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Abstract
Traffic sign detection is a challenging task for the unmanned driving system, especially for the detection of multi-scale

targets and the real-time problem of detection. In the traffic sign detection process, the scale of the targets changes greatly,

which will have a certain impact on the detection accuracy. Feature pyramid is widely used to solve this problem, but due

to the diversity of traffic sign sizes, it cannot accurately extract multi-size feature maps, thus destroying the feature

consistency between traffic signs. Moreover, in practical application, it is difficult for common methods to improve the

detection accuracy of multi-scale traffic signs while ensuring real-time detection. In this paper, we propose an improved

feature pyramid model, named AF-FPN, which utilizes the adaptive attention module (AAM) and feature enhancement

module (FEM) to reduce the information loss in the process of feature map generation and enhance the representation

ability of the feature pyramid. We replaced the original feature pyramid network in YOLOv5 with AF-FPN, which

improves the detection performance for multi-scale targets of the YOLOv5 network under the premise of ensuring real-

time detection. Furthermore, a new automatic learning data augmentation method is proposed to enrich the dataset and

improve the robustness of the model to make it more suitable for practical scenarios. Extensive experimental results on the

Tsinghua-Tencent 100 K (TT100K) dataset demonstrate that compared with several state-of-the-art methods, our method is

more universal and superior.

Keywords AF-FPN � Data augmentation � Multi-scale target � YOLOv5

1 Introduction

The traffic sign recognition system is the data foundation of

intelligent transportation systems (ITS) and unmanned

driving system, balancing the accuracy and real-time per-

formance of the traffic sign detection and recognition

technology, which plays an important role in the subse-

quent decision-making of ITS and unmanned driving sys-

tem [1].

In recent years, most of the state-of-the-art object-de-

tection algorithms have used convolutional neural net-

works (CNNs) and have achieved fruitful results in target

detection tasks, such as the two-stage detectors Faster

R-CNN [2], R-FCN [3], the one-stage detectors SSD [4],

and YOLO [5]. However, directly applying these methods

to traffic sign recognition is hard to achieve satisfactory

results in practical application. The target recognition and

detection of the vehicle-mounted mobile terminal require

high accuracy for targets of different scales, and high
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requirements for recognition speed, which means to meet

the two requirements of accuracy and real-time [6, 7].

Traditional CNNs use a large number of parameters and

floating-point operations per second (FLOP) to achieve

better detection performance. For example, VGG-16 [8]

has about 138 M parameters and requires 14.9B FLOPs to

process an image of size 608 9 608. However, mobile

devices (e.g., smartphones and self-driving cars) with

limited memory and computation resources cannot be used

for deployment and inference for larger networks. As a

one-stage detector, the YOLOv5 [9] is used in this paper

because of the advantages of low computation and fast

recognition speed.

In this paper, an improved YOLOv5 network is pro-

posed, which not only ensures that the model size can meet

the requirements of deployment on the vehicle side but also

improve the ability of multi-scale targets and meet the real-

time requirement.

The main contributions of our work are summarized as

follows:

• A novel feature pyramid network is proposed in this

paper. Through adaptive feature fusion and receptive

field enhancement, it retains the channel information in

the feature transfer process to a large extent and learns

different receptive fields in each feature map adaptively

to enhance the representations of feature pyramids,

effectively improving the accuracy of multi-scale

targets recognition.

• A new automatic learning data augmentation strategy is

proposed. Inspired by AutoAugment [10], the latest

data augmentation operations have been added. The

improved data augmentation method effectively

improves the model training effect and the robustness

of the training model, which has more practical

significance.

• Unlike the existing YOLOv5 network, the current

version is improved to reduce the impact of scale

invariance. Meanwhile, it can be deployed on the

mobile terminal of the vehicle to detect and recognize

traffic signs in real-time.

The rest of this paper is organized as follows: Sect. 2

introduces related works about CNN-based traffic sign

detection and data augmentation. Section 3 introduces the

details of the proposed method to detect and recognize the

traffic signs efficiently in real-time. The experimental

results and analysis are presented in Sect. 4. Finally, the

conclusion is described in Sect. 5.

2 Related works

2.1 CNN-based traffic sign detection

At present, CNN as a popular algorithm for deep learning

has a wide range of applications in computer vision, natural

language processing, visual-semantic alignments, and other

fields [11–14]. According to whether region proposal is

required, it can be divided into two categories: single-stage

detection and two-stage detection. Single-stage detection is

often used in traffic detection due to its fast detection

performance.

Shao et al. [15, 16] proposed an improved Faster

R-CNN to traffic sign detection. They simplified the Gabor

wavelet through a regional suggestion algorithm to

improve the recognition speed of the network. Zhang et al.

[17] modified the number of convolutional layers in the

network based on YOLOv2, proposed an improved one-

stage traffic sign detector, and used the China Traffic Sign

Dataset for training to make it better adapted to Chinese

traffic road scenes. A novel perceptual generative adver-

sarial network was developed for the recognition of small-

sized traffic signs [18], which boosts detection performance

by generating super-resolve representations for small traffic

signs. Aiming the scale variety problems in traffic sign

detection, SADANet [19] combines a domain adaptive

network with a multi-scale prediction network to improve

the ability of the network to extract multi-scale features.

Most of the above-mentioned networks use single-stage

detection and only use single-scale depth features, so it is

difficult for them to have superior detection and recogni-

tion performance in sophisticated traffic scenes. Traffic

sign instances of different scales have great differences in

visual features, and the proportion of traffic signs in the

entire traffic scene image is very small. Therefore, the scale

variety problem has become a major challenge in traffic

sign detection and recognition. And learning scale-invari-

ant representation is critical for target recognition and

location [20]. At present, this challenge is handled mainly

from two aspects: network architecture modification and

data augmentation [21].

At present, multi-scale features are widely used in high-

level object recognition to improve the recognition per-

formance of multi-scale targets [22]. Feature Pyramid

Network (FPN) [23], as a commonly used multi-layer

feature fusion method, uses its multi-scale expression

ability to derive many networks with high detection accu-

racies, such as Mask R-CNN [24] and RetinaNet [25]. It is

worth noting that the feature maps will suffer from infor-

mation loss due to the reduced feature channels and only

contain some less relevant context information in the fea-

ture maps of other levels. Moreover, FPN pays too much
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attention to the extraction and optimization of low-level

features. As the number of channels decreases, high-level

features will lose a lot of information, resulting in a

decrease in the detection accuracy of large-scale targets

[22]. In response to this problem, a simple yet effective

method named receptive field pyramid (RFP) [26] is pro-

posed to enhance the representation ability of feature

pyramids and drive the network to learn the optimal feature

fusion pattern [14].

2.2 Data augmentation

Data augmentation has been widely utilized for network

optimization and proven to be beneficial in vision tasks

[2, 8, 27], which can improve the performance of CNN,

prevent over-fitting [28], and is easy to implement [29].

Data augmentation methods could be roughly divided

into color transformation (e.g., noise, blur, contrast, and

color casting) and geometric transformation (e.g., rotation,

random cropping, translation, and zoom) [30]. These aug-

mentation operations artificially inflate the training dataset

size by either data warping or oversampling. Lv et al. [31]

proposed five data augmentation methods dedicated to face

detection, including landmark perturbation and a synthesis

method for four features of hairstyles, glasses, poses, illu-

minations. Nair et al. [32] performed geometric transfor-

mation and color transformation on the dataset. The

training dataset is expanded and enriched by random crop

and horizontal reflections and applying PCA on color space

to change the intensity of the RGB channel. These fre-

quently used methods just do simple transformations and

cannot simulate the complex reality. Dwibedi et al. [33]

improved detection performance with the cut-and-paste

strategy. Furthermore, the method of annotated instance

masks with a location probability map is utilized to aug-

ment the training dataset [34], which can effectively

enhance the generalization of the dataset. YOLOv4 [13]

and Stitcher [35] introduce mosaic inputs that contain

rescaled sub-images, which are also used in YOLOv5.

However, these data augmentation implementations are

manually designed and the best augmentation strategies are

dataset-specific.

The effect of data augmentation strategies is related to

the characteristics of the dataset itself, so the focus of

recent work has shifted to learning data augmentation

strategies directly from the data itself. Tran et al. [36]

generated augmented data, using the Bayesian approach,

based on the distribution learned from the training set.

Cubuk et al. [10] proposed a new data augmentation

method that can automatically search for improved data

augmentation policies, named AutoAugment.

3 Proposed method

3.1 The improved YOLOv5 network

As the latest model in the current YOLO series, the supe-

rior flexibility of YOLOv5 makes it convenient for rapid

deployment on the vehicle hardware side [37]. YOLOv5

contains four models, namely YOLOv5s, YOLOv5m,

YOLOv5l, and YOLOv5x. YOLOv5s is the smallest model

of the YOLO series and is more suitable for deployment on

a vehicle-mounted mobile hardware platform due to its

memory size of 14.10 M, but the recognition accuracy

cannot meet the requirements of accurate and efficient

recognition, especially for the recognition of small-scale

targets.

The basic framework YOLOv5 can be divided into four

parts: Input, Backbone, Neck, and Prediction [37]. The

Input part enriches the dataset with mosaic data augmen-

tation, which has low requirements for hardware devices

and low computational cost. However, it will cause the

original small targets in the dataset to become smaller,

resulting in the deterioration of the generalization perfor-

mance of the model. The Backbone part is mainly com-

posed of CSP modules, which perform feature extraction

through the CSPDarknet53 [13]. FPN and Path Aggrega-

tion Network (PANet) [38] are used to aggregate the image

feature at this stage in Neck. As mentioned earlier, in the

processing of generating high-level feature maps in the

FPN, the number of channels is reduced, which may lead to

the loss of key information, especially for small-sized

target recognition. Finally, the network performs target

prediction and output through the Prediction.

In this paper, the AF-FPN and the automatic learning

data augmentation are introduced to solve the problem of

incompatibility between model size and recognition accu-

racy, and further improve the recognition performance of

the model. The original FPN structure is replaced by AF-

FPN to improve the ability to recognize multi-scale targets

and make an effective trade-off between recognition speed

and accuracy [26]. Moreover, we remove the mosaic aug-

mentation in the original network and use the best data

augmentation methods according to the automatic learning

data augmentation policy to enrich the dataset and improve

the training effect. The improved YOLOv5s network

structure is shown in Fig. 1.

In Prediction, generalized IoU (GIoU) [39] loss is used

as the loss function of the bounding box and the weighted

non-maximum suppression (NMS) [40] method is used for

NMS. The loss function is as follows:
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LGIoU ¼ 1� IoUþ C � B [ Bgtð Þj j
Cj j ð1Þ

IoU ¼ A \ Bj j
A [ Bj j ð2Þ

where C is the smallest box covering B and Bgt. Bgt = (xgt,

ygt, wgt, hgt) is the ground-truth box, and B = (x, y, w, h) is

the predicted box.

However, when the predicted box is inside the ground-

truth box and the size of the predicted box is the same, the

relative positions of the predicted box and the ground-truth

box cannot be distinguished.

In this paper, the GIoU is replaced by complete IoU

(CIoU) [41] loss. Based on GIoU loss, the CIoU loss

considers the overlap area, central point distance of

bounding boxes, and the consistency of aspect ratios for

bounding boxes. The loss function can be defined as:

RCIoU ¼ q2ðb; bgtÞ
c2

þ am ð3Þ

t ¼ 4

p2
ðarctanw

gt

hgt
� arctan

w

h
Þ2 ð4Þ

LCIoU ¼ 1� IoUþ RCIoU ð5Þ

where RCIoU is the penalty term, which is defined by

minimizing the normalized distance between central points

of two bounding boxes. b and bgt denote the central points

of B and Bgt, q(�) is the Euclidean distance, and c is the

diagonal length of the smallest enclosing box covering the

two boxes. a is a positive trade-off parameter, and m
measures the consistency of the aspect ratio.

And the trade-off parameter a is defined as:

a ¼ m
ð1� IoUÞ þ m

ð6Þ

which the overlap area factor is given higher priority for

regression, especially for non-overlapping cases.

Fig. 1 The architecture of the proposed YOLOv5s network

7856 Neural Computing and Applications (2023) 35:7853–7865

123



3.2 AF-FPN structure

Based on the traditional feature pyramid network, AF-FPN

adds the adaptive attention module (AAM) and the feature

enhancement module (FEM). The former part is used to

alleviate the problem of context loss in high-level feature

maps due to feature channel reduction. The latter part

enhances the representation of feature pyramids and

accelerates the inference speed while achieving state-of-

the-art performance. The structure of the AF-FPN is shown

in Fig. 2.

The input image generates feature maps {C1, C2, C3, C4,

C5} through multiple convolutions. C5 generates the fea-

ture map M6 through AAM. And M6 is combined with M5

by summation and propagated to fuse with other features at

lower levels through a top-down path, and the receptive

field is expanded through FEM after each fusion. PANet

shortens the information path between lower layers and the

topmost feature.

The operation of the adaptive attention module can be

performed in two steps. First of all, the multiple context

features with different scales are obtained through the

adaptive average pooling layer. The pooling coefficient b is

[0.1, 0.5], and it adaptively changes according to the target

size in the dataset. Secondly, a spatial weight map is

generated for each feature map through the spatial attention

mechanism. Through the weight map, context features are

fused to generate a new feature map, which contains multi-

scale context information. The new feature map is com-

bined with the original high-level feature map and propa-

gated to fuse with other features at lower levels.

The specific structure of the AAM is shown in Fig. 3. As

the input of the adaptive attention module, the size of C5 is

S = h 9 w. It first obtains context features with different

scales of (b1 9 S, b2 9 S, b3 9 S) through the adaptive

pooling layer. Then each context feature undergoes a 1 9 1

convolution to obtain the same channel dimension 256.

Bilinear interpolation is used to upsample them to the scale

of S for subsequent fusion. The spatial attention mechanism

merges the channels of the three context features through a

Concat layer, and then the feature map sequentially passes

1 9 1 convolution layer, ReLU activation layer, 3 9 3

convolution layer, and sigmoid activation layer to generate

corresponding spatial weights for each feature map. The

generated weight map and the feature map after the merged

channel are subjected to the Hadamard product operation,

which is separated and added to the input feature map M5

to aggregate context features intoM6. The final feature map

has rich multi-scale context information, which to a certain

extent alleviates the loss of information due to the reduc-

tion in the number of channels.

FEM mainly uses the dilated convolution to learn the

different receptive fields in each feature map adaptively

based on the varying scales of detected traffic signs,

thereby improving the accuracy of multi-scale target

detection and recognition. As shown in Fig. 4, it can be

divided into two components: the multi-branch convolution

layer and the branch pooling layer. The multi-branch

convolution layer is used to provide different sizes of

receptive fields for the input feature map through the

dilated convolution. And the average pooling layer is used

to fuse the traffic information from the three branch

receptive fields to improve the accuracy of multi-scale

prediction.

The multi-branch convolution layer consists of dilated

convolution, BN layer, and ReLU activation layer. The

dilated convolutions in the three parallel branches have the

same kernel size but different dilation rates. Specifically,

the kernel of each dilated convolution is 3 9 3 and the

dilation rates d is 1, 3, and 5 for different branches.

Fig. 2 The architecture of the

AF-FPN
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Dilated convolutions support exponentially expanding

receptive fields without losing resolution or coverage [42].

However, in the convolution operation of dilated convo-

lution, the elements of the convolution kernel are spaced,

and the size of the space depends on the dilation rates,

which is different from the elements of the convolution

kernel that are all adjacent in the standard convolution

operation.

The convolution kernel changed from 3 9 3 to 7 9 7

and the receptive field of this layer is 7 9 7. The formula

for the receptive field of dilated convolution is as follows:

r1 ¼ d � k � 1ð Þ þ 1 ð7Þ
rn ¼ d � k � 1ð Þ þ rn�1 ð8Þ

where k and ri denote the kernel size and dilation rate,

respectively. And d denotes the stride of the convolution.

The branch pooling layer [43] is proposed to fuse

information from different parallel branches and avoid

introducing additional parameters. The averaging operation

is utilized to balance the representation of different paral-

lels branches during training, which enables a single branch

to implement inference during the test. The expression is as

follows:

yp ¼
1

B

XB

i¼1

yi ð9Þ

where yp denotes the output of the branch pooling layer.

B represents the number of parallel branches and we set

B = 3.

3.3 Data augmentation

The augmentation policy consists of two parts: search

space and search algorithm [44]. The search space contains

5 sub-policies, each of which consists of two simple image

enhancement operations applied in sequence. One of the

sub-policies are be chosen at random and applied to the

current image. In addition, each operation is also associated

with two hyperparameters: the probability of applying the

operation and the magnitude of the operation [10]. The

operations we used in the experiment include the latest data

augmentation methods such as Mosaic [13], SnapMix [45],

CutMix, Mixup, Gaussian blur [46] and Translate X/Y. In

total, we have 15 operations in our search space. Each

Fig. 3 The architecture of the AAM

Fig. 4 The architecture of the FEM
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operation also comes with a default range of magnitude.

We discretize the range of magnitude into D = 11 values

that follow the uniform distribution so that we can use a

discrete search algorithm to find them. Similarly, we also

discretize the probability of applying one of all operation

into P = 10 values (also following a uniform distribution).

Finding each sub-policy becomes a search problem in a

space of (19 9 D 9 P)2 possibilities. Therefore, the search

space with 5 sub-policies then has roughly

(19 9 D 9 P)295 possibilities and requires an efficient

search algorithm to navigate this space [47]. Figure 5

shows the policy with 5 sub-policies in the search space.

Through the search space, the problem of searching for a

learned augmentation policy into a discrete optimization

problem. Reinforcement Learning [48] is used as the search

algorithm, which has two components: a controller RNN

and the training algorithm. The controller RNN is a

recurrent neural network, and the proximal policy opti-

mization (PPO) [47] with a learning rate of 0.00035 is used

as the network training algorithm. It is trained by a reward

signal, which is the degree to which the found policy

improves the generalization ability of the proposed model

[49, 50]. The proposed model is trained on augmented data

produced by the five sub-policies in the training set. For the

images in each batch, one of the five sub-policies is ran-

domly selected for data augmentation, and then the accu-

racy of the network on the validation set is measured. This

accuracy is used as a reward signal to train the RNN. The

training process is shown in Fig. 6.

The controller RNN predicts a decision produced by a

softmax at each step and the prediction is then fed into the

next step as an embedding from the search space. Totally,

the controller has 30 softmax predictions to predict 5 sub-

policies, each of which has two operations, and each

operation requires an operation type, magnitude, and

probability. We applied the automatic learning data aug-

mentation method to the TT100K dataset, and then used

the best data augmentation policy obtained through

training.

3.4 Experiments and analysis

In this section, we comprehensively trained the improved

YOLOv5 model through the TT100K [51, 52] dataset,

which includes 182 types of traffic signs instances with

detailed annotations and covers different actual traffic

environments. And about 42.5% of traffic signs in TT100K

are small objects, which means it is more suitable for actual

vehicle-mounted target recognition. The size distribution of

traffic sign instances in the dataset is displayed in Fig. 7.

3.5 Experimental setting

Considering the fixed size of input demanded by the

YOLOv5 network, we resized the images to uniform

dimensions of 608 9 608. The training and validation

datasets include 9146 images and the test dataset include

1121 image from TT100K. In addition, the CCTSDB [53]

dataset is used to verify the generalization ability of the

model. We selected 2000 images in the dataset as the test

set for the experiments. In the process of training, the initial

value of the learning rate was 0.01, and use the cosine

annealing strategy to reduce the learning rate. The epochs

and the batch size are set to 500 and 32, respectively. Our

experiments were performed on a Linux4.15.0–142-generic

Ubuntu 18.04 with Intel(R) Xeon(R) Silver 4210R CPU @

2.40GH, 8 9 32 GB DDR4 and 8 9 TITAN Xp, 12 GB

memory. The mobile device used in the experiment is

Jetson Xavier NX, and an external USB3.0 industrial

camera.

3.6 Experimental analysis

To demonstrate the advantages of the proposed method in

traffic sign detection, we evaluated our method on TT100K

and compared it with the original YOLOv5, YOLOv5-Lite

[54], EfficientDet [55], YOLOv5-face [56], M2det [57],

SSD, and YOLOv3 [58]. We evaluated performance using

metrics including model size, parameters, floating-point

operations per second (FLOPs), mean average precision

(mAP), average precision of large, medium, and small size

targets (APL, APM, APS), and frames per second (FPS).

FPS refers to the number of frames per second transmitted

by the screen [59]. The videos we usually see are contin-

uous pictures composed of pictures, and each picture is

each frame of the video. Therefore, the higher the FPS, the

Fig. 5 An example of a policy with 5 sub-policies
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smoother the picture. The specific results are shown in

Table 1.

Firstly, it can be seen that the model size of the proposed

method is 16.3 M, which is easy to be deployed on a

mobile platform so that it can be used for real-time

shooting and recognition on the vehicle side. The amount

of parameters in the training process is slightly higher than

that of EfficientDet and YOLOX. FLOPs is 17.9G which is

only 3.3G larger than the optimal YOLOv5-Lite. It can be

seen from these two indicators that our method has a faster

training speed and requires less hardware equipment,

which is convenient for popularization. Excessive reduc-

tion in the number of parameters and calculations will lead

to a decrease in the detection effect of the final training

model. Secondly, our method achieves the mAP of 65.14%

on all 182 traffic sign classes, which is second only to

YOLOX. Although the APL of our method is lower than

M2det and YOLOX, the recognition accuracy on small

targets is 41.46%, which is significantly higher than other

methods. Finally, FPS is used as a metric to evaluate the

speed of target detection, indicating that our method can

meet the real-time requirements of detection on the mobile

terminal. In general, our method has high accuracy for

multi-scale target detection and can achieve a balance

between recognition accuracy and recognition speed. The

model size is suitable for deployment on the mobile ter-

minal and has practical application significance.

In addition, traffic sign detection is a multi-category and

multi-target recognition task, and the false detection rate

Fig. 6 The specific training process of the controller RNN

Fig. 7 Size distribution of sign instances from the TT100K

Table 1 Comparison of our

method with other methods on

the TT100K dataset

Method Model Params FLOPs FPS APs APM APL mAP

Efficientdet-d0 15.15 M 3.752 M 2.50B 26 – 0.3980 0.5526 0.5786

M2det 340 M 147 M 16.35G 12 0.0300 0.3198 0.6586 0.4658

Mobilenet-SSD 118 M 25.067 M 29.20G 22 0.0275 0.2443 0.5261 0.3200

YOLOv3 119.6 M 59.578 M 158.00G 27 0.3889 0.4454 0.4288 0.6186

YOLOX-s 69.0 M 9.010 M 27.03G 59 0.4122 0.5975 0.6081 0.6860

YOLOv5-Lite-g 11.6 M 5.277 M 15.60G 71 0.3218 0.4914 0.4957 0.5431

YOLOv5 14.6 M 7.193 M 17.90G 105 0.3567 0.5142 0.5184 0.6018

Ours 16.3 M 8.039 M 17.90G 95 0.4146 0.5783 0.5817 0.6514
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and missed detection rate are also important metrics to

measure the detection network. In order to verify the

missed detection requirements of the proposed method in

real-time traffic sign detection, Log-Average Miss RATE

(LAMR) [60] is selected as the evaluation index. LAMR

reflects the relationship between the false negative (FP) of

each image and the missed detection rate. The lower the

FP, the better the detection performance of traffic signs.

We selected the top 19 traffic sign categories in the dataset,

and compared the missed detections of each method on

these types of traffic signs, as shown in Fig. 8. It can be

seen that the missed detection rate of our method for traffic

sign recognition is significantly lower than other methods,

and it has practical application significance. However, the

missed detection rate of several types of traffic signs such

as ip, w57, and po is still high, and we will make further

improvements in future research. Further, we count the

average recall rate of the proposed method on these 19

categories, as shown in Fig. 9. The average recall rate is

the ratio of the number of correctly identified samples to

the number of all positive samples in the test set, which can

reflect the accuracy and missed detection of the model to a

certain extent.

We visualize the method proposed in this paper, as

shown in Fig. 10a. It can be observed that our method

successfully recognized the small-sized traffic signs on the

actual traffic scene with high recognition accuracy, and

there are almost no missed detections and false detections.

Figure 10b shows the test performance of the trained

model on the CCTSDB dataset. As can be seen from the

figure, our model still has good training effect on other

datasets, and can accurately and quickly recognize traffic

signs in different environments, and has strong general-

ization ability.

We transplanted the trained model to the mobile plat-

form and connected an external camera to shoot the actual

road scene. Real-time traffic sign detection and recognition

are performed on the captured images, and the recognition

Fig. 8 Comparison of the miss detection rate of each method on 19

types of traffic signs

Fig. 9 Comparison of the miss

detection rate of each method on

19 types of traffic signs
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Fig. 10 a Some examples were detected by our method on the TT100K dataset. b Some examples were detected by our method on the CCTSDB

dataset

Fig. 11 The mobile device deployment and the detection example of shooting through the camera
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results are displayed on the LED screen, as shown in

Fig. 11.

3.7 Ablation study

To more intuitively demonstrate the better performance of

the proposed method for traffic sign detection and recog-

nition, we conduct the ablation study, and the results are

shown in Table 2. It shows the ablation result of incre-

mentally adding the components training on the YOLOv5s

model.

As observed from the results, the standard YOLOv5s

provides a detection mAP of 60.18%. Integrating the data

augmentation and the AF-FPN improves the mAP to 61.31

and 62.67%, respectively. The mean average precision

(mAP) of our method on the TT100K dataset is 4.96%

higher than that of the YOLOv5s, which means the pro-

posed method achieves impressive performance in target

and recognition. At the same time, the model size and

parameters amount only slightly increase, and the FLOPs

do not change, which means that the training speed of the

improved network and the requirements for training

equipment are basically unchanged. These ensure that our

method can be easily deployed on the vehicle side.

Although FPS decreases by 10, it still meets the require-

ments of real-time detection on the vehicle side.

4 Conclusion

In this paper, we proposed a real-time traffic sign detection

network based on modified YOLOv5s, which achieves

better detection performance than state-of-the-art one-stage

detectors. In this work, the proposed AF-FPN structure

improves the information extraction ability of feature maps

and its representation ability for detecting multi-scale

objects. And the new data augmentation strategy enriches

the traffic sign dataset by adding Noise, Mosaic, and other

methods to improve the training effect of the model. The

empirical results verified that the proposed method could

achieve state-of-the-art performance with a fast inference

speed, the detection speed on the vehicle side is 95 FPS.

The proposed method provides the input feature map of

different receptive fields and fuses the receptive field

pyramids for the target traffic signs. Therefore, the

improved network can enhance the recognition accuracy of

multi-scale targets without introducing additional calcula-

tions, the mAP has increased by 4.96% compared to the

original network on the TT100K. Due to the size of the

trained model being small, it is easy to deploy on the

mobile device of the vehicle and perform real-time

recognition and detection of the road scene. However, in

practical applications, a faster vehicle speed will cause the

motion blur of the image, which will affect the recognition

result. In future, we plan to explore a better performance

detection model for high-speed moving targets.
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