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Abstract
Nonnegative matrix factorization (NMF) is a crucial method for image clustering. However, NMF may obtain low accurate

clustering results because the factorization results contain no data structure information. In this paper, we propose an

algorithm of nonnegative matrix factorization under structure constraints (SNMF). The factorization results of SNMF could

maintain data global and local structure information simultaneously. In SNMF, the global structure information is captured

by the cosine measure under the ‘2 norm constraints. Meanwhile, ‘2 norm constraints are utilized to get more discriminant

data representations. A graph regularization term is employed to maintain the local structure. Effective updating rules are

given in this paper. Moreover, the effects of different normalizations on similarities are investigated through experiments.

On real datasets, the numerical results confirm the effectiveness of the SNMF.

Keywords Image clustering � Nonnegative matrix factorization � Cosine measure � ‘2 norm

1 Introduction

Clustering is a hot topic in machine learning [1], which

groups similar data into a same cluster while different data

are assigned distinct clusters. With the development of

media technology, image clustering is a significant problem

and has wide applications such as face recognition [2],

image annotation [3], image retrieval [4], and image

segmentation [5]. Many different clustering algorithms are

applied in image clustering, like the partition-based method

[6], the density-based method [7], and the hierarchical

method [8]. However, the high dimension of a picture

always causes the ‘‘curse of dimension’’ phenomenon. So,

in image clustering, the dimension reduction method plays

an essential role. Principal component analysis (PCA) [9]

and linear discriminant analysis (LDA) [10] are traditional

and representative algorithms in dimension reduction.

However, the results may contain negative elements in

PCA and LDA. This phenomenon weakens their inter-

pretability because the input image data are nonnegative.

For this phenomenon, nonnegative matrix factorization

(NMF) [11] is a better dimension reduction method. The

nonnegative property makes the NMF more comprehensi-

ble. NMF and its variants can be roughly divided into two

categories.

The first category is unsupervised. Without supervised

information, the intrinsic data structure is vital for perfor-

mance improvements. However, lossing data inherent

structure is a drawback of NMF. Many scholars proposed

different methods to maintain the original structure in the

reduced space. Cai et al. [12] proposed the graph regular-

ized nonnegative matrix factorization (GNMF). In GNMF,

if data are near in original space, their representations

& Xiangli Li

lixiangli@guet.edu.cn

Mengxue Jia

jmg8029@163.com

Ying Zhang

zhangying751009@163.com

1 School of Mathematics and Computing Science, Guilin

University of Electronic Technology,

Guilin 541004, Guangxi, China

2 School of Mathematics and Statistics, Xidian university,

Xi’an 710126, Shaanxi, China

3 Guangxi Colleges and Universities Key Laboratory of Data

Analysisand Computation, Guilin University of Electronic

Technology, Guilin 541004, Guangxi, China

4 Center for Applied Mathematics of Guangxi (GUET),

Guilin 541004, Guangxi, China

123

Neural Computing and Applications (2023) 35:7891–7907
https://doi.org/10.1007/s00521-022-08136-x(0123456789().,-volV)(0123456789().,-volV)

http://orcid.org/0000-0001-8753-2402
http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-022-08136-x&amp;domain=pdf
https://doi.org/10.1007/s00521-022-08136-x


would be close in the reduced space. Shang et al. [13]

developed the graph dual regularization NMF (DNMF).

More than the local structure of data space, DNMF main-

tains the local structure of feature space. Ding et al. [14]

developed the convex nonnegative matrix factorization

(CNMF). In CNMF, a factor matrix is reconstructed by the

convex combinations of data. In other words, in CNMF, the

center of a cluster should be represented by data. Hu et al.

[15] developed the graph regularized and convex nonneg-

ative matrix factorization (GCNMF). Compared with

CNMF, a graph regularized term is employed in GCNMF.

Cui et al. [16] proposed the subspace clustering guided

convex nonnegative matrix factorization (SCCNMF).

Subspace clustering can reconstruct a sample by other

samples. The above methods investigate how to maintain

the structure in the reduced space in various ways.

Another drawback of NMF is the error measure. The

square of Frobenius norm is sensitive to noise and outliers.

To address this problem, researchers have adopted different

error measures. Kong et al. [17] used the ‘2;1 norm

(‘2;1NMF). Li et al [18] employed the ‘2;p norm (‘2;pNMF).

Compared with the square of Frobenius norm, these two

norms are more robust. Except for above methods, differ-

ent norms can be applied to data representations. Zhang

et al. [19] and Xing et al. [20] added a regularized term in

the NMF. [19] used the ‘1=2 norm on data representations

while [20] employed the ‘2;1 norm.

The second category is semisupervised. Here is a brief

introduction. Because the cost of collecting a little super-

vised information is affordable, some semisupervised

methods are developed. Generally, there are two types of

supervised information. The first type is label constraints,

and the second type is pairwise constraints. Label con-

straints mean the data belong to known classes, while the

pairwise constraints restrict data relationships. Based on

label constraints, Babaee et al. [21] proposed the discrim-

inative nonnegative matrix factorization (DNMF). When

data have the same label, DNMF tries to set them on the

same axis. Different from [21], Liu et al. [22] proposed the

constrained nonnegative matrix factorization (CNMF).

CNMF lets samples in the same class to have the same

representation. Based on pairwise constraints, Wang et al.

[23] proposed the penalized matrix factorization (PMF).

PMF adds a penalized term to mitigate the situation that the

factorization violates constraints. Yang et al. [24] devel-

oped the pairwise constraints guided nonnegative matrix

factorization (PCNMF). Must links and cannot links gen-

erate two different regularized terms in PCNMF.

In this paper, the main focus is the unsupervised NMF.

Above unsupervised methods achieved notable improve-

ments. However, there still exist some drawbacks. The first

drawback is that the method of calculating similarities is

always basing the Euclidean distance. However, the

Euclidean distance is sensitive to outliers and noise. This

phenomenon may lead to a low-accurate clustering result.

Second, there is no direct way to keep the global similarity

in data representations. Keeping the global similarity by

neighbors always causes information loss. A new non-

negative matrix factorization under structure constraints

(SNMF) is proposed to handle these drawbacks.

The main contributions are concluded as follows:

1. A direct way to keep the global structure similarity in

data representations is introduced into SNMF. Mean-

while, combined with a graph regularized term to save

the local structure information, SNMF eases the

structure information loss.

2. To make data representations more discriminative, the

‘2 norm constraints are employed in SNMF. Based on

‘2 norm constraints, the dot measure, which is equiv-

alent to cosine measure, is used in data representations

to avoid the drawback of Euclidean distance.

3. New updating rules are given, and experiments confirm

the effectiveness of updating rules.

The rest of this paper is organized as follows. In Sect. 2, a

brief introduction to related work is given. Section 3

introduces the details of SNMF. Section 4 concludes the

experiment results to show the effectiveness of SNMF on

clustering. Section 5 makes conclusions about this paper.

2 Related work

2.1 NMF algorithm and GNMF algorithm

Lee et al. [11] proposed the nonnegative matrix factoriza-

tion (NMF). Here is a brief introduction.

The model of NMF in the Euclidean distance is as

follows:

min
U� 0;V � 0

kX � UVTk2F : ð1Þ

In (1), X 2 Rm�n
þ is a dataset. U 2 Rm�k

þ and V 2 Rn�k
þ are

factorization results, which are called basis matrix and data

representations (or encoding matrix). Each row in V repre-

sents a sample in the reduced k-dimension space spanned

by U. The number k is predetermined, which is the number

of clusters expected in most situations.

The updating formulations of (1) are as follows:

Umk  Umk
ðXVÞmk
ðUVTVÞmk

;

Vnk  Vnk
ðXTUÞnk
ðVUTUÞnk

:

Cai et al. [12] pointed out that (1) focused on factorization
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results while losing the local structure information. How-

ever, the local structure information is vital for clustering.

To address this drawback, Cai et al. [12] proposed the

graph regularized nonnegative matrix factorization

(GNMF). The GNMF model is as follows:

min
U� 0;V � 0

kX � UVTk2F þ ktrðVTLVÞ: ð2Þ

k is a balanced parameter. The second term in (2) is called

graph regularized term, and the matrix L in this term is the

Laplacian matrix. With the help of this graph regularized

term, when samples in the original space are near, their

representations in the reduced space will be close. The

calculation of this Laplacian matrix L is the following

equation:

L ¼ D�W : ð3Þ

In (3), D is a diagonal matrix, and the element

Dii ¼
Pn

j¼1 Wij. W is the similarity matrix which is calcu-

lated from a graph GG ¼ ðVG;EÞ. VG represents the set of

samples in the dataset X, and E is the edge set. The for-

mulation for W is as follows.

Wij ¼
1; i 2 jðjÞ or j 2 jðiÞ;

0; otherwise:

(

ð4Þ

jðiÞ is a set, which contains the j nearest neighbors of

sample i and does not contain itself. These j nearest

neighbors are generated by Euclidean distances.

Updating rules of (2) are given as follows:

Umk  Umk
ðXVÞmk
ðUVTVÞmk

;

Vnk  Vnk
ðXTUÞnk þ kðWVÞnk
ðVUTUÞnk þ kðDVÞnk

:

2.2 NMF with ‘2 norm constraints

The ‘2 norm constraint has excellent potential to feature

extraction and data representations [25]. Yang et al. [25]

proposed an algorithm to solve the following problem:

min
1

2
kX � UVTk2F;

subject to U� 0; V � 0;

kU�ik22 ¼ 1; i ¼ 1; 2; 3; . . .; k:

ð5Þ

U�i represents the ith column in U.

Compared with (1), (5) has no other constraints on

V. Therefore, the same updating rule is adopted for V. For

U, Yang et al. [25] proposed a new updating rule which

updated U by columns. Next is a description of updating a

column of U [25].

x represents the ith column of U. The partial derivative

of x is denoted as a. So, a ¼ ðUVTVÞ�i � ðXVÞ�i. Let

c1 ¼ ðUVTVÞ�i, and c2 ¼ ðXVÞ�i. Therefore, a ¼ c1 � c2.

To update x under the constraint kxk22 ¼ 1, following

auxiliary variables need to be calculated [25].

T1 ¼ xTxcT1 xc2 þ xtxcT2 xc1 þ xTxxTc1c1 þ xTxxTc2c2;

T2 ¼ xTxcT1 xc1 þ xtxcT2 xc2 þ xTxxTc1c2 þ xTxxTc2c1;

P1 ¼ cT1 xx
Tc2xþ cT2 xx

Tc1xþ xTxcT1 c1xþ xTxcT2 c2x;

P2 ¼ cT1 xx
Tc1xþ cT2 xx

Tc2xþ xTxcT1 c2xþ xTxcT2 c1x;

M ¼ ðaTxÞ2 � kak22kxk
2
2;

B ¼ 2T1þ 2P1þMx;

C ¼ 4ðxTxc1 þ xTc2xÞ;

D ¼ �4x:
ð6Þ

Then, calculate s and q.

s ¼ min

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2
i � 4BiDi

p
� Ci

2Bi
; if Bi 6¼ 0;

(

�Di

Ci
; if Bi ¼ 0:

�

; i ¼ 1; 2; 3; . . .;m;

ð7Þ

q ¼ 1� s
2

� �2

ðaTxÞ2 þ s
2

� �2

kak22kxk
2
2: ð8Þ

Now the updating rule of the ith column of U is (9).

U�i  x� s
q

xTxc1 þ
s
2
T1þ xTc2xþ

s
2
P1

� �

þ s
q

xTxc2 þ
s
2
T2þ xTc1xþ

s
2
P2

� �
:

ð9Þ

There is a subtraction operation in (9). However, the the-

oretical analysis in [25] guarantees results’ nonnegativity.

2.3 Cosine similarity

Suppose xi and xj 2 Rm�1 are two samples. The cosine

similarity between xi and xj is following:

cosðxi; xjÞ ¼
xTi xj

kxik2kxjk2
: ð10Þ

If kxik2 ¼ 1 and kxjk2 ¼ 1, (10) can be reduced to (11).

cosðxi; xjÞ ¼ xTi xj: ð11Þ

Given a dataset A 2 Rm�n, each column A�iði 2 1; 2; . . .; nÞ
represents a sample. If kA�ik2 ¼ 1ði 2 1; 2; . . .; nÞ, (12)

saves cosine similarities between samples.

B ¼ ATA: ð12Þ
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Clearly, B is a symmetric matrix, and Bij is the cosine

similarity between ith sample and jth sample. The matrix

B is called cosine matrix of A.

3 Nonnegative matrix factorization
under structure constraints

First, some symbols are given in Table 1.

3.1 Saving the global structure information
in data representations

For dataset X 2 Rm�n
þ , each column represents a sample.

Normalization, which is used to eliminate some differences

between samples, is a necessary operation in machine

learning. Different normalizations have various influences

on similarity, and the impacts of normalizations will be

investigated in Sect. 4.3.

XN represents the data after a normalization. The local

similarity always is reflected by neighbors in (4) which

discards similarities with other samples. This operation

may cause information loss.

Define the global similarity matrix measured by the dot

measure as follows:

G ¼ XNT
XN : ð13Þ

Gij reflects the global similarity between samples i and j,

and a great value means a high similarity.

For data representations, the ‘2 norm could make them

more discriminative [25]. Thus, the ‘2 norm constraint is

added on the row of V. Meanwhile, the global structure

should be kept in the coding matrix V. Thus, the same

global similarity calculation is adopted on the coding

matrix V. Because of ‘2 norm constraints, the dot measure

on V could be seen as the cosine measure. Then a global

structure regularized term is proposed as follows:

min kG� VVTk2F ;
subject to kVi�k22 ¼ 1; i ¼ 1; 2; 3. . .; n:

ð14Þ

Although the objective function of (14) has a same form as

[26] and [27], the purpose of (14) is different from these

two works. Compared with [26], (14) has a more precise

and distinct sense. Equation (14) represents that the global

similarity matrices, which are based on dot measures, of

original space and reduced space should be similar. In [26],

G only captures the local information, and the purpose of

VVT does not have a clear explanation. In [27], G is a

similarity matrix, while V is the cluster index matrix.

Clustering results are determined by the biggest value of

each row in V. However, in (14), V is a coding matrix,

which is related to the factorization. Moreover, the ‘2 norm

constraints of V in (14) do not exist in [26, 27].

The conventional method of exploring the structure

information is always through neighbors of each sample.

To find neighbors, calculating similarities and ranking

similarities are all necessary. It is an indirect method to

save similarities. Selecting neighbors will discard some

similarities. Different from the conventional method,

Eq. (14) is a direct way to keep the global structure.

Equation (14) requires that the global similarity of data

representations should reflect the original global similarity

directly. That operation will capture the global structure

information more effectively. In addition, compared with

the conventional method, (13) reduces calculations because

(13) does not need the similarity ranking. By minimizing

this term, the global similarity in the reduced space will be

approximately equal to the original global similarity.

Table 1 Definitions of symbols
Symbol Dimension Definition

A�i – The ith column of matrix A

Aj� – The jth row of matrix A

Aij 1 The element on the ith row and jth column of matrix A

X m� n The input nonnegative data matrix

XN m� n The nonnegative matrix after normalization

U m� k The output nonnegative matrix, basis matrix

V n� k The output nonnegative matrix, encoding matrix

k 1 The predetermined number of clusters

G n� n The global similarity matrix

L n� n The Laplacian matrix

W n� n The similarity matrix

D n� n Diagonal matrix generated by W
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3.2 Proposed method

This subsection describes details of the nonnegative matrix

factorization under structure constraints (SNMF).

X is a given nonnegative dataset. After normalization,

XN is the dataset. Then calculate G and L on XN . G is the

global similarity matrix which is calculated by (13). L is

the Laplacian matrix which stores local structure infor-

mation, and is calculated by (3).

As paper [12], minimizing the following term will keep

the local information in the reduced space.

1

2

Xn

i;j

kVi� � Vj�k2Wij ¼
Xn

i

Vi�V
T
j�Dii �

Xn

i;j

Vi�V
T
j�Wij

¼ trðVTLVÞ:
ð15Þ

The reason is that the value of kVi� � Vj�k2 should be small

whenWij is 1. Thus, (15) requires data representations to be

similar if the samples are neighbors in the original space.

As the popular way [12], j is set as 5 for W.

Therefore, to keep the global and local structure in the

reduced space, the model of SNMF is as follows:

min
1

2
kXN � UVTk2F þ

a
2
kG� VVTk2F þ

b
2
trðVTLVÞ

subject to U� 0; V � 0;

kVi�k22 ¼ 1; i ¼ 1; 2; 3. . .; n:

ð16Þ

In (16), the global structure regularized term stores the

global similarities information. Meanwhile, the graph reg-

ularized term is employed to keep the local structure in

data representations V. ‘2 norm constraints are utilized to

make data representations more discriminative. a and b are

balanced parameters. a is related to the global data struc-

ture, and b has a relation to local data structure. These two

regularized terms make SNMF to keep more data intrinsic

structure information in the reduced space. They are ben-

eficial to the clustering performance. Section 4.4 displays

influences of a and b.
Different from (5), (16) pursues discriminative data

representations. Meanwhile, the original structure infor-

mation is maintained in the reduced space by these two

regularized terms on V.

3.3 Optimization on (16)

For (16), an iterative algorithm is given to solve it. The

Lagrange function of model (16) is as follows.

O ¼ 1

2
kXN � UVTk2F þ

a
2
kG� VVTk2F

þ b
2
trðVTLVÞ þ trðWUTÞ þ trðUVTÞ

þ
Xn

i¼1
ciðVi�V

T
i� � 1Þ

¼ 1

2
trðXNT

XN � XNT
UVT � VUTXN þ VUTUVTÞ

þ a
2
trðGTG� GTVVT � VVTGþ VVTVVTÞ

þ b
2
trðVTLVÞ þ trðWUTÞ þ trðUVTÞ

þ
Xn

i¼1
ciðVi�V

T
i� � 1Þ

¼ 1

2
ðtrðXNT

XNÞ � trðXNT
UVTÞ � trðVUTXNÞ

þ trðVUTUVTÞÞ

þ a
2
ðtrðGTGÞ � trðGTVVTÞ � trðVVTGÞ

þ trðVVTVVTÞÞ

þ b
2
trðVTLVÞ þ trðWUTÞ þ trðUVTÞ

þ
Xn

i¼1
ciðVi�V

T
i� � 1Þ

¼ 1

2
ðtrðXNT

XNÞ � 2trðVUTXNÞ þ trðVUTUVTÞÞ

þ a
2
ðtrðGTGÞ � 2trðGTVVTÞ þ trðVVTVVTÞÞ

þ b
2
trðVTLVÞ þ trðWUTÞ þ trðUVTÞ

þ
Xn

i¼1
ciðVi�V

T
i� � 1Þ:

ð17Þ

In Eq. (17), Wmk, Ukn, and ci are the Lagrange multipliers

for Umk � 0, Vkn� 0, and kVi�k22 ¼ 1, respectively.

kAk2F ¼ trðATAÞ, trðABÞ ¼ trðBAÞ and trðAÞ ¼ trðATÞ are
used in (17).

For O, the partial derivative respect to Umk is as follows:

oO

oUmk
¼ �ðXNVÞmk þ ðUVTVÞmk þWmk:

By the KKT condition WmkUmk ¼ 0, when

oO

oUmk
¼ 0;

we get the following equation:
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ð�XNV þ UVTVÞmkUmk ¼ 0:

Then the updating rule for U is given.

Umk  Umk
ðXNVÞmk
ðUVTVÞmk

; ð18Þ

For V, because of the ‘2 norm constraints, updating rules

are given based Yang et al. [25]. The updating rules for

V in (16) are one row by one row. The following are

details.

In the tth iteration, xr represents the ith row of V. In (16),

let F represent the objective function and calculate the

partial derivative on xr which is the following.

oF

oxr
¼ð�XNT

UÞi� þ ðVUTUÞi� � 2aðGVÞi�

þ 2aðVVTVÞi� þ bðDVÞi� � bðWVÞi�:

Denote

h ¼ oF

oxr
:

Let

l1 ¼ ðVUTUÞi� þ 2aðVVTVÞi� þ bðDVÞi�;
l2 ¼ ðXNT

UÞi� þ 2aðGVÞi� þ bðWVÞi�:

Thus, h ¼ l1 � l2:

Let

x ¼ xTr ; a ¼ hT ; c1 ¼ lT1 ; c2 ¼ lT2 :

Then the same method introduced in Sect. 2.2 is used.

Calculate the other auxiliary variables by (6), (7) and (8).

Note that B, C, D are vectors. So, the Bi;Ci and Di are the

ith element in vectors.

To get the updating rule, a transpose operation should be

carried out on the obtained result. So, the updating rule of

ith row in V is given as follows:

Vi�  x� s
q

xTxc1 þ
s
2
T1þ xTc2xþ

s
2
P1

� ��

þ s
q

xTxc2 þ
s
2
T2þ xTc1xþ

s
2
P2

� ��T

:

ð19Þ

Although there is a subtraction in Eq. (19), a theoretical

analysis in the appendix guarantees the nonnegativity of

V. After updating every row in V, the tth iteration finishes.

Algorithm 1 summarizes the SNMF algorithm.

3.4 Complexity analysis

The computational complexity of SNMF mainly depends

on the updating of U and V. The complexities of updating

U and V are Oðmnk2Þ and Oðn2k2 þ nk2Þ, respectively.

Constructing the graph of XN needs Oðn2mÞ, and calcu-

lating the global similarity matrix G occupies Oðn2mÞ.
Therefore, the complexity of SNMF is

Oðtmnk2 þ tn2k2 þ tnk2 þ 2n2mÞ, where t is the number of

iterations.

7896 Neural Computing and Applications (2023) 35:7891–7907

123



4 Experimental results

4.1 Data sets and comparison algorithms

Three image datasets are used to show the effectiveness of

the SNMF, which are USPS1, YaleB2, and ORL2 [28].

USPS contains hand-written number pictures, while human

face pictures are the samples in YaleB and ORL. For

USPS, its original dataset has too many instances. Thus,

200 samples are selected from each class randomly to form

the USPS dataset in experiments. Each sample in these

datasets is stretched to be a vector. Details of each dataset

are shown in Table 2.

Comparison algorithms are:

1. NMF [11]

2. GNMF [12]

3. ‘2;1NMF [17]

4. ‘2;pNMF [18]

5. SCCNMF-1[16]

6. FR-NMF[29]

For these comparison algorithms, parameters are set

according to the author’s suggestion.

4.2 Evaluation metrics

Four widely used metrics are adopted to evaluate clustering

results: cluster accuracy (ACC) [30], normalized mutual

information (NMI) [30], F-measure (F*) [31], and adjusted

rand index (ARI) [32].

ACC is calculated by Eq. (20):

ACC ¼
Pn

i¼1 dðmapðriÞ; liÞ
n

; ð20Þ

where ri is the clustering label after a clustering algorithm.

li is the true class label for ith sample. mapð�Þ is a function
to map a clustering label into the true class label set. dða; bÞ
is a function that equals 1 when a ¼ b and 0 otherwise. n is

the number of samples.

NMI is established on mutual information (MI). MI [30]

is calculated by (21).

MI C;C0ð Þ ¼
X

ci2C;c0j2C0
p ci; c

0
j

� �
� log2

p ci; c
0
j

� �

p cið Þ � p c0j

� � : ð21Þ

C denotes the set of clusters obtained from the ground truth

and C0 is obtained from a clustering algorithm. pðciÞ and
pðc0jÞ are the probabilities that a sample arbitrarily selected

from the dataset belongs to the clusters ci and c0j, respec-

tively. pðci; c0jÞ is the joint probability that the arbitrarily

selected sample belongs to the clusters ci as well as c
0
j at the

same time. [30].

Then NMI is calculated through Eq. (22).

NMI C;C0ð Þ ¼ MI C;C0ð Þ
max HðCÞ;H C0ð Þð Þ : ð22Þ

H(C) and HðC0Þ are entropies of C and C0 [30].
Let nc represent the number of samples of the cth

cluster. npc represents the number of common samples

between the cth cluster and the pth class. F* and ARI are

defined as follows.

F� ¼
2 � n

p
c

nc
� n

p
c

np

npc
nc
þ npc

np

; ð23Þ

ARI ¼

P
c;p

npc
2

� �

�
P

c

qc

2

� �
P

p

sp

2

� �

=
n

2

� �

1
2

P
c

qc

2

� �

þ
P

p

qc

2

� �� �

�
P

c

qc

2

� �
P

p

sp

2

� �

=
2

2

� � ;

ð24Þ

where
n
k

� �

¼ n!
k!ðn�kÞ! ; qc ¼

P
p n

p
c ; sp ¼

P
c n

p
c :

The value range is [0,1] for ACC, NMI, and F* while

[-1,1] for ARI. High values of these metrics represent

satisfactory clustering results.

4.3 Normalization influence on similarity

Different normalizations will have multiple effects on

similarity matrices G and W. To show normalizations’

various effects directly, an example is displayed in Fig. 1

on ORL [28].

Table 2 Details of datasets

Dataset Dimension Classes The number of samples in each class The original dimension of each sample

USPS 256 9 2000 10 200 16 9 16

YaleB 1024 9 2242 38 59 32 9 32

ORL 10304 9 400 40 10 112 9 92

1 https://www.csie.ntu.edu.tw/*cjlin/libsvmtools/datasets/multi

class.html#usps.
2 http://www.cad.zju.edu.cn/home/dengcai/Data/FaceData.html.
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Figure 1a is an ideal situation, which is generated by

labels. When two samples are in a same class, the similarity

for them is 1, and equals 0 otherwise. Basing the samples’

indexes, only the submatrices on the main diagonal have

values of 1, and each yellow square represents a class.

Two different normalizations are selected. The first

normalization, denoted as method 1, will normalize the ‘2
norm of samples to be 1, which is widely used. The second

normalization, marked as method 2, normalizes the ‘1
norm of each feature to be 1. For nonnegative data, these

two normalizations will keep data nonnegative. Figure 1b–

e displays the effects on global similarity G and local

similarity W of these two methods. In an ideal situation,

Fig. 1b–e should be similar to Fig. 1a.

It is clear that Fig. 1b–e has differences. From Fig. 1b,

method 1 makes the elements on the main diagonal 1.

However, method 1 also assigns high similarities between

different classes, which is reflected by that too many yel-

low pixels are not in the submatrices on the main diagonal.

In Fig. 1c, method 2 assigns high values on the submatrices

on the main diagonal in most situations. Comparing

Fig. 1d, e, which reflect the local similarity, we find that

pixels in yellow are more concentrated in submatrices on

the main diagonal in Fig. 1e. This phenomenon verifies

that method 2 has advantages on the local similarity over

method 1.

More than Fig. 1, Table 3 displays the proportion of

same classes similarities in overall similarities. Values in

Table 3 represents the proportion of the sum of similarity

values in submatrices on the main diagonal to overall

similarities for global similarity G and local similarity

W. From Table 3, proportions of method 2 are higher than

method 1 in both global similarities and local similarities.

This phenomenon means that the correct information takes

a high proportion in method 2, and confirms that method 2

is superior to method 1.

Fig. 1 Different normalization methods and their effects on the similarity based ORL. Method 1 represents the ‘2 norm of each sample equals 1

and method 2 represents the ‘1 norm of each feature equals 1

Table 3 Proportion of same classes similarities in overall similarities

Proportion Method 1 Method 2

Global similarity 0.0264 0.0272

Local similarity 0.7073 0.7710
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From the above analysis, method 2 could reflect the data

similarity well, and this normalization is selected as the

normalization in this paper.

4.4 Parameter selection

The trynumber and e for SNMF are 200 and 10�6,
respectively. The value of k equals the number of classes in

the ground truth. Now, only a and b are not determined.

Obviously, a and b have influences on clustering results at

the same time. Thus, a same changing set [0.001, 0.01, 0.1,

1.0, 10, 100, 1000] is adopted for a and b. Clustering

results of tuning a and b are displayed in Figs. 2, 3 and 4.

Figure 2 shows that 4 combinations, which are (1.0,

1000), (0.1, 100), (0.01, 10), (0.001, 1.0), have the satis-

factory results on ORL. Basing Figs. 3 and 4, satisfactory

combinations are (0.1, 1000), (0.01, 100), (0.001, 10) on

USPS and YaleB. The combinations of ORL have poor

performance on USPS and YaleB. However, combinations

of USPS and YaleB have adequate performance on ORL.

So, in the next experiments, we set a ¼ 0:01 and b ¼ 100.

From these results, when the ratio of b
a between 1000 and

10,000, the performance of SNMF is satisfactory. When

emphasizing local structure too much (which leads to the

ratio being too big), SNMF has poor performance on ORL

and YaleB. When emphasizing global structure too much

(which leads to the ratio being too small), SNMF has worse

performance through all datasets. This phenomenon means

that the ratio of local structure information and global

structure information should be suitable. SNMF only

employs local and global structure information effectively

when the ratio is proper.

4.5 Experimental results and analysis

The clustering results of SNMF and other comparison

algorithms are shown in Table 4. Kmeans is used on data

representations to get final clustering results. To eliminate

Fig. 2 clustering results (ACC, NMI, F* and ARI) on dataset ORL
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accidents’ impacts, each algorithm is carried out 20 times.

Because all these algorithms need random initializations,

the same random seed is adopted for each algorithm at each

time. Mean values and standard deviations are reported in

Table 4. Bold numbers represent the best results. ‘–’ rep-

resents that the time of this algorithm is too long to get

results. SNMF-A represents b ¼ 0 in SNMF.

From Table 4, we have the following conclusions.

First, SNMF has the best results. These results confirm

that data intrinsic structure information plays a crucial role

in clustering. Sufficiently using data structure information

is beneficial for clustering.

Second, using global structure information solely does

not provide enough structure information for clustering. In

Table 4, the performance of SNMF-A is the worst. This

phenomenon shows that the global structure information is

not enough to promote clustering without local structure

information.

Third, the performance of SNMF is better than GNMF

and SNMF-A. This result means that using local and global

structure information simultaneously is beneficial to clus-

tering. Although only using the global structure is not

enough to elevate clustering results, there is still some

valuable information for clustering. The absence of either

of these two kinds of structure information will weaken

clustering results, which are confirmed by the performance

of NMF, GNMF and SNMF-A.

4.6 Time cost analysis

In this section, the time costs of one iteration for NMF,

GNMF, ‘2;1NMF, ‘2;pNMF, SCCNMF-1, FR-NMF, and

SNMF are displayed in Table 5. The notion ‘–’ in Table 5

represents that the time is too long to finish one iteration.

From this table, it is clear that time costs of SNMF are not

the least. For SNMF, maintaining data structure

Fig. 3 clustering results (ACC, NMI, F* and ARI) on dataset USPS
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information in the reduced space will augment the com-

putational burden.

In addition to the cost of one iteration, the number of

iterations to get a convergence result is a crucial factor for

time costs. Figure 5 displays the convergence curves on

USPS, and other convergence curves on the remaining

datasets have similar tendencies as USPS. Figure 5 shows

that almost all methods will be stable after 100 iterations,

except FR-NMF. For FR-NMF, it will be stable after 200

iterations. Figure 5 reveals that SNMF does not need more

iterations to get a stable result compared with other

methods.

The above analysis confirms that SNMF takes a little

more time to get a stable result. However, SNMF makes

satisfactory promotions compared with the extra time costs.

Thus, the time cost of SNMF is acceptable.

4.7 Robustness analysis

To evaluate the robustness of SNMF, Gaussian noise and

Poisson noise are added to the data, respectively. For

Gaussian noise, the mean and standard deviation are 0 and

0.1, respectively. If some elements become negative after

adding Gaussian noise, they are mapped to be 0. Some

noisy data under these two different noises are shown in

Fig. 6. Clustering results on noisy datasets are shown in

Tables 6 and 7.

From Tables 6 and 7, results show that SNMF has the

best results on noisy datasets. The performance of SNMF

confirms that global and local structure information is

beneficial for clustering when noise exists. Only consid-

ering local structure information is not enough, which is

demonstrated by the performance of GNMF and SNMF.

Fig. 4 clustering results (ACC, NMI, F* and ARI) on dataset YaleB
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5 Conclusion

In this paper, a nonnegative matrix factorization under

structure constraints is proposed. Different from previous

works, the global structure is considered in SNMF. To

accomplish this aim, a new global structure regulation term

is presented. The ‘2 norm constraints are applied to get

discriminative data representations. In addition, SNMF

employs a graph Laplacian term to keep the local structure.

Effective updating rules, which guarantee SNMF non-in-

creasing, are given. The effects of different normalizations

on similarity are investigated by experiments.

However, there are still some problems. First, capturing

the global structure is still a problem. In Table 3, we find

that the proportion of correct information on global simi-

larity is low. There should be some better methods for

Table 4 Results (mean(std)) on

datasets
Index Algorithm USPS YaleB ORL

ACC NMF 0.6635(0.0340) 0.2280(0.0100) 0.6592(0.0191)

GNMF 0.6681(0.0433) 0.2649(0.0132) 0.6465(0.0234)

‘2;1NMF 0.6432(0.0214) 0.2279(0.0092) 0.6666(0.0286)

‘2;pNMF 0.6418(0.0324) 0.2613(0.0120) 0.6476(0.0379)

SCCNMF-1 0.4696(0.0270) 0.0852(0.0033) 0.6261(0.0344)

FR-NMF 0.1046(0.0615) 0.0242(0.0065) –

SNMF-A 0.1291(0.0024) 0.0750(0.0018) 0.1623(0.0053)

SNMF 0.7526(0.0215) 0.2939(0.0115) 0.703(0.0191)

NMI NMF 0.5788(0.0139) 0.3605(0.0106) 0.8222(0.0108)

GNMF 0.6687(0.0148) 0.4014(0.0181) 0.8068(0.0120)

‘2;1NMF 0.5728(0.0160) 0.3617(0.0092) 0.8201(0.0138)

‘2;pNMF 0.5831(0.0222) 0.3907(0.0133) 0.8207(0.0183)

SCCNMF-1 0.4357(0.0149) 0.1165(0.0056) 0.8039(0.0147)

FR-NMF 0.5149(0.0343) 0.3657(0.0143) –

SNMF-A 0.0087(0.0013) 0.0975(0.0026) 0.3750(0.0093)

SNMF 0.7193(0.0143) 0.4066(0.0099) 0.8560(0.0106)

F* NMF 0.6879(0.0240) 0.3384(0.0165) 0.6936(0.0164)

GNMF 0.715(0.0252) 0.4005(0.0172) 0.6818(0.0191)

‘2;1NMF 0.6727(0.0181) 0.3408(0.0144) 0.6952(0.0240)

‘2;pNMF 0.6768(0.0278) 0.3848(0.0185) 0.6835(0.0305)

SCCNMF-1 0.4919(0.0255) 0.1046(0.0048) 0.6669(0.0292)

FR-NMF 0.0937(0.0555) 0.0202(0.0063) –

SNMF-A 0.1330(0.0033) 0.0.0797(0.0019) 0.1766(0.0066)

SNMF 0.7832(0.0183) 0.4224(0.0127) 0.7374(0.0169)

ARI NMF 0.4920(0.0229) 0.1051(0.0098) 0.6170(0.0284)

GNMF 0.5502(0.0239) 0.1122(0.0126) 0.5242(0.0245)

‘2;1NMF 0.4739(0.0195) 0.1073(0.0047) 0.5470(0.0341)

‘2;pNMF 0.4771(0.0349) 0.1223(0.0071) 0.5415(0.0432)

SCCNMF-1 0.2904(0.0176) 0.0045(0.0014) 0.5110(0.0347)

FR-NMF 0.4080(0.0469) 0.0904(0.0088) –

SNMF-A 0(0.0007) 0(0.0005) 0.0011(0.0026)

SNMF 0.6212(0.0245) 0.1238(0.0094) 0.6167(0.0282)

Table 5 Time costs (seconds) of one iteration on three data sets

Time(s) USPS YaleB ORL

NMF 0.0034 0.0184 0.0275

GNMF 0.0018 0.0060 0.0095

‘2;1NMF 0.0417 0.1599 0.1072

‘2;pNMF 0.0441 0.1614 0.1169

SCCNMF-1 1.0333 4.0027 0.3665

FR-NMF 0.0240 0.1780 –

SNMF 0.0279 0.0971 0.0334
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generating global similarity. Second, there is no relation-

ship between global similarities and local similarities in

this work. However, if an algorithm could establish a

framework to connect global similarities and local simi-

larities to refine the quality of these similarities, it may be

beneficial for clustering. All these problems need deeper

investigations.

Appendix

Because (18) and (19) are two gradient descent methods,

(16) is non-increasing. Here is the proof.

Denote the objective function of (16) as F. The partial

derivative of Umk in F is

oF

oUmk
¼ ð�XNV þ UVTVÞmk: ð25Þ

The formulation of updating Umk through the gradient

descent method is the following:

Umk ¼ Umk þ suðXNV � UVTVÞmk: ð26Þ

When su ¼ Umk=ðUVTVÞmk, the nonnegative constraints on
U hold, and (26) is (18).

For V, the updating rule (19) is also a gradient descent

method. The proof is similar to [25].

Fig. 5 convergence curves on USPS

Fig. 6 Noisy data: first column

is USPS dataset, second column

is ORL dataset, and third

column is YaleB dataset
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Let xr and h represent the ith row of V and oF
oxr
, respec-

tively. Denote F1ðxrÞ as the related part of xr in (16). When

omitting the nonnegative constraints, the Lagrange func-

tion of xr is the following:

Lðxr; kÞ ¼ F1ðxrÞ þ
k
2
ðxrxTr � 1Þ: ð27Þ

Denote

x ¼ xTr ; a ¼ hT ; c1 ¼ lT1 ; c2 ¼ lT2 :

Rewrite (27) as follows:

Lðx; kÞ ¼ F1ðxTÞ þ
k
2
ðxTx� 1Þ: ð28Þ

WhenrxLðx; kÞ ¼ 0, we have

a� xk ¼ 0:

Through the constraint xTx ¼ 1, we obtain

k ¼ xTa ¼ aTx:

Thus, rewrite rxLðx; kÞ as follows:

rxLðx; kÞ ¼ a� xk

¼ a� xTax

¼ axTx� xaTx

¼ ðaxT � xTaÞx

ð29Þ

Let A represents axT � xaT . Therefore, A is a skew-sym-

metric matrix. Since Ax is the gradient of (28) the updating

Table 6 Results (mean(std)) on

Gaussian noisy datasets
Gaussian noise

Index Algorithm USPS YaleB ORL

ACC NMF 0.6664(0.0365) 0.2230(0.0106) 0.6588(0.0247)

GNMF 0.6178(0.0265) 0.1012(0.0061) 0.5639(0.0229)

‘2;1NMF 0.6303(0.0228) 0.2243(0.0099) 0.6469(0.0310)

‘2;pNMF 0.6361(0.0330) 0.2532(0.0091) 0.6378(0.0274)

SCCNMF-

1

0.5250(0.0326) 0.0643(0.0025) 0.6528(0.0304)

FR-NMF 0.0981(0.0660) 0.0246(0.0070) –

SNMF 0.7406(0.0204) 0.2788(0.0117) 0.7058(0.0206)

NMI NMF 0.5766(0.0158) 0.3510(0.0099) 0.8174(0.0090)

GNMF 0.6217(0.0193) 0.1486(0.0106) 0.7419(0.0135)

‘2;1NMF 0.5642(0.0130) 0.3549(0.0102) 0.8116(0.0148)

‘2;pNMF 0.5744(0.0229) 0.3810(0.0109) 0.8079(0.0142)

SCCNMF-

1

0.4754(0.0236) 0.0657(0.0045) 0.8174(0.0154)

FR-NMF 0.5125(0.0357) 0.3622(0.0072) –

SNMF 0.7048(0.0146) 0.3952(0.0112) 0.8597(0.0072)

F* NMF 0.6889(0.0266) 0.3248(0.0153) 0.6892(0.0195)

GNMF 0.6711(0.0231) 0.1323(0.0088) 0.6012(0.0209)

‘2;1NMF 0.6640(0.0218) 0.3337(0.0146) 0.6807(0.0270)

‘2;pNMF 0.6697(0.0294) 0.3648(0.0136) 0.6745(0.0233)

SCCNMF-

1

0.5467(0.0327) 0.0738(0.0035) 0.6947(0.0233)

FR-NMF 0.0882(0.0595) 0.0220(0.0074) –

SNMF 0.7723(0.0165) 0.4060(0.0157) 0.7430(0.0161)

ARI NMF 0.4919(0.0243) 0.0991(0.0055) 0.5409(0.0205)

GNMF 0.5064(0.0330) 0.0141(0.0030) 0.4191(0.0225)

‘2;1NMF 0.4650(0.0184) 0.1015(0.0049) 0.5243(0.0343)

‘2;pNMF 0.4696(0.0294) 0.1134(0.0065) 0.5193(0.0306)

SCCNMF-

1

0.3380(0.0302) -0.0036(0.0008) 0.5342(0.0344)

FR-NMF 0.4081(0.0502) 0.0946(0.0049) –

SNMF 0.6077(0.0318) 0.1133(0.0079) 0.6294(0.0192)
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rule in the gradient descent method of x should be the

following:

y ¼ x� svAx:

However, it is difficult to satisfy the constraint yTy ¼ 1.

From [33, 34], a modified method (30) is used.

yðsÞ ¼ x� sA
xþ yðsÞ

2

� �

: ð30Þ

(30) could satisfy that yTy ¼ xTx ¼ 1 for any skew-sym-

metric matrix A and s.
From Lemma 1 (2) in [25], (30) could be expressed as:

yðsÞ ¼ I þ s
2
A

� ��1
I � s

2
A

� �
x: ð31Þ

Then from Lemma 2 in [25], (31) could be rewritten as

yðsÞ ¼ x� b1ðsÞa� b2ðsÞx; ð32Þ

where

b1ðsÞ ¼ s
xTx� s

2
ðaTxÞðxTxÞ � ðxTaÞðxTxÞð Þ

1� s
2

� 	2ðaTxÞ2 þ s
2

� 	2kak2kxk2
;

b2ðsÞ ¼ �s
xTa� s

2
ðaTxÞðxTaÞ � ðaTaÞðxTxÞð Þ

1� s
2

� 	2ðaTxÞ2 þ s
2

� 	2kak2kxk2
:

The nonnegative constraints on y should be handled next.

Note q ¼ 1� ðs
2
Þ2ðaTxÞ2 þ ðs

2
Þ2kak2kxk2. Rewrite (32)

as follows:

yðsÞ ¼ x� s
q
ðb01ðsÞðc1 � c2Þ þ b

0

2xÞ; ð33Þ

where

Table 7 Results (mean(std)) on

Poisson noisy datasets
Poisson noise

Index Algorithm USPS YaleB ORL

ACC NMF 0.6635(0.0340) 0.2281(0.0100) 0.6593(0.0192)

GNMF 0.6681(0.0433) 0.2649(0.0132) 0.6456(0.0206)

‘2;1NMF 0.6432(0.0214) 0.2279(0.0093) 0.6666(0.0287)

‘2;pNMF 0.6418(0.0324) 0.2614(0.0121) 0.6476(0.0379)

SCCNMF-

1

0.5009(0.0290) 0.0694(0.0025) 0.6631(0.0264)

FR-NMF 0.0830(0.0290) 0.0256(0.0041) –

SNMF 0.7526(0.0215) 0.2939(0.0115) 0.703(0.0191)

NMI NMF 0.5788(0.0139) 0.3605(0.0107) 0.8223(0.0108)

GNMF 0.6687(0.0148) 0.4014(0.0181) 0.8066(0.0105)

‘2;1NMF 0.5728(0.0160) 0.3617(0.0093) 0.8202(0.0138)

‘2;pNMF 0.5831(0.0222) 0.3908(0.0133) 0.8207(0.0183)

SCCNMF-

1

0.4581(0.0213) 0.0786(0.0052) 0.8299(0.0132)

FR-NMF 0.1587(0.0119) 0.1099(0.0029) –

SNMF 0.7193(0.0143) 0.4066(0.0099) 0.8560(0.0106)

F* NMF 0.6879(0.0240) 0.3384(0.0165) 0.6936(0.0164)

GNMF 0.715(0.0252) 0.4005(0.0172) 0.6813(0.0174)

‘2;1NMF 0.6727(0.0181) 0.3408(0.0144) 0.6952(0.0240)

‘2;pNMF 0.6768(0.0278) 0.3848(0.0185) 0.6835(0.0305)

SCCNMF-

1

0.5173(0.0320) 0.0825(0.0038) 0.7064(0.0212)

FR-NMF 0.0753(0.0258) 0.0248(0.0039) –

SNMF 0.7832(0.0183) 0.4224(0.0127) 0.7374(0.0169)

ARI NMF 0.4920(0.0229) 0.1051(0.0062) 0.5489(0.0236)

GNMF 0.5502(0.0239) 0.1122(0.0126) 0.5247(0.0219)

‘2;1NMF 0.4739(0.0195) 0.1073(0.0047) 0.5470(0.0341)

‘2;pNMF 0.4771(0.0349) 0.1224(0.0072) 0.5415(0.0432)

SCCNMF-

1

0.3186(0.0266) -0.0019(0.0009) 0.5607(0.0329)

FR-NMF 0.0966(0.0118) 0.0026(0.0006) –

SNMF 0.6212(0.0245) 0.1238(0.0094) 0.6167(0.0282)
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b
0

1ðsÞ ¼ xTx� s
2
ððaTxÞðxTxÞ � ðxTaÞðxTxÞÞ;

b
0

2ðsÞ ¼ xTa� s
2
ððaTxÞðxTaÞ � ðaTaÞðxTxÞÞ:

Expanding b
0

1ðsÞðc1 � c2Þ and b
0

2x in (33) through auxiliary

variables (6), we get

yðsÞ ¼ x� s
q

xTxc1 þ
s
2
T1þ xTc2xþ

s
2
P1

� �

þ s
q

xTxc2 þ
s
2
T2þ xTc1xþ

s
2
P2

� �
:

ð34Þ

Because yðsÞ has nonnegative constraints, the s should

satisfy

x� s
q

xTxc1 þ
s
2
T1þ xTc2xþ

s
2
P1

� �
� 0: ð35Þ

Denote ðaTxÞ2 � kak2kxk2 as M. Then q ¼ 1� ðs
2
Þ2M.

Therefore, we obtain

qx� s xTxc1þ
s
2
T1þ xTc2xþ

s
2
P1

� �
�0

) ð2T1þ 2P1þMxÞs2þ 4ðxTxc1þ xTc2xÞs� 4x�0:

Utilizing the auxiliary variables (6), a series of equations

are obtained as follows:

Bis
2 þ Cisþ Di� 0; i ¼ 1; 2; . . .; k: ð36Þ

(6) confirms that Ci� 0 and Di� 0. Thus, when s satisfies

(36) and s[ 0, there exist three situations.

1. when Bi [ 0,

s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2
i � 4BiDi

p
� Ci

2Bi
:

2. when Bi ¼ 0,

s ¼ �Di

Ci
:

3. when Bi\0,

s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2
i � 4BiDi

p
� Ci

2Bi
:

Thus, we obtain

s ¼ minf
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2
i � 4BiDi

p
� Ci

2Bi
; when Bi 6¼ 0;�Di

Ci
; when Bi ¼ 0g;

i ¼ 1; 2; . . .; k:

ð37Þ

(37) guarantees (35) hold. Thus, the updating rule (19)

guarantees all constraints hold.

Now it has been proved that (18) and (19) are gradient

descent methods for (16). Therefore, (16) is non-increasing

under (18) and (19).
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