
ORIGINAL ARTICLE

A penalty-based algorithm proposal for engineering optimization
problems

Gulin Zeynep Oztas1 • Sabri Erdem2

Received: 23 February 2022 / Accepted: 15 November 2022 / Published online: 9 December 2022
� The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022

Abstract
This paper presents a population-based evolutionary computation model for solving continuous constrained nonlinear

optimization problems. The primary goal is achieving better solutions in a specific problem type, regardless of metaphors

and similarities. The proposed algorithm assumes that candidate solutions interact with each other to have better fitness

values. The interaction between candidate solutions is limited with the closest neighbors by considering the Euclidean

distance. Furthermore, Tabu Search Algorithm and Elitism selection approach inspire the memory usage of the proposed

algorithm. Besides, this algorithm is structured on the principle of the multiplicative penalty approach that considers

satisfaction rates, the total deviations of constraints, and the objective function value to handle continuous constrained

problems very well. The performance of the algorithm is evaluated with real-world engineering design optimization

benchmark problems that belong to the most used cases by evolutionary optimization researchers. Experimental results

show that the proposed algorithm produces satisfactory results compared to the other algorithms published in the literature.

The primary purpose of this study is to provide an algorithm that reaches the best-known solution values rather than

duplicating existing algorithms through a new metaphor. We constructed the proposed algorithm with the best combination

of features to achieve better solutions. Different from similar algorithms, constrained engineering problems are handled in

this study. Thus, it aims to prove that the proposed algorithm gives better results than similar algorithms and other

algorithms developed in the literature.

Keywords Natural facts � Evolutionary computation � Constrained nonlinear optimization � Engineering benchmark

problems � Metaheuristics � Nature-inspired optimization algorithms

1 Introduction

Most of the research has focused on nature-based algo-

rithms inspired by interactions of living and non-living

objects in evolutionary optimization. The main idea is that

nature solves problems instinctively, like finding the

shortest path between foods and nests for ants and bees. In

the state of the art, many algorithms imitate these behaviors

and interactions for solving optimization problems. Espe-

cially in the last decade, the number of new metaheuristic

algorithms based on metaphors has exploded. Therefore,

many researchers [1–6] criticized that plenty of meta-

heuristics have similarities although they introduce differ-

ent metaphors. According to them, these algorithms should

not be regarded as novel algorithms in the literature.

However, as Wolpert and Macready [7] mentioned, there

cannot be an appropriate algorithm for all problems. The

possibility that there may always be a better algorithm

motivates researchers to develop new algorithms regardless

of metaphors. For this reason, new metaheuristics will

continue to be introduced soon [8]. It is worth mentioning

that the literature expects algorithms that provide more

‘‘optimal-like’’ solutions without trapping the ‘‘novelty’’

concept.

& Gulin Zeynep Oztas

gzeynepa@pau.edu.tr

Sabri Erdem

sabri.erdem@deu.edu.tr

1 Department of Business Administration, Pamukkale

University, 20160 Denizli, Turkey

2 Department of Business, Dokuz Eylul University,

35390 İzmir, Turkey

123

Neural Computing and Applications (2023) 35:7635–7658
https://doi.org/10.1007/s00521-022-08058-8(0123456789().,-volV)(0123456789().,- volV)

http://orcid.org/0000-0002-6901-6559
http://orcid.org/0000-0001-6766-3202
http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-022-08058-8&domain=pdf
https://doi.org/10.1007/s00521-022-08058-8

The term ‘‘metaheuristics’’ incorporates a wide range of

techniques. Therefore, it would be better to classify them

by considering their solution time, complexity, optimality,

and the trade-off between diversification and intensification

ability. Fister et al. [9] mentioned that classification of

algorithms might depend on various criteria such as main

principles, sources of inspiration, perspectives, and moti-

vations. They classified nature-inspired algorithms as the

origin of inspirations (Swarm-intelligence-based, bio-in-

spired, physics-based, chemistry-based).

On the other hand, Blum and Roli [10] summarized the

most critical classifications as Nature-inspired vs. non-na-

ture, population-based vs. single point search, dynamic vs.

static objective function, one vs. various neighborhood

structures, and memory usage vs. memory-less methods.

Echevarrı́a et al. [11] classified metaheuristics in terms of

the number of solutions and inspiration sources. Beheshti

and Shamsuddin [12] handled metaheuristic algorithms

regarding inspirations, number of solutions, objective

function, neighborhood structure, and memory usage.

Sotoudeh-Anvari and Hafezalkotob [13] also classified the

origins of inspiration as animals, physics, humans, plants,

nature, and biology. They also demonstrated that the most

popular foundations of inspiration are animals and physics.

In addition, Hussain et al. [14] classified all metaheuristics

in terms of their metaphor disciplines biology and physics

took the first two places, respectively. Molina et al. [15]

proposed two taxonomies as the source of inspiration and

the behavior of each algorithm.

This paper proposes an optimization algorithm called

Penalty-based Algorithm (PbA) for continuous optimiza-

tion problems that cannot be solved in polynomial time

(i.e., NP-Hard). PbA considers some natural facts and

integrates them into an algorithm. Moreover, as a con-

straint-handling ability of the PbA, we also present a novel

multiplicative penalty approach that combines the satis-

faction rate and the deviations of constraints besides

objective function. Furthermore, the PbA is also inspired

by Tabu Search, Elitism selection approaches in terms of

memory-based operations. However, memory is used not

as a banned list but to eliminate unnecessary repetitive

function evaluations in the PbA. Besides, best-so-far

solutions which are the best solutions found in the related

run are stored to avoid losing them in case of offsets.

It should be noted that the primary purpose of this study

is not to duplicate existing algorithms through a new

metaphor but to provide an algorithm that reaches the best-

known solution values. To obtain better solutions, we

constructed the PbA with the best combination of features.

Therefore, the primary goal is achieving better results in a

specific problem type, regardless of metaphors and

similarities.

Moreover, it is seen in the literature that similar algo-

rithms are generally applied in unconstrained problems.

Differently, constrained engineering problems are handled

within the scope of this study. Thus, it aims to prove that

the PbA gives better results than similar algorithms and

other algorithms developed in the literature. For this rea-

son, the study will contribute to the literature.

In the following sections, a literature review, and the

theoretical background of the PbA are presented, respec-

tively. In the fourth section, the main steps of the PbA are

illustrated through an example. After that, the experimental

results for specific constrained benchmark problems are

given in the fifth section. Finally, the last section concludes

and discuss the findings.

2 Literature review

‘‘Metaheuristics,’’ firstly used by Glover in 1986, is a

search framework that uses heuristic strategies [16]. They

all present randomness and thus provide different solutions

in different runs. The outstanding characterization of

metaheuristics is that they explore several regions in search

space and escape from local optima [17].

By the 1960s, the literature on optimization broadened

and turned into a different format called ‘‘evolution’’ [18].

Genetic Algorithm, Evolutionary Programming, Evolu-

tionary Strategies, and Genetic Programming belong to the

field of Evolutionary Computation that depends on com-

putational methods inspired by evolutionary processes

[19]. Since 2000, researchers have focused on developing

new algorithms based on various metaphors [18]. The

behavior of animals, laws in science, facts of nature, and

social behaviors are some of the inspirations used in the

literature. Even the hijacking human cell behavior of

coronavirus inspired a newly introduced algorithm called

COVIDOA [20]. Figure 1 shows various kinds of meta-

heuristic algorithms published between 2000 and 2021.

The algorithms given in Fig. 1 can be classified in terms

of inspiration. Some algorithms are mentioned as an

example of each classification. Cat Swarm Optimization

[21], Artificial Bee Colony [22], Wolf Search Algorithm

[23], Dolphin Echolocation [24], Ant Lion Optimizer [25],

and Hunger Games Search [26] are some of the animal-

inspired algorithms; Central Force Optimization [27],

Gravitational Search Algorithm [28], Charged System

Search [29], Chemical Reaction Optimization [30], Curved

Space optimization [31], Henry Gas Solubility

7636 Neural Computing and Applications (2023) 35:7635–7658

123

Optimization [32], Weighted Vertices Optimizer [33], and

Simulated Kalman Filter [34] are science (physics, chem-

istry, mathematics)-inspired algorithms; Harmony Search

[35] and Melody Search [36] are music-inspired algo-

rithms; Anarchic Society Optimization [37], Brain storm

optimization [38, 39], Election algorithm [40], Ideology

Algorithm [41], and Human Urbanization Algorithm [42]

are social-inspired algorithms.

Similar algorithms in the literature have also been

examined in this study. Hysteretic Optimization [43] and

Electromagnetism-like Optimization [44] algorithms are

the first algorithms that have common concepts with the

proposed algorithm. Biswas et al. [45], Siddique and Adeli

[17] and Salcedo-Sanz [46] published articles focusing

specifically on natural facts algorithms and provided

comprehensive literature surveys. Similar algorithms to the

PbA are given in Table 1 chronologically.

As mentioned above, algorithms can be classified in

many ways. However, the main point is the ability to

converge optimal-like solutions when the performances of

the algorithms are considered. Although the algorithms

mentioned above have both common and distinctive fea-

tures with the PbA, the primary purpose of this study is that

the algorithm created with the best combination of features

provides better results.

3 Proposed algorithm

The foundation of the PbA was first laid by Erdem [52]. It

considers the offset factors that cause changes in fitness

values with the minimum objective function value. PbA is

a population-based algorithm, and it is structured for

solving continuous constrained optimization problems.

Various approaches in the literature have inspired the PbA.

It is assumed that the global optimum solution is aimed to

be reached by considering the interactions of solutions in

Fig. 1 Various Metaheuristic Algorithms Developed in the Recent Past

Table 1 Similar algorithms in the literature

Algorithm Main subjects Author(s)

Hysteretic optimization (HO) Material–Energy–Magnetic–Glass demagnetization Zarand et al. [43]

Electromagnetism-like mechanism (EM) Particle–Charge–Distance–Attraction Birbil and Fang [44]

Central Force Optimization (CFO) Particle–Mass–Attraction Formato [27]

Magnetic Optimization Algorithm (MOA) Magnetic field–Particles–Distance Tayarani and Akbarzadeh [47]

Artificial Physics Optimization (APO) Particle–Mass–Hypothetical–Attraction–Repulsion Xie et al. [48]

Gravitational Search Algorithm (GSA) Particle–Mass–Attraction–Variable Hypothetical Gravity Rashedi et al. [28]

Charged System Search (CSS) Particle–Charge–Electrostatics–Attraction–Velocity–Force Kaveh and Talatahari [29]

Gravitational Interaction Optimization (GIO) Particle–Mass –Constant Gravity–Interaction Flores et al. [49]

Magnetic Charged System Search (MCSS) Magnetic forces–Particles–Attraction–Repulsion–Absorbing Kaveh et al. [50]

Electromagnetic field optimization (EFO) Attraction–Repulsion–Electromagnets Abedinpourshotorban et al. [51]

Neural Computing and Applications (2023) 35:7635–7658 7637

123

terms of their fitness values and distances between the

potential solutions.

The assumptions considered in the PbA are summarized

below:

• The changes in fitness values are computed by consid-

ering both the fitness values of the solutions and

distances.

• Fitness values are calculated according to the solution

point and its selected neighbors.

• No negative improvements are allowed.

• The multiplicative penalty-based method is used for

constraint handling.

• No solution can have the same fitness value up to a

certain degree of precision.

• The best solution in the population is maintained, and

with each offsetting, an attempt is made to reach a

better than ‘‘best-so-far’’ solution.

• Each solution produced in the related run, whether it is

a better solution or not; is saved in a database. Thus,

extra function evaluation is not required for a previ-

ously evaluated solution.

Before explaining each step of the PbA, the pseudocode

of the algorithm is given below:

PbA will be discussed under Determine Intervals, Ini-

tialization, Multiplicative Penalty-based Method, Repul-

sive Forces, Neighborhood, Offsetting, Duplication, and

Stopping Condition sub-sections, respectively.

3.1 Determine intervals

The general pseudo-code starts with determining intervals.

This stage aims to determine the search space by consid-

ering boundaries and constraints. In this stage, boundaries

are initially taken as default lower and upper limits. Then,

the lower and upper limits are updated by checking all

constraints concurrently in an iterative manner. The pseu-

docode is given below:

In essence, this approach adopts a principle of searching

for the roots of each constraint in light of existing bound-

aries. This process continues until all constraints are

evaluated. Through the process, many potential boundaries

are calculated. However, at the end, the minimum values of

upper limits and the maximum values of lower limits that

satisfy all constraints are determined as final interval values

for each variable.

3.2 Initialization

In this step, an initial solution set is generated concerning

equal chances according to the determined intervals of

variables in the hyperspace with multi-dimensions as much

as the number of variables in the optimization model. To

some extent, this method has been inspired by the ‘‘Scatter

Search Algorithm’’ by Glover [53]. The approach for

generating random numbers is proposed by Erdem [52],

and then applied recently in [54]. The pseudocode is given

below:

7638 Neural Computing and Applications (2023) 35:7635–7658

123

where d�i , d
þ
i are lower and upper limits, respectively; xi

is a generated random number for ith variable, and random

() is defined as a function that generates a random number

between [0,1].

The initialization step also includes the evaluations of

constraints for each candidate solution vector. The solu-

tions generated randomly are tested to whether they satisfy

each constraint or not. The evaluation is conducted to

calculate the constraint satisfaction rates and the total

deviations. Therefore, a low satisfaction rate and signifi-

cant deviations have resulted in big penalties in fitness

values. This part will be handled in detail under the title of

Multiplicative Penalty-based Method (MUPE).

PbA is structured as a memory-based algorithm.

Although there are different approaches in the literature to

use memory, ‘‘Tabu Search’’ and ‘‘Elitism Principle’’ are

the pioneers of these approaches. For this reason, these

approaches inspired the memory feature of the PbA. The

PbA utilizes memory for two purposes. The first one is

creating a database where each solution is recorded in a

memory along with the evaluation scores (constraint sat-

isfaction rates, total deviations). This procedure is inspired

by the principle that each step in the ‘‘Tabu Search’’

algorithm is kept in a ‘‘history’’ mechanism, and the rep-

etition of previous solutions is prohibited by looking at this

memory [55]. However, in the PbA, memory is used not as

a banned list but to eliminate unnecessary repetitive

function evaluations. The second one is about recording the

best-so-far positions of the solutions. This approach is

inspired by the ‘‘Elitism Principle’’ in the literature. The

elitism principle is the selection technique that saves the

best solution in the population to eliminate the risk of

losing the best solution between iterations [56]. In the PbA,

best-so-far solutions are stored to avoid losing them in case

of offsets. However, there are no limitations for the number

of elitist solutions differently from the original elitism

principle. Namely, the best-so-far solutions are kept sepa-

rately from the relocated solution set.

3.3 Multiplicative penalty-based method (MUPE)

Penalty functions are the most common approaches in the

constrained optimization literature for decades [57]. Pen-

alty approaches are utilized to keep violations and feasi-

bility under control by penalizing [58]. The penalty

approach developed for the PbA is motivated by the studies

[59–63]. The multiplicative penalty-based constraint han-

dling (MUPE) method, firstly proposed by Erdem [52],

calculates fitness function by considering satisfied con-

straints rate and deviations from constraints besides

objective function in a multiplicative manner. In the case of

unconstrained/bounded problems, the goal function would

be the objective function itself. The pseudocode for the

calculation of the heuristic fitness function is given below:

Herein goal function combines both the objective

function and all constraints. The goal function acts as a

heuristic function as shown below:

H x!
� �

¼ Hðf x!
� �

; d x!
� �

; t x!
� �

Þ ð1Þ

where, f x!
� �

represents Goal 1 which includes an objective

function to be minimized/maximized, d x!
� �

shows the

total amount of violations of the constraints, and this

function is controlled by Goal 2, t x!
� �

is the ratio of the

satisfied constraints which is represented by Goal 3, and

finally H x!
� �

corresponds to the fitness value of a candi-

date solution. Here Goal 2 and Goal 3 provide a bench-

marking because two infeasible solution points have

different constraint violation levels. Goal 2 deals with the

total amount of violations measure for solutions. On the

other hand, Goal 3 incorporates the ratio of satisfied con-

straints among overall ones. It can be concluded that

selecting the ‘‘a solution point that has great violation on a

single constraint, but the others satisfied’’ against ‘‘a

solution point that has little violations for all the con-

straints’’ is a benchmarking interest of this method. If all of

the constraints were satisfied for the two solution points,

Goal 1 would be the only criteria for comparing these

solution points.

This multi-objective function structure could have an

acceptable convergence by violating constraints within

defined precision. It is worth emphasizing that each goal is

considered according to different importance scores,

namely scores (c1, c2, c3). The sign of the objective func-

tion is also added multiplicatively depending on whether

the objective function is more significant than zero or not.

3.4 Offset factor

In the initialization part, the solutions are randomly

assigned values, and then they start to reach better solu-

tions. In PbA, an offset factor represents the relationship

Neural Computing and Applications (2023) 35:7635–7658 7639

123

between a candidate solution vector and its neighbors. The

offset factor exerted on each solution employs Eq. (2)

where Hðxi!Þ correspond to the fitness values of candidate

solutions and are calculated as below:

F ¼ C
Hðxi!ÞHðxl!Þ

d2il
ð2Þ

where F is an offset factor between i and l solution vectors;

C is a constant; H xi
!� �

;Hðxl!Þ are the fitness values of

solutions i and l, respectively; dil is the Euclidean distance

between the solution vectors and the calculation is

demonstrated below:

dil ¼
ffi
Xn

1

ðxin � xlnÞ2
s

¼
ffi
ðxi1 � xl1Þ2 þ ðxi2 � xl2Þ2 þ . . .þ ðxin � xlnÞ2

q
ð3Þ

After calculating the fitness values of each solution

vector, the offset factor caused by the neighbors exerted on

that solution is considered to find the new solution point. In

the PbA, each solution is exposed to that factor from the

closest solution vectors in the population by considering

the neighborhood principle.

3.5 Neighborhood

The determination of the number of neighbors is also

another critical issue to be addressed. According to Par-

eto’s Principle, roughly 80% of the effects come from 20%

of the causes [63]. This principle corresponds that when

neighborhood vectors are sorted in descending order, the

magnitudes of the offset factors decrease sharply after the

2nd–5th vectors. For that reason, the rest of the solutions

can be ignored in terms of fitness values. In the PbA, it is

thought that the two closest neighbors may have the

potential power for each solution to change its fitness

value. Thus, these neighbors are utilized for the displace-

ment procedure of the potential solution.

3.6 Offsetting

After identifying neighbors, the change in each solution

must be calculated as a result of the offset factor. After all

the factors exerted on the selected solution xi
!, the unified

(or compound) net change is calculated, and the new

solution is determined. The first iteration is completed after

all the factors from neighbors are considered for each

solution vector. Algorithm 5 shows the procedure of

neighbors affects the solution until a net force is balanced.

After the offset factors exerting on a solution, the unit

offsetting can be found by Eq. (4). The amount of change

for a related solution would be proportional to the related

dimensional factor and its fitness function value as shown

below:

Dx
0

i ¼
F

Dx2i
d2

HðxiÞ
¼ F

HðxiÞ
Dx2i
d2

ð4Þ

After considering all offset factors, each solution has a

new fitness value in both magnitude and direction. In

addition to the neighbors’ effects on the related solution,

the best-so-far solution also affects the corresponding

solution. The new value is determined by the weighted

impact of the neighbors and the best-so-far solution. The

determination of the new solution is given in Eq. (5).

xki ¼ xk�1
i þ ½Dxk�1

i aþ xk�1
b 1� að Þ�; i ¼ 1; 2; ::; n ð5Þ

where n is the number of dimensions, k is the iteration

number, a� 0; 1½ �, and it is a dynamic parameter based on

the improvement within loops, and xk�1
b is the best-so-far

solution. Here a provides an opportunity to control the

balance between the neighbors and the best-so-far solution.

In line with the net offset factor, the solutions are

exposed; they can change their fitness values if it has a

better value, as shown in Eq. (6) for minimization prob-

lems. In case of having worse fitness value, the solution

retains its current value by preserving the best-so-far

solution in the population as in Elitism selection. It would

be better to clarify that solution can be changed within the

allowed space, determined by the intervals of variables.

H xki
� �

\H xk�1
i

� �
ð6Þ

Furthermore, it is essential to clarify that if the new

fitness value is out of boundaries, the new solution vector is

updated as the boundary. When all offset factors are

determined for each solution in the population, the first

iteration is completed. These process chains are repeated

until no remarkable factor from neighbors occurs. How-

ever, if a candidate solution is still under the effect of the

offset factor, it changes its current value as a small

increased amount of offsetting, as shown in Eq. (7).

Dxki ¼ WDxk�1
i ð7Þ

7640 Neural Computing and Applications (2023) 35:7635–7658

123

where W 2 ½1:01; 1:1� and a subjective parameter. In case

of improvements Dxk�1
i continues to be multiplied by W.

After considering all the factors caused by the neighbors,

the unified net change is checked lastly and in case of

remarkable change, new solution vectors are determined.

3.7 Duplication

As a diversification procedure, the PbA applies a procedure

that two solution vectors cannot occupy the same fitness

value in a closed system. Thus, solutions can diversify

without trapping into a single point. Our experiments

assume that fitness values are the same in the case that the

first six decimal places are equal. In this step, the solution

set is checked whether there is a duplicated solution or not.

Thus, it is aimed that the algorithm does not trap into a

local optimum by increasing the solution possibilities in the

population.

While duplication check provides diversification, off-

setting in a wide range can create too much diversity

disrupting the balance. For this reason, the purpose of

offsetting around the best-known solution is to balance the

exploration–exploitation ability of the PbA.

Fig. 2 An illustration of the PbA

Table 2 Parameter Settings

The number of trials 30

The importance scores (c1, c2, c3) (MUPE) (0.25, 0.2,

1.8)

The number of the particles (population size) (n) 20

The incremental parameter (W) 1.02

The stopping parameter (b) 0.5*

The neighborhood size (j) 2

The precision number (q) 6

Maximum number of Function Evaluations (Max
FES)

30,000**

*1.5

**100,000 for Welded Beam

Neural Computing and Applications (2023) 35:7635–7658 7641

123

Table 3 Parameters used for algorithms published in the literature

Algorithm Population Max iteration Trial FES

Charged System Search (CSS) [29] NA NA 30 NA

Firefly Algorithm (FA) [67] 25 1000 NA 50,000e

Ray Optimization (RO) [68] 40 NA 50 NA

Magnetic Charged System Search (MCSS) [50] NA NA 30 NA

Cuckoo search algorithm (CSA) [69] 25 NA NA 5000

Advanced particle swarm-assisted genetic algorithm (PSO-GA) [70] NA NA 30 5000

Artificial Bee Colony Algorithm (ABC) [71] 20*D 500 30 NA

Plant Propagation Algorithm (PPA) [72] 40 25 100 30,000

Hybrid Flower Pollination Algorithm (H-FPA) [73] 50 1000 30 NA

Modified Oracle Penalty Method (MOPM) [74] 30 NA 100 90,000

Interior Search Algorithm (ISA) [75] NA NA 30 30,000*

Grey Wolf Optimizer (GWO) [76] NA NA NA NA

Optics Inspired Optimization (OIO) [77] 19 NA 30 5000

Hybrid PSO-GA Algorithm (H-PSO-GA) [78] 20*D NA 30 NA

Thermal Exchange Optimization (TEO) [79] 30 10,000 30 NA

Seagull Optimization Algorithm (SOA) [80] 100 1000 30 NA

Pathfinder algorithm (PA) [81] 60 100 NA NA

Hybrid GSA-GA Algorithm (H-GSA-GA) [82] 20*D 200 30 NA

Nuclear Fission-Nuclear Fusion Algorithm (N2F) [83] 40 NA 30 30,000

Marine Predators Algorithm (MPA) [84] NA 500 30 25,000

Equilibrium Optimizer (EO) [85] 30 500 NA 15,000

Search and Rescue Optimization Algorithm (SRO) [86] 20 NA 50 30,000a

Chaotic Grey Wolf Optimizer (CGWO) [87] 100 NA 30 40,000

Slime Mould Algorithm (SMA) [88] NA NA NA NA

Chaos Game Optimization (CGO) [89] NA NA 25 NA

Group Teaching Optimization Algorithm (GTO) [90] 50 NA 30 10,000

Teaching–Learning-based Marine Predator Algorithm (TLMPA) [91] NA NA 30 NA

Smell Bees Optimization Algorithm (SBO) [92] NA NA 50c 14,000b

Improved Grey Wolf Optimizer (IGWO) [93] 20 (D*104)/20d 10 NA

Cooperation Search Algorithm (CoSA) [94] 50 1000 20 NA

Hybrid Social Whale Optimization Algorithm (HS-WOA) [95] 50 NA 30 NA

Hybrid Social Whale Optimization Algorithm (HS-WOA ?) [95] 25 NA 30 NA

Atomic Orbital Search (AOS) [96] NA NA 25 200,000

Lichtenberg Algorithm (LA) [97] 100 200 30 NA

Dingo Optimization Algorithm (DOA) [98] 100 500 30 NA

Material Generation Algorithm (MGA) [99] NA NA 25 20,000*D

Rat Swarm Optimizer (RSO) [100] 30 1000 NA NA

Colony Predation Algorithm (CPA) [101] 30 NA 30 1000

Sand Cat Swarm Optimization (SCSO) [102] 30 500 30 NA

Archerfish Hunting Optimizer (AHO) [103] 30*s1.5 200,000/(30*s1.5) 25 NA

*5000 for pressure/8900 for Tension Compression Spring Design

**s is the search space
a15,000 for Welded Beam/25000 for Tension/Compression Spring Design
b13,000 for Tension/Compression Spring Design and Welded Beam
c30 for Welded Beam
dD is the number of variables
e25,000 for Pressure Vessel

7642 Neural Computing and Applications (2023) 35:7635–7658

123

3.8 Stopping condition

The stopping condition is related to the number of function

evaluations (FES). The pseudocode for the stopping con-

dition is given below. However, the algorithm will stop in

most cases where the main stopping condition is met. The

minimum, the maximum, and the average FES values are

also reported for each problem.

4 An illustrative example

In this section, an example is generated to explain the

procedure of the proposed algorithm step by step including

the most critical issues. The visualization is exemplified

through fitness values and the minimization problem as

shown in Fig. 2. The demonstration includes 4 crucial

issues A. Initial Solution, B. Neighborhood, C. Offsetting,

D. Best-so-far effect in the run, respectively. Each step is

explained in the following.

The determination of the search space is the first step of

PbA. At this stage, firstly the boundaries of the variables

are considered as default, and then the boundaries are

updated according to the root value of each constraint in

case of having constraints, and the final search space is

revealed. After the preliminary preparation is completed, a

random initial solution is generated as shown in Algorithm

3 and A section in Fig. 2. The next steps include the efforts

to reach a better point in line with the neighborhood rela-

tions of the population elements in the initial solution and

the relationship between the best-so-far solution (denoted

as black) in that solution. In Fig. 2, all steps are visualized

over a single solution value denoted red. The neighborhood

step identifies the two closest neighbors (denoted as yel-

low) that may have the potential power for the red solution

to change its fitness value. The closeness of the neighbors

is considered as the Euclidean distances. Through the offset

factors of the neighbors, the red solution will try to reach a

better point as shown in section C. The amount of change

in its place is calculated with the help of Algorithm 5.

Improvement efforts for better solutions are not limited to

offset factors of neighbors. Besides, the best-so-far solution

in that run also has a certain effect (1 - a) as mentioned in

Eq. (5) including the neighbors’ effect (a). Consequently,

Fig. 3 Pressure Vessel [105]

Table 4 Convergence of the

proposed algorithm
Best-so-far solution

x1 x2 x3 x4 Objective value

1st Iteration 0.75 3.6875 38.3180537 233.2875928 14,642.97428

2nd Iteration 0.75 0.5 38.8336281 222.377235 6201.305994

50th Iteration 0.75 0.375 38.85927662 221.3822673 5850.58009901902

150th Iteration 0.75 0.375 38.85987911 221.369303 5850.4220474207

.

246th Iteration 0.75 0.375 38.8601 221.3655 5850.38306

Table 5 Experimental results of Pressure Vessel

Best 5850.38306 Average iteration 163.63

Mean 6659.547045 Minimum FES 2527

Worst 7903.694033 Average FES 20,002.3

Standard deviation 713.15 Maximum FES 30,091

Standard error 130.2

Neural Computing and Applications (2023) 35:7635–7658 7643

123

the red solution takes its new position as shown in section

D. It would be better to clarify that these procedures have

been applied in case of having better fitness values;

otherwise, the solution retains its current position. The first

iteration is completed when new solution values are cal-

culated for each solution in the population. These chains of

processes are repeated until there is no appreciable off-

setting from the neighbors and the best-so-far solution

effect.

5 Constrained engineering optimization
problems

According to Ezugwu et al. [65], the strength of the

metaheuristics can be shown by the application in engi-

neering design, management, industries, finance, and

scheduling. This situation attracts the scientific community

and industry practitioners. In general, before proposing a

new algorithm, it is required to test its performance with

appropriate test benchmarks [66].

The highlight of the PbA is the ability to deal with

constraints very well because of the multiplicative penalty

method. For this reason, the performance of the algorithm

is evaluated with the most frequently used engineering

benchmark problems (Pressure Vessel, Welded Beam,

Tension/Compression Spring Design, Himmelblau’s

Function), which may have complex constraints. In addi-

tion, although these benchmarks are referred to as engi-

neering design problems in the literature, problems that are

essentially aimed at ‘‘cost minimization.’’ The parameters

used in the PbA are determined as a result of a trial-and-

error test and presented in Table 2.

In general, the algorithms to which the developed

algorithm will be compared are randomly selected and re-

run and reported independently from the scholars who

developed the algorithm. However, this situation may

cause manipulation by using different parameters, different

software hardware, or even different programming

Table 6 Best-so-far solution for

Pressure Vessel
Objective x1 x2 x3 x4

5850.38306 0.75 0.375 38.860104 221.365471

Constraints g1(x) g2(x) g3(x)

- 3.24056E-11 - 0.004275 - 2.41133E-05

Fig. 4 The convergence to the

best-so-far solution (pressure

vessel)

7644 Neural Computing and Applications (2023) 35:7635–7658

123

languages, giving biased results. For this reason, it will be

better to compare the developed algorithm with the results

of other algorithms as reported in the literature. At this

point (if specified), the population size, the number of

iterations, or the function evaluation value will be good

indicators for comparison. Since the main purpose is to

reach the best-known solutions so far or a better solution

than the best-known, the algorithms developed, especially

in recent years presented in Table 3, have been preferred

for comparison.

In the comparison tables for each problem, six decimal

places are documented if reported. The results obtained by

the PbA are also presented with the same sensitivity.

Moreover, we preferred to code the PbA in Python lan-

guage by utilizing Python libraries and PyCharm [104].

The experiments are executed on an Intel Core i7 computer

with a 2.60 GHz CPU and 12 GB RAM under the windows

operating system.

In the following sections, the experimental results for

Pressure Vessel, Welded Beam, Tension/Compression

Spring Design, and Himmelblau’s Function are presented

in detail.

5.1 Pressure Vessel

The design of a Pressure Vessel is one of the most used

cost optimization problems. The design image of the vessel

is given in Fig. 3. This problem has four variables where x3
and x4 are continuous, while x1 and x2 are integers

Table 7 Comparisons for

pressure vessel (Best-so-far

solution)

Algorithm 9 1 9 2 9 3 9 4 Objective

CSS [28] 0.8125 0.4375 42.103624 176.572656 6059.09

FA [63] 0.75 0.375 38.8601 221.36547 5850.38306

MCSS [49] 0.8125 0.4375 42.10455 176.560967 6058.97

MOPM [70] 0.8125 0.4375 42.098446 176.636596 6059.7143

ISA [71] 0.8125 0.4375 42.09845 176.6366 6059.7143

GWO [72] 0.8125 0.4345 42.089181 176.758731 6051.5639

TEO [75] 0.779151 0.385296 40.369858 199.301899 5887.511073

SOA [76] 0.77808 0.383247 40.31512 200 5879.5241

PA [77] 0.778168 0.384649 40.31964 199.9999 5885.3351

N2F [79] 1.125 0.625 58.290155 43.6926562 7197.72893

MPA [80] 0.8125 0.4375 42.098445 176.636607 6059.7144

EO [81] 0.8125 0.4375 42.098446 176.636596 6059.7143

SRO [82] 0.8125 0.4375 42.098446 176.636596 6059.714335

SMA [84] 0.7931 0.3932 40.6711 196.2178 5994.1857

CGO [85] 0.778169 0.51 40.319619 200 6247.672819

GTO [86] 0.778169 0.38465 40.3196 200 5885.333

TLMPA [87] 0.778169 0.384649 40.319618 200 5885.332774

SBO [88] 0.778169 0.384649 40.319619 199.999999 5885.33262

IGWO [89] 0.779031 0.385501 40.36313 199.4017 5888.34

HS-WOA ? [95] 0.778168 0.384649 40.319622 199.999953 5885.331515

HS-WOA [95] 0.778486 0.385076 40.326495 199.998992 5889.976089

AOS [96] 0.778674 0.385322 40.340891 199.721518 5888.457948

DOA [98] 0.8125 0.4375 42.09845 176.6366 6059.7143

MGA [99] NA NA NA NA 6059.714350

RSO [100] 0.775967 0.383127 40.313297 200 5878.5395

CPA [101] 0.81250 0.437500 42.088230 176.763300 6060.9590

SCSO [102] 0.7798 0.9390 40.3864 199.2918 5917.46

AHO [103] NA NA NA NA 6060

Proposed algorithm (PbA) 0.75 0.375 38.860104 221.365471 5850.38306

Neural Computing and Applications (2023) 35:7635–7658 7645

123

(products of 0.0625 inches) which are the available thick-

ness of the material.

The model of the Pressure Vessel is given below:

Table 8 Comparisons for

pressure vessel (descriptive

statistics)

Algorithm Best Mean Worst Std Dev

CSS [28] 6059.09 6067.91 6085.48 10.2564

FA [63] 5850.38306 NA NA NA

MCSS [49] 6058.97 6063.18 6074.74 9.73494

MOPM [70] 6059.7143 6059.7143 6059.7143 1.94E-08

ISA [71] 6059.714 6410.087 7332.846 384.6

GWO [72] 6051.5639 NA NA NA

TEO [75] 5887.511073 5942.565917 6134.187981 62.2212

SOA [76] 5879.5241 5883.0052 5893.4521 256.415

PA [77] 5885.3351 NA NA NA

N2F [79] 7197.72893 7197.72905 7197.72924 7.90E-05

MPA [80] 6059.7144 6102.8271 6410.0929 106.61

EO [81] 6059.7143 6668.114 7544.4925 566.24

SRO [82] 6059.714335 6091.32594 6410.0868 8.03E ? 01

SMA [84] 5994.1857 NA NA NA

CGO [85] 6247.672819 6250.957354 6330.958685 10.75915635

GTO [86] 5885.333 NA NA NA

TLMPA [87] 5885.332774 NA NA NA

SBO [88] 5885.33262 6156.4028 6384.8583 74.9635

IGWO [89] 5888.34 NA NA NA

HS-WOA ? [95] 5885.332 5906.331 5998.331 72.1541

HS-WOA [95] 5889.976 5946.629 6231.362 121.0098

AOS [96] 5888.457948 5888.480501 5894.840682 2.199072

DOA [98] 6059.7143 NA NA NA

MGA [99] 6059.714350 6059.694923 6273.765974 0.028912

RSO [100] 5878.5395 5881.5355 5887.3933 167.041

CPA [101] 6060.9590 NA NA NA

SCSO [102] 5917.46 NA NA NA

AHO [103] 6060 7330 6150 6.25

Proposed Algorithm (PbA) 5850.383 6659.547045 7903.694 713.15

Fig. 5 Welded beam [105]

Table 9 Experimental results of Welded Beam

Best 1.724872 Average iteration 741.53

Mean 1.799315 Minimum FES 47,257

Worst 2.278059 Average FES 89,236.7

Standard deviation 0.12 Maximum FES 100,126

Standard error 0.02

7646 Neural Computing and Applications (2023) 35:7635–7658

123

Minimize f x~ð Þ ¼ 0:6224x1x3x4

þ 1:7781x2x
2
3 þ 3:1661x21x4 þ 19:84x21x3

Subject to

g1 x~ð Þ ¼ �x1 þ 0:0193x3 � 0

g2 x~ð Þ ¼ �x2 þ 0:00954x3 � 0

g3 x~ð Þ ¼ �px23x4 �
4

3
px33 þ 1296000� 0

x1; x2 2 0:0625; 10½ �; x3 2 0; 100½ �; x4 2 0; 240½ �

ð8Þ

It would be useful to show how the proposed algorithm

handles a problem step by step and arrives at a near-opti-

mal result before reporting the final solutions for each

problem. The convergence process of the PbA is exem-

plified for Pressure Vessel in Table 4. The other engi-

neering design problems converge similarly.

The experimental results for Pressure Vessel are sum-

marized in Table 5 as descriptive statistics. Although

maximum FES is limited to 30,000, actual FES values are

also reported as well.

The best-so-far solution for the Pressure Vessel obtained

by the PbA is given in Table 6. Moreover, the left-hand

side values of each constraint are also provided in Table 6

to show the feasibility of the solution.

In Fig. 4 a graphic is given in order to show the con-

vergence to the global minimum of the algorithm visually.

It shows the objective function values obtained according

to the FES value in the related run reaching the global

minimum within 30 trials. As it is seen, the best-so-far

solution has been reached approximately after 5000 func-

tion evaluations.

The Pressure Vessel problem has been handled with

many other metaheuristic algorithms previously. Since

there are too many algorithms in the literature, only those

developed after 2010 are presented chronologically in

Table 7. Most of the solutions could not be able to satisfy

Table 10 Best-so-far solution

for welded beam
Objective x1 x2 x3 x4

1.724872 0.205715 3.470808 9.036624 0.20573

Constraints g1(x) g2(x) g3(x)

- 3.1307E-06 2.96612E-07 - 1.48238E-05

g4(x) g5(x) g6(x)

- 3.390637 - 0.23554 - 0.001607

Fig. 6 The convergence to the

best-so-far solution (Welded

Beam)

Neural Computing and Applications (2023) 35:7635–7658 7647

123

‘‘having x1 and x2 as integer products of 0.0625.’’ The

feasible best-known solution for Pressure Vessel has been

obtained firstly by FA. However, there are no other algo-

rithms that reach this solution. PbA has provided the same

best-known solution with a smaller set size compared to

FA.

The descriptive statistics of the experiments are shown

in Table 8. As it is seen, the performance of the PbA is

better than the solutions reached by other algorithms.

Although the worst and the standard deviation are rela-

tively higher than the others, the feasible best-known

solution is obtained by the PbA.

5.2 Welded Beam

The Welded Beam is a structural optimization problem

generally preferred as a benchmark [106]. This structure is

about the beam and the weld for mass production, as shown

in Fig. 5. This cost optimization problem consists of four

design variables and six constraints. The model is given in

Eq. 9.

Minimize f x~ð Þ ¼ 1þ c1ð Þx21x2 þ c2x3x4 Lþ x2ð Þ
Subject to

g1 x~ð Þ ¼ s x~ð Þ � smax � 0

g2 x~ð Þ ¼ r x~ð Þ � rmax � 0

g3 x~ð Þ ¼ x1 � x4 � 0

g4 x~ð Þ ¼ c1x
2
1 þ c2x3x4 Lþ x2ð Þ � 5� 0

g5 x~ð Þ ¼ d x~ð Þ � dmax � 0

g6 x~ð Þ ¼ P� Pc x~ð Þ� 0

s x~ð Þ ¼
ffi
s0ð Þ2þ2s0s00

x2
2R

þ ðs00Þ2
r

s0 ¼ P
ffiffiffi
2

p
x1x2

; s00 ¼ MR

J
;

M ¼ P Lþ X2

2

� �
; R ¼

ffi
x22
4
þ x1 þ x3

2

� �2
r

J ¼ 2
ffiffiffi
2

p
x1x2

x22
12

þ x1 þ x3
2

� �2	
� �

r x~ð Þ ¼ 6PL

x4x
2
3

; d x~ð Þ ¼ 4PL3

Ex33x4

Pc x~ð Þ ¼
4:013E

ffiffiffiffiffiffi
x2
3
x6
4

36

q

L2
1� x3

2L

ffiffiffiffiffiffi
E

4G

r !

x1 2 0:125; 5½ �; x2; x3 2 0:1; 10½ �; x4 2 0:1; 5½ �
c1 ¼ 0:10471; c2 ¼ 0:04811; P ¼ 6000; L ¼ 14;

E ¼ 30000000; G ¼ 12000000

dmax ¼ 0:25; smax ¼ 13600; rmax ¼ 30000

ð9Þ

The experimental results for Welded Beam are given in

Table 9 as descriptive statistics. Only for Welded Beam

problem, maximum FES is limited to 100,000, and actual

FES values are also reported as well.

The best-so-far solution for Welded Beam obtained by

the PbA is given in Table 10. Furthermore, to show the

feasibility of the solution, each constraint’s left-hand side

values are also provided. As seen from the constraint val-

ues, only one constraint has a 2.96612E-07 violation which

is negligible. Therefore, it can be concluded that the

solution is feasible as well.

In Fig. 6, a graphic is given to show the convergence to

the global minimum of the algorithm visually. Figure 6

shows the objective function values obtained according to

the FES value in the run reaching the global minimum

within 30 trials. The algorithm has converged the best-so-

far solution after 30,000 FES, according to the graph.

The feasible best-known solution for Welded Beam has

been obtained as 1.724852 in the literature. Most of the

algorithms have reached feasible best-known solutions.

However, the solution values obtained differ after the 5th

digit after the comma, as shown in Table 11. It is worth

noting that the solutions less than 1.724852 are infeasible

for some constraints.

In Table 12, the descriptive statistics for Welded Beam

are reported. Table 12 indicates that the PbA achieves the

best-known solution nearly (with a 2.04E-05 deviation,

which is negligible).

5.3 Tension/Compression Spring Design

The Tension/Compression Spring Design Problem is an

optimization benchmark that minimizes the weight [107].

There are three variables and four constraints. Its figure and

model are given in Fig. 7 and Eq. 10, respectively.

Minimize f x~ð Þ ¼ x3 þ 2ð Þx2x21
Subject to

g1 x~ð Þ ¼ 1� x32x3
71785x41

� 0

g2 x~ð Þ ¼ 4x22 � x1x2

12566 x2x
3
1 � x41

� �þ 1

5108x21
� 1� 0

g3 x~ð Þ ¼ 1� 140:45x1
x22x3

� 0

g4 x~ð Þ ¼ x1 þ x2
1:5

� 1� 0

x1 2 0:05; 1½ �; x2 2 0:25; 1:3½ �; x3 2 2; 15½ �

ð10Þ

The experimental results for Tension/Compression

Spring Design are given in Table 13 as descriptive statis-

tics. Maximum FES is limited to 30,000, and the minimum

and the average FES values are also reported as well.

7648 Neural Computing and Applications (2023) 35:7635–7658

123

The best-so-far solution for Tension/Compression

Spring Design obtained by the PbA is given in Table 14. As

is seen in Table 14, all constraints are satisfied.

A graphic is given in Fig. 8 to visually express the

algorithm’s convergence to the global minimum value. It

shows the objective function values obtained according to

the FES value in the run reaching the global minimum

within 30 trials. It is seen that the best-so-far solution has

been obtained at the very beginning of FES values.

According to Table 15, the feasible best-known solution

is 0.012665 reported in the literature. When the digits of

the solutions reaching the value of 0.012665 are compared,

it is evident that the PbA also reached the value of the best-

known solution. It is worth noting that the solutions less

than 0.012665 are infeasible to some extent.

The descriptive statistics for Tension/Compression

Spring Design are listed in Table 16. As it is seen, the

performance of the PbA is better than the solutions reached

by other algorithms.

5.4 Himmelblau’s Function

Himmelblau proposed a nonlinear constrained optimization

problem in 1972, and it is regarded as a mechanical engi-

neering problem [108]. This well-known problem has five

variables and six constraints. The model of the problem is

given in Eq. 11.

Table 11 Comparisons for

Welded Beam (Best-so-far

solution)

Algorithm 9 1 9 2 9 3 9 4 Objective

CSS [28] 0.20582 3.468109 9.038024 0.205723 1.724866

FA [67] 0.2015 3.562 9.0414 0.2057 1.73121

RO [68] 0.203687 3.528467 9.004233 0.207241 1.735344

MCSS [50] 0.20573 3.470489 9.036624 0.20573 1.724855

MOPM [74] 0.20573 3.470489 9.036624 0.20573 1.724852

ISA [75] 0.244330 6.219931 8.291521 0.244369 2.3812

GWO [76] 0.205676 3.478377 9.03681 0.205778 1.72624

TEO [79] 0.205681 3.472305 9.035133 0.205796 1.725284

SOA [80] 0.205408 3.472316 9.035208 0.201141 1.723485

PA [81] 0.02058 3.470495 9.036624 0.20573 1.724853

N2F [83] 0.20573 3.470489 9.036624 0.20573 1.724852

MPA [84] 0.205728 3.470509 9.036624 0.20573 1.724853

EO [85] 0.2057 3.4705 9.03664 0.2057 1.7549

SRO [86] 0.20573 3.470489 9.036624 0.20573 1.724852

CGWO [87] 0.20573 3.470499 9.036637 0.20573 1.724854

SMA [88] 0.2054 3.2589 9.0384 0.2058 1.69604

CGO [89] 0.198856 3.337244 9.191454 0.198858 1.670336

GTO [90] 0.20573 3.470489 9.036624 0.20573 1.724852

TLMPA [91] 0.20573 3.470489 9.036624 0.20573 1.724852

SBO [92] 0.175055 3.305377 9.248898 0.206137 1.699215

IGWO [93] 0.20573 3.47049 9.036624 0.20573 1.724853

CoSA [94] 0.205692 3.254453 9.03636 0.205733 1.695505

HS-WOA ? [95] 0.20573 3.470489 9.036624 0.20573 1.724852

HS-WOA [95] 0.208079 3.442723 8.986502 0.208651 1.738146

AOS [96] 0.205730 3.470489 9.036624 0.205730 1.724852

LA [97] 0.2213 3.2818 8.7579 0.2216 1.8446

MGA [99] NA NA NA NA 1.672967

RSO [100] 0.205397 3.465789 9.034571 0.201097 1.722789

CPA [101] 0.188500 3.562000 9.134835 0.205245 1.723916

SCSO [102] 0.2057 3.2530 9.0366 0.2057 1.6952

AHO [103] NA NA NA NA 1.67

Proposed algorithm (PbA) 0.205715 3.470808 9.036624 0.20573 1.724872

Neural Computing and Applications (2023) 35:7635–7658 7649

123

Table 12 Comparisons for

Welded Beam (Descriptive

Statistics)

Algorithm Best Mean Worst Std Dev

CSS [28] 1.724866 1.739654 1.759479 0.008064

FA [67] 1.73121 NA NA NA

RO [68] 1.735344 1.9083 NA 0.173744

MCSS [50] 1.724855 1.735374 1.750127 0.007571

MOPM [74] 1.724852 1.7249 1.749 1.11E-08

ISA [75] 2.3812 2.4973 2.67 1.02E-01

GWO [76] 1.72624 NA NA NA

TEO [79] 1.725284 1.76804 1.931161 0.058166

SOA [80] 1.723485 1.724251 1.727102 1.724007

PA [81] 1.724853 NA NA NA

N2F [83] 1.724852 1.725 1.726147 3.39E-04

MPA [84] 1.724853 1.724861 1.724873 6.41E-06

EO [85] 1.724853 1.726482 1.736725 0.003257

SRO [86] 1.724852 1.724852 1.724852 2.22E-11

CGWO [87] 1.724854 1.724854 1.724854 3.36E-16

SMA [88] 1.69604 NA NA NA

CGO [89] 1.670336 1.670378 1.670903 9.30E-05

GTO [90] 1.724852 NA NA NA

TLMPA [91] 1.724852 NA NA NA

SBO [92] 1.699215 1.719856 1.743486 0.014826

IGWO [93] 1.724853 NA NA NA

CoSA [94] 1.695505 1.724051 1.873922 0.047618

HS-WOA ? [95] 1.724852 1.754853 1.848521 0.000249

HS-WOA [95] 1.738146 1.739235 1.948905 0.001349

AOS [96] 1.724852 1.725674 1.732516 0.024787

LA [97] 1.7351 1.8446 NA 0.1597

MGA [99] 1.672967 1.678791 1.687172 4.41E-03

RSO [100] 1.722789 1.725097 1.726987 0.015748

CPA [101] 1.723916 NA NA NA

SCSO [102] 1.6952 NA NA NA

AHO [103] 1.67 1.67 1.67 1.15E-14

Proposed Algorithm (PbA) 1.724872 1.799315 2.278059 0.12

Fig. 7 Tension/Compression Spring Design [105]

Table 13 Experimental results of Tension/Compression Spring

Design

Best 0.012665 Average iteration 227.43

Mean 0.013404 Minimum FES 11,970

Worst 0.01705 Average FES 28,646.73

Standard deviation 0.0013 Maximum FES 30,120

Standard error 0.0002

7650 Neural Computing and Applications (2023) 35:7635–7658

123

Table 14 Best-so-far solution

for Tension/Compression

Spring Design

Objective x1 x2 x3

0.012665 0.05182 0.359887 11.105579

Constraints g1(x) g2(x) g3(x) g4(x)

- 8.18448E-10 - 1.77694E-07 - 4.059998 - 0.725529

Fig. 8 The convergence to the

best-so-far solution (Tension/

Compression Spring Design)

Table 15 Comparisons for

Tension/Compression Spring

Design (best-so-far solution)

Algorithm 9 1 9 2 9 3 Objective

CSS [28] 0.051744 0.358532 11.165704 0.012638

RO [68] 0.05137 0.349096 11.7679 0.012679

MCSS [50] 0.051627 0.35629 11.275456 0.012607

MOPM [74] 0.051718 0.357418 11.248016 0.012665

ISA [75] NA NA NA 0.012665

GWO [76] 0.05169 0.356737 11.28885 0.012666

TEO [79] 0.051775 0.358792 11.16839 0.012665

SOA [80] 0.051065 0.342897 12.0885 0.012645

PA [81] 0.051727 0.35763 11.235724 0.012665

MPA [84] 0.051725 0.357570 11.239196 0.012665

EO [85] 0.05162 0.355054 11.387968 0.012666

SRO [86] 0.051689 0.356723 11.288648 0.012665

CGO [89] 0.051663 0.356078 11.326575 0.012665

TLMPA [91] 0.051681 0.356533 11.299823 0.012665

SBO [92] 0.051598 0.354523 11.418801 0.012665

HS-WOA ? [95] 0.05192 0.362288 10.969723 0.012666

HS-WOA [95] 0.053446 0.399928 9.173312 0.012764

AOS [96] 0.051690 0.356729 11.288297 0.012665

MGA [99] NA NA NA 0.012665

RSO [100] 0.051075 0.341987 12.0667 0.012656

CPA [101] 0.051741 0.357978 11.21548 0.012665

SCSO [102] 0.0500 0.3175 14.0200 0.012717

AHO [103] NA NA NA 0.0127

Proposed Algorithm (PbA) 0.05182 0.359887 11.105579 0.012665

Neural Computing and Applications (2023) 35:7635–7658 7651

123

Minimize f x~ð Þ ¼ 5:3578547x23 þ 0:8356891x1x5

þ 37:293239x1 � 40792:141

Subject to

g1 x~ð Þ ¼ 85:334407þ 0:0056858x2x5 þ 0:00026x1x4

� 0:0022053x3x5

g2 x~ð Þ ¼ 80:51249þ 0:0071317x2x5 þ 0:0029955x1x2

þ 0:0021813x23
g3 x~ð Þ ¼ 9:300961þ 0:0047026x3x5 þ 0:0012547x1x3

þ 0:0019085x3x4

0� g1 x~ð Þ� 92

90� g2 x~ð Þ� 110

20� g3 x~ð Þ� 25

x1 2 78; 102½ �; x2 2 33; 45½ �; x3; x4; x5 2 27; 45½ �
ð11Þ

Table 16 Comparisons for

Tension/Compression Spring

Design (Descriptive Statistics)

Algorithm Best Mean Worst Std Dev

CSS [28] 0.012638 0.012852 0.013626 8.3564e-5

RO [68] 0.012679 0.013547 NA 0.001159

MCSS [50] 0.012607 0.012712 0.012982 4.7831e-5

MOPM [74] 0.012665 0.012665 0.012665 1.87E-08

ISA [75] 0.012665 0.013165 0.012799 1.59E-02

GWO [76] 0.012666 NA NA NA

TEO [79] 0.012665 0.012685 0.012715 4.41E-06

SOA [80] 0.012645 0.012666 0.012666 0.001108

PA [81] 0.012665 NA NA NA

MPA [84] 0.012665 0.012665 0.012665 5.55E-08

EO [85] 0.012666 0.013017 0.013997 3.91E-04

SRO [86] 0.012665 0.012665 0.012668 1.26E-07

CGO [89] 0.012665 0.012670 0.012719 1.09E-05

TLMPA [91] 0.012665 NA NA NA

SBO [92] 0.012665 0.012687 0.012723 1.77E-05

HS-WOA ? [95] 0.012666 0.012745 0.012827 0.000105

HS-WOA [95] 0.012764 0.012816 0.012918 0.000121

AOS [96] 0.012665 0.012738 0.013597 0.000121

MGA [99] 0.012665 0.012666 0.012667 5.65E-07

RSO [100] 0.012656 0.012666 0.012668 0.057894

CPA [101] 0.012665 NA NA NA

SCSO [102] 0.012717 NA NA NA

AHO [103] 0.0127 0.0129 0.0151 2.17E-04

Proposed Algorithm (PbA) 0.012665 0.013404 0.01705 0.0013

Table 17 Experimental results of Himmelblau’s Function

Best - 31,025.546836 Average
iteration

171.5

Mean - 30,986.343296 Minimum FES 4918

Worst - 30,642.489379 Average FES 21,415.3

Standard
deviation

94.38 Maximum FES 30,106

Standard error 17.23

Table 18 Best-so-far solution

for Himmelblau’s Function
Objective x1 x2 x3 x4 x5

- 31,025.546836 78 33 27.07115 44.999999 44.968769

Constraints g1(x) g2(x) g3(x)

91.999924 100.404691 20

7652 Neural Computing and Applications (2023) 35:7635–7658

123

Fig. 9 The convergence to the

best-so-far solution

(Himmelblau)

Table 19 Comparisons for Himmelblau’s Function (Best-so-far solution)

Algorithm 9 1 9 2 9 3 9 4 9 5 Objective

CSA [69] 78 33 29.99616 45 36.77605 - 30,665.233

PSO-GA [70] 78 33 29.99525 45 36.77582 - 30,665.5389

ABC [71] 78 33 27.07098 45 44.969024 - 31,025.57569

PPA [72] 78 33 29.9952 45 36.7758 - 30,665.54

H-FPA [73] NA NA NA NA NA - 31,025.5654

OIO [77] NA NA NA NA NA - 31,025.50178

H-PSO-GA [78] 78 33 27.070951 45 44.969167 - 31,025.57471

H-GSA-GA [82] 77.961 32.99948 27.072836 45 44.973943 - 31,027.64076

CSA [94] 78 33 29.995256 45 36.775813 - 30,665.538672

Proposed Algorithm (PbA) 78 33 27.07115 44.999999 44.968769 - 31,025.546836

Table 20 Comparisons for

Himmelblau’s Function

(Descriptive Statistics)

Algorithm Best Mean Worst Std Dev

CSA [69] - 30,665.233 NA NA 11.6231

PSO-GA [70] - 30,665.5389 - 30,665.53697 - 30,665.48996 8.76E-03

ABC [71] - 31,025.57569 - 31,025.55841 - 31,025.49205 0.015353

PPA [72] - 30,665.54 NA NA NA

H-FPA [73] - 31,025.5654 NA NA NA

OIO [77] - 31,025.50178 - 31,024.5348 - 31,020.60517 1.2092

H-PSO-GA [78] - 31,025.57471 - 31,025.55782 - 31,025.49205 0.01526

H-GSA-GA [82] - 31,027.64076 - 31,026.07246 - 31,025.38705 0.01803

CSA [94] - 30,665.538672 - 30,625.97242 - 30,561.19298 35.52345

Proposed Algorithm (PbA) - 31,025.54684 - 30,986.3 - 30,642.48938 94.38

Neural Computing and Applications (2023) 35:7635–7658 7653

123

The experimental results for Himmelblau’s Function are

given in Table 17 as descriptive statistics. Maximum FES

is limited to 30,000, and the minimum and the average FES

values are also reported as well.

The solution for Himmelblau’s Function obtained by the

PbA is given in Table 18. As it is seen, all constraints are

within the defined range, which means that there are no

violations.

In Fig. 9, a graphic is given in order to show the con-

vergence of the algorithm to the global minimum visually.

It shows the objective function values obtained according

to the FES value in the run reaching the global minimum

within 30 trials. According to Fig. 9, it is seen that the

algorithm has achieved convergence of the best-so-far

solution with less than 10,000 FES values.

In Table 19, the feasible best-known solutions obtained

for Himmelblau’s Function are given. H-GSA-GA reaches

the best-known solution with -31,027.64076. However, it

would be better to mention that H-GSA-GA utilizes

20*Dimension as population size, which becomes 100.

The descriptive statistics for Himmelblau’s Function are

listed in Table 20. As seen, the performance of the PbA for

Himmelblau’s Function is considerably good.

6 Discussion and conclusion

This study presents a new population-based evolutionary

computation model for solving continuous constrained

nonlinear optimization problems. The proposed algorithm

assumes that candidate solutions in a defined search space

are in interaction to survive through having better fitness

values. The interaction between candidate solutions is

limited with the closest neighbors by considering the

Euclidean distance. The outstanding feature of the PbA is

the MUPE which considers satisfied constraints rate and

deviations from constraints besides objective function in a

multiplicative manner. Another prominent feature in the

PbA is the control mechanism for duplication, which is for

satisfying Pauli’s Exclusion Principle in physics. PbA is

structured as a memory-based algorithm inspired by Tabu

Search and Elitism at some point. A database structure has

been created to reduce the function evaluation load in the

algorithm. This database can be thought of as a memory

capability of the PbA. However, unlike in Tabu Search,

this database is designed as a particle repository, not a

banned list. On the other hand, the best solutions achieved

are also recorded and kept separately. However, this does

not include a specific ratio as in the Elitism approach; on

the contrary, the best set is used as much as the population

size. Although the PbA is inspired by natural facts and

other algorithms in the literature, the primary goal is to

achieve better results in a specific problem type, regardless

of metaphors and similarities.

To show the performance of the PbA, the most common

engineering design problems such as Pressure Vessel,

Welded Beam, Tension Compression Spring Design, and

Himmelblau’s Function are applied. The experimental

studies have shown that the PbA performs well to handle

constraints while minimizing objective functions, and the

PbA has provided the best-known solutions in the litera-

ture. It should be pointed out that solution set size signif-

icantly impacts the results. For this reason, the PbA has

been performed with the minimum set size listed in the

comparison table. It is evident that, in the case of a more

extensive set size, the best-known solutions can be reached

more quickly in the PbA.

Limitations of this study should be noted as well. The

performance of the proposed algorithm is limited by the

real-world engineering design problems handled. Further-

more, parameter setting for importance scores in MUPE

approach has been determined by trial and error which can

be considered a disadvantage of the proposed algorithm.

Apart from this, hardware qualifications such as central

processing unit (CPU), computer data storage, and the

motherboard can also be considered as limitations.

For further studies, different benchmark group problems

(unconstrained, multi-objective, combinatorial, etc.) can be

solved after some modifications of the PbA. Furthermore,

the PbA can be integrated with other constraint handling

methods. Modifications can achieve the desired result with

less function evaluation value. It can be combined with

various algorithms as a different hybrid algorithm. More-

over, as stated by Gambella et al. [109], the concept of

optimization problems for machine learning presents novel

research directions by considering machine learning mod-

els as complement approaches in addition to the existing

optimization algorithms. For instance, the proposed algo-

rithm can be implemented in any place where other evo-

lutionary algorithms such as genetic algorithm have been

utilized for itemset mining as shown in [110, 111]. Besides,

it can be integrated with any deep learning algorithms to

diagnose the disease as handled in [112].

7654 Neural Computing and Applications (2023) 35:7635–7658

123

Appendix Acknowledgements There are no relevant financial or non-financial

competing interests to report. The authors would like to thank the

anonymous reviewers who contributed to the paper through their

comments. This study has been derived from a Ph.D. thesis titled as

’’Nature-Inspired Evolutionary Algorithms and a Model Proposal‘‘

which is prepared by Gulin Zeynep Oztas under the supervision of

Sabri Erdem. Therefore, we are also grateful to the doctoral disser-

tation committee members for their supports.

Author contribution GZO: Investigation, Software, Writing – Origi-

nal Draft, Writing – Review & Editing. SE: Conceptualization,

Methodology, Supervision, Writing – Review & Editing.

Data availability Data sharing not applicable to this article as no

datasets were generated or analyzed during the current study. Codes

of the proposed algorithm are available at https://github.com/guli

noztas/repulsive-forces.git. For further information one can get con-

tact with the corresponding author.

References

1. Piotrowski AP, Napiorkowski JJ, Rowinski PM (2014) How

novel is the ‘‘Novel’’ black hole optimization approach? Inf Sci

267:191–200. https://doi.org/10.1016/j.ins.2014.01.026

2. Sörensen K (2015) Metaheuristics—the metaphor exposed. Int

Trans Oper Res 22(1):3–18

3. Fister Jr I, Mlakar U, Brest J, Fister I (2016) A new population-

based nature-inspired algorithm every month: Is the current era

coming to the end? In: Proceedings of the 3rd student computer

science research conference, pp 33–37

4. Odili JB, Noraziah A, Ambar R, Wahab MHA (2018) A critical

review of major nature-inspired optimization algorithms. Eur-

asia Proc Sci Technol Eng Math 2:376–394

5. Tovey CA (2018) Nature-ınspired heuristics: overview and cri-

tique. In: Gel E, Ntaimo L, Shier D, Greenberg HJ (eds) Recent

advances in optimization and modeling of contemporary prob-

lems. INFORMS, pp 158–192

6. Lones MA (2020) Mitigating metaphors: a comprehensible

guide to recent nature-inspired algorithms. SN Comput Sci

1(1):1–12

7. Wolpert DH and Macready WG (1995) No free lunch theorems

for search. https://www.researchgate.net/profile/David-Wolpert/

publication/221997149_No_Free_Lunch_Theorems_for_

Search/links/0c960529e2b49c4dce000000/No-Free-Lunch-Theo

rems-for-Search.pdf. (accessed 12 December 2020)

8. Dokeroglu T, Sevinc E, Kucukyilmaz T, Cosar A (2019) A

survey on new generation metaheuristic algorithms. Comput Ind

Eng. https://doi.org/10.1016/j.cie.2019.106040

9. Fister I, Yang XS, Brest J, Fister D (2013) A brief review of

nature-inspired algorithms for optimization. Elektrotehniski

Vestnik/Electrotech Rev 80(3):116–122. https://doi.org/10.

1097/ALN.0b013e31825681cb

10. Blum C, Roli A (2003) Metaheuristics in combinatorial opti-

mization: overview and conceptual comparison. ACM Comput

Surv (CSUR) 35(3):268–308. https://doi.org/10.1007/s10479-

005-3971-7

11. Echevarrı́a LC, Santiago OL, de Antônio HFCV, da Neto AJS

(2019) Fault Diagnosis Inverse Problems: Solution with Meta-

heuristics. Springer

12. Beheshti Z, Shamsuddin SMH (2013) A review of population-

based meta-heuristic algorithm. Int J Adv Soft Comput Appl

5(1):1–35

13. Sotoudeh-Anvari A, Hafezalkotob A (2018) A bibliography of

metaheuristics-review from 2009 to 2015. Int J Knowl-Based

ABC Artificial bee colony algorithm

AHO Archerfish hunting optimizer

AOS Atomic orbital search

APO Artificial physics optimization

CFO Central force optimization

CGO Chaos game optimization

CGWO Chaotic grey wolf optimizer

CSA Cuckoo search algorithm

CoSA Cooperation search algorithm

CSS Charged system search

CPA Colony predation algorithm

DOA Dingo optimization algorithm

EFO Electromagnetic field optimization

EM Electromagnetism-like mechanism

EO Equilibrium optimizer

FA Firefly algorithm

FES Function evaluations

GIO Gravitational interaction optimization

GSA Gravitational search algorithm

GTO Group teaching optimization algorithm

GWO Grey wolf optimizer

H-FPA Hybrid flower pollination algorithm

H-GSA-GA Hybrid GSA-GA algorithm

HO Hysteretic optimization

H-PSO-GA Hybrid PSO-GA algorithm

HS-WOA Hybrid social whale optimization algorithm

IGWO Improved grey wolf optimizer

ISA Interior search algorithm

LA Lichtenberg algorithm

MCSS Magnetic charged system search

MGA Material generation algorithm

MOA Magnetic optimization algorithm

MOPM Modified oracle penalty method

MPA Marine predators algorithm

MUPE Multiplicative penalty-based method

N2F Nuclear fission-nuclear fusion algorithm

OIO Optics inspired optimization

PA Pathfinder algorithm

PbA Penalty-based algorithm

PPA Plant propagation algorithm

PSO-GA Advanced particle swarm-assisted genetic algorithm

RO Ray optimization

RSO Rat swarm optimizer

SBO Smell bees optimization algorithm

SCSO Sand cat swarm optimization

SMA Slime mould algorithm

SOA Seagull optimization algorithm

SRO Search and rescue optimization algorithm

TEO Thermal exchange optimization

TLMPA Teaching–learning based marine predator algorithm

Neural Computing and Applications (2023) 35:7635–7658 7655

123

https://github.com/gulinoztas/repulsive-forces.git
https://github.com/gulinoztas/repulsive-forces.git
https://doi.org/10.1016/j.ins.2014.01.026
https://www.researchgate.net/profile/David-Wolpert/publication/221997149_No_Free_Lunch_Theorems_for_Search/links/0c960529e2b49c4dce000000/No-Free-Lunch-Theorems-for-Search.pdf
https://www.researchgate.net/profile/David-Wolpert/publication/221997149_No_Free_Lunch_Theorems_for_Search/links/0c960529e2b49c4dce000000/No-Free-Lunch-Theorems-for-Search.pdf
https://www.researchgate.net/profile/David-Wolpert/publication/221997149_No_Free_Lunch_Theorems_for_Search/links/0c960529e2b49c4dce000000/No-Free-Lunch-Theorems-for-Search.pdf
https://www.researchgate.net/profile/David-Wolpert/publication/221997149_No_Free_Lunch_Theorems_for_Search/links/0c960529e2b49c4dce000000/No-Free-Lunch-Theorems-for-Search.pdf
https://doi.org/10.1016/j.cie.2019.106040
https://doi.org/10.1097/ALN.0b013e31825681cb
https://doi.org/10.1097/ALN.0b013e31825681cb
https://doi.org/10.1007/s10479-005-3971-7
https://doi.org/10.1007/s10479-005-3971-7

Intell Eng Syst 22(1):83–95. https://doi.org/10.3233/KES-

180376

14. Hussain K, Najib M, Salleh M, Cheng S, Shi Y (2019) Meta-

heuristic research: a comprehensive survey. Artif Intell Rev

52(4):2191–2233. https://doi.org/10.1007/s10462-017-9605-z

15. Molina D, Poyatos J, Del Ser J, Garcı́a S, Hussain A, Herrera F

(2020) Comprehensive taxonomies of nature- and bio-inspired

optimization: ınspiration versus algorithmic behavior, critical

analysis recommendations. Cogn Comput 12(5):897–939.

https://doi.org/10.1007/s12559-020-09730-8

16. Gendreau M, Potvin JY (2008) Metaheuristics: a canadian per-

spective. INFOR: Inf Syst Op Res 46(1):71–80. https://doi.org/

10.3138/infor.46.1.71

17. Siddique N, Adeli H (2015) Nature inspired computing: an

overview and some future directions. Cogn Comput

7(6):706–714

18. Sörensen K, Sevaux M, Glover F (2018) A history of meta-

heuristics. In: Martı́ R, Pardalos P, Resende M (eds) Handbook

of heuristics. Springer, pp 2–16

19. Brownlee J (2011) Clever algorithms: nature-ınspired pro-

gramming recipes. Jason Brownlee

20. Khalid AM, Hosny KM, Mirjalili S (2022) COVIDOA: a novel

evolutionary optimization algorithm based on coronavirus dis-

ease replication lifecycle. Neural Comput Appl

34(24):22465–22492. https://doi.org/10.1007/s00521-022-

07639-x

21. Chu SC, Tsai P, Pan JS (2006) Cat swarm optimization. In:

Yang Q, Webb G (eds) Trends in artificial ıntelligence. Springer,
Berlin, Heidelberg, pp 854–858. https://doi.org/10.1007/978-3-

540-36668-3_94

22. Karaboga D, Basturk B (2007) A powerful and efficient algo-

rithm for numerical function optimization: artificial bee colony

(ABC) algorithm. J Global Optim 39:459–471

23. Tang R, Fong S, Yang XS, Deb S (2012) Wolf search algorithm

with ephemeral memory. In: 7th International Conference on

Digital Information Management, ICDIM 2012, pp 165–172

24. Kaveh A, Farhoudi N (2013) A new optimization method:

dolphin echolocation. Adv Eng Softw 59:53–70

25. Mirjalili S (2015) The ant lion optimizer. Adv Eng Softw

83:80–98

26. Yang Y, Chen H, Heidari AA, Gandomi AH (2021) Hunger

games search: visions, conception, implementation, deep anal-

ysis, perspectives, and towards performance shifts. Expert Syst

Appl 177:114864

27. Formato RA (2007) Central force optimization: a new meta-

heuristic with applications in applied electromagnetics. Prog

Electromagn Res 77:425–491. https://doi.org/10.2528/

PIER07082403

28. Rashedi E, Nezamabadi-pour H, Saryazdi S (2009) GSA: a

gravitational search algorithm. Inf Sci 179(13):2232–2248.

https://doi.org/10.1016/j.ins.2009.03.004

29. Kaveh A, Talatahari S (2010) A novel heuristic optimization

method: charged system search. Acta Mech 213(3–4):267–289.

https://doi.org/10.1007/s00707-009-0270-4

30. Lam AYS, Li VOK (2010) Chemical-reaction-inspired meta-

heuristic for optimization. IEEE Trans Evol Comput

14(3):381–399

31. Moghaddam FF, Moghaddam RF, Cheriet M (2012) Curved

space optimization: a random search based on general relativity

theory. https://arxiv.org/abs/1208.2214, (accessed 15 January

2020)

32. Hashim FA, Houssein EH, Mabrouk MS, Al-Atabany W, Mir-

jalili S (2019) Henry gas solubility optimization: a novel phy-

sics-based algorithm. Futur Gener Comput Syst 101:646–667

33. Dolatabadi S (2018) Weighted vertices optimizer (WVO): a

novel metaheuristic optimization algorithm. Numer Algebra

Control Optim 8(4):461–479

34. Ibrahim Z, Aziz NHA, Aziz NAA, Razali S, Mohamad MS

(2016) Simulated kalman filter: a novel estimation-based

metaheuristic optimization algorithm. Adv Sci Lett

22(10):2941–2946

35. Geem ZW, Kim JH, Loganathan GV (2001) A new heuristic

optimization algorithm: harmony search. Simulation

76(2):60–68

36. Ashrafi SM, Dariane AB (2011) A novel and effective algorithm

for numerical optimization: melody search (MS). In: 2011 11th

ınternational conference on hybrid ıntelligent systems (HIS),

IEEE, pp 109–114

37. Ahmadi-Javid A (2011) Anarchic society optimization: a

human-ınspired method. In: 2011 IEEE congress of evolutionary

computation (CEC), IEEE, pp 2586–2592

38. Shi Y (2011a) Brain storm optimization algorithm. lecture notes

in computer science (Including Subseries Lecture Notes in

Artificial Intelligence and Lecture Notes in Bioinformatics),

6728 LNCS(PART 1) pp 303–309 Berlin, Heidelberg: Springer

39. Shi Y (2011) Brain storm optimization algorithm. In: Tan Y, Shi

Y, Chai Y, Wang G (eds) Advances in swarm ıntelligence.
Springer, Berlin, Heidelberg, pp 303–309

40. Emami H, Derakhshan F (2015) Election algorithm: a new

socio-politically inspired strategy. AI Commun 28(3):591–603

41. Huan TT, Kulkarni AJ, Kanesan J, Huang CJ, Abraham A

(2017) Ideology algorithm: a socio-inspired optimization

methodology. Neural Comput Appl 28(1):845–876

42. Ghasemian H, Ghasemian F, Vahdat-Nejad H (2020) Human

urbanization algorithm: a novel metaheuristic approach. Math

Comput Simul 178:1–15

43. Zarand G, Pazmandi F, Pál KF, Zimanyi GT (2002) Hysteretic

optimization. Phys Rev Lett 89(15):1–4. https://doi.org/10.1103/

PhysRevLett.89.150201

44. Birbil ŞI, Fang SC (2003) An electromagnetism-like mechanism

for global optimization. J Global Optim 25:263–282. https://doi.

org/10.1023/A:1022452626305

45. Biswas A, Mishra KK, Tiwari S, Misra AK (2013) Physics-

inspired optimization algorithms: a survey. Journal Of Opti-

mization 2013:438152

46. Salcedo-Sanz S (2016) Modern meta-heuristics based on non-

linear physics processes: a review of models and design proce-

dures. Phys Rep 655:1–70

47. Tayarani-N MH, Akbarzadeh TNMR (2008) Magnetic opti-

mization algorithms a new synthesis. In: 2008 IEEE congress on

evolutionary computation, CEC 2008, IEEE, pp 2659–2664

https://doi.org/10.1109/CEC.2008.4631155

48. Xie L, Zeng J, Cui Z (2009) General framework of artificial

physics optimization algorithm. In: 2009 world congress on

nature and biologically ınspired computing, NABIC 2009–Pro-

ceedings, IEEE, pp 1321–1326 https://doi.org/10.1109/NABIC.

2009.5393736

49. Flores JJ, López R, Barrera J (2011) Gravitational ınteractions
optimization. In: Coello CA, Coello (eds) Learning and ıntelli-
gent optimization. Springer, Berlin, Heidelberg, pp 226–237.

https://doi.org/10.1007/978-3-642-25566-3_17

50. Kaveh A, Motie Share MA, Moslehi M (2013) Magnetic

charged system search: a new meta-heuristic algorithm for

optimization. Acta Mech 224(1):85–107. https://doi.org/10.

1007/s00707-012-0745-6

51. Abedinpourshotorban H, Mariyam Shamsuddin S, Beheshti Z,

Jawawi DNA (2016) Electromagnetic field optimization: a

physics-inspired metaheuristic optimization algorithm. Swarm

Evol Comput 26:8–22. https://doi.org/10.1016/j.swevo.2015.07.

002

7656 Neural Computing and Applications (2023) 35:7635–7658

123

https://doi.org/10.3233/KES-180376
https://doi.org/10.3233/KES-180376
https://doi.org/10.1007/s10462-017-9605-z
https://doi.org/10.1007/s12559-020-09730-8
https://doi.org/10.3138/infor.46.1.71
https://doi.org/10.3138/infor.46.1.71
https://doi.org/10.1007/s00521-022-07639-x
https://doi.org/10.1007/s00521-022-07639-x
https://doi.org/10.1007/978-3-540-36668-3_94
https://doi.org/10.1007/978-3-540-36668-3_94
https://doi.org/10.2528/PIER07082403
https://doi.org/10.2528/PIER07082403
https://doi.org/10.1016/j.ins.2009.03.004
https://doi.org/10.1007/s00707-009-0270-4
https://arxiv.org/abs/1208.2214
https://doi.org/10.1103/PhysRevLett.89.150201
https://doi.org/10.1103/PhysRevLett.89.150201
https://doi.org/10.1023/A:1022452626305
https://doi.org/10.1023/A:1022452626305
https://doi.org/10.1109/CEC.2008.4631155
https://doi.org/10.1109/NABIC.2009.5393736
https://doi.org/10.1109/NABIC.2009.5393736
https://doi.org/10.1007/978-3-642-25566-3_17
https://doi.org/10.1007/s00707-012-0745-6
https://doi.org/10.1007/s00707-012-0745-6
https://doi.org/10.1016/j.swevo.2015.07.002
https://doi.org/10.1016/j.swevo.2015.07.002

52. Erdem S (2007) Evolutionary algorithms for the nonlinear

optimization. (Unpublished PhD Thesis). İzmir: Dokuz Eylul

University Graduate School of Natural and Applied Sciences

53. Glover F (1999) Scatter search and path relinking. In: Corne D,

Dorigo M, Glover F (eds) New Ideas in Optimization. McGraw

Hill, pp 297–316

54. Öztaş GZ, Erdem S (2022) Random search with adaptive

boundaries algorithm for obtaining better initial solutions. Adv

Eng Softw 169:103141

55. Glover F (1989) Tabu search-part I. ORSA J Comput

1(3):190–206. https://doi.org/10.1287/ijoc.2.1.4

56. Simon D (2013) Evolutionary optimization algorithms. Wiley,

USA

57. Smith EA, Coit WD (2000) Penalty functions. In: Bäck T, Fogel

DB, Michalewicz Z (eds) Evolutionary computation advanced

algorithms and operators 2. IOP Publishing, U.K., pp 41–48

58. Montes EM, Aguirre AH, Coello CAC (2005) Using evolu-

tionary strategies to solve constrained optimization problems.

In: Annicchiarico W, Périaux J, Cerrolaza M, Winter G (eds)

Evolutionary algorithms and intelligent tools in engineering

optimization. CIMNE, Barcelona, pp 1–25

59. Yokota T, Gen M, Ida K, Taguchi T (1995) Optimal design of

system reliability by an improved genetic algorithm transactions

of institute of electronics. Inf Comput Eng 78(6):702–709

60. Deb K (2000) An efficient constraint-handling method for

genetic algorithms’’. Comput Methods Appl Mech Eng

186(2–4):311–338

61. Coello CAC (2002) Theoretical and numerical constraint han-

dling techniques used with evolutionary algorithms: a survey of

the state of the art. Comput Methods Appl Mech Eng

191(11–12):1245–1287

62. Oyama A, Shimoyama K, Fujii K (2005) New constraint-han-

dling method for multi-objective multi-constraint evolutionary

optimization and ıts application to space plane design. Evolu-

tionary and deterministic methods for design, optimization and

control with applications to ındustrial and societal problems

(EUROGEN 2005), In: Schilling R, Haase W, Periaux J, Baier

H, Bugeda G, Munich, Germany: FLM

63. Coello CAC (2000) Use of a self-adaptive penalty approach for

engineering optimization problems. Comput Ind 41(2):113–127

64. Sanders R (1987) The pareto principle: its use and abuse. J Serv

Mark 1(2):37–40

65. Ezugwu AE, Shukla AK, Nath R, Akinyelu AA, Agushaka JO,

Chiroma H, Muhuri PK (2021) Metaheuristics: a comprehensive

overview and classification along with bibliometric analysis.

Artif Intell Rev 54(6):4237–4316. https://doi.org/10.1007/

s10462-020-09952-0

66. Tzanetos A, Dounias G (2021) Nature inspired optimization

algorithms or simply variations of metaheuristics? Artif Intell

Rev 54(3):1841–1862

67. Gandomi AH, Yang XS, Alavi AH (2011) Mixed variable

structural optimization using firefly algorithm. Comput Struct

89(23–24):2325–2336. https://doi.org/10.1016/j.compstruc.

2011.08.002

68. Kaveh A, Khayatazad M (2012) A new meta-heuristic method:

ray optimization. Comput Struct 112–113:283–294. https://doi.

org/10.1016/j.compstruc.2012.09.003

69. Gandomi AH, Yang XS, Alavi AH (2013) Cuckoo search

algorithm: a metaheuristic approach to solve structural opti-

mization problems. Eng Comput 29(1):17–35. https://doi.org/10.

1007/s00366-011-0241-y

70. Dhadwal MK, Jung SN, Kim CJ (2014) Advanced particle

swarm assisted genetic algorithm for constrained optimization

problems. Comput Optim Appl 58(3):781–806. https://doi.org/

10.1007/s10589-014-9637-0

71. Garg H (2014) Solving structural engineering design optimiza-

tion problems using an artificial bee colony algorithm. J Ind

Manag Optim 10(3):777–794. https://doi.org/10.3934/jimo.

2014.10.777

72. Sulaiman M, Salhi A, Selamoglu BI, Kirikchi OB (2014) A

plant propagation algorithm for constrained engineering opti-

misation problems. Math Probl Eng 2014:627416. https://doi.

org/10.1155/2014/627416

73. Abdel-Raoufi O, Abdel-Baset M, El-henawy I (2014) A new

hybrid flower pollination algorithm for solving constrained

global optimization problems. Int J Appl Op Res 4(2):1–13

74. Dong M, Wang N, Cheng X, Jiang C (2014) Composite dif-

ferential evolution with modified oracle penalty method for

constrained optimization problems. Math Probl Eng. https://doi.

org/10.1155/2014/617905

75. Gandomi AH (2014) Interior search algorithm (Isa): a novel

approach for global optimization. ISA Trans 53(4):1168–1183.

https://doi.org/10.1016/J.ISATRA.2014.03.018

76. Mirjalili S, Mirjalili SM, Lewis A (2014) Grey wolf optimizer.

Adv Eng Softw 69:46–61. https://doi.org/10.1016/J.ADVENG

SOFT.2013.12.007

77. Kashan AH (2015) An effective algorithm for constrained

optimization based on optics inspired optimization. Comput

Aided Des 63:52–71. https://doi.org/10.1016/j.cad.2014.12.007

78. Garg H (2016) A hybrid PSO-GA algorithm for constrained

optimization problems. Appl Math Comput 274:292–305.

https://doi.org/10.1016/j.amc.2015.11.001

79. Kaveh A, Dadras A (2017) A novel meta-heuristic optimization

algorithm: thermal exchange optimization. Adv Eng Softw

110:69–84. https://doi.org/10.1016/j.advengsoft.2017.03.014

80. Dhiman G, Kumar V (2019) Seagull optimization algorithm:

Theory and its applications for large-scale industrial engineering

problems. Knowl-Based Syst 165:169–196. https://doi.org/10.

1016/j.knosys.2018.11.024

81. Yapici H, Cetinkaya N (2019) A new meta-heuristic optimizer:

pathfinder algorithm. Appl Soft Comput J 78:545–568. https://

doi.org/10.1016/j.asoc.2019.03.012

82. Garg H (2019) A hybrid GSA-GA algorithm for constrained

optimization problems. Inf Sci 478:499–523. https://doi.org/10.

1016/j.ins.2018.11.041

83. Yalcin Y, Pekcan O (2020) Nuclear fission-nuclear fusion

algorithm for global optimization: a modified big bang-big

crunch algorithm. Neural Comput Appl 32(7):2751–2783.

https://doi.org/10.1007/s00521-018-3907-1

84. Faramarzi A, Heidarinejad M, Mirjalili S, Gandomi AH (2020)

Marine predators algorithm: a nature-ınspired metaheuristic.

Expert Syst Appl 152:113377. https://doi.org/10.1016/j.eswa.

2020.113377

85. Faramarzi A, Heidarinejad M, Stephens B, Mirjalili S (2020)

Equilibrium optimizer: a novel optimization algorithm. Knowl-

Based Syst 191:105190. https://doi.org/10.1016/j.knosys.2019.

105190

86. Shabani A, Asgarian B, Salido M, Asil Gharebaghi S (2020)

Search and rescue optimization algorithm: a new optimization

method for solving constrained engineering optimization prob-

lems. Expert Syst Appl 161:113698. https://doi.org/10.1016/j.

eswa.2020.113698

87. Lu C, Gao L, Li X, Hu C, Yan X, Gong W (2020) Chaotic-based

grey wolf optimizer for numerical and engineering optimization

problems. Memetic Comput 12(4):371–398. https://doi.org/10.

1007/s12293-020-00313-6

88. Li S, Chen H, Wang M, Heidari AA, Mirjalili S (2020) Slime

mould algorithm: a new method for stochastic optimization.

Futur Gener Comput Syst 111:300–323. https://doi.org/10.1016/

j.future.2020.03.055

Neural Computing and Applications (2023) 35:7635–7658 7657

123

https://doi.org/10.1287/ijoc.2.1.4
https://doi.org/10.1007/s10462-020-09952-0
https://doi.org/10.1007/s10462-020-09952-0
https://doi.org/10.1016/j.compstruc.2011.08.002
https://doi.org/10.1016/j.compstruc.2011.08.002
https://doi.org/10.1016/j.compstruc.2012.09.003
https://doi.org/10.1016/j.compstruc.2012.09.003
https://doi.org/10.1007/s00366-011-0241-y
https://doi.org/10.1007/s00366-011-0241-y
https://doi.org/10.1007/s10589-014-9637-0
https://doi.org/10.1007/s10589-014-9637-0
https://doi.org/10.3934/jimo.2014.10.777
https://doi.org/10.3934/jimo.2014.10.777
https://doi.org/10.1155/2014/627416
https://doi.org/10.1155/2014/627416
https://doi.org/10.1155/2014/617905
https://doi.org/10.1155/2014/617905
https://doi.org/10.1016/J.ISATRA.2014.03.018
https://doi.org/10.1016/J.ADVENGSOFT.2013.12.007
https://doi.org/10.1016/J.ADVENGSOFT.2013.12.007
https://doi.org/10.1016/j.cad.2014.12.007
https://doi.org/10.1016/j.amc.2015.11.001
https://doi.org/10.1016/j.advengsoft.2017.03.014
https://doi.org/10.1016/j.knosys.2018.11.024
https://doi.org/10.1016/j.knosys.2018.11.024
https://doi.org/10.1016/j.asoc.2019.03.012
https://doi.org/10.1016/j.asoc.2019.03.012
https://doi.org/10.1016/j.ins.2018.11.041
https://doi.org/10.1016/j.ins.2018.11.041
https://doi.org/10.1007/s00521-018-3907-1
https://doi.org/10.1016/j.eswa.2020.113377
https://doi.org/10.1016/j.eswa.2020.113377
https://doi.org/10.1016/j.knosys.2019.105190
https://doi.org/10.1016/j.knosys.2019.105190
https://doi.org/10.1016/j.eswa.2020.113698
https://doi.org/10.1016/j.eswa.2020.113698
https://doi.org/10.1007/s12293-020-00313-6
https://doi.org/10.1007/s12293-020-00313-6
https://doi.org/10.1016/j.future.2020.03.055
https://doi.org/10.1016/j.future.2020.03.055

89. Talatahari S, Azizi M (2020) Optimization of constrained

mathematical and engineering design problems using chaos

game optimization. Comput Ind Eng 145:106560. https://doi.

org/10.1016/j.cie.2020.106560

90. Zhang Y, Jin Z (2020) Group teaching optimization algorithm: a

novel metaheuristic method for solving global optimization

problems. Expert Syst Appl 148:113246. https://doi.org/10.

1016/j.eswa.2020.113246

91. Zhong K, Luo Q, Zhou Y, Jiang M (2020) TLMPA: teaching-

learning-based marine predators algorithm. AIMS Math

6(2):1395–1442. https://doi.org/10.3934/math.2021087

92. Massoudi MS, Sarjamei S, Esfandi Sarafraz M (2020) Smell

bees optimization algorithm for continuous engineering prob-

lem. Asian J Civil Eng 21:925–946. https://doi.org/10.1007/

s42107-020-00250-2

93. Nadimi-Shahraki MH, Taghian S, Mirjalili S (2021) An

improved grey wolf optimizer for solving engineering problems.

Expert Syst Appl 166:113917. https://doi.org/10.1016/j.eswa.

2020.113917

94. Feng ZK, Niu WJ, Liu S (2021) Cooperation search algorithm: a

novel metaheuristic evolutionary intelligence algorithm for

numerical optimization and engineering optimization problems.

Appl Soft Comput 98:106734

95. Kalananda A, Reddy VK, Narayana KVL (2021) A combina-

torial social group whale optimization algorithm for numerical

and engineering optimization problems. Appl Soft Comput

99:106903

96. Azizi M (2021) Atomic orbital search: a novel metaheuristic

algorithm. Appl Math Model 93:657–683

97. Pereira JLJ, Francisco MB, Diniz CA, Oliver GA, Cunha SS Jr,

Gomes GF (2021) Lichtenberg algorithm: a novel hybrid phy-

sics-based meta-heuristic for global optimization. Expert Syst

Appl 170:114522

98. Peraza-Vázquez H, Peña-Delgado AF, Echavarrı́a-Castillo G,

Morales-Cepeda AB, Velasco-Álvarez J, Ruiz-Perez F (2021) A

bio-inspired method for engineering design optimization

inspired by dingoes hunting strategies. Math Probl Eng

2021:1–19. https://doi.org/10.1155/2021/9107547

99. Talatahari S, Azizi M, Gandomi AH (2021) Material generation

algorithm: a novel metaheuristic algorithm for optimization of

engineering problems. Processes 9(5):859

100. Dhiman G, Garg M, Nagar A, Kumar V, Dehghani M (2021) A

novel algorithm for global optimization: rat swarm optimizer.

J Ambient Intell Humaniz Comput 12(8):8457–8482

101. Tu J, Chen H, Wang M, Gandomi AH (2021) The colony pre-

dation algorithm. J Bionic Eng 18(3):674–710

102. Seyyedabbasi A, Kiani F (2022) Sand Cat swarm optimization: a

nature-inspired algorithm to solve global optimization problems.

Eng Comput. https://doi.org/10.1007/s00366-022-01604-x

103. Zitouni F, Harous S, Belkeram A, Hammou LEB (2022) The

archerfish hunting optimizer: a novel metaheuristic algorithm

for global optimization. Arab J Sci Eng 47(2):2513–2553

104. PyCharm (2019) The Python IDE for Professional Developers,

https://www.jetbrains.com/pycharm/, 2019 (accessed 10 Octo-

ber 2019)

105. Cagnina LC, Esquivel SC, Nacional U, Luis DS, Luis S, Coello

CAC (2008) Solving engineering optimization problems with

the simple constrained particle swarm optimizer. Informatica

32:319–326

106. Ragsdell KM, Phillips DT (1976) Optimal design of a class of

welded structures using geometric programming. J Manuf Sci E

T ASME 98(3):1021–1025. https://doi.org/10.1115/1.3438995

107. Arora J (2017) Introduction to optimum design. Elsevier. https://

doi.org/10.1016/C2009-0-61700-1

108. Kumar A, Wu G, Ali MZ, Mallipeddi R, Suganthan PN, Das S

(2020) A test-suite of non-convex constrained optimization

problems from the real-world and some baseline results. Swarm

Evol Comput 56:100693. https://doi.org/10.1016/j.swevo.2020.

100693

109. Gambella C, Ghaddar B, Naoum-Sawaya J (2021) Optimization

problems for machine learning: a survey. Eur J Oper Res

290(3):807–828

110. Lin JCW, Djenouri Y, Srivastava G, Yun U, Fournier-Viger P

(2021) A predictive GA-based model for closed high-utility

itemset mining. Appl Soft Comput 108:107422

111. Lin JCW, Djenouri Y, Srivastava G, Fourier-Viger P (2022)

Efficient evolutionary computation model of closed high-utility

itemset mining. Appl Intell 52(9):10604–10616. https://doi.org/

10.1007/s10489-021-03134-3

112. Bahaddad AA, Ragab M, Ashary EB, Khalil EM (2022) Meta-

heuristics with deep learning-enabled parkinson’s disease diag-

nosis and classification model. J Healthc Eng 2022:1–14. https://

doi.org/10.1155/2022/9276579

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds

exclusive rights to this article under a publishing agreement with the

author(s) or other rightsholder(s); author self-archiving of the

accepted manuscript version of this article is solely governed by the

terms of such publishing agreement and applicable law.

7658 Neural Computing and Applications (2023) 35:7635–7658

123

https://doi.org/10.1016/j.cie.2020.106560
https://doi.org/10.1016/j.cie.2020.106560
https://doi.org/10.1016/j.eswa.2020.113246
https://doi.org/10.1016/j.eswa.2020.113246
https://doi.org/10.3934/math.2021087
https://doi.org/10.1007/s42107-020-00250-2
https://doi.org/10.1007/s42107-020-00250-2
https://doi.org/10.1016/j.eswa.2020.113917
https://doi.org/10.1016/j.eswa.2020.113917
https://doi.org/10.1155/2021/9107547
https://doi.org/10.1007/s00366-022-01604-x
https://www.jetbrains.com/pycharm/
https://doi.org/10.1115/1.3438995
https://doi.org/10.1016/C2009-0-61700-1
https://doi.org/10.1016/C2009-0-61700-1
https://doi.org/10.1016/j.swevo.2020.100693
https://doi.org/10.1016/j.swevo.2020.100693
https://doi.org/10.1007/s10489-021-03134-3
https://doi.org/10.1007/s10489-021-03134-3
https://doi.org/10.1155/2022/9276579
https://doi.org/10.1155/2022/9276579

	A penalty-based algorithm proposal for engineering optimization problems
	Abstract
	Introduction
	Literature review
	Proposed algorithm
	Determine intervals
	Initialization
	Multiplicative penalty-based method (MUPE)
	Offset factor
	Neighborhood
	Offsetting
	Duplication
	Stopping condition

	An illustrative example
	Constrained engineering optimization problems
	Pressure Vessel
	Welded Beam
	Tension/Compression Spring Design
	Himmelblau’s Function

	Discussion and conclusion
	Appendix
	Author contribution
	Data availability
	References

