the reshaped features to the number of

target classes in the last network layer, and then one can

directly bilinearly upsample the feature maps to full reso-

lution to predict the final segmentation results.

We can see that the decoder process together with the

hybrid encoder forms a U-shaped architecture that allows

feature aggregation at different resolution levels by skip-

ping connections. The detailed architecture of the upsam-

pling and intermediate skip-connection processes is shown

in long dotted lines with arrows in Fig. 1.

Though combining CNN-Transformer [4] with combi-

natorial upsampling has achieved substantial performance,

this strategy may not be the optimal choice for segmenta-

tion networks because the range of receptive fields in the

encoder is not large and thus leads to a loss of low-level

details. To gain a larger range of receptive fields, our

TRCA-Net uses a hybrid Res2Net50-Transformer archi-

tecture as an encoder in the decoder process. Moreover, the

upsampling and Coordinate Attention block includes an

decoder, where the upsampling can expand the size of the

feature map to the one of the input images and Coordinate

Attention block can focus on the interested areas in the

feature map.

The details of Res2Net, Transformer and Coordinate

Attention are described below.

3.1 Res2Net

We first describe the encoder part of the TRCA-Net which

is in the downsampling part. To combine the strengths of

Res2Net block and Transformer, we use them to form the

downsampling process.

The details of the Res2Net [10] block are shown in

Fig. 2. After the input feature map is convolved using the

1� 1 convolution, it splits the feature maps into s feature

map subsets evenly. Except for X1, each Xi has a corre-

sponding 3�3 convolution, denoted by Ki. We denote yi as

the output of Ki. The feature subset Xi is added with the

output of Ki�1, and is then fed into Ki. To reduce param-

eters the number of feature map subsets, we omit the 3� 3

convolution for X1. The 3� 3 convolution operator has the

potential to receive feature information from all feature

segmentations. Each time a feature segmentation passes

through the 3� 3 convolution operator, the output may

have a larger perceptual field. Different numbers and dif-

ferent combinations of receptive field sizes/scales are

contained in the output of Res2Net module due to the effect

of combinatorial explosion. In the Res2Net module, the

segmentations are processed in a multi-scale manner,

which facilitates the extraction of global and local infor-

mation. We concatenate all the divisions and perform a

single convolution on them in order to better combine the

information at various scales. The splitting and tandem

Fig. 1 Network architecture of TRCA-Net
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approach can accelerate feature processing and force

convolution.

3.2 Transformer

In the downsampling process, we perform tokenization by

reshaping the output of the fortieth layer in the Res2Net50

[24] network into a sequence of flattened 2D patches. We

map the vectorized patches into a latent D-dimensional

embedding space using a trainable linear projection. To

encode the patch spatial information, we learn specific

position embeddings which are added to the patch

embeddings to retain positional information, get the input

of Transformer [11].

The Transformer encoder consists of L layers of Mul-

tihead Self-Attention (MSA) [25] and Multilayer Percep-

tron (MLP) [26] blocks. Therefore, the output of the ‘-th

(‘ ¼ 1; :::; 12) layer can be written as follows:

z0‘ ¼ MSA ðLNðz‘�1ÞÞ þ z‘�1; ð1Þ

z‘ ¼ MLP ðLNðz0‘ÞÞ þ z0‘; ð2Þ

where LNð�Þ denotes the layer normalization operator , z‘ is

the encoded image representation and z0 is the product of

merging all vectorized patches multiplied by the patch

embedding projection plus the position embedding.

3.3 Coordinate attention

After reshaping the sequence of hidden features into the

shape, we use a combined decoder that consists of three

Coordinate Attention and multiple upsampling steps to

reach full resolution from 3D feature map size to original

image size, where each block is formed by a Coordinate

Attention, two upsampling layers and one 3� 3 convolu-

tional layer. The Coordinate Attention structure is shown in

Fig. 3.

Specifically, given the input feature map M 2 RC�H�W ,

two spatially scoped pooling kernels (H, 1) or (1, W) are

used to encode each channel along the horizontal and

vertical coordinates, respectively. The above two trans-

formations aggregate features along two spatial directions,

respectively, to produce two direction-aware feature maps,

which are combined. Then a shared 1� 1 convolutional

transformation function F1 is performed on them, after a

nonlinear activation function, the intermediate character-

istic map of spatial information in the horizontal and ver-

tical directions is obtained. The above process can be

formulated as

f ¼ d F1

1

W

X

0� i\W

mcðh; iÞ;
1

H

X

0� j\H

mcðj;wÞ
" # ! !

;

ð3Þ

where ½�; �� is the concatenation operation along the spatial

dimension, d is a nonlinear activation function, f 2
RC=r�ðHþWÞ is the intermediate feature map, and r is the

reduction rate used to control the block size. In order to

reduce the complexity of the overhead model, in the lit-

erature [13], an appropriate reduction ratio r is used to

reduce the number of channels of intermediate feature

maps.

We then split f along the spatial dimension into two

separate tensors f h 2 RC=r�H and f w 2 RC=r�W . Another

Fig. 2 The Res2Net block

Fig. 3 The Coordinate Attention. ‘‘X Avg Pool’’ and ‘‘Y Avg Pool’’,

respectively, mean 1D horizontal global pooling and 1D vertical

global pooling
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two 1� 1 convolutional transformations Fh and Fw are

utilized to separately transform f h and f w to tensors with

the same channel number to the input M, respectively, to

pass the tensor through the sigmoid function. The two

outputs are then expanded and used as attention weights,

respectively. Finally, the output of our Coordinate Atten-

tion block Y can be written as

ycði; jÞ ¼ mcði; jÞ � rðFhðf hÞÞ � rððFwðf wÞÞ; ð4Þ

where r is the sigmoid function. The above is the whole

operation of Coordinate Attention. As described above, the

attention along both the horizontal and vertical directions is

simultaneously applied to the input tensor. Each element in

the two attention maps reflects whether the object of

interest exists in the corresponding row and column. This

encoding process allows our Coordinate Attention to more

accurately locate the exact position of the object of interest

and hence helps the whole model to segmentation better.

In conclusion, the main mechanism that makes our

network more suitable for human image segmentation tasks

lies in that it combines the advantages of Res2Net and

Coordinate Attention, which is stated in the following.

1. Due to the intricate outdoor environment, the structure

and texture of the human body target are complex, and

the size and shape are very different, so the network

needs to have stronger feature extraction ability and

accurate positioning ability of the extracted physical

signs. The network structure proposed in this paper

uses Res2Net to extract more abundant feature

information.

2. We add coordinate attention in the decoder process. In

this framework, it allows the encoder to map more

converged features, locate the information of interest

and suppress the useful information, so that the features

can be accurately located.

4 Experiments and discussion

In this paper, we use the CIHP dataset [3] to verify the

performance of the proposed TRCR-Net. In this dataset, all

images are collected from real-world human activity scenes

with 19 semantic labels and 28, 280 images are used as the

training set.

For fair comparisons, we use one training batch and

learning rate dynamic decreasing process for all models.

We use nearest-neighbor interpolation to resize the original

images to 512� 512. The batch size is four images and the

learning rate decreasing formula is as follows,

L ¼ Ilr 1� iter

max iter

� �power

; ð5Þ

where the initial learning rate Ilr is 0.001, real time training

iteration iter is from 0 to 212100, maximum training iter-

ations max iter is 212100, the power is 0.9. We train the

TRCA-Net at the same settings for 30 epochs. There are

28280 images for training in CIHP dataset. We believe that

the number of samples is large enough, so the random data

expansion method is not applied in this experiment. Our

methods are implemented using the pytorch [27] frame-

work. All networks are trained on a single graphics card

NVIDIA GeForce GTX 3090 GPU.

4.1 Evaluation metrics

We evaluate all semantic segmentation models using Mean

Pixel Accuracy (MPA) and Mean Intersection over Union

(MIoU) criterion, which are statistical methods to test the

similarity and diversity of the sample set. Intersection over

Union IoU measures the similarity of a finite set of sam-

ples, which is defined as the size of the intersection set

divided by the size of the concatenated sample sets. It is

useful when the number of pixels in an image is unbal-

anced because the same weight for all classes. MIoU is the

result of summing and averaging the ratio of the intersec-

tion of the predicted and true values for each category. PA

is calculated as the ratio of the class pixel values of the

predicted pairs to the total predicted values across all

pixels. MPA is an extension of PA, which refers to the

percentage of correctly classified pixels for each category

and is calculated as the average of all PAs over all the

classes. MPA and MIoU are calculated as evaluation

metrics in Eqs. (6) and (7). In (6) and (7), k refers to the

number of classes, and k þ 1 is the total number of classes

including background. pij is the amount of pixels of class i

inferred to belong to class j. In other words, pii represents

the number of true positives, while pij and pji are usually

interpreted as false positives and false negatives,

respectively.

MPA ¼ 1

k þ 1

Xk

i¼0

piiPk
j¼0 pij

; ð6Þ

MIoU ¼ 1

k þ 1

Xk

i¼0

piiPk
j¼0 pij þ

Pk
j¼0 pji � pii

: ð7Þ

Adopting the above evaluation metrics, we evaluate our

proposed approach with CIHP dataset. The three baseline

methods are the original U-Net [9], DeepLabv3? [28] and

TransUNet [4]. Table 1 summarizes the segmentation

performances of each method. It can be seen that the

proposed TRCA-Net outperforms the baseline methods in

first three metrics such as MPA, MIoU and Recall.
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As can be seen in Table 1, TRCA-Net outperforms the

other methods. TRCA-Net increases 4.54, 1.57, and 2.89

points in MPA over original U-Net, DeepLabv3?, and

TransUNet, respectively, and we also compare the perfor-

mance of TRCA-Net, original U-Net, DeepLabv3?, and

TransUNet in terms of MIoU. From the table we can see

that TRCA-Net has the highest MIoU score, which is sig-

nificantly better than other methods. The overall perfor-

mance of TRCA-Net over the original U-Net,

DeepLabv3?, and TransUNet in terms of recall is 83.63,

94.19, 86.73, and 97.06, respectively. Finally, we make the

comparison with the above networks about floating-point

operations per second (FLOPS) and parameters. Due to the

introduction of the attention mechanism and Res2Net in the

network, the computation and the number of parameters in

the network are increased. Compared with TransUNet,

which has the closest performance to TRCA-Net, the

Params increased by 8.785M and FLOPS increased by

18.082G. Although the amount of computation is

increased, it can be acceptable because the performance

has achieved a great improvement.

Table 2 shows the results of each index of the four

network models of each picture. It can be seen from

Table 2 that among the three performance indicators of

each picture, our model is better than those of other

models. In addition to the quantitative results, we also

Table 1 Comparison results of

original U-Net, DeepLabv3?,

TransUNet and proposed

TRCA-Net

Method MPA MIoU Recall FLOPs(GLOPs) Params(M)

U-Net [9] 21.00 17.58 83.64 40.669 4.321

DeepLabv3? [28] 23.97 22.16 94.19 59.848 39.762

TransUNet [4] 22.65 19.53 86.73 134.988 93.252

TRCA-Net(ours) 25.54 24.25 97.06 153.070 102.037

The bold number denotes the results using the proposed algorithm, which is a common usage in the existing

literature

Table 2 Comparison results of original U-Net, DeepLabv3?, TransUNet and TRCA-Net in ten images

Name Method MPA MIoU Recall Name Method MPA MIoU Recall

Image

1

U-Net [9] 23.78 19.60 85.93 Image 6 U-Net [9] 28.48 23.50 86.33

DeepLabv3?

[28]

27.52 26.6 94.97 DeepLabv3?

[28]

30.50 28.15 94.89

TransUNet [4] 22.20 18.32 84.79 TransUNet [4] 31.63 29.49 96.13

TRCA-Net(our) 27.66 26.33 96.31 TRCA-Net(our) 31.78 30.08 96.25

Image

2

U-Net [9] 21.69 17.69 93.78 Image 7 U-Net [9] 20.41 18.94 89.46

DeepLabv3?

[28]

22.39 20.62 97.44 DeepLabv3?

[28]

20.15 18.71 86.40

TransUNet [4] 22.46 21.3 97.95 TransUNet [4] 21.45 19.74 89.56

TRCA-Net(our) 22.61 21.90 98.46 TRCA-Net(our) 23.15 22.30 97.03

Image

3

U-Net [9] 15.21 11.67 73.70 Image 8 U-Net [9] 16.50 14.34 79.31

DeepLabv3?

[28]

19.98 18.20 90.85 DeepLabv3?

[28]

22.53 20.96 94.10

TransUNet [4] 18.25 16.57 84.79 TransUNet [4] 19.26 13.42 76.02

TRCA-Net(our) 23.97 21.96 97.97 TRCA-Net(our) 22.71 21.58 95.40

Image

4

U-Net [9] 19.06 16.08 77.22 Image 9 U-Net [9] 24.00 19.70 70.80

DeepLabv3?

[28]

22.37 20.27 94.47 DeepLabv3?

[28]

28.90 27.18 94.56

TransUNet [4] 17.17 14.25 63.41 TransUNet [4] 26.21 20.22 87.61

TRCA-Net(our) 22.97 22.30 97.08 TRCA-Net(our) 30.53 28.74 96.78

Image

5

U-Net [9] 19.31 15.39 84.39 Image

10

U-Net [9] 21.55 18.94 95.44

DeepLabv3?

[28]

23.10 21.20 96.73 DeepLabv3?

[28]

22.24 19.79 96.71

TransUNet [4] 25.89 23.51 90.71 TransUNet [4] 21.92 18.51 96.33

TRCA-Net(our) 27.94 26.43 97.94 TRCA-Net(our) 22.21 20.91 97.39

The bold number denotes the results using the proposed algorithm, which is a common usage in the existing literature
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provide qualitative results of segmented images using our

method compared to the original U-Net, DeepLabv3?, and

TransUNet, as shown in Fig. 4.

Figure. 4 shows the ground truth images using all

methods and their segmentation results. From Fig. 4, the

original U-Net gains the worst performance, especially in

the images of eighth rows in the presence of ambient noise.

Fig. 4 Segmentation

comparisons of TRCA-Net and

other methods on ten images,

a original image. b ground truth.

c TRCA-Net(our). d TransUNet

[4]. e DeepLabv3? [28] and

f U-Net [9]
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It can be seen from the images in fourth and fifth rows that

DeepLabv3? and TransUNet can segment human images

better than the original U-Net. However, the segmented

images of DeepLabv3? and TransUNet are not as accurate

as the ones produced by TRCA-Net. We can see that

similar segmentation results are obtained by TRCA-Net

and DeepLabv3? from Images 1, 2, 5, 8, 9, 10, and Images

3, 4, 6, 7 have shown that TRCA-Net has better segmen-

tation results than DeepLabv3?.

4.2 Discussion

In this section, we verify our approach through two sets of

comparison experiments. The experiments are all con-

ducted with the same settings as subsection 4.1. All

experiments for comparison experiments are conducted

with the backbone of the TransUNet [4].

4.2.1 Ablation study

To verify the effectiveness of the proposed modules, we

show the ablation study in this part. The performances of

TRCA-Net have been compared with those of TransUNet,

TransUNet?Res2Net and TransUNet?CA modules.

From Table 3, the MPA, MIoU, and Recall indices of

TransUNet?CA and TransUNet?Res2Net are better

compared with TransUNet. When Coordinate Attention is

added, MPA, MIoU and Recall were increased by 0.55,

0.77 and 1.99, respectively. When Res2Net was added,

MPA, MIoU and Recall were increased by 1.75, 4.17 and

8.85, respectively. The proposed TRCA-Net combines the

advantages of Res2Net and Coordinated Attention and

achieves better results, MPA, MIoU and Recall is increased

by 2.89, 4.72 and 10.33, respectively.

4.2.2 Effectiveness of coordinate attention

In this part, we further discuss the effectiveness of Coor-

dinate Attention used in our approach. We likewise per-

form an experiment to demonstrate the effectiveness of the

Coordinate Attention for improving the feature represen-

tation. The performances of TransUNet?CA have been

compared with those of TransUNet?SE and

TransUNet?CBAM modules. It is worth noting that all

three models have the same underlying structure except for

the attention module and are trained using the same settings

for fair comparisons. The experimental results for different

attention modules are shown in Table 4.

From Table 4, TransUNet?CA performs even better

compared to TransUNet?SE and TransUNet?CBAM

modules in terms of MIoU metrics with 0.5 and 0.8 points,

respectively. The above experiments and data demonstrate

the effectiveness of Coordinate Attention in the upsam-

pling process.

5 Conclusion

In this paper, we have proposes a semantic segmentation

network named TRCA-Net for human semantic segmen-

tation. By combining the advantages of Res2Net, trans-

former and Coordinate Attention, TRCA-Net enhances the

feature extraction ability and precise positioning ability of

targets with complex structure and texture and large dif-

ferences in size and shape. The neural network is more

suitable for image segmentation tasks similar to outdoor

human body segmentation.

To push the research boundary of outdoor human

activity analysis for real-world scenes, we use a large-scale

benchmark for an instance-level human parsing task,

including 38, 280 pixelated annotated images with 19

semantic part labels. The experimental results on CIHP

dataset show that our proposed method outperforms the

SOTA segmentation methods, which implies the effec-

tiveness and superiority of TRCA-Net.

Regarding to the advantages of the proposed network, it

can be applied to mostly semantic segmentation and image

Table 3 Comparison results of

TransUNet,

TransUNet?Res2Net,

TransUNet?CA and TRCA-Net

Method Basics Res2Net CA MPA MIoU Recall

TransUNet [4]
p �� �� 22.65 19.53 86.73

TransUNet [4]?CA [13]
p p �� 23.2 20.3 88.72

TransUNet [4]?Res2Net [10]
p �� p

24.4 23.7 95.58

TRCA-Net(ours)
p p p

25.54 24.25 97.06

The bold number denotes the results using the proposed algorithm, which is a common usage in the existing

literature

Table 4 Comparison results of TransUNet?SE, TransUNet?CBAM

and TransUNet?CA

Method MPA Mean IoU Recall

TransUNet [4]?SE [22] 23.0 19.8 88.01

TransUNet [4]?CBAM [23] 22.8 19.5 88.14

TransUNet [4]?CA [13] 23.2 20.3 88.72

The bold number denotes the results using the proposed algorithm,

which is a common usage in the existing literature
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segmentation tasks such as face recognition detection,

accurate location of face biometric features, and detection

of different parts of human disease types in medical image

segmentation. However, the computational complexity

increased, and real-time capability is compromised because

of the introduction of attention mechanism and Res2Net in

the network. Due to the performance improvement, these

losses are acceptable, and our future work will focus on

addressing this issue.
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