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Abstract
This article investigates the observer-based finite-time adaptive neural network control for the permanent magnet syn-

chronous motor (PMSM) system. The addressed PMSM system includes unknown nonlinear dynamics and constraint

immeasurable states. The neural networks are utilized to approximate the unknown nonlinear dynamics and an equivalent

control design model is established, by which a neural network state observer is given to estimate the immeasurable states.

By constructing barrier Lyapunov functions and under the framework of adaptive backstepping control design technique

and finite-time stability theory, a finite-time adaptive neural network control scheme is developed. It is proved that the

proposed control scheme ensures the closed-loop system stable and the angular velocity, stator current and other state

variables not to exceed their predefined bounds in a finite time. Finally, the computer simulation and a comparison with the

existing controller are provided to confirm the effectiveness of the presented controller.

Keywords Permanent magnet synchronous motor system � Full-state constraints � Adaptive neural networks output-

feedback control � Finite-time control and stability

1 Introduction

Over the past decades, the demand for PMSMs is growing

in numerous industrial equipment fields including vehicles,

machine tools, and robots [1–4]. Nevertheless, PMSM

systems are nonlinear, multivariable and strongly coupled

objects, which usually face model uncertainties caused by

parameter variations and unavoidable external disturbances

in industrial applications. Therefore, to solve the above

difficulties and achieve the higher requirements of PMSMs

in practical application, some effective control methods are

proposed for PMSM systems, such as backstepping

controllers [5], adaptive controllers [6], sliding mode

controllers [7] and disturbance rejection control [8].

In the practical engineering, since the considered PMSM

systems are often complex and uncertainties, they are dif-

ficult to model accurately. To handle this problem, some

intelligent adaptive control methods including neural net-

work controllers and fuzzy controllers have been widely

adopted in the control of PMSMs [9–16]. In [9–13], some

adaptive fuzzy control methods were presented for position

tracking control of PMSMs via backstepping design tech-

nique. The authors in [14] proposed a robust adaptive fuzzy

controller by dead-zone smooth inverse compensation

scheme for PMSMs. In addition, the violations of the state

constraints often result in system instability, performance

degradation, or even system damage. Thus, the researching

state constraint control problem is very significant for

PMSM systems [15, 16]. In [15], the authors used the

barrier Lyapunov function and proposed an output con-

straint control method of the PMSM system. Furthermore,

the adaptive neural network control scheme [16] was

designed for the PMSM system with full state constraints.

It should be mentioned that the aforementioned control

strategies are developed by the asymptotic stability theory.
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Hence, they only guarantee the controller systems are

stable in infinite time. In fact, there are many practical

systems like the PMSM system addressed in this study,

they are more desired that the state trajectories converge to

the stable equilibrium point within a finite-time interval

rather than an infinite time. For this purpose, the finite-time

stability is proposed by [17]. Since the finite-time stability

has the properties such as fast transient and better robust-

ness against the uncertainties. Thus, by the finite-time

stability theory, many finite-time control methods for

PMSMs have been developed during the past few years

[18–22]. The literature [18] developed a neural networks

finite-time adaptive dynamic surface control method for

PMSMs. By combining backstepping control technology

with the command filtered technology, [19] studied the

fuzzy finite time tracking control problem for PMSMs. [20]

considered the finite-time neural network position tracking

control scheme considered for the fractional-order chaotic

permanent magnet synchronous motor system. In [21, 22],

the adaptive finite-time neural network control schemes

were proposed for uncertain permanent magnet syn-

chronous motor system. However, to the best of authors’

knowledge, there are few results on finite-time output

feedback control for the PMSMs with full state constraints,

which prompts us to conduct this study. Note that when the

states are not measurable, the state observer becomes an

extremely effective technique to solve the state immea-

surable problem. In [23–26], the output feedback con-

trollers were applied to control PMSMs with state

immeasurable. However, the state observers were designed

in [23–26] all focus on the PMSM systems whose the

nonlinear dynamics are required to be known. Neverthe-

less, the output-feedback controllers are designed by the

asymptotic stability theory and without considering the

state constraint control problem.

Based on the above observations, this paper investigates

the finite-time neural adaptive output feedback tracking

control problem for PMSM system. The considered PMSM

system contains unknown nonlinear dynamics and con-

straint immeasurable states. The neural networks are uti-

lized to approximate the unknown nonlinear dynamics, a

neural network state observer is designed to estimate the

immeasurable states. By constructing barrier Lyapunov

functions and under the framework of adaptive backstep-

ping control design technique and finite-time stability

theory, a finite-time adaptive neural network control

scheme is developed. The main advantages of the proposed

output-feedback control approach are as follows.

(i) This paper proposes an observer-based finite-time

adaptive output feedback control method for the

PMSM system via a novel neural network state

observer. Note that the previous finite-time fuzzy or

neural network control schemes [7, 8, 25] all

require that the angular velocity, stator current and

other state variables of the PMSM system must be

measurable. Thus, they can not solve the state

immeasurable problem addressed by this study.

(ii) The proposed the observer-based neural network

adaptive output feedback controller is designed

under the finite-time stability theory. Therefore, it

not only can ensure the closed-loop system stable,

but also guarantee the angular velocity, stator

current and other state variables not exceed their

predefined bounds in a finite time. More impor-

tantly, it has fast convergence and better robustness

to the uncertainties compared with the previous

output feedback controllers [15] developed under

the asymptotic stability.

2 System description and some
preliminaries

2.1 System description

The d–q-axis stator voltage model of PMSMs considered in

this paper is shown by Fig. 1. The mathematical equations

of PMSMs are expressed by

Fig. 1 Structure of the considered PMSM system
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J
dx
dt

¼ 3

2
np½ðLd � LqÞidiqþUiq� � TL � Bx

Ld
did
dt

¼ �Rsid þ npxLqiq þ ud

Lq
diq
dt

¼ �Rsiq � npxLdid þ uq � npxU

dh
dt

¼ x

ð1Þ

In (1), uq and ud express system control inputs, iq, id, h
and x are the system state variables, they are d–q -axis

current, and the rotor position and motor rotor angular

velocity. J stands for the rotor moment of inertia, B is the

friction coefficient, Ld and Lq present the d–q -axis stator

inductors, np expresses the number of pole pairs, TL is the

load torque, U is the magnet flux linkage of inertia, Rs is

the armature resistance.

Introducing variables as follows:

x1 ¼ h; x2 ¼ x; x3 ¼ iq; x4 ¼ id;

a1 ¼
3npU
2

; a2 ¼
3npðLd � LqÞ

2
;

b1 ¼ �Rs

Lq
; b2 ¼ � npLd

Lq
; b3 ¼ � npU

Lq
; b4 ¼

1

Lq
;

c1 ¼ � Rs

Ld
; c2 ¼

npLq
Ld

; c3 ¼
1

Ld
:

ð2Þ

Then, PMSM system (1) is expressed by

_x1 ¼ x2

_x2 ¼ �B

J
x2 þ

a1
J
x3 þ

a2
J
x3x4 �

TL
J

_x3 ¼ b3x2 þ b1x3 þ b2x2x4 þ b4uq

_x4 ¼ c1x4 þ c2x2x3þc3ud

y ¼ x1

ð3Þ

where y is the output.

Further, let f2ð�xÞ ¼ � B
J x2 þ ð a1J � 1Þx3 þ a2

J x3x4 �
TL
J ,

f3ð�xÞ ¼ b3x2 þ b1x3 þ b2x2x4 and f4ð�xÞ¼c1x4 þ c2x2x3,

ð�x ¼ ½x1; x2; x3; x4�TÞ.
Then system (3) becomes as follows

_x1 ¼ x2

_x2 ¼ f2ð�xÞ þ x3

_x3 ¼ f3ð�xÞ þ b4uq

_x4 ¼ f4ð�xÞþc3ud

y ¼ x1

ð4Þ

Assumption 1 [16]: Assume that all state variables in (3)

are constrained in the compact sets jxij\kci and kci [ 0 are

constants.

Assumption 2 [16]: There exist constants Yr [ 0 and

Y0 [ 0 such that the desired trajectory yr and _yr satisfy

jyrj � Yr\kc1 and j _yrj � kr.

Lemma 1 (Young’s Inequality): For any vectors x, y 2 Rn,

the following Young’s inequality holds:

xTy�ðga=aÞ xk ka þ ð1=gbÞ yk kb

where g[ 0, a[ 1, b[ 1, and ða� 1Þðb� 1Þ ¼ 1.

The control objectives of this study are to formulate an

observer-based output feedback control scheme for

PMSMs (4) by finite-time stability and neural networks,

which ensure the controlled PMSM system to be stable and

make the system output y(t) track the referenced function

yrðtÞ in finite time interval. Especially, all the state vari-

ables in the controlled PMSMs do not exceed the pre-

scribed bounds.

2.2 Neural networks

According to [27] and [28], a radial basis function neural

network is expressed as

f̂ ðZÞ ¼ WTSðZÞ ð5Þ

where the input vector Z 2 Rp, W 2 Rq is the weight vector

with neurons number q. And SðZÞ ¼ ½S1ðZÞ; :::; SqðZÞ�T ,
where SiðZÞ are radial basis functions selected, which are

chosen by

SiðZÞ ¼ exp �ðZ � qiÞTðZ � qiÞ
#2
i

 !
; i ¼ 1; :::; q ð6Þ

In (6), qi ¼ ½qi;1; :::; qi;p�
T
are the centers and #i are the

widths of the Gaussian function. The outstanding feature of

a neural network f̂ ðZÞ ¼ WTSðZÞ is that it can approximate

the smooth continuous function f(Z), which is defined in a

bounded closed set.

2.3 Finite-time stability theory

Definition 1 [19, 20]: Suppose z ¼ 0 is the equilibrium

point _z ¼ f ðzÞ. The nonlinear system _z ¼ f ðzÞ is called to

be semi-global practical finite-time stability (SGPFTS), if

for any zðt0Þ ¼ z0, there exist a e[ 0 and a settling time

Tðe; z0Þ\1, when t� t0 þ T , then zðtÞk k\e.

Lemma 2 [19, 20]: For the system _z ¼ f ðzÞ, if there exist a
positive-definite function V, and positive constants c[ 0,

0\b\1 and D[ 0, and satisfying the following

inequality:

_V � � cVb þ D; t� 0;

the system _z ¼ f ðzÞ is called to be SGPFTS.
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3 Finite-time adaptive output-feedback
control design

In this section, we first give a neural state observer to

estimate the immeasurable states of the PMSM system (4).

Then an adaptive neural output feedback controller is

developed by using the backstepping control design tech-

nique and the finite-time stability theory.

3.1 Neural state observer design

Note that since the friction coefficient B, the rotor moment

of inertia J and the load torque TL in PMSM system (4) are

unknown, the functions fið�xÞ i ¼ 2; 3; 4, are thus also

unknown. In this situation, we use neural f̂ið�xÞ ¼ ŴT
i Sið�xÞ

to approximate the unknown functions fið�xÞ and obtain an

equivalent control design model for PMSM system (4). To

begin with, we assume that

fið�xÞ ¼ W�T
i Sið�xÞ þ ei ð7Þ

where i ¼ 2; 3; 4, W�
i are ideal parameter vectors, ei are

approximation errors, and jeij � �ei, �ei are known positive

constants.

By (7), then PMSM system (4) is rewritten as

_x1 ¼ x2

_x2 ¼ x3 þW�T
2 S2ð�xÞ þ e2ð�xÞ

_x3 ¼ W�T
3 S3ð�xÞ þ e3ð�xÞ þ b4uq

_x4 ¼ W�T
4 S4ð�xÞ þ e4ð�xÞþc3ud

ð8Þ

For the convenience of the following analysis, system (8) is

rewritten in the following form:

_x ¼ A0xþ Lyþ
X4
i¼2

BiW
�T
i Sið�xÞ þ eð�xÞ þ Ku ð9Þ

where x ¼ x1 x2 x3 x4½ �T , A0 ¼

�l1 1 0 0

�l2 0 1 0

�l3 0 0 0

�l4 0 0 0

2
664

3
775,

L ¼ l1 l2 l3 l4½ �T , B2 ¼ 0 1 0 0½ �T ,B3 ¼
0 0 1 0½ �T ,B4 ¼ 0 0 0 1½ �T ,

e ¼ 0 e2 e3 e4½ �T , K ¼
0 � � � 0

..

.
b4

..

.

0 � � � c3

2
4

3
5,

u ¼ 0 0 uq ud½ �T . To obtain the estimations of

immeasurable states, a neural network state observer is

designed as

_̂x ¼ A0x̂þ
X4
i¼2

BiŴ
T
i Sið �̂xÞ þ Kuþ Ly ð10Þ

where ¼ x̂1 x̂2 x̂3 x̂4½ �T and Ŵi are estimates of x ¼
x1 x2 x3 x4½ �T and W�

i , respectively.

In state observer (10), observer gains li ði ¼ 1; 2; 3; 4Þ
are selected such that matrix A0 is a Hurwitz. Then there

exists a positive definite matrix P ¼ PT [ 0 satisfying

A0
TPþ PA0 ¼ �2Q ð11Þ

where Q ¼ QT [ 0 is a given positive definite matrix.

3.2 Finite-time adaptive neural control design

In this part, we give an adaptive neural controller by the

backstepping control design technique and the finite-time

theory.

The change of coordinates is first given as.

z1 ¼ x1 � yr

z2 ¼ x̂2 � a1
z3 ¼ x̂3 � a2

ð12Þ

where yr is the desired reference, a1 and a2 are the virtual

controllers.

This specific finite-time output feedback control design

process is as follows:

Step 1: The time derivative of z1 along with (8) and (12)

is

_z1 ¼ _x1 � _yr

¼ z2 þ e2 þ a1 � _yr
ð13Þ

Construct the barrier Lyapunov function as follows:

V1 ¼
1

2
log

k2b1
k2b1 � z21

ð14Þ

where kb1 [ 0, and the set Xz1 ¼ fz1 : jz1j\kb1g is a

compact set containing origin.

By the barrier Lyapunov function (14), we design the

virtual controller as

a1 ¼ � k1sgnðz1Þz2b�1
1

ðk2b1 � z21Þ
b�1

� z1
2ðk2b1 � z21Þ

þ _yr ð15Þ

where the designed parameters k1 [ 0 and 0\b\1.

Step 2: By (8), the time derivative of z2 ¼ x̂2 � a1 is

_z2 ¼ _̂x2 � _a1

¼ x̂3 þ Ŵ2
T
S2 þ l2e1 � _a1

¼ z3 þ a2 þ Ŵ2
T
S2 þ l2e1 � _a1

ð16Þ

Construct the following barrier Lyapunov function candi-

date as:

V2 ¼
1

2
log

k2b2
k2b2 � z22

þ 1

2r2
~WT
2
~W2 ð17Þ
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where r2 [ 0 is the design parameter, V2 is continuous in

the set Xz2 ¼ fz2 : jz2j\kb2g.
By using V2 , we design the virtual controller a2 and

updating law of Ŵ2 as

a2 ¼ � k2sgnðz2Þz2b�1
2

ðk2b2 � z22Þ
b�1

�
k2b2 � z22
k2b1 � z21

z1

� z2
2ðk2b2 � z22Þ

� ŴT
2 S2 � l2e1 þ _a1

ð18Þ

_̂W2 ¼ �r2Ŵ2 þ
r2z2

k2b2 � z22
S2 ð19Þ

where k2 [ 0 and r2 [ 0 are designed parameters.

Step 3: By (8) and z3 ¼ x̂3 � a2, we have the time

derivative of z3,

_z3 ¼ _̂x3 � _a2

¼ Ŵ3
T
S3 þ b4uq þ l3e1 � _a2

ð20Þ

Select the following barrier Lyapunov function candidate

as:

V3 ¼
1

2
log

k2b3
k2b3 � z23

þ 1

2r3
~WT
3
~W3 ð21Þ

where r3 [ 0 is the design parameter, V3 is continuous in

the set Xz3 ¼ fz3 : jz3j\kb3g.
Similar to step 2, the actual controller uq and updating

law of Ŵ3 are designed by

uq ¼
1

b4
� k3sgnðz3Þz2b�1

3

ðk2b3 � z23Þ
b�1

�
k2b3 � z23
k2b2 � z22

z2

"

�ŴT
3 S3 �

z3
2ðk2b3 � z23Þ

� l3e1 þ _a2

# ð22Þ

_̂W3 ¼ �r3Ŵ3 þ
r3z3

k2b3 � z23
S3 ð23Þ

where k3 [ 0 and r3 [ 0 are designed parameters.

Step 4: By (8) and define z4 ¼ x̂4, we have

_z4 ¼ _̂x4 ¼ Ŵ4
T
S4 þ c3ud þ l4e1 ð24Þ

Select the following barrier Lyapunov function candidate

as:

V4 ¼
1

2
log

k2b4
k2b4 � z24

þ 1

r4
~WT
4
~W4 ð25Þ

where r4 [ 0 is the design parameter, V4 is continuous in

the set Xz4 ¼ fz4 : jz4j\kb4g. Based on the barrier Lya-

punov function (25), we design the actual controller ud and

updating law of Ŵ4 as follows

ud ¼
1

c3
� k4sgnðz4Þz2b�1

4

ðk2b4 � z24Þ
b�1

� z4
2ðk2b4 � z24Þ

� ŴT
4 S4 � l4e1

" #

ð26Þ
_̂W4 ¼ �r4Ŵ4 þ

r4z4
k2b4 � z24

S4 ð27Þ

where k4 [ 0 and r4 [ 0 are designed parameters.

The configuration of the above designed neural adaptive

output-feedback controllers is displayed in Fig. 2.

3.3 Stability analysis

The main merits of the proposed controllers in the above

sections are as follows:

Theorem 1 For the PMSM system (1) under the

Assumption 1 and Assumption 2, if we adopt adaptive

control scheme consisting of the virtual controllers (15),

(18), the actual controllers (22), (26), neural network

adaptive state observer (9), and parameter updating laws

(19), (23) and (27), then the following properties are

guaranteed

(i) All the closed-loop system signals are

boundedness;

Fig. 2 Finite-time neural network adaptive output feedback back-

stepping control scheme
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(ii) The observer errors and tracking errors converge

in a finite-time interval;

(iii) All the state variables do not exceed their

prescribed bounds.

Proof Define the observer errors as

ei ¼ xi � x̂iði ¼ 1; 2; 3; 4Þ, then from (9) and (10), we have

the error dynamics equation:

_e ¼ A0eþ
X4
i¼2

Bi½W�
i
TðSið�xÞ � Sið �̂xÞ þ ~WT

i Sið �̂xÞ� þ eð�xÞ

ð28Þ

where e ¼ e1 e2 e3 e4½ �T ,
~Wi ¼ W�

i � Ŵi ði ¼ 2; 3; 4Þ.
Choose the Lyapunov function

V0 ¼
1

2
eTPe ð29Þ

By (28), we have _V0 as

_V0 ¼
1

2
ð _eTPeþ eTP _eÞ

¼ �eTQeþ eTPeþ eTP
X4
i¼2

Bi
~WT
i Sið �̂xÞ

þ eTP
X4
i¼2

BiW
�
i
TðSið�xÞ � Sið �̂xÞÞ

ð30Þ

By using the Young’s inequality, we obtain

eTPe� 1

2
ek k2 þ 1

2
Pk k2 �ek k2 ð31Þ

eTP
X4
i¼2

Bi
~WT
i Sið �̂xÞ�

1

2
ek k2 þ 1

2
Pk k2

X4
i¼2

~WT
i
~Wi ð32Þ

eTP
X4
i¼2

BiW
�
i
TðSið�xÞ � Sið �̂xÞÞ� ek k2 þ Pk k2

X4
i¼2

W�
i

�� ��2
ð33Þ

Substituting (31)–(33) into (30), we obtain

_V0 � � eTQeþ 2 ek k2 þ Pk k2

X4
i¼2

1

2
~WT
i
~Wi þ W�

i

�� ��2� �
þ 1

2
�ek k2

 !

� � k0 ek k2 þ 1

2
Pk k2

X4
i¼2

~WT
i
~Wi þ D0

ð34Þ

where k0 ¼ ðkminðQÞ � 2Þ[ 0, kminðQÞ denotes the mini-

mum eigenvalue of matrix Q.

D0 ¼ 1
2

Pk k2 �ek k2 þ Pk k2
P4

i¼2 W�
i

�� ��2.
Choose the whole Lyapunov function as follows

V ¼ V0 þ
X4
i¼1

Vi

¼ 1

2
eTPeþ 1

2

X4
i¼1

log
k2bi

k2bi � z2i
þ
X4
i¼2

1

2ri
~WT
i
~Wi

ð35Þ

From (34) and (35), _V is as follows

_V ¼ _V0 þ
X4
i¼1

_Vi

� � k0 ek k2 þ 1

2
Pk k2

X4
i¼2

~WT
i
~Wi þ D0

þ
X4
i¼1

zi _zi
k2bi � z2i

�
X4
i¼2

1

ri
~WT
i
_̂Wi

ð36Þ

Substituting (13), (16), (20), (24) into (36) yields

_V � � k0 ek k2 þ 1

2
Pk k2

X4
i¼2

~WT
i
~Wi þ D0

þ
X4
i¼1

zi
k2bi � z2i

si �
X4
i¼2

1

ri
~WT
i

_̂Wi �
rizi

k2bi � z2i
Si

 !

ð37Þ

In (37), s1 ¼ z2 þ a1 þ e2 � _yr, s2 ¼ z3 þ a2þ
Ŵ2

T
S2 � ~W2

T
S2 þ l2e1 � _a1, s3 ¼ Ŵ3

T
S3 � ~W3

T
S3þ

uq þ l3e1 � _a2, s4 ¼ Ŵ4
T
S4 � ~W4

T
S4 þ ud þ l4e1.

By using the Young’s inequality, we obtain

z1e2
k2b1 � z21

� z21

2ðk2b1 � z21Þ
2
þ 1

2
ek k2 ð38Þ

� zi
k2bi � z2i

~Wi
T
Si �

z2i

2ðk2bi � z2i Þ
2
þ 1

2
~Wi
T ~Wi; i ¼ 2; 3; 4

ð39Þ

Substituting (38)–(39) into (37) yields

_V � � k ek k2 þ 1

2
Pk k2

X4
i¼2

~WT
i
~Wi þ D0

�
X4
i¼2

1

ri
~WT
i

_̂Wi �
rizi

k2bi � z2i
Si

 !

þ 1

2

X4
i¼2

~Wi
T ~Wi þ

X4
i¼1

zi
k2bi � z2i

ji

ð40Þ

where k ¼ k0 þ 1, j1 ¼ z1
2ðk2

b1
�z2

1
Þ þ z2 þ a1 � _yr,

j2 ¼ z2
2ðk2

b2
�z2

2
Þ þ z3 þ a2 þ Ŵ2

T
S2 þ l2e1 � _a1, j3 ¼

z3
2ðk2

b3
�z2

3
Þ þ Ŵ3

T
S3 þ uq þ l3e1 � _a2, j4 ¼ z4

2ðk2
b4
�z2

4
Þ þ

Ŵ4
T
S4þ ud þ l4e1.
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By substituting the controllers (15), (18), (22) and (26)

into (40), and using the parameter updating laws (19), (23)

and (27), then (40) becomes

_V � � k ek k2 þ 1

2
Pk k2

X4
i¼2

~WT
i
~Wi þ D0

�
X4
i¼1

kiz
2b
i

ðk2bi � z2i Þ
b
þ
X4
i¼2

ri
ri

~WT
i Ŵi þ

1

2
~Wi

T ~Wi

� �

ð41Þ

Note that the following inequality holds

ri
ri

~WT
i Ŵi � � ri

2ri
~WT
i
~Wi þ

ri
2ri

W�
i

�� ��2; i ¼ 2; 3; 4 ð42Þ

Thus, from inequality (42), (41) can be rewritten as

_V � � k ek k2 � 1

2

X4
i¼2

ri
ri
� Pk k2 � 1

� �
~Wi

T ~Wi

�
X4
i¼1

kiz
2b
i

ðk2bi � z2i Þ
b
þ �D

ð43Þ

where �D ¼ D0 þ
P4

i¼2
ri
2ri

W�
i

�� ��2.
Let d ¼ minf2bk1; 2bki; riri � Pk k2 � 1; i ¼ 2; 3; 4g, then

(43) can be expressed by

_V � � 2k
kmaxðPÞ

1

2
eTPe

� d
X4
i¼1

z2i
2ðk2bi � z2i Þ

 !b

�
X4
i¼2

1

2
~WT
i
~Wi

8<
:

9=
;þ �D

ð44Þ

By using the following inequality

jHjmjWjm � m
mþ m

njHjmþm þ m

mþ m
n�

m
mjWjmþm

and selecting u ¼ 1, / ¼ 1� b, m ¼ b and s ¼ bðb=1�bÞ,
then, we can obtain

1

2
eTPe

� �b

�ð1� bÞsþ 1

2
eTPe ð45Þ

X4
i¼2

1

2
~WT
i
~Wi

 !b

�ð1� bÞsþ
X4
i¼2

1

2
~WT
i
~Wi ð46Þ

Note that logðk2bi=ðk
2
bi
� z2i ÞÞ� ðz2i =ðk2bi � z2i ÞÞ, when

jzij\kbi . Substituting (45)–(46) into (44) gives

_V � � 2k
kmaxðPÞ

1

2
eTPe

� �b

�d
X4
i¼1

1

2
log

k2bi
k2bi � z2i

 !b

� d
X4
i¼2

1

2
~WT
i
~Wi

 !b

þD

ð47Þ

where D ¼ �Dþ 2dsð1� bÞ þ ð2k=kmaxðPÞÞð1� bÞs.
Define c ¼ min k2b=kmaxðPÞ;d

� �
, then we can obtain

V � � cVb þ D ð48Þ

By the inequality (48), we follow that the closed-loop

system is SGPFS.

Further, based on (48), the following inequality holds

V � D

ð1� cÞc

� �1
b

; t� T0 ð49Þ

where T0 ¼ V1�bð0Þ
cð1�bÞð1�cÞ ; 0\c\1.

From (35) and (49), 8t� T0, we have that

jy� yrj � kb1½1� e
�2ð D

ð1�cÞcÞ
�b

�
1
2\kb1, which means that

tracking error is bonded by kb1. Moreover, it can be made

to be smaller after the settling time T0 and by adjusting the

parameters appropriately.

With the above derivations, we easily derive that

jx1j � jz1j þ jyrj\kb1 þ Yr. By selecting kb1 ¼ kc1 � Yr,

we can obtain jx1j\kc1 . Obviously, a1 is bounded and

ja1j\�a1. And x2 ¼ z2 þ a1. Therefore, jx2j � jz2j þ
ja1j\kc2 is true, which means jx2j\kc2 . Similarly, we

have proved that jx3j\kc3 and jx4j\kc4 . h

4 Simulation study

In this part, the computer simulation and the comparison

with the previous control method are carried out by

MATLAB software to demonstrate the effectiveness of the

developed control method. The parameters in the consid-

ered PMSMs (4) are listed by Table 1 [15].

The referenced function is given as yr ¼ sinðt þ 0:1Þ. As
the same in [16], the state variables are restricted by

jx1j\2:5, jx2j\50, jx3j\25, jx4j\25.

We design the neural networks f̂ið�xÞ ¼ ŴT
i Sið�xÞ to

approximate the functions fið�xÞ in PMSMs (4). Each neural

network contains five nodes and radial basis functions are

chosen by SiðxÞ ¼ expð� ðx�qiÞT ðx�qiÞ
#2
i

Þ, where

Table 1 The parameters of the considered PMSMs

Parameter Value Unit

Rotor moment of inertia 0.0086 kg � m2

Friction coefficient 0.00217 N �M=ðrad=sÞ
Magnet flux linkage of inertia 0.7 Wb

q-axis stator inductor 0.058 H

d-axis stator inductor 0.00285 H

Number of pole pairs 4

Armature resistance 0.046 X
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Fig. 3 The trajectories of the rotor position h with reference signal yr
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Fig. 4 The trajectories of the rotor position h and its estimate ĥ
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Fig. 5 The trajectories of angular velocity x and its estimate x̂
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Fig. 6 The trajectories of the current iq and its estimate îq
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Fig. 7 The trajectories of the current id and its estimate îd
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Fig. 8 The trajectory of the voltage uq
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qij ¼ ½j� 2; j� 2�T , i ¼ 2; 3; 4, j ¼ 1; 2; 3; 4; 5, and vari-

ance #i ¼ 4.

The neural adaptive state observers are designed as

_̂x1 ¼ x̂2 þ l1ðy� x̂1Þ
_̂x2 ¼ x̂3 þ Ŵ2

T
S2ð �̂xÞ þ l2ðy� x̂1Þ

_̂x3 ¼ Ŵ3
T
S3ð �̂xÞ þ b4uq þ l3ðy� x̂1Þ

_̂x4 ¼ Ŵ4
T
S4ð �̂xÞ þ c3ud þ l4ðy� x̂1Þ

ð50Þ

The observer gain vector L is selected as L ¼
½l1; l2; l3; l4�T ¼ ½1; 50; 250; 20�T and A is a Hurwitz matrix.

Then, given a definite matrix Q ¼ I, by solving Lyapunov

equation A0
TPþ PA0 ¼ �2I, we obtain

P ¼

0:1629 0:8371 0:081 0:05

0:8371 9:0629 40:8552 3:3079

0:0810 40:8552 210:0163 19:2421

0:05 3:3079 19:2421 14:1194

2
6664

3
7775:

The virtual controllers and the actual controllers are as

follows
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Fig. 9 The trajectory of the voltage ud
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Fig. 10 The tracking errors of z1
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Fig. 11 The observer errors e1
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Fig. 12 The observer errors e2
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Fig. 13 The observer errors e3
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a1 ¼ � k1sgnðz1Þz2b�1
1

ðk2b1 � z21Þ
b�1

� z1
2ðk2b1 � z21Þ

þ _yr ð51Þ

a2 ¼ � k2sgnðz2Þz2b�1
2

ðk2b2 � z22Þ
b�1

�
k2b2 � z22
k2b1 � z21

z1

� z2
2ðk2b2 � z22Þ

� ŴT
2 S2 � l2e1 þ _a1

ð52Þ

uq ¼
1

b4
� k3sgnðz3Þz2b�1

3

ðk2b3 � z23Þ
b�1

�
k2b3 � z23
k2b2 � z22

z2

"

�ŴT
3 S3 �

z3
2ðk2b3 � z23Þ

� l3e1 þ _a2

# ð53Þ

ud ¼
1

c3
� k4sgnðz4Þz2b�1

4

ðk2b4 � z24Þ
b�1

� z4
2ðk2b4 � z24Þ

� ŴT
4 S4 � l4e1

" #

ð54Þ

And also, the parameter updating laws are given as

_̂Wi ¼ �riŴi þ
rizi

k2bi � z2i
Si; i ¼ 2; 3; 4 ð55Þ

The design parameters in (51)–(55) are chosen as: k1 ¼ 20,

k2 ¼ 25, k3 ¼ 30, k4 ¼ 50; kbi ¼ 1:5; ði ¼ 1; 3; 4Þ,
ri ¼ 0:01; ði ¼ 2; 3; 4Þ; ri ¼ 20, ði ¼ 2; 3; 4Þ; b ¼ 0:99.

Setting x1ð0Þ ¼ 0:1, x2ð0Þ ¼ 0:01rad=s, and

x3ð0Þ ¼ 0:01A, and other initial values are zeros.

The closed-loop responses are depicted in Figs. 3, 4, 5,

6, 7, 8, 9. Figure. 3 is the responses of rotor position h and

reference signal yr. Figures 4, 5, 6, 7 are the trajectories of

rotor position h, the angular velocity x, the current iq and

the current id and their estimates ĥ, x̂, îq and îd,

respectively.

From Figs. 3, 4, 5, 6, 7, 8, 9, it is clearly that the control

method of this paper can guarantee that the PMSMs is

stable, its stator current and angular velocity do not exceed

their predefined bounds. Furthermore, the tracking and

observer errors converge in a finite-time.

To further demonstrate the effectiveness of the formu-

lated controller in this study, we make a simulation com-

parison with the adaptive controller method in [15]

designed based on asymptotic stability theory. In the sim-

ulation, the initial conditions of the variables and the

updating parameters are selected as the same as the above

simulation. Figures 10, 11, 12, 13, 14 give the trajectories

of the tracking error z1 and observer errors ei.

Figures 10, 11, 12, 13 and 14 indicate that tracking and

observer errors in this paper converge in a shorter time than

those in [15]. Besides, the control performances are also

better than [15].

5 Conclusion

In this paper, an adaptive neural network finite-time output-

feedback control scheme is proposed for the PMSMs with

unknown nonlinear functions and unmeasured constraint

states. The neural networks are exploited to approximate

the unknown nonlinear dynamics. By designing an adap-

tive neural state observer, the finite-time adaptive neural

control method has been developed by constructing barrier

Lyapunov functions. The main advantages of the presented

finite-time adaptive neural control scheme ensure that the

controlled PMSM system is SGPFTS and the tracking error

converge to a small neighborhood of zero in a finite time.

Furthermore, all the states of the control system do not

exceed the given bounds. Computer simulation and com-

parison results have proved the effectiveness of the pro-

posed control method. The further study direction will

focus on the neural network event-triggered output feed-

back control for PMSMs based on this study.
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