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Abstract
Deep multimodal learning has attracted increasing attention in artificial intelligence since it bridges vision and language.

Most existing works only focus on specific multimodal tasks, which limits the ability to generalize to other tasks.

Furthermore, these works only learn coarse-grained interactions at the object-level in images and the word-level in text,

while ignoring to learn fine-grained interactions at relation-level and attribute-level. In this paper, to alleviate these issues,

we propose a Semantic-aware Multi-Branch Interaction (SeMBI) network for various multimodal learning tasks. The

SeMBI mainly consists of three modules, Multi-Branch Visual Semantics (MBVS) module, Multi-Branch Textual

Semantics (MBTS) module and Multi-Branch Cross-modal Alignment (MBCA) module. The MBVS enhances the visual

features and performs reasoning through three parallel branches, corresponding to the latent relationship branch, explicit

relationship branch and attribute branch. The MBTS learns relation-level language context and attribute-level language

context by textual relationship branch and textual attribute branch, respectively. The enhanced visual features then passed

into MBCA to learn fine-grained cross-modal correspondence under the guidance of relation-level and attribute-level

language context. We demonstrate the generalizability and effectiveness of the proposed SeMBI by applying it to three

deep multimodal learning tasks, including Visual Question Answering (VQA), Referring Expression Comprehension

(REC) and Cross-Modal Retrieval (CMR). Extensive experiments conducted on five common benchmark datasets indicate

superior performance comparing with state-of-the-art works.

Keywords Semantic-aware � Multi-branch � Visual question answering � Referring expression comprehension �
Cross-modal retrieval

1 Introduction

Our world is full of multimodal information, such as text,

image, video and sound. Deep multimodal learning tasks,

such as visual question answering [1, 7, 15, 23, 57],

referring expression comprehension [27, 43, 51, 55] and

cross-modal retrieval [20, 26, 36, 47], combining vision

and language have attracted the attention of many

researchers due to exposing many challenges to the artifi-

cial intelligence community. The key challenge in multi-

modal learning tasks lies in understanding a wide range of

sophisticated semantics in an image, including attributes,

spatial relationships, actions and intentions, and how all of

these concepts are referred to and grounded in natural

language.

In recent years, a large number of works have been

proposed for multimodal learning tasks, which can be

classified into two categories including learning object-

word interactions [1, 15, 20, 57] and relational reasoning

[3, 23, 26, 53, 55]. The methods of learning object-word

interactions make use of object-level features from object

detectors and discover alignments between salient regions

and keywords. The image inputs are encoded into local

object features by object detection methods such as Faster

R-CNN [39], and the text inputs are encoded into textual
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features by RNN based methods like LSTM [11] or GRU

[6]. For the cross-modality interaction, most existing

methods use co-attention [7, 20, 57] to connect two

modalities. In this way, the problem of which objects to

look at and what words to listen to can be solved. Although

capturing object-word correspondences, these methods

ignore the visual relationships in the image and the rela-

tional reasoning skill. As illustrated in Fig. 1, the model

needs to recognize not only the objects (‘‘surfer’’, ‘‘board’’,

and ‘‘water’’) but also the visual relationships (‘‘on’’ and

‘‘in’’) in the image.

To deal with the above issues, relational reasoning

methods [3, 23, 26, 53, 55] have been proposed to capture

the visual relationships between objects of the image.

Unlike the object-word methods that learn coarse-grained

cross-modal interactions, incorporating the relationships

between image objects could benefit in learning fine-

grained cross-modal interactions. Many methods have been

proposed to achieve relational reasoning, which can be

divided into two categories including latent relationships

based methods [3, 12, 35, 53, 55] and explicit relationships

based methods [23, 44]. Some latent relationships based

methods generate relationships via combining pairwise

regions and then mapping them through a MLP [3, 35, 53],

others generate latent relationships by constructing the

relative position and size of the bounding boxes [12, 55].

Although these methods have been proven to work well on

relational reasoning, the relationships are learned in a

weak-supervised manner, which lacks interpretability. The

explicit relationship-based methods [23, 44] utilize a pre-

trained Scene Graph Generation (SGG) model [18] to

predict the objects and relationships between them. A scene

graph is a collection of explicit visual relationship triplets:

\subject, predicate, object[, the subjects and objects are

represented as nodes and the relationships or predicates

between them are represented as edges. Although these

methods successfully capture explicit visual relationships,

the generated graph is very sparse and unbalanced due to

the long tail of annotations, which limits its performance

for downstream tasks. In addition, although the latent

relationship-based methods and explicit relationship based

methods are proposed, respectively, there is no method to

comprehensively model the two relationships in an end-to-

end framework.

Actually, in addition to focusing on the objects and rela-

tionships of the image, attributes are also important to better

understand the image. As shown in Fig. 1, ‘‘black’’ and

‘‘white’’ are attribute semantics in the image. Therefore, it is

vital to simultaneously model low-level semantic informa-

tion (e.g. objects) and high-level semantic information (e.g.

attributes and relationships). Moreover, it could be prob-

lematic to directly learn cross-modal interactions between

various visual semantic components and full sentences. The

reason is the lack of fine-grained cross-modal alignment at

different levels, including nouns aligned with visual objects

at object-level, adjectives aligned with visual attributes at

attribute-level, and verbs or prepositions aligned with visual

relationships at relation-level. Therefore, it is also necessary

to capture the multi-level semantic information in the sen-

tence and build fine-grained cross-modal alignment, which is

ignored by other methods.

To overcome the aforementioned problems, we propose

a novel Semantic-aware Multi-Branch Interaction

(SeMBI) network for various multimodal learning tasks.

The SeMBI performs intra- and inter-modality information

interaction through multi-level semantic branches, which

mainly consists of three modules: (1) the Multi-Branch

Visual Semantics (MBVS) module jointly models low-level

visual semantics (e.g. objects) and high-level visual

semantics (e.g. attributes and relationships) in a parallel

way. First, MBVS synchronously models low and high-

level visual semantics through three parallel branches,

which are latent relationship branch, explicit relationship

branch (we prune the relationship of explicit relationship

branch to avoid the problem of graph sparsity) and visual

attribute branch. Then it updates the visual representation

of each branch based on the cascaded self-attention model;

(2) the Multi-Branch Textual Semantics (MBTS) module

synchronously learns relation-level and attribute-level

textual semantics through two parallel branches corre-

sponding to textual relationship branch and textual attribute

branch, respectively. In the textual relationship branch, we
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Fig. 1 Illustration of multi-level multimodal semantic extraction and

fine-grained cross-modal alignment. Our SeMBI first models the

visual semantic information in the image and models textual semantic

information in the sentence, then it performs fine-grained cross-modal

alignment in the built multimodal semantic space
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first extract the relationship components (e.g. surfer-on -

board, board-in -water) using the off-the-shelf Stanford

Parser, then the relationship components are propagated to

Graph Attention Network (GAT) to obtain the relation-

level language context. In the textual attribute branch, we

also use the Stanford Parser tool to extract the attribute

components (e.g. black surfer, white board) , then the

attribute components are propagated to Graph Convolution

Network (GCN) to obtain the attribute-level language

context; (3) the Multi-Branch Cross-modal Alignment

(MBCA) module learns fine-grained cross-modal align-

ment and obtains the visual context under the guidance of

both relation-level and attribute-level language context. On

the top of the unified backbone, the visual and language

contexts are used to task-specific heads for accomplishing

each multimodal task.

Our contributions of this paper are summarized as

follows.

• We propose a novel Semantic-aware Multi-Branch

Interaction (SeMBI) network for various deep multi-

modal learning tasks by jointly modeling multi-level

multimodal semantic information and learning fine-

grained cross-modal alignment in a unified deep model.

• We propose an innovative Multi-Branch Visual Seman-

tics (MBVS) module that comprehensively models

multi-level visual semantic information by semantic-

aware self-attention mechanism in an end-to-end

framework.

• Multi-Branch Textual Semantics (MBTS) module is

proposed to learn both relation-level language context

via a relation-aware GAT and attribute-level language

context through an attribute-aware GCN. And the

Multi-Branch Cross-modal Alignment (MBCA) module

is proposed to perform fine-grained cross-modal align-

ment under the guidance of both relation-level and

attribute-level language context. As far as we know, this

is the first work that performs cross-modal alignment at

different semantic levels.

• We verify our proposed SeMBI on three common

multimodal tasks: Visual Question Answering, Refer-

ring Expression Comprehension and Cross-Modal

Retrieval. Extensive experiments conducted on five

common benchmark datasets indicate superior perfor-

mance compared with state-of-the-art works.

2 Related work

2.1 Low-level semantic modeling methods

Low-level semantic modeling methods aim to mine mul-

timodal interactions between objects in an image and

words in a sentence. VQA [1, 7, 15, 54, 57] aims to answer

a question in natural language according to an image.

BUTD [1] proposes a top-down attention on pre-detected

salient regions, which is the first method to build object-

word interaction, and subsequent methods are designed

based on this model. Some other methods [7, 15, 54, 57]

utilize attention mechanisms to explore object-word inter-

action. SANs [54] propose stacked attention networks to

perform question-guided visual attention multiple times.

Inspired by SANs, other co-attention models including

BAN [15], MCAN [57] and DFAF [7] have been proposed.

These models build sufficient interaction between each

word in questions and each region in the image. REC

[27, 43, 51, 55] aims to locate an object in an image

referred to by a natural language expression. Most existing

works [27] adopt co-attention mechanisms to build up the

interactions between the expression and the objects in the

image. CMR [20, 26, 47] is a task to get queries from one

modality to retrieval information from another modality.

Several works have been devoted to exploring the low-

level semantic interactions for cross-modal retrieval

[14, 20]. Karpathy et al. [14] first propose to extract image

region features and text word features, and then align them

in the embedding space. SCAN [20] follows SANs [54],

using stacked cross-modal attention for similarity

measures.

2.2 High-level semantic modeling methods

Due to the complex semantics of multimodal data, existing

low-level semantic modeling methods do not well seize the

high-level semantics, such as relationship and attribute. For

the VQA task, methods like [3, 23, 53] take into account

the high-level semantics of relationships. MuRel [3] is

proposed to perform pairwise relationship modeling.

TRRNet [53] and CRA-Net [35] propose a tiered relation

reasoning method to improve the relational reasoning

performance. ReGAT [23] is proposed to model multi-type

visual relationships, such as spatial relationships, semantic

relationships and implicit relationships. For the REC task,

the methods in [51, 52, 55] decompose the model into

components that deal with different semantics, and then

fuse the matching scores of different components. MattNet

[55] decomposes the model into subject, location and

relationship modules, and computes a matching score for

each module. CMRIN [51] highlights objects as well as

multi-order relationships among them. DGA [52] network

performs multi-step reasoning on top of the relationships

among the objects. For the CMR task, only several works

consider high-level semantic information [26, 49]. UniVSE

[49] proposes an unified visual-semantic embedding

approach that textual semantic is decomposed into different

components such as relationships and attributes, which will

Neural Computing and Applications (2023) 35:7529–7545 7531

123



be aligned with the objects in the image. GSMN [26] learns

fine-grained correspondence of relationships and attributes,

which helps to improve the object correspondence. One

limitation of these methods lies in the fact that they only

consider the visual high-level semantics while ignoring the

importance of textual high-level semantics. DC-GCN [13]

proposes to simultaneously capture the visual relationships

and the syntactic dependency relations between words in a

question for the VQA task. MFM [33] comprehensively

explores the multimodal matching relationships based on

their multi-faceted representations. While these methods

build both visual and textual relationships, they do not

comprehensively build multi-level multimodal semantics

and perform fine-grained cross-modal alignment at differ-

ent semantic levels. Our work builds not only the high-

level semantics of vision but also the multi-level semantics

of text, as well as fine-grained cross-modal alignment.

2.3 Self-attention based methods

In this paper, we apply self-attention to capture multi-level

visual semantics. Inspired by the self-attention in machine

translation [41], lots of recent works [7, 47, 57] take use of

the self-attention mechanism to implement multimodal

learning tasks. MCAN [57] and DFAF [7] use self-attention

to generate intra-modality attention maps and model the

dense inter-modality interactions to improve VQA perfor-

mance. CAMP [47] uses self-attention to obtain the

aggregated message from other modalities for the CMR

task. Different from the traditional self-attention mecha-

nism, we add high-level visual semantic information to the

traditional self-attention.

2.4 Graph networks

Graph neural networks have been very popular in recent

years for aggregating information from neighbor nodes to

target nodes in a graph. GCN is proposed to explore the

relationships between objects in the image or words in the

sentence, which has been applied to various multimodal

tasks [13, 26]. For instance, DC-GCN [13] proposes a dual

channel graph convolution network to explore the visual

relationships and syntactic relationships. GSMN [26] uti-

lizes GCN to update the matching vector of each node to

address the CMR task. Our work applies GCN to capture

the attribute semantics in the sentence. Recently, GAT [42]

is proposed to overcome the disadvantages of GCN with

attention mechanisms. Different attention weights repre-

sent the contribution of other nodes to the target nodes.

ReGAT [23] introduces the GAT to do visual relational

reasoning in VQA. LGRANs [43] proposes the language-

guided GAT to dynamically learn object representations

that better adapt to the referring expression. In this paper,

we apply the GAT to obtain the relational semantics in the

sentence. The difference between the previous graph

attention mechanism and ours is their attention is obtained

via the interaction between nodes, but our attention further

adds relational semantics.

3 Method

In this section, we detail our proposed Semantic-aware

Multi-Branch Interaction (SeMBI) network for deep mul-

timodal learning. Figure 2 shows the framework of our

proposed model. We will first describe the way of

extracting features of image and text in sect. 3.1. Then, we

will introduce the proposed MBVS module aiming to learn

multi-level visual semantic information in Sect. 3.2 and

introduce the proposed MBTS module for learning multi-

level textual semantic information in Sect. 3.3. We will

also present the MBCA module to establish the fine-

grained cross-modal alignment in Sect. 3.4. Finally, the

task-specific heads are discussed in Sect. 3.5.

3.1 Multimodal feature representation

Image representation. Almost all previous works

[1, 7, 20, 26, 57] on multimodal learning use Faster R-CNN

[39] to extract visual features. For a fair comparison, we

extract the visual features by utilizing a Faster R-CNN

model in conjunction with ResNet-101 [10], which is pre-

trained on Visual Genome [19]. Specifically, given a image

I, we extract an object feature vector fi with 2048 dimen-

sions and a box feature vector bi with 4 dimensions for

each image region ri. The fi is further transformed into a d

dimensional vector vi by a linear mapping. Then V ¼
fv1; :::; vng 2 Rn�d and B ¼ fb1; :::; bng 2 Rn�4 are used

together to represent each image, where n is the number of

detected regions in I.

Text representation. To extract the text features, given

one-hot encoding wi of each word in a sentence S, we first

embed it into a 300-dimensional Glove vector [37] as

ei ¼ Wewi. Then the word embeddings are input to a RNN

based networks to produce the initial text representation.

For VQA and REC tasks, we feed word embeddings into a

LSTM [11]. For CMR task, we employ a bi-directional

GRU [6] to enhance the text representation. Finally, we

obtain the text representation T ¼ ft1; :::; tkg 2 Rk�d for

the sentence S, where k represents the number of words in

one sentence. Note that text representation and image

representation are in the same d-dimensional space.
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3.2 Multi-branch visual semantic

This part elaborates the method of visual semantic encod-

ing. We first model the latent relationship and explicit

relationship by latent relationship branch and explicit

relationship branch, respectively. Then, we fuse the latent

relation-aware visual feature and explicit relation-aware

visual feature to get the unified visual representation.

Finally, the attribute information in the image is modeled

by the attribute branch. By the way, when we model the

high-level visual semantics, the low-level visual semantics

are also implicitly modeled. Due to the MBVS module is

based on multi-head self-attention [41] mechanism, we first

review a basic form of this mechanism.

3.2.1 Multi-head self-attention

In the multi-head self-attention, h parallel single-heads are

concatenated to improve the expression capacity of the

attended features. In the single-head attention, giving the

set of feature representation F 2 Rm�df , defining the query

as QF ¼ FWQ
i , key as KF ¼ FWK

i and value as VF ¼ FWV
i ,

where WQ
i 2 Rdf�dh , WK

i 2 Rdf�dh and WV
i 2 Rdf�dh are

weights, the sub-script i donates for the i-th head and dh is

the dimensionality of the output features from each head.

The single-head self-attention is computed as follows:

headi ¼ softmax
QFK

T
F

ffiffiffiffiffi

dh
p

� �

VF : ð1Þ

The multi-head attended output feature F0 is given by:

F0 ¼ ½head1; head2; :::; headh�Wo: ð2Þ

where Wo 2 Rhdh�df .

3.2.2 Latent relationship branch

Inspired by [12], we model the latent relationship by

constructing relative position of the bounding boxes. Then

the latent relationship is added to the multi-head self-at-

tention structure so that the model not only focuses on

object-level semantic information, but also the relative

geometric position between any pair of regions.

Specifically, the relative position pij 2 R4 between two

bounding boxes bi and bj is represented as

pij ¼ log
jxi � xjj

wi

� �

; log
jyi � yjj

hi

� �

; log
wi

wj

� �

; log
hi
hj

� �

:

ð3Þ

where (x, y) denotes the coordinate of the top-left point of

the box, and h/w corresponds to the height/width of the

box.

We then transform the pij to a dl dimensional vector

through a fully-connected layer to get the latent

relationship:

Fig. 2 An overview of our Semantic-aware Multi-Branch Interaction

(SeMBI) network, which consists of three modules: (1) Multi-Branch

Visual Semantic (MBVS) module: low and high-level visual seman-

tics are captured through three parallel branches. (2) Multi-Branch

Textual Semantic (MBTS) module: relation-level and attribute-level

textual contexts are learned through two parallel branches. (3) Multi-

Branch Cross-modal Alignment (MBCA) module: learning fine-

grained cross-modal alignment and obtaining the visual context under

the guidance of relation-level and attribute-level textual contexts
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RL
ij ¼ ReLU pijW

l
1 þ bl1

� �

: ð4Þ

where Wl
1 2 R4�dl and bl1 2 R1�dl are trainable parameters,

RL 2 Rn�n�dl .

Finally, V is fed into three independent fully-connected

layers to get QV , KV and VV , corresponding to the query,

key and value, respectively. We design relation-aware

single-head self-attention as follows:

headi ¼ softmax
QVK

T
V

ffiffiffiffiffi

dh
p þ ReLu RLWl

2 þ bl2
� �

� �

VV : ð5Þ

where Wl
2 2 Rdl�1 and bl2 2 R1. The single-head attention

is then substituted into Eq. 2 to obtain the latent relation-

aware visual feature V 0 2 Rn�d. We borrow the residual

skip-connection trick [10] to reserve the original visual

information and stack this branch L times as follows :

V lþ1ð Þ ¼ LayerNorm V ðlÞ þ Dropout V 0ðlÞ
� �� �

: ð6Þ

where LayerNorm is used here to stabilize training. For

V ð1Þ, we set its inputs V ð0Þ ¼ V and V 0ð0Þ ¼ V 0,
respectively.

In this way, the updated features VL 2 Rn�d from the

relation-aware multi-head self-attention not only include

the object-level semantic information, but also the

semantic information with latent relationship.

3.2.3 Explicit relationship branch

To capture the explicit relationships from the image, we

first use the off-the-shelf Scene Graph Generation (SGG)

model to convert the input image into a scene graph [18],

where nodes correspond to objects and the edges corre-

spond to the relationships between objects. The SGG

model is pre-trained on Visual Genome [19]. The original

Visual Genome dataset consists of 150 most frequent

objects and 50 relationship classes. However, the rela-

tionship classes are very imbalanced and show a long-

tailed distribution, which creates a strong frequency bias

and makes it particularly difficult for generalization.

Therefore, we choose the 16 relationships (including no

relationships) with the most frequency, which covers more

than 80% of the instances in the Visual Genome.

Specifically, we represent a generated scene graph as

Gv ¼ ðVv; EvÞ, where Vv is the node-set, and Ev is the edge-

set. Suppose there are the same n object nodes as original

visual representation V. Each node will be encoded into a

d-dimension visual feature vector by the SGG model. So

the visual features can be represented as

O ¼ fo1; :::; ong 2 Rn�d. Each edge has a word label pre-

dicted by the SGG model. We utilize a word embedding

layer to transform the label of each edge into a feature

vector. Concretely, given the one-hot vector eoij, which

represents the relationship of oi and oj, it is passed through

a word embedding layer to obtain the embedded feature

RE
ij 2 Rde . The overall feature is represented by

RE 2 Rn�n�de , where de is the dimension of word

embedding.

Like the latent relationship branch, we transform the

visual feature O into query QO, key KO and value VO,

respectively, and take RE as input to form relation-aware

single-head self-attention as follows:

headi ¼ softmax
QOK

T
O

ffiffiffiffiffi

dh
p þ ReLu REWe

1 þ be1
� �

� �

VO: ð7Þ

where We
1 2 Rde�1 and be1 2 R1. The single-head attention

is then substituted into Eq. 2 to obtain the explicit relation-

aware visual feature O0 2 Rn�d. Like Eq. 6, multiple stacks

of this branch are also applied for O and O0 to obtain the

updated feature OE 2 Rn�d.

Thus, the updated feature OE includes not only the

object-level semantic information, but also the semantic

information with explicit relationship. Some previous

methods [23, 44] also use scene graph to extract explicit

visual relationship, the difference between these methods

and our Explicit Relationship Branch is our method designs

a relation-aware multi-head self-attention mechanism to

integrate relationships for updating visual features.

3.2.4 Relation-level interaction

With the relation-aware visual features VL and OE obtained

by the two branches mentioned above, we fuse them by

different fusion approaches to get the unified relation-

aware visual representation as shown in Fig. 3. To the best

of our knowledge, our method is the first work that com-

prehensively models latent relationships and explicit rela-

tionships in an end-to-end framework.

i) Linear Fusion. We simply fuse VL and OE via an

element-wise summation.

ii) Gate Fusion. The gate fusion approach adopts a

gate mechanism for relation-level fusion.

(a) Linear Fusion (b) Gate Fusion (c) Cross-A�en�on Fusion

Fig. 3 Illustration of different fusion methods of latent relationship

branch and explicit relationship branch

7534 Neural Computing and Applications (2023) 35:7529–7545

123



g ¼ r WVV
L þWQO

E
� �

:

VR ¼ g �WVV
L þ 1 � gð Þ �WQO

E:
ð8Þ

where WV and WQ are to-be-learned parameters.

g performs as a gate to select the most important

information.

iii) Cross-Attention Fusion. The cross-attention fusion

approach takes one feature as the primary feature

and uses it to guide the attention learning for

another feature. The attended feature are then

integrated into the primary feature to get the output

feature. Assuming that VL corresponds to the

primary feature, we project VL as query QVL ,

project OE as key KOE and value VOE . Then, the

projected QVL , KOE and VOE are fed into Eq. 1 and

Eq. 2 to get the attended feature OF 2 Rn�d. The

obtained feature OF has the same shape as VL, and

so OF can be integrated with VL via an element-

wise summation just like Eq. 6. The feature after

fusion is represented by VR 2 Rn�d.

3.2.5 Attribute branch

Inspired by [25], which focuses on multiple attributes to

solve the graph clustering problem. Attributes are also

important high-level semantics that can help understand

images. In order to obtain visual attribute information, we

use the attribute prediction model pre-trained on Visual

Genome dataset (The dataset has 1,601 object classes and

401 attribute classes.).

Concretely, each object and corresponding attribute

have a word label predicted by the attribute prediction

model. Given the object one-hot vectors Ls and attribute

one-hot vectors La, two label embedding layers are built to

embed the Ls into S ¼ fs1; :::; sng 2 Rn�de and La into

A ¼ fa1; :::; ang 2 Rn�de , respectively. After obtaining the

object feature and attribute feature, it is necessary to fuse

them into a unified representation. Specifically, the object

feature and attribute feature are concatenated and mapped

through a nonlinear layer to obtain the fused feature

U 2 Rn�d.

Finally, we feed the unified representation U into Eqs. 1

and 2, then stack L layers as in Eq. 6 to get the updated

feature UA 2 Rn�d . Therefore, the updated features

obtained from this branch contain both the semantic

information of the object-level and the attribute-level.

3.3 Multi-branch textual semantic

In this section, we first parse the sentence to get the rela-

tionship components and attribute components. Then, these

two components are fed to textual relationship branch and

textual attribute branch to get the relation-level language

context and attribute-level language context, respectively.

3.3.1 Language parsing

Given a sentence S, we use an off-the-shelf Stanford Parser

[40] to parser the sentence into relationship components

and attribute components. For example, the sentence

‘‘A brown fox chases a white rabbit’’ is parsed

to obtain the relationship components (e.g. fox chases

rabbit) and attribute components (e.g. brown fox, white

rabbit).

3.3.2 Textual relationship branch

After parsing, we find that there are thousands of rela-

tionship types in the whole dataset. We count the rela-

tionship types of VQA dataset, and there are 2,262

relationships in total. However, the relationship types are

very imbalanced and show a long-tailed distribution. The

same is true for other datasets. Based on this observation,

we only select the N relationships (including no relation-

ships) that occur most frequently.

Specifically, we construct a fully-connected graph Gr ¼
ðT r; ErÞ based on the extracted relationship components,

where T r ¼ ftigki¼1 is a set of nodes and ti is text repre-

sentation of each word. Er is a set of edges and edge etij
denotes the relationship between ti and tj in the relationship

components. We use the word embedding layer to encode

each edge etij into a relational representation1 RS
ij 2 Rde .

Following previous work [42], we employ the multiple

stacked GAT layers to obtain the relation-level language

context, so that it can capture key words and relational

semantics of a sentence. More formally, given the node

representations T and the edge representations RS, the

updated feature of the l�th layer is calculated as:

aðlÞij ¼
exp t

ðlÞ
i W

ðlÞ
1 � ðtðlÞj W

ðlÞ
2

� �T

þReLU W
ðlÞ
3 RS

ij

� �

P

t
ðlÞ
j 2N

t
ðlÞ
i

exp t
ðlÞ
i W

ðlÞ
1 � ðtðlÞj W

ðlÞ
2

� �T

þReLU W
ðlÞ
3 RS

ij

� �

:

ð9Þ

t
lþ1ð Þ
i ¼ t

ðlÞ
i þMLP

X

t
ðlÞ
j 2N

t
ðlÞ
i

aðlÞij W
ðlÞ
4 t

ðlÞ
j

0

B

B

@

1

C

C

A

: ð10Þ

where t
ð0Þ
i ¼ ti, W

ðlÞ
1 , W

ðlÞ
2 2 Rd�d, W

ðlÞ
3 2 Rde�1 and W

ðlÞ
4 2

Rd�d are trainable parameters, MLP denotes two fully-

1 If there is no relationship between words ti and tj, the relational

embedding between them is padded with 0.
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connected layers with ReLU activation and dropout.

Finally, we stack L-layer GAT and take output of the last

layer from GAT to acquire the final relation-level language

context TR ¼ ftðLÞ1 ; :::t
ðLÞ
k g 2 Rk�d. Compared with previ-

ous GAT methods that only obtain attention weights

through interactions between nodes, our GAT method adds

additional relational semantics to learn attention weights.

3.3.3 Textual attribute branch

After parsing the attribute components of a sentence, we

construct a sparse graph Ga ¼ ðT a; EaÞ. T a ¼ ftigki¼1 is a

set of nodes and ti is text representation of each word.

There exists graph edge between nodes if they are attribute

components. We use matrix M to represent the adjacent

matrix of each node where Mij ¼ 1 if node i and node j

form an attribute component, else Mij ¼ 0.

Following previous work [17], we use multiple stacked

GCN layers to obtain the attribute-level language context,

so that it can capture key words and attribute semantics of a

sentence. Concretely, given the node representations T and

the adjacent matrix M, the updated feature of the l-th layer

is calculated as:

bðlÞij ¼
expðcðlÞi W

ðlÞ
5 � ðcðlÞj W

ðlÞ
6 ÞTÞ

P

c
ðlÞ
j 2N

c
ðlÞ
i

expðcðlÞi W
ðlÞ
5 � ðcðlÞj W

ðlÞ
6 ÞTÞ

: ð11Þ

c
ðlþ1Þ
i ¼ c

ðlÞ
i þ

X

c
ðlÞ
j 2N

c
ðlÞ
i

Mijb
ðlÞ
ij W

ðlÞ
7 c

ðlÞ
j :

ð12Þ

where c
ð0Þ
i ¼ ti, W

ðlÞ
5 , W

ðlÞ
6 and W

ðlÞ
7 2 Rd�d are trainable

parameters. Following the stacked L-layer GCN, we obtain

the attribute-level language context TA ¼ fcðLÞ1 ; :::; c
ðLÞ
k g 2

Rk�d from the last layer. Due to the problem of vanishing

gradients, the original GCN is difficult to perform multi-

layer stacking, and our GCN solves this problem by using

the residual skip-connection trick.

3.4 Multi-branch cross-modal alignment

To obtain the visual context related to language context, we

align the relation-aware visual representation VR by uti-

lizing the relation-level language context TR as the guided

vector and align the attribute-aware visual representation

UA by utilizing the attribute-level language context TA,

respectively. As far as we know, this is the first work that

performs cross-modal alignment at different semantic

levels.

3.4.1 VQA and REC

VQA and REC tasks require joint reasoning over the text

and the images. We first depict the cross-modal alignment

on relationship branch in details, and then roughly describe

that on attribute branch since this operation is same on two

kinds of branch. Concretely, following Transformer [41]

model, we first transform VR into query feature and

transform TR into key and value features, where trans-

formed features are denoted as QVR , KTR and VTR . Then,

these transformed features are fed into Eqs. 1 and 2 to get

the multi-head attended feature. In order to adjust the

representations, a feed-forward layer takes the multi-head

attended features and further transforms them through two

fully-connected layers as follows:

FFNðxÞ ¼ FCðDropoutðReLUðFCðxÞÞÞÞ: ð13Þ

Finally, residual connection followed by LayerNorm is

applied to the outputs of the two layers. The number of

layers that this module stacks is set to L. The final output is

represented as relation-aware visual context VRC.

Similarly, the Transformer model is proceeded on UA

and TA in the attribute branch, following the stacked L-

layer Transformer, producing the attribute-aware visual

context UAC.

3.4.2 CMR

CMR between images and texts requires comparing the

similarity across these two modalities on semantic level.

Unlike VQA and REC tasks, which need to study fine-

grained interactions and learn attention weight, CRM needs

to map the image features and text features into a common

semantic space for similarity measurement, so we compute

the non-parametric attention weight between visual repre-

sentations and language contexts using the cosine function.

We first depict the cross-modal alignment on relationship

branch in details, and then roughly describe that on attri-

bute branch since this operation is same on two kinds of

branch. Concretely, we first compute similarities between

VR and TR, i.e.

simij ¼
vRi

T
tRj

kvRi k � ktRj k
: ð14Þ

Attention is preformed on TR with respect to each image

region vRi :

vRCi ¼
X

k

j¼1

xijt
R
j : ð15Þ

where
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xij ¼
expðsimijÞ

Pk
j¼1 expðsimijÞ

: ð16Þ

We define VRC as relation-aware visual context, in which

each element is aligned by each vRi and the whole TR.

Likewise, to attend on TA with respect to each image

region uAi , we define a weighted combination of language

context. The final output is attribute-aware visual context

UAC .

3.5 Application to Specific Tasks

To apply our SeMBI model to deep multimodal learning

tasks, we build task-specific output modules based on the

relation-level language context TR, attribute-level language

context TA, relation-aware visual context VRC and attri-

bute-aware visual context UAC.

3.5.1 Architecture for VQA

The overall language context TC 2 Rk�d is computed as

the element-wise summation of language context at two

level, and so does the visual context , we get the overall

visual context VC 2 Rn�d . We use two independent atten-

tion model for VC and TC to obtain their attended feature

vc 2 R1�d and tc 2 R1�d, respectively. After that, the

attended features are fused together as follows:

z ¼ LayerNormðWT
v vc þWT

t tcÞ: ð17Þ

p ¼ softmaxðWpzþ bpÞ: ð18Þ

where Wv 2 Rd�dz , Wt 2 Rd�dz , Wp 2 Rdz�M and bp 2
R1�M are learnable parameters, and p means the probability

of the classified answers from the set of answer vocabulary

which contains M candidate answers. During training, we

use binary cross-entropy (BCE) loss function for answer

classification.

3.5.2 Architecture for REC

We reuse the language context TC and visual context VC in

the VQA head. Then, we feed the language context TC into

the attention model to obtain the attended feature

tc 2 R1�d. After that, tc is broadcasted and integrated with

visual context VC as follows:

Z ¼ LayerNormðWT
v V

C þWT
t tcÞ: ð19Þ

Then, we apply two fully-connected layers to project each

attended feature z 2 Z into a score s 2 R1 and a 4-D

bounding box coordinate c 2 R4. We utilize KL-

divergence as a ranking loss Lrank and l1 loss as a regres-

sion loss Lreg to optimize the model. Formulated as,

LREC ¼ Lrank þ kLreg

¼ 1

n

X

n

i¼1

s�i logð
s�i
si
Þ þ k

1

n

X

n

i¼1

L1ðc�i ; ciÞ:
ð20Þ

where k is a hyper-parameter to balance the two losses. s�i
and c�i correspond to the ground-truth score and the

ground-truth bounding box of i-th proposal, respectively.

3.5.3 Architecture for CMR

CMR aims to learn a matching score to measure the cross-

modal similarity between the image-text pair. We can

derive a matching score between image I and text S:

GðI; SÞ¼1

n

X

n

i¼1

simðvRi ; vRCi Þþ1

n

X

n

i¼1

simðuAi ; uACi Þ: ð21Þ

where sim() is the cosine function that measures the simi-

larity between two input features. vRi 2 VR and uAi 2 UA

correspond to the relation-aware region feature and attri-

bute-aware region feature, respectively. vRCi 2 VRC and

uACi 2 UAC are the context features.

Following previous works [20], we employ the triplet

loss as the loss function to enforce positive image-text pairs

to be clustered and negative ones to be separated in the

embedding spaces. We use the hard negative mining

strategy, which makes the negative closest to the anchor,

that is:

LCMR ¼
X

ðI;SÞ
½m� GðI; SÞ þ GðI; S�Þ�þ

þ ½m� GðI; SÞ þ GðI�; SÞ�þ:
ð22Þ

where I�; S� are hard negatives, ½x�þ ¼ maxðx; 0Þ. m is a

margin value.

4 Experiments

To evaluate the effectiveness of the proposed Semantic-

aware Multi-Branch Interaction Network (SeMBI), we

perform experiments in terms of Visual Question Answer

(VQA), Referring Expression Comprehension (REC) and

Cross-Modal Retrieval (CMR) on five publicly available

datasets. Ablation studies are conducted to validate each

module of our model. We also compare with recent state-

of-the-art methods on the three tasks.
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4.1 Datasets and protocols

We train and evaluate our model on VQA dataset, namely

VQA-2.0 [8], three REC datasets, namely RefCOCO [56],

RefCOCO? [56] and RefCOCOg [34] and CMR dataset,

namely MS-COCO [24]. The details are as follows:

VQA-2.0: VQA-2.0 [8] is a widely-used dataset for

VQA task which has about 1,105,904 image-question pairs.

The dataset contains 443,757 train questions, 214,354

validation questions, 447,793 test questions. The test set is

further split into test-dev and test-std sets. The results are

classified into three categories: yes/no, number and other.

For evaluation metric, we use the tools provided by [2] to

evaluate the accuracy of the predicted answer a:

AccðaÞ ¼ min 1;
na
3

� �

: ð23Þ

where na is the total number of people that give the same

answer as a.

RefCOCO, RefCOCO1 and RefCOCOg: The three

datasets are collected on MS-COCO [24]. RefCOCO [56]

contains 142,210 referring expressions for 19,994 images.

RefCOCO? [56] contains 141,564 referring expressions

for 19,992 images. The two dataset are split into train,

validation, testA, and testB. RefCOCOg [34] contains

95,010 referring expressions for 25,799 images. This

dataset is split into train, validation and test. RefCOCO and

RefCOCO? datasets include short expressions while

RefCOCOg has longer complex expressions. To compare

our model with state-of-the-arts, we use the same evalua-

tion metrics as those in [55]. The Precision@1 metric is

used for performance evaluation.

MS-COCO: MS-COCO [24] is an image captioning

dataset containing about 123,287 images. Each image in

MS-COCO [24] has 5 captions. As previous works

[20, 47], we use 113,287 images to train all models, 5,000

images for validation and another 5,000 images for testing.

To show the retrieval performance, we use R@K

(K=1,5,10) for cross-modal retrieval. R@K, defined as the

percentage of queries in which the ground-truth matchings

are contained in the first K retrieved results. The higher

R@K represents better performance. We also report rSum,

which is the sum of R@K for both image retrieval and

sentence retrieval.

4.2 Implementation details

In our experiment, we use the following hyper-parameters

as our default setting. We set the number of heads in multi-

head self-attention as h ¼ 8. The dimension of word-em-

bedding de is set to 300. We train the proposed model on 2

NVIDIA 3080 GPUs. For each dataset, the specific

parameter settings are as follows:

VQA Setup: For VQA-2.0, we use the Adam optimizer

[16] with parameters a ¼ 0:0001; b1 ¼ 0:9; b2 ¼ 0:99. The

size of candidate answers M ¼ 3; 129. The model is trained

up to 13 epochs with batch size 64. For adjustment of

learning rate, we use a warm-up strategy. Specifically, we

begin with a learning rate of 0.00025, linearly increasing it

till 0.0001 at epoch 4. After 10 epochs, the learning rate is

decayed by 1/5 every 2 epochs. The hidden size of d is set

to 512 and the dimensionality of fused feature dz is set to

1,024. Each image has n 2 ½0; 100� object features. The

sequence of embedded words is fed into LSTM [11] for

each time step. All the questions are padded and truncated

to the same length 14.

REC Setup: For the three REC datasets, the length of

textual queries is set to 15 and encode text feature through

a LSTM [11]. The loss weight k is set to 1. We use two

visual features pre-trained on COCO [24] dataset and

Visual Genome [19] dataset, respectively. During pre-

training, we exclude the images in the training, validation

and testing sets of RefCOCO [56], RefCOCO? [56] and

RefCOCOg [34]. We set the other hyper-parameters to be

same as VQA-2.0.

CMR Setup: The model is trained up to 20 epochs with

batch size 32. The initial learning rate is set as 0.0002 with

decaying 1/10 every 10 epochs. For the texts, we use a bi-

directional GRU [6] with one layer. For the images, we use

Faster R-CNN [39] pre-trained on Visual Genome [19] to

Table 1 Accuracy of single model on VQA-2.0 test-dev and test-std

dataset, it is trained on training, validation splits and Visual Genome

dataset. (�) denotes the most important evaluation metric

Model test-dev test-std

All� Y/N Num Other All�

BUTD [1] 65.32 81.82 44.21 56.05 65.67

BAN [15] 69.52 85.31 50.93 60.26 –

SSCN [48] 69.78 – – – 70.09

DFAF [7] 70.22 86.09 53.32 60.49 70.34

DenIII [28] 70.5 86.3 50.9 61.5 70.8

MLVQA [32] 70.59 86.71 53.36 60.66 70.91

MCAN [57] 70.63 86.82 53.26 60.72 70.90

Murel [3] 68.03 84.77 49.84 57.85 68.41

CRA-Net [35] 68.61 84.87 49.46 59.08 68.92

TRRNet [53] 70.80 87.27 51.89 61.02 71.20

BGNs [9] 70.97 87.03 53.56 61.18 –

AGAN [61] 71.16 86.87 54.29 61.56 71.50

ReGAT [23] 70.27 86.08 54.42 60.33 70.58

VC RCNN [45] 71.21 87.41 53.28 61.44 71.49

DC-GCN [13] 71.21 87.32 53.75 61.45 71.54

SeMBI (Our) 71.32 87.16 55.27 61.30 71.58
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extract initial 36 region features for each image. The hid-

den size of image feature and word feature is set as 1,024.

The number of stacked layer L is experimentally set as 4.

And the margin m is empirically set as 0.2.

4.3 Comparison with state-of-the-arts

We compare the proposed SeMBI model against existing

state-of-the-art models on five publicly available datasets.

As shown in Tables 1, 2 and 3, SeMBI achieves superior

performance on all tasks, which verifies the effectiveness

of our model. For a fair comparison, we do not compare

SeMBI to the multimodal-BERT approaches which using

large-scale data to pre-train a generalize model.

4.3.1 Results on VQA-2.0

In Table 1, we compare our results on the VQA-2.0 dataset

to the state-of-the-art model. For a fair comparison, all the

results are obtained by single model trained on the training,

validation splits and Visual Genome dataset. The table is

splitted into three blocks. The first block shows results of

learning only object-word interactions. BUTD [1] is first

model to use features based on Faster R-CNN [39] instead

of grid features. BAN [15], DFAF [7] and MCAN [57] use

complicated attention mechanism such as self-attention and

co-attention. In the middle block, all the models are

designed with semantic awareness, but contain only latent

visual relationships. The third block shows results that

combine several semantic information. ReGAT [23] also

simultaneously captures latent visual relationships and

explicit visual relationships, but it combines the two rela-

tionships through late fusion, which is inefficient. VC

RCNN [45] uses extra visual common sense. While DC-

GCN [13] captures both visual and syntactic relationships

simultaneously, it lacks focus on attribute information and

fine-grained cross-modal alignment, which are equally

important. Our SeMBI belongs to the third category, but its

cross-modal alignment is more fine-grained than others.

It is obvious that SeMBI outperforms all the state-of-

the-art models, which proves the effectiveness of our pro-

posed multi-branch model. Comparing with the results in

the first block, our model surpasses them by a large margin.

It demonstrated that our semantic-aware model achieves

better performance compared to the ones that do not con-

sider any kind of semantic. Comparing the results in the

second block, our model achieves superior performance

due to our model considers multimodal multi-level

semantic information, including object, relationship and

attribute. Despite complicated semantic information are

considered in the third block, our model achieves better

performance. Since other models only build intra-modality

semantic information, our model considers fine-grained

cross-modal alignment. It is obvious that SeMBI increases

the overall accuracy of ReGAT by 1.05% on the test-dev

set. However, SeMBI surpasses VC RCNN and DC-GCN

by only 0.11% on the test-dev set, the reason is that the

sentences in VQA-2.0 dataset are very short and lack

complex reasoning, which leads to limited improvement of

the model by the learned relational semantics and attribute

semantics. Although Y/N and Other do not reach the best,

our SeMBI outperforms them in other categories (e.g., All

Table 2 Comparison with state-of-the-art referring expression comprehension approaches on region proposals from detection model. For

RefCOCO and RefCOCO?, testA is for grounding persons, and testB is for grounding objects

Model Detector Pre-trained Dataset RefCOCO RefCOCO? RefCOCOg

val testA testB val testA testB val test

LGRANs [43] frcnn-vgg16 COCO – 76.60 66.40 – 64.00 53.40 – –

NMTree [27] frcnn-vgg16 COCO 71.65 74.81 67.34 58.00 61.09 53.45 61.01 61.46

DGA [52] frcnn-resnet101 COCO – 78.42 65.53 – 69.07 51.99 – 63.28

MattNet [55] frcnn-resnet101 COCO 76.40 80.43 69.28 64.93 70.26 56.00 66.67 67.01

MattNet [55] mrcnn-resnet101 COCO 76.65 81.14 69.99 65.33 71.62 56.02 66.58 67.27

DDPN [58] frcnn-resnet101 Genome 76.8 80.1 72.4 64.8 70.5 54.1 66.7 67.0

CM-Att-Erase [29] frcnn-resnet101 COCO 78.35 83.14 71.32 68.09 73.65 58.03 67.99 68.67

MCN [31] darknet53 COCO 80.08 82.29 74.98 67.16 72.86 57.31 66.46 66.01

CMRIN [51] frcn-resnet101 COCO – 82.53 68.58 – 75.76 57.27 – 67.38

HFR [38] frcn-resnet101 COCO 79.76 83.12 75.51 66.80 72.53 57.09 69.71 69.08

CM-A-E?Ref-NMS [5] mrcnn-resnet101 COCO 80.70 84.00 76.04 68.25 73.68 59.42 70.55 70.62

SeMBI (Our) frcnn-resnet101 COCO 81.13 82.68 79.65 70.34 73.11 64.56 72.30 72.97

SeMBI (Our) frcnn-resnet101 Genome 83.13 86.67 77.32 74.21 79.79 65.15 74.57 74.79
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of test-dev, Num and All of test-std). Since our model

builds relative location and multi-level semantics, it is

capable of counting and relational reasoning. However, the

VQA-2.0 dataset lacks complex reasoning questions, so it

cannot reflect the relational reasoning ability of our model,

resulting in sub-optimal performance on Y/N and Other.

4.3.2 Results on the REC datasets

In Table 2, we show evaluation results on RefCOCO,

RefCOCO? and RefCOCOg, respectively. Our proposed

SeMBI consistently outperforms existing methods across

all the datasets. When using visual features pre-trained on

COCO, the SeMBI improves the average accuracy over all

the three datasets. Specially, it also surpasses all the

existing models on the RefCOCOg dataset which has rel-

atively longer expression requires relational reasoning

capabilities. When using visual features pre-trained on

Visual Genome, SeMBI improves the average accuracy

over the testing sets achieved by the DDPN [58] method by

4.76%, 10.17% and 7.79%, respectively, on the RefCOCO,

RefCOCO? and RefCOCOg datasets. The results show

that SeMBI outperforms existing state-of-the-arts methods

regardless of the pre-trained features.

4.3.3 Results on MS-COCO

Table 3 shows the comparison between our model and

state-of-the-art approaches on the MS-COCO dataset. We

can see that our proposed SeMBI outperforms all the

existing models, which further demonstrates the

advantages of our model. Note that we only report the

results of our method based on single model, it can be

easily applied to ensemble model. While our model shows

slightly lower scores than others under some metrics, it

yields clearly superior performance against other com-

petitors under the more crucial metric R@1 for retrieval

task. Compared with the previous best model SCAN, our

model achieves 2.6% and 1.8% improvement on R@1 for

two directions. And compared with GSMN, our single

model can achieve competitive results on MS-COCO.

Although several recent works exploit multi-level semantic

information between the two modalities and utilize cross-

modal attention or graph neural network to build cross-

modal alignment, which achieve superior improvement on

CMR tasks. We believe that our SeMBI jointly modeling

multi-level multimodal semantic information and fine-

grained cross-modal alignment has greater advantages.

4.4 Ablation study

Module Analysis: To demonstrate the influence of dif-

ferent modules, we conduct ablation studies incrementally.

To be more specific, first, we only add the latent relation-

ship branch, and then add other modules incrementally.

Note that in order to speed up the ablation study, we use

512 dimensional hidden size in all modules of the Cross-

Modal Retrieval task.

As reported in Table 4, when combining latent rela-

tionship branch and explicit relationship branch, the results

are better than just using latent relationship branch (in

line2). This demonstrates the vital importance of jointly

Table 3 Comparison of

performance of our model with

the state-of-the-art methods on

MS-COCO dataset

Model Image Query Text Query rSum

R@1 R@5 R@10 R@1 R@5 R@10

hiMoCS [62] 27.4 60.5 73.1 20.5 50.9 66.4 298.8

MFM [33] 58.9 86.3 92.4 47.7 81.0 90.9 457.2

UniVSE [49] 64.3 89.2 94.8 48.3 81.7 91.2 469.5

SAEM [50] 71.2 94.1 97.7 57.8 88.6 94.9 504.3

CAMP [47] 72.3 94.8 98.3 58.5 87.9 95.0 506.8

SCAN [20] 72.7 94.8 98.4 58.8 88.4 94.8 507.9

SGM [44] 73.4 93.8 97.8 57.5 87.3 94.3 504.1

CRGN [60] 73.8 95.6 98.5 60.1 88.9 94.5 511.4

VSRN [22] 74.0 94.3 97.8 60.8 88.4 94.1 509.4

BCAN [30] 74.2 95.6 98.4 58.6 87.3 93.9 508.0

MEMBER [21] 75.2 96.1 97.8 60.7 89.2 94.8 513.8

PFAN?? [46] 75.4 95.5 98.2 60.9 88.9 94.7 513.6

CCAN [59] 75.5 95.4 98.5 61.3 89.7 95.2 515.6

IMRAM [4] 76.1 95.3 98.2 61.0 88.6 94.5 513.7

GSMN [26] 76.1 95.6 98.3 60.4 88.7 95.0 514.0

SeMBI (Our) 76.3 95.5 98.5 61.5 89.3 95.3 516.4

7540 Neural Computing and Applications (2023) 35:7529–7545

123



investigating latent relationships and explicit relationships

in an unified framework. Besides, when combining the

three branches to model visual semantics, the model is

further improved (line 3), revealing that multi-branch

visual semantic module can model multi-level visual

semantics and boost the model performance. Moreover, the

performance improvement of adding textual relationship

branch can be observed (line 4), indicating that it is

important to model relational semantics in text and build

fine-grained cross-modal alignment of relation-level.

Finally, we add the textual attribute branch to form com-

plete SeMBI (line 5). The results reach the highest on the

three datasets. Compared to the RefCOCO? and MS-

COCO datasets, our model has a lower improvement on the

VQA-2.0. The reason is that the VQA-2.0 dataset doesn’t

contain complex relational and attribute semantics. In

general, our proposed model exceeds all other modules,

verifying the effectiveness and complementarity of differ-

ent modules.

Hyper-parameter: In Table 5, we compare the effects

of different dimensions of relation features in latent rela-

tionship branch. For VQA task, we observe that dl ¼ 64 is

better than dl ¼ 128 or dl ¼ 256. As for the REC task, the

best result is when dl ¼ 32.

Moreover, we gradually increase the stacking layers L

from 1 to 6 to train and evaluate them on the benchmark

datasets. As shown in Fig. 4a, the performance of SeMBI

steadily improves with increasing L on VQA-2.0, and L ¼
6 performs better. This observation well demonstrates that

the stacking scheme effectively improves model perfor-

mance. As shown in Fig. 4b, we can find that increasing the

number of layers in an appropriate range (i.e., from 1 to 2)

can improve the performance of referring expression

comprehension task. This demonstrates that more layers

offer more information interaction. However, when L is

greater than 2, the performance begins to drop. The reason

may be that too many layers bring more parameters, lim-

iting the model optimization.

Relation-level fusion approaches: In the second col-

umn of Table 5, we compare various relation-level fusion

approaches introduced in Sect. 3.2.4. We can observe that

the cross-attention fusion approach achieves substantially

better performance than other fusion approaches.

Table 4 The ablation study on VQA-2.0 validation set, RefCOCO?

(pre-trained on Visual Genome) validation set and MS-COCO

validation set to investigate the effect of different modules. The best

results are highlighted in bold. We take the rSum as the evaluation

metric for MS-COCO dataset. The ‘‘LRB’’ represents the Latent

Relationship Branch in Sect. 3.2.2. ‘‘ERB’’ stands for Explicit

Relationship Branch in Sect. 3.2.3. ‘‘AB’’ represents Attribute Branch

in Sect. 3.2.5. ‘‘TRB’’ means Textual Relationship Branch in

Sect. 3.3.2. ‘‘TAB’’ means Textual Attribute Branch in Sect. 3.3.3

Line LRB ERB AB TRB TAB VQA-2.0 RefCOCO? MS-COCO

1 4 7 7 7 7 67.48 72.57 510.5

2 4 4 7 7 7 67.64 72.79 511.1

3 4 4 4 7 7 67.72 72.83 511.5

4 4 4 4 4 7 67.76 73.12 512.0

5 4 4 4 4 4 67.81 74.21 513.0

Table 5 Ablation experiments

for hyper-parameters on VQA-

2.0 and RefCOCO?. We train

on the train split and report the

results on the val split

Component Setting VQA-2.0 RefCOCO?

Latent Relationship Branch dl ¼ 32 67.74 74.21

dl ¼ 64 67.81 73.49

dl ¼ 128 67.76 73.72

Visual Relation-Level Fusion Linear Fusion 67.25 72.98

Gate Fusion 67.39 73.46

Cross-Attention Fusion 67.81 74.21

1 2 3 4 5 6
65.0
65.5
66.0
66.5
67.0
67.5
68.0

1 2 3 4 5 6
67.5
69.5
71.5
73.5
75.5
77.5
79.5

69.5 81.5

RefCOCO

RefCOCOg

RefCOCO+

Ac
cu

ra
cy

(%
)

Pr
ec

isi
on

@
1

L L

(a) VQA (b) REC

Fig. 4 Results comparison on VQA and REC (pre-trained on COCO)

regarding different number of stacking layers L related to all branches
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4.5 Visualization and analysis

To better illustrate the effectiveness of adding relation-

level semantics and attribute-level semantics, we compare

the attention maps learned by three ablated models. As

shown in Fig. 5, comparing row 1 and row 2, we can see

that relation-level semantics helps to capture the verbs or

prepositions in the sentence which represent relational

semantics, such as ‘‘with’’ and ‘‘touching’’. In addition, it

can be seen from the visual attention map in the row 2 that

with the relation-level semantics, the model pays more

attention to the regions where man touches the water. Row

2 and row 3 show that adding the attribute-level semantics

helps to focus on more adjectives in the sentence which

represent attribute semantics, such as ‘‘blue’’. And from the

visual attention map in the row 3 that with the attribute-

level semantics, the model focuses more on the ‘‘blue

parasail’’. These visualization results are consistent with

the results reported in Table 4.

In Fig. 6, we visualize the learned attentions from

relation-level cross-modal alignment branch and attribute-

level cross-modal alignment branch, respectively. The

effective alignment of vision and language is the key to

multimodal learning. We can see that the relation-level

cross-modal alignment enables our model to capture the

relational words, such as ‘‘next to’’ in the first example and

‘‘standing behind’’ in the second example. The attribute-

level cross-modal alignment enables our model to capture

the attribute words, such as ‘‘circular, white’’ in the first

example and ‘‘blue’’ in the second example. In addition,

under the guidance of these key words, both models pay

more attention to the relevant visual regions. These

demonstrate that our model can accurately build fine-

grained cross-modal alignment.

Figure 7 further shows four examples comparing the

cross-modal retrieval results between the modal with and

without semantics. Our semantic-aware approach is able to

learn correct information of relationship and attribute. For

example, in Fig. 7a, our semantic-aware model correctly

comprehends the visual relationship ‘‘spoons laid out

across table’’ in candidate images, so that it successfully

ranks the image that contains the relationship at the top.

When without semantics, the image contains ‘‘spoons in

basket’’ will be ranked at the top instead. Another example

in Fig. 7b, by correctly identifying the attribute of ‘‘snow’’,

our semantic-aware model successfully ranks the correct

image at the top. However, when without semantics, the

Is the man with the blue 
parasail touching the 

water?

Word

Word+
Rel

Word+
Rel+
A�r

Obj

Obj+
Rel

Obj+
Rel+
A�r

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

Fig. 5 Visualization of the learned textual attention maps and visual

attention maps by three ablated models. The Word and Obj represent

learning only the object-word semantics. The Word1Rel and

Obj1Rel represent adding relation-level semantics. The Word1Re-
l1Attr and Obj1Rel1Attr represent adding both relation-level

semantics and attribute-level semantics. Words representing relational

semantics are marked in red, words representing attribute semantics

are marked in blue, and other words are marked in green. The three

bounding boxes shown in each image are the top-3 attended regions.

The most interested object regions are marked by boxes in red. The

numbers are attention weights

T: What is that circular 
white object next to the 
vegetables

T: Why is the man in 
the blue shirt standing 
behind the catcher

With rela�onship 
seman�cs

With a�ribute 
seman�cs

With rela�onship 
seman�cs

With a�ribute 
seman�cs

Fig. 6 Visualizations of the learned cross-attention maps. The index within [0-19] or [0-45] on the axes of the attention maps corresponds to the

object in the image
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image with ‘‘snow’’ attribute cannot be retrieved correctly.

Figure 7c and d shows examples for image-to-text retrie-

val. Our semantic-aware model can accurately capture the

visual relationships (‘‘run’’, ‘‘next to’’ and ‘‘over’’) and

visual attributes (‘‘clear’’ and ‘‘flat’’), so that it can cor-

rectly retrieve all the matching text. However, the model

without semantics fails to retrieval all matching text.

5 Conclusion

In this paper, we present an effective semantic-aware

model SeMBI to capture both multi-level visual semantics

and multi-level textual semantics. Moreover, we conduct

cross-modal alignment of the corresponding semantic

branch, so that the image can better align with the corre-

sponding text. To evaluate the effectiveness and general-

izability of our model, we inject SeMBI into the models for

Visual Question Answering, Referring Expression Com-

prehension and Cross-Modal Retrieval tasks. Extensive

experiments demonstrate significant improvement com-

pared with state-of-the-art approaches. Further, we do

ablation studies proving the effectiveness of different

modules. In the future, we will go further to apply this

model to more multimodal learning tasks such as Image

Captioning and Natural Language for Visual Reasoning.
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42. Veličković P, Cucurull G, Casanova A, Romero A, Lio P, Bengio

Y (2017) Graph attention networks. arXiv preprint arXiv:1710.

10903

43. Wang P, Wu Q, Cao J, Shen C, Gao L, van den HA (2019)

Neighbourhood watch: referring expression comprehension via

language-guided graph attention networks. In Proceedings of the

IEEE/CVF conference on computer vision and pattern recogni-

tion, pp 1960–1968

44. Wang S, Wang R, Yao Z, Shan S, Chen X (2020) Cross-modal

scene graph matching for relationship-aware image-text retrieval.

In: Proceedings of the IEEE/CVF winter conference on applica-

tions of computer vision, pp 1508–1517

45. Wang T, Huang J, Zhang H, Sun Q (2020) Visual commonsense

r-cnn. In: Proceedings of the IEEE/CVF conference on computer

vision and pattern recognition, pp 10760–10770

46. Wang Y, Yang H, Bai X, Qian X, Ma Lin, Jing Lu, Li Biao, Fan

Xin (2021) Pfan??: bi-directional image-text retrieval with

position focused attention network. IEEE Trans Multim

23:3362–3376

47. Wang Z, Liu X, Hongsheng LL, Sheng JY, Wang X, Shao J

(2019) Camp: cross-modal adaptive message passing for text-

7544 Neural Computing and Applications (2023) 35:7529–7545

123

http://arxiv.org/abs/1710.10903
http://arxiv.org/abs/1710.10903


image retrieval. In Proceedings of the IEEE/CVF International

conference on computer vision pp. 5764–5773

48. Whitehead S, Wu H, Ji H, Feris R, Saenko K (2021) Separating

skills and concepts for novel visual question answering. In: 2021

IEEE/CVF conference on computer vision and pattern recogni-

tion (CVPR), pp. 5628–5637

49. Wu H, Mao J, Zhang Y, Jiang Y, Li L, Sun W, Ma WY (2019)

Univse: robust visual semantic embeddings via structured

semantic representations. arXiv preprint arXiv:1904.05521

50. Wu Y, Wang S, Song G, Huang Q (2019) Learning fragment self-

attention embeddings for image-text matching. In: Proceedings of

the 27th ACM international conference on multimedia,

pp 2088–2096

51. Yang S, Li G, Yizhou Y (2019) Cross-modal relationship infer-

ence for grounding referring expressions. In: Proceedings of the

IEEE/CVF conference on computer vision and pattern recogni-

tion. pp 4145–4154

52. Yang S, Li G, Yizhou Y (2019) Dynamic graph attention for

referring expression comprehension. In Proceedings of the IEEE/

CVF international conference on computer vision, pp 4644–4653

53. Yang X, Lin G, Lv F, Liu F (2020) Trrnet: tiered relation rea-

soning for compositional visual question answering. In: Com-

puter vision–ECCV 2020: 16th European conference, Glasgow,

UK, August 23–28, 2020, Proceedings, Part XXI16

54. Yang Z, He X, Gao J, Deng L, Smola A (2016) Stacked attention

networks for image question answering. In: Proceedings of the

IEEE conference on computer vision and pattern recognition,

pp 21–29

55. Licheng Y, Lin Z, Shen X, Yang J, Xin L, Bansal M, Mattnet

BTL (2018) Modular attention network for referring expression

comprehension. In: Proceedings of the IEEE conference on

computer vision and pattern recognition 10:1307–1315

56. Yu L, Poirson P, Yang S, Berg AC, Berg TL (2016) Modeling

context in referring expressions. In: European conference on

computer vision, pp 69–85. Springer

57. Zhou Y, Jun Y, Cui Y, Tao D, Tian Q (2019) Deep modular co-

attention networks for visual question answering. In Proceedings

of the IEEE/CVF conference on computer vision and pattern

recognition 6281–6290

58. Yu Z, Yu J, Xiang C, Zhao Z, Tian Q, Tao D (2018) Rethinking

diversified and discriminative proposal generation for visual

grounding. In: Proceedings of the international joint conference

on artificial intelligence

59. Zhang Q, Lei Z, Zhang Z, Li SZ (2020) Context-aware attention

network for image-text retrieval. In: 2020 IEEE/CVF conference

on computer vision and pattern recognition (CVPR).

pp 3533–3542

60. Zhang Y, Zhou W, Wang M, Tian Q, Li H (2021) Deep relation

embedding for cross-modal retrieval. IEEE Trans Image Process

30:617–627

61. Zhou Y, Ji R, Sun X, Luo G, Hong X, Su J, Ding X, Shao L

(2020) K-armed bandit based multi-modal network architecture

search for visual question answering. In: Proceedings of the 28th

ACM international conference on multimedia, pp 1245–1254

62. Zhuang Y, Song J, Fei W, Li X, Zhang Z, Rui Yong (2018)

Multimodal deep embedding via hierarchical grounded compo-

sitional semantics. IEEE Trans Circ Sys Video Technol

28(1):76–89

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds

exclusive rights to this article under a publishing agreement with the

author(s) or other rightsholder(s); author self-archiving of the

accepted manuscript version of this article is solely governed by the

terms of such publishing agreement and applicable law.

Neural Computing and Applications (2023) 35:7529–7545 7545

123

http://arxiv.org/abs/1904.05521

	Semantic-aware multi-branch interaction network for deep multimodal learning
	Abstract
	Introduction
	Related work
	Low-level semantic modeling methods
	High-level semantic modeling methods
	Self-attention based methods
	Graph networks

	Method
	Multimodal feature representation
	Multi-branch visual semantic
	Multi-head self-attention
	Latent relationship branch
	Explicit relationship branch
	Relation-level interaction
	Attribute branch

	Multi-branch textual semantic
	Language parsing
	Textual relationship branch
	Textual attribute branch

	Multi-branch cross-modal alignment
	VQA and REC
	CMR

	Application to Specific Tasks
	Architecture for VQA
	Architecture for REC
	Architecture for CMR


	Experiments
	Datasets and protocols
	Implementation details
	Comparison with state-of-the-arts
	Results on VQA-2.0
	Results on the REC datasets
	Results on MS-COCO

	Ablation study
	Visualization and analysis

	Conclusion
	Data availability
	References




