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Abstract
Protecting water resources from pollution is one of the most important challenges facing water management researchers.

The governing equation for river pollution is mostly the advection–dispersion equation, with considering the longitudinal

dispersion coefficient as its most important effective parameter. The purpose of this paper is to develop a new framework

for accurate prediction of the longitudinal dispersion coefficient of rivers based on artificial intelligence (AI) methods. To

do this, we used a combination of multilayer perceptron (MLP), one of the most robust neural networks, and a novel

metaheuristic algorithm, namely Harris hawk optimization (HHO). Besides, two optimized MLP models with particle

swarm optimization (PSO) and imperialist competitive algorithm (ICA) were utilized to demonstrate the accuracy of the

proposed model. To evaluate the developed models, 164 series of data collected from previous studies, including hydraulic

and geometric parameters of rivers, were used. The indicated results proved the efficiency of the HHO to improve the

optimum auto-selection of the AI models. Thus, the recorded results show very high accuracy of the newly developed

model, MLP-HHO compared to others. Furthermore, to increase the prediction accuracy, a K-means clustering technique is

coupled with MLP-HHO model during dividing the data to train and test categories. The proposed hybrid K-means-MLP-

HHO model with coefficient of determination (R2) and root mean square error (RMSE), of 0.97 and 30.94 m2/s,

respectively, significantly outperformed all existing and AI-based models. Furthermore, the sensitivity analysis showed that

the flow width is the most influential factor in predicting the longitudinal dispersion coefficient.
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1 Introduction

Due to the current situation of world water resources and

the increasing problem of surface and groundwater pollu-

tion, water quality management is prioritized by many

managers and researchers in this field. A source of con-

tamination released into the water is rapidly diffused into it

and transported downstream along with the water flow due

to molecular motion, turbulence and uneven velocity at the

cross-sectional area of the flow [1].

The governing equation for pollutant transmission is the

advection–diffusion equation, expressed as Eq. (1) [2].
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where C is the cross-sectional average concentration kg
m3

� �
,

U is the cross-sectional average velocity m
s

� �
, x is direction

of the mean flow, t is time (s) and K is representing the

longitudinal dispersion coefficient in rivers m2

s

� �
.

It is a partial differential equation that can be solved

using numerical methods and defining the appropriate

boundary and initial conditions [3, 4]. According to this

equation, the longitudinal dispersion coefficient is consid-

ered the most important parameter that the accurate esti-

mation of which is critical in hydraulic engineering [5].

This coefficient can be measured directly by sampling the
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upstream and downstream sections of the river. This is

difficult due to the complex geometry of the natural

channel bed and the various hydraulic prevailing condi-

tions. Thus, it is usually calculated using empirical and

theoretical relations [6].

The longitudinal dispersion coefficient was firstly

introduced by Taylor as a measure of the longitudinal

dispersion process by the advection–diffusion equation [7].

Then, Elder began to extend the Taylor method. Assuming

that the velocity profile in the vertical direction is loga-

rithmic, he proposed Eq. (2) to estimate the longitudinal

dispersion coefficient for wide channels [8].

K

HU�
¼ 5:93 ð2Þ

where H and U� are the depth of flow and the bed shear

velocity, respectively.

Although the Elder’s equation was considered a great

success in predicting the longitudinal dispersion coeffi-

cient, ignoring changes in cross-sectional velocity profiles

showed a large difference between the observed values and

the predicted values [1, 9]. According to Fisher, the

transverse velocity profile was more important than the

vertical velocity profile for predicting the longitudinal

dispersion coefficient in the wide channel. Accordingly, he

proposed a triangular integral [Eq. (3)] to estimate the

longitudinal dispersion coefficient in wide channels [10].
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in which A and W represent the cross-sectional area and

the channel width, respectively. h is the local flow depth, u0

is the difference between the local depth-averaged velocity

and the cross-sectional average velocity and ey is the

transverse turbulent diffusion coefficient.

Many attempts have been made so far, such as tracking

measurements, empirical models and theoretical relation-

ships, to estimate the longitudinal dispersion coefficient

[5].

Kashefipour and Falconer proposed a new equation for

predicting the longitudinal dispersion coefficient for natu-

ral channels using dimensional analysis and regression of

hydraulic flow parameters. A comparison of statistical

parameters showed that the method was more accurate than

other equations for calculating the longitudinal dispersion

coefficient. By linearly combining of their proposed

equation with the equation proposed by Soe and Cheong,

they also proposed another equation to estimate the lon-

gitudinal dispersion coefficient. The efficiency of this

equation was proved by analyzing it using statistical

methods [11].

Continuing efforts to find a more accurate way to cal-

culate the dispersion coefficient, optimization algorithms

have become more popular in recent decades due to the

high speed of soft computing methods. Sahay and Dutta

used the genetic algorithm (GA) and Etemad-Shahidi and

Taghipour used the M5 tree model, a flexible computa-

tional method, to estimate the longitudinal dispersion

coefficient of natural rivers [9, 12]. Li et al. used the dif-

ferential evolution (DE) algorithm to estimate the longi-

tudinal dispersion coefficient of rivers by minimizing the

sum-square error. This study used observational data from

29 rivers in the USA to evaluate the performance of the

proposed algorithm [13]. Sattar and Gharabaghi used the

gene expression programming (GEP) model to develop an

empirical relationship between longitudinal dispersion

coefficient and control variables including Froude number,

dimensional ratio and bed roughness. For this purpose, they

used 150 series of natural flow data including geometric

and hydraulic parameters of the flow. Comparing the pro-

posed model with other methods in terms of uncertainty

indicated the higher accuracy of the GEP model [14].

Alizadeh et al. used the Bayesian network method to pro-

vide a model for predicting the longitudinal dispersion

coefficient of natural rivers. To increase the accuracy of the

proposed model, they used cluster analysis for data pro-

cessing couples with Bayesian network [6]. Kargar et al.

used the M5 model tree (M5P) model to predict longitu-

dinal dispersion coefficient as a function of flow depth,

channel width, average velocity and shear velocity [15].

Consequently, many different kinds of techniques have

been developed for estimating the longitudinal dispersion

coefficient in rivers. They consist of soft computing tech-

niques (e.g., GA, DE, PSO, etc.), artificial intelligence

methods (e.g., ANN, GEP, Model Tree, etc.) and empirical

(e.g., mathematical, statistical, etc.). A brief description of

previous models/equations is presented in Table 1.

According to the investigations, there are various

experimental studies on empirical equations for estimating

the longitudinal dispersion coefficient in rivers; however,

they are limited with the laboratory conditions (e.g., bed

configuration, channel width and flow properties) and they

have not reliable results for all types of channels

[1, 16, 17]. In addition, the used AI-based models, in

previous studies, shown some limitations like slow con-

vergence, needs to find the best tuning parameters of

method and other drawbacks that need user interaction.

Therefore, it is necessary to develop a model with higher

accuracy to estimate the longitudinal dispersion coefficient

[11]. Among AI-based predictive models, ANN has high

teaching and learning power. It has been used in recent

years, especially to predict complex issues [18–24]. How-

ever, it is challenging for users to choose the suitable ANN

parameters, such as size of input layers, learning curve and
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the number of hidden layers. These parameters are gener-

ally determined based on the user experience using the

MATLAB toolbox with a limited number of learning

algorithms, leading to non-optimized ANN.

Nowadays, well-known metaheuristic algorithms such

as PSO, GA and ABC are exploited as tools to find optimal

ANN parameters in many cases, such as predicting the

axial compression capacity of columns [25–27]; modeling

evaporation [28–30]; and prediction of river flow [31–33].

Metaheuristic optimization techniques are considered

for their simplicity, flexibility, derivation-free mechanism

and overcoming local optimization problem. But according

to the NFL1 theory, none of the metaheuristic methods are

appropriate for solving all optimization problems [34, 35].

In other words, a particular metaheuristic may show

incredible results to solve a series of specific problems, but

this algorithm may have poor performance for a number of

other issues [36]. Therefore, the original contribution of

this work is investigating the capability of a new hybrid

expert system (MLP combined with a recent metaheuristic

algorithm, namely HHO) to predict the longitudinal dis-

persion coefficient in rivers so as to provide a robust model

for solving such a complex environmental engineering

problem. In order to evaluate the feasibility of the proposed

HHO-based training algorithm in improving prediction

performance of MLP, this training tool was compared with

the other two powerful known metaheuristic optimizers,

ICA and PSO by integrating into MLP as an efficient

training tool for estimating the longitudinal dispersion

coefficient in rivers. A review of studies on the methods of

determining the longitudinal dispersion coefficient of rivers

indicates that hybrid HHO-MLP has not been used for this

purpose up to now. Current study proposes three hybrid

models: HHO-MLP, PSO-MLP and GA-MLP, for

streamflow forecasting problems. For this purpose, 164

observed data set was gathered. In the first stage, the lon-

gitudinal dispersion coefficient under influence hydraulic

parameters including depth, width, velocity and shear

velocity was predicted by each of these developed models

with the aim of minimizing the mean square error. Then,

the observed data are compared with the results of the

above models and the most powerful algorithm for opti-

mizing MLP has been identified using the statistical

indexes.

The rest of the paper is organized as follows: in Sect. 2

describes the proposed hybrid models. The details of

Table 1 Empirical and artificial intelligence-based equations for prediction of longitudinal dispersion coefficient

Author(s) (year) Category Formula

Seo and Cheong [63] Empirical K
HU�

¼ 5:915 U
U�

� �1:428
W
H

� �0:62

Deng et al. [64] Empirical K
HU�

¼ 0:15
8et

U
U�

� �2
W
H

� �5=3

Zeng and Huai [65] Empirical K
HU�

¼ 5:4 W
H

� �0:7 U
U�

� �1:13

Disley et al. [57] Empirical K
HU�

¼ 3:563 Uffiffiffiffiffi
gH

p
� ��0:4117

W
H

� �0:6776 U
U�

� �1:0132

Etemad-Shahidi and Taghipour [12] Artificial intelligence

K
HU�

¼
15:49

W

H

� �0:78
U

U�

� �0:11

if
W

H
� 30:6

14:12
W

H

� �0:61 U

U�

� �0:85

if
W

H
[ 30:6

8>>><
>>>:

Alizadeh et al. [6] Soft computing

K
HU�

¼
5:319

W

H

� �1:206 U

U�

� �0:075

if
W

H
� 28

9:931
W

H

� �0:187
U

U�

� �1:802

if
W

H
[ 28

8>>><
>>>:

Kargar et al. [15] Artificial intelligence

K
HU�

¼
1:6896

W

H

� �
þ 20:0124

U

U�

� �
þ 393:3346 if

W

H
� 47:23

2:8759
W

H

� �
þ 181:7915

U

U�

� �
þ 339:5557 if

W

H
[ 47:23

8>><
>>:

Memarzadeh et al. [16] Artificial intelligence

K
HU�

¼
0:2694

W

H

� �2:2456

if
W

H
� 27

0:35 þ 8:7
H

W

� �� �
� 6:4 þ 8

W

H

� �� �
� U

U�

� �0:5

if
W

H
[ 27

8>>><
>>>:

1 No Free Lunch.
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databases and the employed statistical indicators are pre-

sented in Sects. 3 and 4, respectively. The results of the

numerical experiment and their discussions are presented

in Sect. 5 while some conclusion remarks are given in

Sect. 6.

2 Materials and methods

2.1 Concept and theory background

According to previous studies, some of the important

parameters affecting the longitudinal dispersion coefficient

of rivers are:

(1) The geometric properties of the flow, including the

width of the flow path (W), the bed shape factor (Sf ),

the slope of the channel floor (S), the sinuosity (r),

the coefficient of the roughness of the channel (ks)

and the depth of flow (H);

(2) Hydraulic properties of flow, including the average

flow velocity (U) and shear velocity (U�); and

(3) The properties of the fluid, including the density of

the fluid (q) and the kinematic viscosity of the flow

(l).

which can be expressed as Eq. (4) using dimensional

analysis [37]:

K

U�H
¼ f 0 q

HU

l
;
W

H
;
U

U�
; r;

Uffiffiffiffiffiffiffi
gH

p ;
ks
H
; Sf ; S

� �
ð4Þ

where K
U�H

is the dimensionless dispersion coefficient

parameter, q HU
l is the Reynolds number, W

H is the width-to-

depth ratio and U
U�

is the flow resistance term. Here, the

direct influence of parameters such as the slope of the

channel, the shape of the bed and the sinusoidal value of

the river path, which are not easily measurable and their

effect can be seen in the term of resistance, is omitted. The

effect of the Reynolds number can be also ignored due to

the usually turbulent flow of rivers. Equation (4) can finally

be written as Eq. (5) [6]:

K

U�H
¼ f 00

W

H
;
U

U�

� �
ð5Þ

where the longitudinal dispersion coefficient (K) depends

on the following four parameters: U average flow velocity,

H flow depth, W width of flow and U� bed shear velocity.

2.2 Artificial neural network (ANN)

ANN is an idea for processing information like the brain,

inspired by the biological nervous system. This system

comprises many processing elements called neurons, which

work in unison to solve a problem [38]. ANN is considered

a tool for estimating the approximate performance, appli-

cable in places where there is a nonlinear and complex

relationship between input(s) or predictor(s) and

output(s) [39, 40].

ANNs need to be trained with certain learning algo-

rithms to approximate the goal and achieve the desired

results [38, 41]. Numerous network learning algorithms

have been developed by examining simple, nonlinear

mathematical solutions based on human biological neu-

rons. Learning algorithms are a series of processes, which

help to adjust the weights of the network. During the

training process, a network can learn tasks and similarities

without a predefined program. The learning system usually

lacks any prior information about the problem such as

various input parameters set in the input data layers

[42, 43]. The most common learning algorithm is the

backpropagation (BP) algorithm. It is developed based on

the downward slope optimization method, which can

minimize the network error between the desired values and

the estimated values [41, 44].

One of the most common neural networks is the multi-

layer perceptron. It is also known as backpropagation

because its training algorithm is usually backpropagation.

The perceptron neural network method was introduced by

Rosenblatt [45]. The input layer only acts as an interme-

diary with the outside world. Each node sends an

unchanged input to the next layer of neurons. Therefore,

the number of input layer nodes is equal to the number of

independent variables. The number of neurons in the output

layer indicates the number of dependent variables. Also,

the number of nodes in each layer will depend on the

complexity of the problem.

2.3 Metaheuristic algorithm

Metaheuristic algorithms are a flexible method for solving

complex optimization problems based on swarm intelli-

gence, inspired by biological and physical systems in nat-

ure. These methods use a special mechanism that many

particles are scattered in the problem space and simulta-

neously search for optimal solutions. These methods are

called nature-inspired, population-based or metaheuristic

algorithms. Considering various constraints, metaheuristic

algorithms also achieve a set of non-dominant solutions as

the best solution of the solution set, or hopefully have a

short distance from the original solution set [46, 47].

2.3.1 Particle swarm optimization algorithm (PSO)

The particle swarm optimization (PSO) algorithm was first

introduced by Eberhart, inspired by the social behavior of

birds [48]. This algorithm considers each solution as a bird
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in a bird group, called a particle. In such a structure, birds

have individual intelligence and group behavior, which

leads them to the goal.

First, the process begins with a bunch of randomly

selected particles, each as a solution to the problem. Then,

a bunch of particles move and the search space is searched

to find the best solution.

In this algorithm, each particle has an adaptive velocity,

representing the vector of the particle’s move in the search

space and memory, which means it remembers its best

position up to that point. Particles are measured in terms of

value based on the criterion function of the optimization

problem [49]. For each particle, the best solution and

position are stored in the variables Pbest and gbest, respec-

tively [48]. Then, in each iteration, the particles accelerate

toward their Pbest and gbest based on the velocity vector vi.

As a result, in each iteration, a new position is found in the

search space for each particle by adding their displacement

vector. Finally, gbest is considered the optimal solution to

the problem. The velocity (vkþ1
i ) and new position (xkþ1

i ) of

the particles are updated in each iteration by the following

equations [50]:

vkþ1
i ¼ w� vki þ c1 � r1 � Pbesti � xki

� �
þ c2 � r2

� gbesti � xki
� �

ð6Þ

xkþ1
i ¼ xki þ vkþ1

i ð7Þ

where vki and xki are the velocities and positions of the

particle i in the kth iteration, respectively. c1 and c2 are

acceleration constants, r1 and r2 are also random numbers

obtained from a uniform distribution between 0 and 1. w is

the inertia weight factor. Algorithm 1 presents the PSO

pseudocode.

2.3.2 Imperialist competitive algorithm (ICA)

The imperialist competitive algorithm (ICA) is inspired

from a human social phenomenon. Like other evolutionary

algorithms, this algorithm starts with an initial population.

Each member of this population is referred to as a

‘‘country.’’ Each country has a set of characteristics, which

determine its location in the search space. Among these

points, the points with the lowest cost, according to the

optimization function, are considered imperialist and the
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rest as colonies [51]. The normalized cost for each colo-

nizer is initially calculated as follows:

Cn ¼ cn � maxi cif g ð8Þ

where cn is the cost of the nth imperialist and Cn is the

normalized cost for this imperialist. The normalized power

for each imperialist (Pn) is calculated by Eq. (9). On this

basis, the colonial countries are divided among these

imperialists:

Pn ¼
CnPNimp

i¼1 Ci

					
					 ð9Þ

The initial number of colonies of an imperialist will be

equal to:

N � C�n ¼ round Pn;Ncolf g ð10Þ

where N � C�n is the initial number of colonies of nth

empire and Ncol is the total number of colonies in the

population of the primary countries.

Following the division of all the colonies between the

emperors and the formation of the first empires, the colo-

nies began to move toward the emperors. This movement

models the policy of absorption. Figure 1 shows the

movement of a colony toward the emperor.

As shown in Fig. 1, d is the direct distance between the

imperialist and the colonies. A colony moves toward the

imperialist, not directly and linearly, but at an angle h to

the size of x. Then the amount of deflection angle and the

size of move are determined uniformly in randomly

determined intervals.

X�U 0 � b� dð Þ ð11Þ
h�U �c � cð Þ ð12Þ

where b and c are arbitrary numbers, which determine the

clone search space around the empire.

As colonial countries move toward imperialist countries,

some of them may achieve better colonial status. In this

case, the colonial country and the imperialist country

change their place together. This is followed by colonial

competition. At this stage, the weakest colony is selected

from the weakest empire and given to a stronger empire.

The stronger an empire, the more likely it is to be chosen.

Finally, when an empire loses all its colonies, it is excluded

from the list of empires and granted to other empires as a

colony during a colonial rivalry. The evolutionary process

takes place in a loop and continues until a stop criterion is

met.

2.3.3 Harris hawk optimization (HHO)

Harris hawk optimization (HHO) is a population-based

optimization algorithm proposed by Heidari et al. [52].

Inspired by Harris hawks’ behavior in nature, this algo-

rithm is based on cooperation between falcons to hunt prey

[53, 54]. It uses a solid strategy: a group of Harris hawks

launches a joint attack from different directions to catch the

prey by surprise. These hawks cooperate in the process of

the attack. Meanwhile, the Harris hawks’ leader attacks the

target prey, chases it and suddenly disappears. The next

Harris hawk continues the pursuit action. At this point, the

Harris hawk utilizes different attack strategies for different

prey escape modes. In this way, the prey is exhausted and

eventually hunted. In the HHO algorithm, these steps are

mathematically modeled in three basic steps: exploration,

transition and exploitation (Fig. 2) [52–55].

The exploration phase involves waiting, searching and

discovering the proposed prey. In other words, this step

determines the position of the hawk before finding the prey

[55].

X t þ 1ð Þ ¼ Xrand tð Þ � r1 Xrand tð Þ � 2r2X tð Þj j q� 0:5
Xrabbit tð Þ � Xm tð Þð Þ � r3 LBþ r4 UB� LBð Þð Þ q\0:5




ð13Þ

where X tð Þ and X t þ 1ð Þ represent the position of the

hawks in the t and t ? 1 iteration, respectively. Xrabbit tð Þ
indicates the position of the prey. r1, r2, r3, r4 and q are

random numbers inside (0, 1), which are updated during

each iteration. LB and UB represent the lower and upper

bound of the decision variables, respectively. Xrand is the

position of a randomly selected hawk. Concerning Xi tð Þ as

the position of each hawk in the iteration of t and N as the

total number of hawks, Xm, representing the average

position of the hawks, can be calculated using the fol-

lowing equation [52]:

Xm tð Þ ¼ 1

N

XN
i¼1

Xi tð Þ ð14Þ

The intermediate phase is defined as transition from

exploration to exploitation which expressing the function

of wasting energy prey during the escape. Due to the

d

X

New position of the colony
Imperialist

colony

Fig. 1 Moving colonies toward their relevant imperialist
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reduced energy of the prey during the escape, the prey

energy is modeled using the following equation:

E ¼ 2E0 1 � t

T

� �
ð15Þ

where E represents the energy of escape of the prey and T

represents the maximum number of iterations. E0, varying

randomly in the range (-1, 1) per repetition, indicates the

initial state of prey energy. If Ej j � 1, the HHO algorithm

executes the exploration phase; However, if Ej j\1,

exploitation occurs.

In the third phase of the HHO algorithm, entitled

exploitation, four surprise attack models are proposed

based on prey escape behavior and hawk pursuit strategies.

In this phase, r is considered the prey chance parameter.

r\0:5 means a successful escape of prey and contrariwise.

In this phase, based on the escape energy E, soft besiege

Ej j � 0:5ð Þ) or hard besiege (ð Ej j\0:5Þ) is performed by

Harris hawk (Fig. 1) [52, 56]. Algorithm 2 presents the

HHO pseudocode.
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As explained, the three metaheuristic algorithms, PSO,

ICA and HHO are used in this work to improve the pre-

diction performance of the MLP. The metaheuristic opti-

mizers need to be integrated with an MLP to optimize its

weights and biases. In brief, the solution of the meta-

heuristic learning tools is a matrix of optimized computa-

tional parameters to redesign a robust MLP using them.

The algorithm of the proposed hybrid MLP model descri-

bed by the following steps:

Step 1: Initialize the problem of training MLP as an

optimization approach.

Step 2: Initialize the main parameters of metaheuristic

algorithms (e.g., the maximum iteration, upper and lower

bounds of variables and the number of search agents).

Step 3: Generate the random solutions (e.g., decision

variables) and calculate the value of objective function

for each solution.

Step 4: Use the metaheuristic algorithms to find the

optimal values of decision variables.

Step 5: Repeat Step 4 until the finish criteria of

algorithms is satisfied. The best values of weights and

biases are obtained.

Figure 3 shows the flowchart of the proposed hybrid

MLP methods.

3 Data and statistical analysis

Hydraulic and geometric flow data are essential for accu-

rate estimation of the longitudinal dispersion coefficient.

Thus, in this study a range of data that gathered from the

previous studies where the required parameter values were

provided are exploited to investigate the abilities of the

proposed hybrid AI models for robust and efficient pre-

diction of the longitudinal dispersion coefficient. This

information includes 164 series of data related to the flow

characteristics, such as the width (W), depth (H), velocity

(U), shear velocity (U�) and the measured longitudinal

dispersion coefficient (K) [6].

Table 2 report the statistical properties of the utilized

database in terms of the minimum, maximum, mean and

standard deviation values. Moreover, the coefficient of

correlation between the input variables and the longitudinal

dispersion coefficient is reported in Table 2. Besides, Fig. 4

shows the frequency histogram of the input and output

variables. Based on the table and figures illustrated results,

the utilized data have different type and range, which

complicates the problem of estimating the longitudinal

dispersion coefficient of rivers.

The statistical analysis results showed a significant

correlation between the longitudinal dispersion coefficient

and the width-to-depth ratio (W/H) [57]. This ratio is used

in most developed experimental relationships of estimating

the longitudinal dispersion coefficient to improve the

accuracy of the predictive models. Therefore, this paper

also exploited this ratio for categorizing different flows to

increase the accuracy of the proposed predictive AI model

[6]. Accordingly, the 164 data sets were divided into two

groups as W
H � 28 and W

H [ 28.

4 Statistical evaluation indicators

To compare the results efficiency of the proposed predic-

tive neural network model integrated with the indicated

metaheuristic algorithms above as a novel framework for

accurate modeling of the longitudinal dispersion coeffi-

cient, several statistical criteria and parameters are

employed. The utilized statistical indicators include the

Fig. 2 Different phases of HHO [52]
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mean bias error (MBE), the root mean square error

(RMSE), the normalized root mean square error (NRMSE),

the mean absolute error (MAE), coefficient of determina-

tion (R2), t-statistics and uncertainty at 95% (U95), which

the equation of each index is presented as follows [58, 59]:

MBE ¼ 1

n

Xn
i¼1

Ki
observedð Þ � Ki

predictedð Þ

� �
ð16Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn
i¼1

Ki
observedð Þ � Ki

predictedð Þ

� �2

s
ð17Þ

NRMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Pn
i¼1 Ki

observedð Þ � Ki
predictedð Þ

� �2
r

K observedð Þ
ð18Þ

MAE ¼ 1

n

Xn
i¼1

Ki
observedð Þ � Ki

predictedð Þ

			 			 ð19Þ

t�statistics ¼ 1

n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n� 1ð ÞMBE2

RMSE2 �MBE2

r
ð20Þ

U95 ¼ 1:96 SD2 þ RMSE
� �1=2 ð21Þ

R2 ¼ 1 �
Pn

i¼1 Ki
observedð Þ � Ki

predictedð Þ

� �2

Pn
i¼1 K observedð Þ � Ki

predictedð Þ

� �2
ð22Þ

In the above-mentioned formulas, Ki
observedð Þ, K

i
predictedð Þ

and K observedð Þ are the observed value, the predicted and the

observed mean values of the longitudinal dispersion coef-

ficient (K), respectively. It should be mentioned that the

model with the lowest values of the statistical indicators as

MBE, RMSE, NRMSE, MAE, t-statistics and U95 is

considered to be the best performing model for the pre-

diction of the longitudinal dispersion coefficient among the

others.

5 Results and discussion

5.1 Statistical evaluation of the models’
performance

In order to achieve the best performance of the meta-

heuristic algorithms in each optimization problem, it is

necessary to determine a set of setting parameters using the

trial and error method to minimize or maximize the desired

objective function. The optimal setting parameters values

of PSO algorithm and MLP are tabulated in Table 3. It is

noticeable that only PSO has setting parameters among the

used algorithms.

As mentioned before, the 164 data sets presented in

Sect. 3 were divided into two groups as W
H � 28 and

W
H [ 28. Then the developed MLP models based on the

metaheuristic algorithms were implemented separately for

two groups of data, training data (80%) and test data

(20%).

Tables 4 and 5 show the performance of the developed

predictive AI models, including MLP, MLP-ICA, MLP-

PSO and MLP-HHO, using the statistical parameters of

MBE, RMSE, NRMSE, R2, MAE, t-statistic and U95.

Investigating the obtained results using the statistical

parameters presented in Tables 4 and 5, it is noticeable that

the closer the value of a statistical parameter to 0, the more

the predicted results of the longitudinal dispersion coeffi-

cient is accurate. As a result, the algorithm has shown

better performance in predicting data.

Therefore, according to Tables 4 and 5, it can be said

that all the three MLP models optimized using ICA, HHO

and PSO have better performance than the MLP standalone

model and predict the dispersion coefficient more accu-

rately. The values of the statistical parameters for the

proposed models are lower than those given by the MLP.

All the proposed models showed an acceptable perfor-

mance in calculating the longitudinal dispersion coeffi-

cient. However, the new MLP-HHO hybrid AI model yield

the best results based on most of the statistical indicators

used in the prediction process, including the training,

testing and overall phases. Such that, the yielded RMSE

was 28.5178, 1.5809 and 23.3026, in the training, testing

and overall stages, respectively, for the first group of data

(WH � 28). In addition, the RMSE was 66.4141, 48.6601 and

Table 2 Summary of the geometric, hydraulic and dispersion coef-

ficient data sets employed in this study

Variables Min Mean Max SD

W 1.41 46.14 253.6 47.47

H 0.14 1.25 8.2 1.30

U 0.03 0.465 1.73 0.314

U� 0.002 0.086 0.553 0.069

W
H

2.20 46.52 403.75 45.39

U
U�

0.77 6.68 20.25 4.63

K m2

s

� �
0.20 76.97 1480.50 175.40

K
U�H

3.08 1127.25 37,140.74 3509.64
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61.0201, in the training, testing and overall phases,

respectively, for the second group data of (WH [ 28). In the

other side, the lowest performance among the proposed

models according to the indicators metrics was found to be

obtained by the MLP in which the recorded values of

RMSE were 85.3782, 4.4405 and 69.7582 in the training,

testing and overall phases for data of W
H � 28, respectively.

Also, RMSE values of the MLP for the group data of
W
H [ 28 were 104.2541, 143.9363 and 119.0904 in the

training, testing and overall phases, respectively. Thus, the

correlation of MLP Showed low abilities for accurate

modeling of the longitudinal dispersion coefficient among

the proposed models.

In addition to the investigated statistical parameters, the

correlation coefficient (R2) was used to evaluate the accu-

racy of the longitudinal dispersion coefficient predicted

using the mentioned AI models, according to Eq. (22).

Figures 5 and 6 show the scatter plots of all three

Fig. 4 Frequency histograms of the input/output variables for the longitudinal dispersion coefficient prediction, a channel width, W (m), b flow

depth, H (m), c cross-sectional average velocity, U (m/s), d shear velocity, U* (m/s) and f experimental results of dispersion coefficient, K (m2/s)
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Table 3 Sitting parameters of

the models
Method Parameter Value

PSO Inertia weight factor 0.3

C1 1

C2 1

MLP Number of neurons 15

Number of layers 3

Activation function Sigmoid (hyperbolic tangent)

Range partitions (weights and biases) [- 3, ? 3]

Table 4 Average values of

statistical indicators for the

proposed hybrid models based

on the MLP approach for the

longitudinal dispersion

coefficient prediction in train,

test and overall phases W
H � 28

� �

Models Performance indicators

MBE RMSE NRMSE MAE t-Statistics U95

Train

MLP - 8.054 85.3782 1.258 50.2183 0.015168 167.5766

MLP-ICA - 1.7578 67.6144 0.99626 47.4571 0.0041628 133.4561

MLP-PSO - 10.8734 62.8191 0.9256 43.7102 0.028132 122.258

MLP-HHO - 5.949 28.5178 0.42019 16.9048 0.034143 55.6582

Test

MLP - 1.1539 4.4405 0.47997 1.8924 0.06009 9.3644

MLP-ICA - 1.3417 4.4898 0.4853 3.091 0.069925 9.3687

MLP-PSO - 1.8627 3.7773 0.40829 2.3995 0.12658 7.4828

MLP-HHO 0.23647 1.5809 0.17088 1.0403 0.033781 3.9318

Overall

MLP - 5.754 69.7582 1.4434 34.1097 0.010866 137.2399

MLP-ICA - 1.6191 55.2677 1.1436 32.6684 0.0038477 109.2542

MLP-PSO - 7.8698 51.338 1.0622 29.94 0.020366 100.4199

MLP-HHO 3.9318 23.3026 0.48216 11.6166 0.022211 46.0163

Bold values indicate the best outcome results among the others

Table 5 Average values of

statistical indicators for the

hybrid proposed models based

on the MLP approach for the

longitudinal dispersion

coefficient prediction in train,

test and overall phases

ðWH [ 28Þ

Models Performance indicators

MBE RMSE NRMSE MAE t Statistics U95

Train

MLP - 0.23029 104.2541 1.1696 31.2848 0.0002603 205.3152

MLP-ICA 1.0972 88.4535 0.9923 44.5657 0.0014618 174.3329

MLP-PSO - 1.2436 85.7734 0.96223 46.6699 0.0017087 169.0755

MLP-HHO 4.3828 66.4141 0.74505 29.1567 0.0077934 130.8664

Test

MLP - 17.0563 143.9363 1.5247 56.7687 0.019612 281.1126

MLP-ICA - 30.7388 134.9982 1.43 36.781 0.038428 258.6505

MLP-PSO - 18.9331 94.1055 0.99682 51.8578 0.033753 181.6729

MLP-HHO - 5.1711 48.6601 0.51544 27.4568 0.017563 95.8142

Overall

MLP - 5.8914 119.0904 1.31 39.8588 0.0047659 234.1105

MLP-ICA - 9.614 106.4108 1.1705 41.9465 0.0087291 208.6939

MLP-PSO - 7.1952 88.6642 0.97528 48.4154 0.0078343 174.1891

MLP-HHO 1.1684 61.0201 0.6712 28.5848 0.0018428 120.5538

Bold values indicate the best outcome results among the others
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developed hybrid and the MLP models for both groups,
W
H � 28 and W

H [ 28. It is noted that the R2 indicates the

uncertainty of the proposed model. The closer it is to 1, the

greater the correlation between the predicted data and the

observational data.

In each figure, the linear equation between the predicted

and the measured values is shown as Eq. (23).

y ¼ aX þ b ð23Þ

where y and X represent the predicted and the actual lon-

gitudinal dispersion coefficient values, respectively; a and

b also represent the linear ratios and bias, respectively. As

shown from the figures, the MLP-HHO hybrid model

obtained the highest correlation coefficient for both data

groups with value equal to R2 = 0.9587 for data of W
H � 28

and R2 = 0.9761 for data of W
H [ 28 in testing phase. It is

worth noting that the R2 of all optimized MLP hybrid

models is higher than the MLP model, that indicating the

superiority of the proposed models than the MLP. So that,

R2 value of MLP-HHO, MLP-PSO and MLP-ICA shows

36, 18 and 12% increase than MLP for data group of
W
H � 28, respectively. Also, for data of W

H [ 28, this value

for MLP-HHO, MLP-PSO and MLP-ICA is 41, 26 and

14% higher than MLP, respectively.

Moreover, the K predictedð Þ=K observedð Þ ratio in Figs. 7 and 8

has been used to illustrate the uncertainty of the proposed

hybrid MLP models results using the train and test phases.

According to the figures, the ratio results for both train and

test phases are in lower rang in the case of MLP-HHO. The

K predictedð Þ=K observedð Þ for overall data of MLP-HHO

Fig. 5 Scatterplots of the proposed hybrid MLP models in the train and test phases W
H � 28

� �
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included in the range of [0.246, 138.284] and [0.024,

6.879] for W
H � 28 and W

H [ 28 respectively, that have the

lowest prediction uncertainties compared to the other

investigated models.

5.2 Taylor diagram

In the following, the Taylor diagram (TD) is plotted to

show the accuracy of the developed models. In fact, the TD

express the performance of models in summarized form.

Thus, the relationship between predicted and observed

values is displayed by correlation coefficient, standard

deviations and the root mean square difference (RMSD)

[60, 61].

In the TD, which is plotted as a semicircle or quadri-

lateral, the values of the correlation coefficient in the

radius, the values of standard deviations in the form of

concentric circles with the circle center [0, 0] and the

RMSD values in the form of concentric circles with the

reference point as the center are shown [60]. In this dia-

gram, the evaluation is done in a way in which the values

of the standard deviations, correlation coefficient and

RMSD deviation from the models are specified on the

diagram as points [62]. Then the point that has a closer

distance to the reference point (observed data) represented

by the black dot has more accurate prediction credibility

[61].

As shown in Figs. 9 and 10, the developed MLP-HHO

model is more accurate than the MLP-ICA, MLP-PSO and

MLP in predicting the longitudinal dispersion coefficient

for both group of data including W
H � 28 and W

H [ 28. The

MLP-HHO has the closest distance to the reference point

Fig. 6 Scatterplots of the proposed hybrid MLP models in the train and test phases W
H [ 28

� �
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that refers to observed data, followed by the MLP-PSO

model that indicated average results with a close correla-

tion coefficient value to the observed data by 0.9. However,

both MLP-ICA and MLP models show low results com-

pared to the other models, which indicate that these models

have the weak abilities for modeling the longitudinal dis-

persion coefficient in rivers.

5.3 Prediction performance validation

To confirm the superiority of the proposed hybrid models,

the results of MLP-based models were also compared with

the artificial intelligence-based models and empirical

equations from previous works. In this regard, the statis-

tical metrics (MBA, RMSE, NRMSE, MAE, t-statistics and

U95) were applied for modeling the longitudinal dispersion

coefficient for all data sets (see Table 6). According to the

results, it is clear that the MLP-HHO is superior to the

other existing equations with respect to all performance

indicators. Afterward, the proposed MLP-ICA model

(RMSE = 77.750, MAE = 41.99 and R2 = 0.80) and the

proposed soft computing-based model by Alizadeh et al.

[6] (RMSE = 89.825, MAE = 45.159 and R2 = 0.73)

ranked second and third, respectively. Moreover, the

empirical-based equation by Seo and Cheong [63]

(RMSE = 85.390, MAE = 40.804 and R2 = 0.76) was able

to provide a good prediction of the longitudinal dispersion

coefficient.

Regarding Fig. 11, it is clear that the MLP-HHO model

has highest accuracy in comparison with other models

(selected empirical and soft computing-based equations),

which indicates a good correlation between simulated and

measured values.

Fig. 7 Comparison of the experimental to predicted longitudinal dispersion coefficient using the proposed hybrid MLP models in the train and

test phases W
H � 28

� �
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Figure 12 compares the observed and predicted values

of the longitudinal dispersion coefficient using the three

MLP models based on HHO, ICA and PSO, as well as

MLP and the other existing equations. Each model’s per-

formance can be understood conceptually by displaying the

measured values of the data versus the predicted values for

each model. As shown in Fig. 12, the developed hybrid

MLP models based on the three metaheuristic algorithms

have higher accuracy than the MLP model. Also, among

the three MLP models based on metaheuristic algorithms,

the MLP-HHO hybrid model can accurately identify the

prediction pattern and provide accurate longitudinal dis-

persion coefficients.

Another statistical indicator used to illustrate the per-

formance of the developed MPL models is the discrepancy

ratio (DR), which can be calculated as Eq. (24):

DR ¼ log
Kpredi

Kobsi
ð24Þ

where Kpredi and Kobsi are ith value of the predicted and

observed longitudinal dispersion coefficient obtained from

the considered models respectively.

DR indicates the correlation between the longitudinal

dispersion coefficients measured and the estimated values

by each model, in such a way that the predicted values are

the same as the measured values DR = 0. If the predicted

values are higher than the measured values, DR[ 0, also

DR\ 0 when the predicted models were underestimate

than the measured values. The closer the DR is to 0, the

closer the predicted dispersion coefficients are to the

measured values. In other words, the model has shown

better performance in estimating this parameter.

Fig. 8 Comparison of the experimental to predicted longitudinal dispersion coefficient using the proposed hybrid MLP models in the train and

test phases W
H [ 28

� �
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According to Table 7, DRs are closer to 0 using the

MLP-HHO model than the other MLP-based models,

empirical equations and AI models, indicating a more

successful performance of the MLP-HHO despite the

acceptable solution provided by all the hybrid MLP models

in estimating the longitudinal dispersion coefficient.

5.4 Boosting the proposed MLP-HHO model

Training and testing data are typically determined ran-

domly in prediction models. As mentioned earlier, this

study has also utilized a random approach to select data in

both training and testing phases for building the proposed

model. The use of this approach is efficient and effective

while limited data is available. However, when dealing

with a large amount of data, the use of this method may

decrease the model accuracy during some testing phases

due to the random selection of data, which may lead to

training the model based on some certain data range, and in

the testing phase, the model encounters data with a dif-

ferent range from the training data, thereby reducing the

model accuracy significantly. Since the proposed MLP-

HHO model provided the highest performance compared

with the other models in the previous steps, we proposed a

more robust model improvement for forecasting the lon-

gitudinal dispersion coefficient by adding a preprocess

step. For this purpose, we have employed the K-means

model, which is arranged as unsupervised machine learning

method, to find the data average (the cluster center) based

on the W/H ratio. Given the data of dispersion, we initially

considered the number of cluster centers equal to 5 and

divided all the data based on the cluster centers. Therefore,

in the training phase, the model was trained based on an

equal number of data from each group, so that, the

robustness of the model could be maintained against data

dispersion during testing phase. Table 8 shows the cluster

center as well as the number of data placed in each cluster

according to the W/H ratio.

After developing the combined model, we tested it by all

the data including 164 data series addressed in Sect. 3.

Table 9 shows the values of the statistical parameters cal-

culated for the data simulated by the K-means-MLP-HHO
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model. It is clear that, the use of K-means to cluster the

data before modeling has improved the accuracy of the

MLP-HHO model during the training and testing phases

compared to the random data selection strategy. For

example, the RMSE value has decreased from 57.22 to

34.12 m2/s in the training phase and from 24.09 to 17.77

m2/s in the testing phase and overall from 51.16 to 30.99

m2/s. According to the parameter U95, it is clear that the

clustering-based model provide the favorable predictions.

Also, the lowest uncertainty in prediction of the longitu-

dinal dispersion coefficient (35.687) is observed in the
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� �

Table 6 Comparison between

the existing and proposed

models

Models Performance indicators

MBE RMSE NRMSE MAE t-Statistics U95

Deng et al. [64] - 19.145 94.448 1.241 51.818 0.016 182.274

Seo and Cheong [63] 7.308 85.390 1.122 40.804 0.007 167.730

Zeng and Huai [65] 15.670 101.786 1.337 43.827 0.012 198.112

Disley et al. [57] 14.712 117.194 1.540 47.262 0.010 228.869

Etemad-Shahidi and Thaghipour [12] 23.329 118.067 1.551 44.853 0.016 227.846

Alizadeh et al. [6] - 1.846 89.825 1.180 45.159 0.002 176.997

Memarzadeh et al. [16] 36.272 145.610 1.913 51.147 0.020 277.4102

Kargar et al. [15] - 25.008 135.228 1.777 62.027 0.015 261.470

MLP-ICA - 7.430 77.750 1.022 41.994 0.007 152.674

MLP-PSO - 6.835 91.920 1.208 38.722 0.006 180.645

MLP-HHO - 0.589 51.167 0.672 22.687 0.001 101.256

MLP - 5.844 104.616 1.375 37.861 0.004 205.707

Bold values indicate the best outcome results among the others
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results obtained by the clustering-based model in testing

phase.

Moreover, as Fig. 13 shows, the use of k-means in

combination with the proposed model improves the

robustness in the testing phase as the coefficient of deter-

mination (R2) of the predicted and real data in both,

training and testing phases is equal.

5.5 Sensitivity analysis

Finally, a sensitivity analysis was performed to evaluate the

relative importance of the input parameters (W ;U;H;U�)

on the longitudinal dispersion coefficient using the MLP-

HHO model. For this purpose, Eq. (25) was utilized

r Ij;O
� �

¼
Pn

i¼1 Ij;i � Ij
� �

Oi � O
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 Ij;i � Ij

� �2Pn
i¼1 Oi � O

� �2
q ð25Þ

where I and I are the input parameter, related to the lon-

gitudinal dispersion coefficient and its average value,

respectively. O and O denote the predicted longitudinal

dispersion coefficient output and its average value using K-

means-MLP-HHO model, respectively.

The highest value for r by the input Ij indicates the

greater impact on the predicted output. Figure 14 shows the

sensitivity analysis of the input data on the longitudinal

dispersion coefficient by the K-means-MLP-HHO model.

As indicated, the width parameter W (r ¼ 0:573), the

average flow velocity U (r ¼ 0:553) and the flow depth H

(r ¼ 0:409) by the highest values of the relevancy factor

are recognized as the most important factor on the longi-

tudinal dispersion coefficient estimation in rivers.

6 Conclusion

In this study, a new hybrid model using the artificial

intelligence (AI) methods is developed to estimate the

rivers’ longitudinal dispersion coefficient accurately.

The proposed model consists of a powerful multilayer

perceptron neural network and a new metaheuristic opti-

mization algorithm called HHO, inspired by the Harris

hawk behavior. Two other well-known algorithms, ICA

and PSO, were used to train the MLP in order to illustrate

the high accuracy of the developed MLP-HHO. For this

purpose, 164 series of measured data gathered from pre-

vious studies in two groups based on width-to-depth ratio,
W
H � 28 and W

H [ 28, were evaluated. The investigations on

the models’ efficiency using the statistical indicators show

that the combination of the metaheuristic and MLP algo-

rithms performs better than MLP standalone in solving the

complex problem of longitudinal dispersion coefficient in

rivers.

According to the results, the MLP-HHO model, with

R2 = 0.9587 for W
H � 28 data and R2 = 0.9761 for W

H [ 28

data in the testing phase, is the best proposed AI model for

predicting the longitudinal dispersion coefficient in rivers

than other models. Finally, to increase the robustness of

MLP-HHO model, a classification technique, namely K-

means, is coupled with it. Thus, a certain percentage of

data was selected for better model learning that includes all

data ranges. The performance of K-means-MLP-HHO was
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a) Empirical-based model 

b) AI-based model 

Fig. 12 Time series plots for the all data set; a empirical-based models; b AI-based models; c MLP-based models
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compared with MLP-HHO model. The boosting K-means-

MLP-HHO model with R2 = 0.97, was the best performing

model for estimating the longitudinal dispersion coefficient

in rivers. Furthermore, the sensitivity analysis related to the

input parameters using the relevancy error factor shows

that the flow width (W) and the average flow velocity (U)

have the highest influence on the longitudinal dispersion

coefficient. As the relevancy error factor was 0.573 and

0.553, respectively, for these parameters. Furthermore, the

shear velocity (U�) has the least influence on the behavior

of longitudinal dispersion coefficient in rivers.

Moreover, the prediction results may be affected by the

uncertainty of the input data, it is suggested to develop the

c) MLP-based model

Fig. 12 continued

Table 7 DR values of the hybrid models developed to predict the

longitudinal dispersion coefficient

Model DR

Deng et al. [64] [- 1.032, 2.153]

Seo and Cheong [63] [- 1.287, 1.838]

Zeng and Huai [65] [- 1.227, 1.795]

Disley et al. [57] [- 1.343, 2.261]

Etemad-Shahidi and Thaghipour [12] [- 1.497, 1.424]

Alizadeh et al. [6] [- 1.240, 1.791]

Memarzadeh et al. [16] [- 2.068, 2.351]

Kargar et al. [15] [- 1.633, 2.348]

MLP [- 1.826, 2.781]

MLP-ICA [- 1.186, 1.701]

MLP-PSO [- 1.148, 1.891]

MLP-HHO [- 0.6091, 1.614]

Table 8 Centroids of data sets in K-means clustering technique

Centroids Number of samples

Class 1 19.63 65

Class 2 96.60 24

Class 3 46.95 63

Class 4 403.75 6

Class 5 313.08 6
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Table 9 Comparison between the clustering and random-based selection MLP-HHO model for train, test and overall data

Models Performance indicators U95

MBE RMSE NRMSE MAE t-Statistics

Train

Random-based model (MLP-HHO) - 2.19 57.223 0.640 26.522 0.003 113.064

Clustering-based model (K-means-MLP-HHO) - 3.261 34.125 0.437 20.889 0.008 67.555

Test

Random-based model (MLP-HHO) 9.215 24.098 0.641 10.797 0.064 44.690

Clustering-based model (K-means-MLP-HHO) - 1.459 17.773 0.2524 11.128 0.013 35.687

Overall

Random-based model (MLP-HHO) - 0.589 51.167 0.672 22.687 0.001 101.256

Clustering-based model (K-means-MLP-HHO) - 2.82 30.944 0.406 18.508 0.007 61.374

Fig. 13 Cross plots of the implemented K-means-MLP-HHO
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probabilistic models in future research and consider the

uncertainty of the input data to obtain more reliable results.
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