
REVIEW

The application of neural network for software vulnerability detection:
a review

Yuhui Zhu1,3 • Guanjun Lin2 • Lipeng Song3 • Jun Zhang4

Received: 5 November 2021 / Accepted: 7 November 2022 / Published online: 27 November 2022
� The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022

Abstract
To date, being benefited from the ability of automated feature extraction and the performance of software vulnerability

identification, deep learning techniques have attracted extensive attention in data-driven software vulnerability detection.

Many methods based on deep learning have been proposed to speed up and intelligentize the process of vulnerability

identification. Although these methods have shown significant advantages over traditional machine learning ones, there is

an apparent gap between the deep learning-based detection systems and human experts in understanding potentially

vulnerable code semantics. In some real-world vulnerability prediction scenarios, the performance of deep learning-based

methods drops by more than 50% compared to these methods’ performance in experimental scenarios. We define this

phenomenon as the perception gap by examining and reviewing the early software vulnerability detection approaches.

Then, from the perspective of the perception gap, this paper profoundly explores the current software vulnerability

detection methods and how existing solutions endeavor to narrow the perception gap and push forward the development of

the field of interest. Finally, we summarize the challenges of this new field and discuss the possible future.

Keywords Deep neural network � Deep learning � Machine learning � Vulnerability detection

1 Introduction

With the popularity of mobile devices and computer net-

works, software systems have played a critical role in all

aspects of our society. Meanwhile, software vulnerabilities

arising from software significantly impact businesses and

people’s lives [1, 2]. A recent study has pointed out that the

Internet suffered from nearly 800 million malware attacks

in the second quarter of 2018, which reached a high record

[3]. Moreover, most of the attacks can be attributed to

vulnerabilities in software. Additionally, the number of

vulnerabilities reported publicly to the Common Vulnera-

bilities and Exposures database (CVE) has increased

annually, with the number reported in 2021 hitting 20,000.

Identifying vulnerabilities before deploying software is

an effective solution to reduce potential losses caused by

malicious attacks [4]. To identify vulnerabilities effec-

tively, researchers have proposed many detection methods

which can be categorized into static, dynamic, and hybrid

techniques [5]. Static techniques, such as rule/template-

based analysis [6], static symbolic execution [7, 8], and

code similarity detection [9–11], analyze given programs

based on source code, and the high false-positive rate is a

Yuhui Zhu and Guanjun Lin made an equal contribution to

the paper.

& Lipeng Song

slp880@sdu.edu.cn

Yuhui Zhu

zhu425066454@gmail.com

Guanjun Lin

guanjun.lin@fjsmu.edu.cn

Jun Zhang

junzhang@swin.edu.au

1 School of Data Science and Technology, North University of

China, Taiyuan 030051, China

2 School of Information Engineering, Sanming University,

Sanming 365004, Fujian Province, China

3 The School of Mechanical, Electrical and Information

EngineeringSchool of Mechanical, Electrical & Information

Engineering, Shandong University, Weihai 264209, China

4 School of Science, Computing and Engineering

Technologies, Swinburne University of Technology,

Melbourne, VIC 3122, Australia

123

Neural Computing and Applications (2023) 35:1279–1301
https://doi.org/10.1007/s00521-022-08046-y(0123456789().,-volV)(0123456789().,-volV)

http://orcid.org/0000-0003-2135-0221
http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-022-08046-y&domain=pdf
https://doi.org/10.1007/s00521-022-08046-y

significant limitation of these techniques. Dynamic tech-

niques analyze given programs by generating specific input

data, often accompanied by low code coverage [12].

Finally, a given program is analyzed with a mixture of

static and dynamic techniques in hybrid techniques [5].

However, they also suffer from the limitations of both

approaches [13]. These methods effectively improve the

efficiency of vulnerability detection to a certain extent.

However, due to the significant growth of software codes in

size and complexity, these solutions fail to satisfy the

increasing need for more efficient and effective detection

due to the high demand for manual analysis [14].

In order to improve the efficiency and effectiveness of

vulnerability detection techniques, many pattern recogni-

tion and machine learning (ML) techniques have been

widely used to build defect prediction models [15–17].

Based on pioneer studies, researchers have selected source-

code-based features such as function call [11], software

complexity measurement, and code change [18] as indi-

cators to predict the vulnerable code fragments based on

ML approaches. However, ML-based techniques still

require experts to define indicators explicitly [19, 20].

Furthermore, it is difficult to reflect on the complex and

variable vulnerability patterns and discover new vulnera-

bilities using these indicators.

The emerging deep learning (DL) approaches offer new

potential for software vulnerability detection (SVD). On

the one hand, DL approaches could extract high-level

features automatically, relieving experts from tedious fea-

ture engineering tasks [21]. On the other hand, the DL

approaches usually have better generalization abilities and

can improve detection performance. [22, 23]. It could

discover latent features that a human expert might never

consider including and represent them in high-dimensional

space [24, 25]. Therefore, DL has found its applications in

SVD, and the DL-based SVD has become a promising

field.

Researchers’ goal is to make the vulnerability detection

system like an experienced expert to judge whether a piece

of code is vulnerable so that developers can be assisted in

identifying and fixing vulnerabilities more efficiently. The

SVD methods based on DL are capable of reasoning and

understanding code semantics, which shows the possibility

of achieving this goal. Researchers are presently pursuing

the potential of the DL approach to increase the accuracy

of SVD, as indicated by the growing number of scholarly

articles (see Fig. 1). The success of DL for SVD expresses

the need for an inclusive review of the literature for suc-

cessive researchers to continue to contribute to this

promising field.

How is this survey different from others? Although

several related surveys have been published in recent years

on SVD, few of them have deeply analyzed how

researchers allow full play to the advantages of DL tech-

niques in this field. Existing reviews failed to cover the

most recent studies that revealed new research directions

because the field of DL for SVD is rapidly advancing.

Table 1 shows the difference in scopes, focused topics, and

the number of reviewed DL-based SVD works of those

reviews. It can be seen from the table that the existing

surveys rarely concentrate their work on DL-based SVD.

They restrict their surveys to conventional ML-based

approaches [27, 5, 31] or traditional SVD techniques,

including static and dynamic analysis [26, 28–30]. There-

fore, there is a need to reveal the trend and progress of the

application of DL for SVD. The survey conducted by Lin

et al. [4] is the closest to our work as they have specifically

reviewed DL publications in vulnerability detection and

examined how to facilitate the understanding of code

semantics by DL techniques. However, due to the rapid

development of this research field, their work, which

reviewed only 19 relevant papers, can not cover many

critical recent advancements. Along with DL-based SVD’s

rapid ascent in popularity, a comprehensive review inclu-

sive of more papers would be of great value for the

researchers to gain deeper insight into these advancements.

Hence, in our work, we review 48 studies that apply DL for

vulnerability detection to provide a comprehensive picture

of the 5 year advancements in this field of research.

Finally, we provide a comprehensive discussion on future

directions and challenges for this new area of research.

How did we select the papers? DataBase systems and

Logic Programming (DBLP) and Google Scholar are the

two primary databases containing papers in the computer

field. We search for the relevant papers in these two

databases using several keywords, including vulnerabil-

ity/faulty detection, bug, source code, and DL. Further-

more, the paper selection focuses on English publications

2016 2017 2018 2019 2020
Year

0

10

20

30

40

50

60

N
um

be
r o

f P
ub

lic
at

io
ns

2
7 9

58

19

+

Fig. 1 Recent growth in the number of DL-based SVD scientific

publications

1280 Neural Computing and Applications (2023) 35:1279–1301

123

from high-quality journals and conferences. It ensures that

the selected papers have promising innovations in SVD.

Our work retrieved more than 90 DL-based SVD resear-

ches published in recent five years. However, we finally

selected 48, only those published with noteworthy contri-

butions to the field.

Contributions of this survey Our research intends to

comprehensively assess the literature on DL-based SVD

and demonstrate recent advances in the field. In addition, it

could serve as a guide for the researchers to breathe how

DL techniques are applied for solving different aspects of

the SVD problems and know the limitations and future

directions of this area. We summarise the significant con-

tributions as follows:

(1) We review 48 recent DL-based SVD studies,

presenting a research trend in this active field.

(2) We identify a gap between human understanding and

vulnerability detection systems, defined as the per-

ception gap. From the perspective of the perception

gap, we categorize how existing studies contribute to

bridging this gap by combining the human experi-

ence with the advancement of DL.

(3) We compare the papers published in 2016–2017 with

those published later and discuss current limitations,

challenges, and opportunities of DL-based SVD,

covering recent achievements. Moreover, we con-

ducted several experiments based on real-world data

sets to clarify our views.

The paper is organized as follows. In Sect. 2, we first

analyze the shortcomings of current SVD methods, then

review the DL-based SVD methods in the early stage, and

summarize its primary process. Section 3 reviews the

remaining papers and categorizes them according to their

research contents, focusing on analyzing how the

researchers bridge the gap between DL-based SVD meth-

ods and human understanding from the proposed methods

and solutions. Section 4 elaborates on lessons learned and

future research directions in the field of DL-based SVD.

Finally, Sect. 5 concludes the paper.

2 The gap between human understanding
and vulnerability detection systems

2.1 The dilemma and potential of vulnerability
detection systems

Designing a vulnerability detection system is to find vul-

nerabilities hidden in software and assist in completing the

code inspection [32]. Moreover, the data-driven vulnera-

bility detection system needs to analyze code from the

level of code semantics and syntax. However, the structure

of vulnerability codes is very complex, which could be

evidenced by CVE-2017-11176. The diff file of CVE-

2017-11,176 is shown in Fig. 2.

Table 1 Summary of related survey

Reference Technology scope Topic Focus and Taxonomy Reviewed DL-

based SVD

works

Liu et al.

[26]

SVD including static analysis,

Fuzzing and penetration testing

A brief review of SVD involve code analysis and ML-based techniques None [t]

Malhotra

et al. [27]

ML-based SVD Systematic review of ML-based SVD techniques None

Ghaffarian

et al. [5]

ML-based SVD An extensive review of SVD that utilize ML and data-mining techniques None

Ji et al.

[28]

SVD, vulnerability exploitation

and patching techniques

Extensive review of the studies of automatic SVD, exploitation, and

patching techniques

1

Allamanis

et al. [29]

Big code analysis including SVD A systematic review of Big Code based on ML from the difference of

programming languages with natural languages

1

Shahriari

et al. [30]

SVD including static analysis,

Fuzzing and hybird methods

Extensive surevey of SVD including namely testing, static analysis, and

hybrid analysis

None

Jie [31] ML-based SVD Review of ML-based SVD techniques None

Lin et al.

[4]

DL-based SVD An in-depth review of the studies focusing on DL techniques and examined

how to facilitate the understanding of code semantics by DL techniques

19

This

survey

DL-based SVD Review of the application of DL to SVD techniques and Explain how to

combine human cognitive ability with DL techniques to improve the

efficiency of vulnerability detection

48 [b]

Neural Computing and Applications (2023) 35:1279–1301 1281

123

The vulnerability CVE-2017-11,176 is located in the

Linux kernel. In this function, message queuing allows

asynchronous event notification. When a message is placed

in an empty queue, the message queue allows for a signal

or a thread to start. This asynchronous event notification

calls mq_notify function. And mq_notify creates or removes

asynchronous notifications for the specified queue. Because

mq_notify, the notify function, did not set the socket

pointer to null when entering the retry process, which may

cause a use after free (UAF) vulnerability. There are more

than 20 functions related to the trigger process of the

vulnerability, shown in Fig. 3, and the code that needs to

be modified to fix the vulnerability is not wholly consistent

with the code that caused the vulnerability.

It is difficult for the vulnerability detection system to

understand the causes of such complex vulnerabilities,

even with an expressive and specially-crafted model and

sufficient training data. For a human expert, gained expe-

rience in code inspection, knowledge of the program, and

understanding of the programming language are also

required to identify such vulnerability. Therefore, there is a

gap between human understanding and vulnerability

detection systems.

Many studies have mentioned this problem and pointed

out that the key is that manual features can not ultimately

present code semantics and syntax information [33–35].

Therefore, a previous review [4] presented a concept of the

semantic gap, which is defined as: ’’The semantic gap is the

lack of coincidence between the abstract semantic mean-

ings of a vulnerability that a practitioner can understand

and the obtained semantics that an ML algorithm can

learn’’. The researchers believe that DL-based vulnerabil-

ity detection systems can narrow the semantic gap by

learning intricate patterns and high-level representations

that reveal the code semantics of software codes [36, 37].

The gap between human understanding and vulnerabil-

ity detection systems is reflected in the understanding of

code semantics and the cognition of the whole vulnerability

detection task: People’s understanding of the task is to find

vulnerabilities. However, the detection systems can only

find similar codes to the provided vulnerability samples for

training but cannot analyze whether these codes are

vulnerabilities.

In addition, some vulnerabilities may be triggered in

specific conditions. The same piece of code may be iden-

tified as vulnerable when processing some particular tasks.

Thus, experts can find vulnerabilities by analyzing differ-

ences between the process of codes execution with the

actual requirements. However, the current data-driven

vulnerability detection methods lack these bits of

knowledge.

Therefore, the gap between human understanding and

vulnerability detection systems cannot be covered entirely

by the definition of the semantic gap because this definition

can only cover the gap between the detection system and

Fig. 2 The diff file of CVE-2017-11,176

Fig. 3 Involved function of CVE-2017-11,176

1282 Neural Computing and Applications (2023) 35:1279–1301

123

human experts in the comprehension of code semantics

without covering the gap in the comprehension of code

relevant information. Section 2.2 will review preliminary

researches in DL-based SVD. On this foundation, we will

further analyze the perception gap in Sect. 2.3.

2.2 Preliminary researches in DL-based SVD

Because the application of the DL model does not rely on

expert-defined features, it has been favored in various fields

[38–40], such as speech recognition [41, 42], image

recognition [43, 44], and machine translation [45, 46].

Furthermore, DL has become the basis of the most

advanced artificial intelligence applications [47]. So far,

Deep Neural Networks (DNN) have also been applied to

SVD, and their detection performance is encouraging. In

this section, we would like to discuss how the preliminary

studies apply DL to vulnerability detection.

(1) Summary of recent works: To our knowledge, the

first study that utilized DNN for SVD was proposed in [32].

Subsequently, some SVD methods based on DL were

published within two years [22, 32, 34, 48–51], forming a

relatively complete process.

In the first study [32], the authors adopted a deep belief

network (DBN) for detecting bugs and defects in Java

source code. Since Abstract Syntax Trees (ASTs) provide a

structured representation of the source code function and

reserve more syntactic information than source code, ASTs

represent the semantic and syntactic information hidden in

the source code. Their ASTs contain function nodes, dec-

laration nodes, and control-flow nodes in three types of

nodes. The reason why they excluded other AST nodes was

to prevent diluting the importance of other nodes. Then, the

authors adopted the method proposed in [53] to reduce the

noise in the data set. To input ASTs into the DBN network,

the author maps AST nodes to tokens and uses the method

proposed in [54] to limit the input tokens between 0 and 1.

This paper adopted a generative graphical model DBN to

learn vulnerability code representation from a labeled data

set. DBN contains one input layer and several hidden

layers, and the top layer is the output layer. Each layer

consists of several stochastic nodes. The author assumes

that this multi-layer structure can enable DBN to recon-

struct the semantics and content of input data with high

probability and learn the representation of vulnerabilities.

However, this paper’s methods only work at the file-level,

and it can not pinpoint the vulnerabilities related to code

lines.

In research [49], a Convolutional Neural Network

(CNN) was adopted to generate semantic and structural

features of the source codes. Moreover, the features were

combined with 20 traditional features, which were extrac-

ted by Jureczko et al. [55] to distinguish whether there was

a vulnerability in the file. The AST they used was the same

as that of [32]. Thus each source file was represented by a

token vector. Subsequently, they adopted a CNN to extract

semantic and structural features from source codes.

Moreover, they combined the extracted features with tra-

ditional features. Then, the authors applied a Logistic

Regression classifier [56] to judge whether an input test

code was buggy.

A function-level AST-based approach was proposed in

[22]. Compared with file-level vulnerability detection, it

can pinpoint the key code better. The authors collected

more than 6000 labeled functions from three open-source

projects. For cross-project vulnerability discovery, a Bi-

directional Long Short-Term Memory (BiLSTM) network

was adopted to learn code representations in this study.

Since ASTs and the source codes lack control flow infor-

mation and can not reflect the control dependencies, a

method, CNNs over Control Flow Graphs (CFGs) for SVD,

was proposed in [34]. The authors collected four real-world

data sets from a popular programming contest site Code-

Chef1 for conducting experiments.

Previous studies used source code as training data, with

expensive manual marking consumption. An approach for

predicting memory corruption vulnerabilities was proposed

in [52], and the authors extracted features from both static

and dynamic analysis. The authors thought that the usage

patterns of the C library functions could exhibit the

memory corruption vulnerabilities, and they extracted the

call sequences/traces from a set of call sequences associ-

ated with the standard C library functions and the monitor

of programs’ execution for a limited period. Later, a study

that also used function call sequences as features was

proposed in [51]. Similarly, they used the method proposed

in [52] to get function call sequences. Nevertheless, the

difference was that they used a popular multi-purpose

fuzzer zzuf2 to detect unexpected behavior to acquire the

label of every program. The disadvantage of this work was

that the quality of the data set could not be guaranteed, and

the data label method is only suitable for some types of

vulnerabilities.

(2) Discussion: Given existing research achievements,

compared with ML, even a simple DL model such as

Multilayer Perceptron (MLP) in [32] has a better detection

effect in various SVD tasks, which benefits from learning

high-level features or representations with more complex-

ity and abstraction. Moreover, DL techniques allow the

detection systems to capture code semantics, understand

contextual code dependencies, and automatically extract

high-dimensional features that better reflect vulnerabilities’

essence. With these capabilities, although the constructed

1 https://www.codechef.com/.
2 http://caca.zoy.org/wiki/zzuf.

Neural Computing and Applications (2023) 35:1279–1301 1283

123

https://www.codechef.com/
http://caca.zoy.org/wiki/zzuf.

SVD systems are not enough to dig out various vulnera-

bilities in source codes like human experts, DL-based SVD

systems have had a better performance than all other types

of data-driven vulnerability detection systems. At present,

DL-based SVD technology is still in its infancy. DL

technology is expected to realize automatic and intelligent

vulnerability mining with continuous improvement.

2.3 Vulnerability perception gap

Although researchers have applied various SVD methods

based on DL, several recent studies have demonstrated that

the accuracy of DL-based SVD could be up to 90% at

detecting vulnerabilities in experimental scenarios. Nev-

ertheless, in some actual detection environments, their

performance dropped by more than 50% [57]. The current

DL-based SVD methods are still limited in their

applications.

Hence, there is a gap between human understanding and

vulnerability detection systems. We call it the perception

gap and define it as follows:

The perception gap is a lack of consistency between

practitioners’ cognition of object code and decision-mak-

ing of the DL model.

This gap has two aspects: on the one hand, due to the

black-box nature of many DL-based methods for SVD,

people can not comprehensively understand the decision

process and reasons for the DL-based detection system; on

the other hand, there are still shortcomings in the DL

system compared to human experts.

The lack of sufficient data is one of the most critical

reasons [4, 58]. DL methods usually need large data sets,

especially for complex tasks like vulnerability detection.

However, the known public data set, SARD,3 is not col-

lected for vulnerability detection. Therefore, the lack of

sufficient data for training leads to the DL method not

being able to extract complete vulnerability features.

Moreover, due to not understanding the detection task like

a human, the in-depth learning method needs to be further

optimized to achieve better results in various scenarios. In

addition, the lack of fine-grained and interpretable DL-

based SVD systems is also the reason for this gap.

How can this gap be bridged? If an ordinary person

wants to be an experienced expert, an overall and local

understanding of tasks of interest is essential and it is also

true for DL-based SVD methods. Therefore, researchers

integrate their understanding of vulnerability detection

tasks into the deep learning model by optimizing each step

of DL-based SVD. Therefore, the detection system can

understand vulnerability detection tasks like human

experts.

As shown in Fig. 4, DL-based SVD methods have

formed a relatively complete process, including data col-

lection, code representation, model building, and evalua-

tion/test.

Data collection is to collect labeled data sets for training

neural networks. In this part, the critical point is the grain

of high quality labeled data. In general, fine-grained vul-

nerability labels can better locate the code. However, the

size of current vulnerability data is relatively small.

Therefore, the insufficient training data can not meet the

requirements.

Feature representation can be divided into code repre-

sentation and word embedding methods. Code representa-

tion methods aim to express the semantic and grammatical

information that the source codes miss, and word embed-

ding methods aim to turn code representations into vectors

that neural networks can process. For most neural net-

works, the code representations can be well input into deep

network training, such as Word2vec [59, 60]. However,

due to the complex software background and expert

experience related to the vulnerabilities, current code rep-

resentation methods can not completely express the

semantic and grammatical information that the source

codes miss.

Model building applies or customizes deep neural net-

work models that automatically extract the vulnerable

patterns to detect potential vulnerabilities. The model

structure determines the learning ability of the model for

different types of data. Therefore, a model with better

learning ability and is easy to explain is expected.

Evaluation/test is to train and test the built detector in

specific application scenarios. The DL model needs to be

optimized for different scenarios. The current research

mainly focuses on feasibility and theoretical research, and

many problems need to be solved in practical application

[57].

Therefore, DL-based SVD can better complete the vul-

nerability detection task by combining the experts’ under-

standing of the vulnerability detection task, which can

bridge the perception gap.

3 DL-based SVD for bridging the perception
gap

DL has been extensively used in natural language pro-

cessing, such as machine translation and language under-

standing, and is also suitable for code semantic analysis,

which can help human experts screen possible vulnerability

codes. It prompted many researchers to follow up on the

DL-based SVD methods to improve the vulnerability

detection ability.
3 https://samate.nist.gov/index.php/SARD.html.

1284 Neural Computing and Applications (2023) 35:1279–1301

123

https://samate.nist.gov/index.php/SARD.html.

3.1 Human experience facilitating DL-based SVD

Section 2.2 has introduced early DL-based research,

mainly focusing on realizing a complete detection system.

This section will focus on how researchers optimize the

application of DL models in vulnerability detection.

The origin of the perception gap is that the deep learning

method can not obtain the relevant knowledge of software

background and expert experience, and this knowledge can

not extract from the training data [61]. However, relevant

knowledge is essential for vulnerability mining. Therefore,

researchers analyze and extract related knowledge and try

their best to input this knowledge into the DL-based SVD

models. Thus, this section divides the reviewed papers into

four main optimization directions for DL-based SVD.

Next, we will introduce the four directions.

Improvements in the quality of data sets: It mainly aims

to optimize data acquisition, labeling, and processing

methods, which objectively improve the quality of data sets

and reduce the demand for computing power. The deep

learning models are able to accurately extract vulnerability

features with improved data quality and more accurate

labeling.

More suitable feature representation methods: Feature

representation can be divided into code representation and

word embedding methods. In this research direction, the

researchers select the code representation and word

embedding methods ideal for detecting different types of

vulnerabilities according to their experience. Combined

with the mighty computing power of the DL model, these

code representation methods could further improve the

feature extraction ability of DL methods. At the same time,

a suitable word embedding method can better retain the

semantics information of code representation.

Neural networks with improved learning ability: On the

one hand, researchers can improve the learning ability of

neural networks by optimizing the structure of networks or

increasing the scale of networks. On the other hand, feature

input neural networks can also be optimized to retain more

semantic and grammatical features.

Optimization for specific scenarios: Optimize for the

specific problems encountered in the actual detection

environment, such as the software to be tested does not

allow a view of the code, and the computing power of the

detection environment is insufficient.

The rationale behind the proposed categorization is as

follows: Integrating more expert experience into each step

of DL-based SVD methods can narrow the perception gap

between DL-based SVD methods and human experts. The

following sections will review some essential works to

illustrate how researchers bridge the perception gap in

different directions.

3.2 Improvements in the quality of data sets

This section shows essential works that optimize data sets’

quality from three aspects: data source, granularity, and

label quality.

(1) Summary of recent works: In [62], A new data

labeling method is proposed, and the authors collected a

extensive data set with 12 million source code based on this

method. They used three open-source static analyzers,

Clang,4 Cppcheck,5 and Flawfinder.6 However, the data

label may not be consistent with the actual label, and the

method can not guarantee the quality of data.

A statement-level data generator method was proposed

for detecting buffer overflow vulnerabilities in [63].

Compared with the research [48], it provided a synthetic

code generator that could generate codes that can be

compiled normally, and their data sets have control flow

structures and code line numbers. The author used the

libclang interface to split the code files into statement-level

codes.

Data collection Feature representation Model building Evaluation
Process

Trend

Semi-synthetic

Synthetic

Real-world

Program

File

Function

Source Code

AST

Code Gadget

Fine-grained
real-world sets

Representation with
dense information

CFG

DBN

CNN RNN

Transformer

Bert

GNN

Model with intense
learning ability

Optimization for
specific scenarios

Cross Domaim

Muti-Domaim

IDE Environment

Interpreting

Word2vec

CodeBert

GloVe

DFG Doc2vec

Fig. 4 Overview of DL-based

SVD process

4 https://clang.llvm.org.
5 http://cppcheck.sourceforge.net.
6 https://dwheeler.com/flawfinder.

Neural Computing and Applications (2023) 35:1279–1301 1285

123

https://clang.llvm.org
http://cppcheck.sourceforge.net
https://dwheeler.com/flawfinder

Then a statement-level based detector called

VulDeeLocator was developed by [64]. The authors used

intermediate codes as the program’s representation to

detect vulnerability at the slice-level. The authors obtained

intermediate codes by the Lower Level Virtual Machine

(LLVM). The extraction and segmentation of statement

codes needed a tool, and the location of the vulnerability

codes was not precise enough. Then, a line-level classifi-

cation method called Vulcan was proposed in [37]. The

authors investigated the problem of classifying a line of the

program as containing a vulnerability or not using ML.

Then, An extension method of [22] was proposed in

[65]. In this work, the authors used the real-world data set

collected from GitHub and proposed a novel fuzzy-over-

sampling method to address the non-vulnerable data

insufficient issue. To provide sufficient real data, the

authors provided more labeled code from nine different

open-source software in research [67]. The granularity of

the data set covers function-level and file-level. At the

function-level, it contains 1,471 labeled vulnerable and

59,297 labeled non-vulnerable source code functions. And

at the file-level, it contains 1,320 vulnerable and 4,460 non-

vulnerable. The experiment results were conducted on the

proposed real-world data set and SARD data set with dif-

ferent network structures. In [67] a deep domain adaptation

method was proposed to solve the problem of lacking

enough labeled data. To overcome the lack of labeled

vulnerability data, the authors adopted a semi-supervised

variant to fully utilize the unlabeled target data’s infor-

mation by treating the unlabeled target data as the unla-

beled component in semi-supervised learning.

Subsequently, they use spectral graphs [72] to represent the

geometry of data and optimize the output results via min-

imizing the conditional entropy [73] of the source and

target distribution.

Research [67] has shown that semi-supervised learning

has the potential to alleviate the lack of large-scale labeled

data sets effectively. Thus, it can provide more fine-grained

labeled data and make the DL model locate vulnerability

code more accurately. However, it is equally important to

accurately distinguish the type of vulnerability, which can

more accurately explain why this code segment contains a

vulnerability. A recent study [69] proposed a multi-class

vulnerability detection can effectively solve this problem.

The source code was converted to token sequences in the

processes, and the authors applied an Long Short-Term

Memory (LSTM) network to classify vulnerabilities.

Later, a more efficient multi-class vulnerability detec-

tion was proposed in [19]. First, they collected a data set

containing 116 different types of vulnerabilities and 33,086

test cases. Then, code gadgets containing data dependen-

cies, control dependencies, and the ’’global’’ semantics

related to possible vulnerabilities were used. And ’’code

attention’’ was proposed to focus on ’’localized’’ informa-

tion to detect specific vulnerability types.

Previous studies have greatly improved the vulnerability

granularity but also made it more difficult to label source

codes. In order to solve the labeling problem of fine-

grained data, a differential analysis-based approach called

D2A was proposed in [70]. The authors built their data set

by analyzing version pairs from multiple open source

projects. They select bugfix submissions from each project

and statically analyze the versions before and after sub-

mission. The detected issues, which disappear in the cor-

responding after-commit version, are likely to be real bugs.

They used this method to generate a large labeled data set.

In addition, a data set collection method was proposed in

[57]. To obtain the labeled data set, the authors collected

the already fixed issues with publicly available patches of

open source software, such as Linux Debian Kernel and

Chromium. Later, Wang et al. proposed an automatic data

labeling method in [71] that can automatically obtain data

from GitHub. It further reduced the labor cost of data set

collection. They conducted an automatic framework for

collecting vulnerable code samples. In this framework, a

set of predictive models or experts were used to predict

whether a code commits relevant to a code vulnerability.

Moreover, the vulnerability code segment can be identified

by comparing the different versions of code before and

after the code commit.

(2)Discussion: There are three main improvements in

the quality of data sets. The first is to find a better data

source. In Sect. 2.2, most of the data sets of reviewed

papers are not from the actual application software or do

not use the source code, for example [48, 52, 51]. Com-

pared with the actual software code, synthetic or semi-

synthetic codes possess a simple structure. Some synthetic

codes even can not be compiled normally. The vulnera-

bility characteristics extracted from them can not meet the

actual vulnerability detection requirements. In addition, the

granularity of these data is at the program-level or file-

level, which can not meet the needs of accurately locating

vulnerabilities.

The second is to improve the granularity of data. Studies

in this section significantly improve vulnerability labels’

accuracy from file-level to function-level or statement-

level. At the same time, specific vulnerability types have

been marked in some review papers, such as [69, 19].

These have greatly improved the data quality.

The last is to improve the marking and cleaning methods

of data. More than half of the studies extracted some or all

data sets from open source software projects compared to

previous studies. They optimized the quality of data labels

by manual effort [64–67] or by analyzing the differences in

software codes in different versions [70, 57, 71].

1286 Neural Computing and Applications (2023) 35:1279–1301

123

3.3 More suitable feature representation
methods

This section shows some critical works that optimize fea-

ture representation methods from two aspects: code rep-

resentation and word embedding methods.

(1) Summary of recent works: In order to fully extract

the semantics of programs, Fan et al. combined static

measurement methods with ASTs, in [61]. They believed

that ASTs could reflect the original structure of source code

and reserve more semantic information. And the authors

combined these semantic features with traditional static

metrics to improve the performance of SVD. With similar

intent, another approach was proposed in [74]. The authors

consider two types of complementary features for vulner-

ability detection. The first was CFGs generated by Clang

and LLVM [84], Moreover, the second was based on

source codes directly. The authors convert two sets of

features to token sequences. Then, they converted the

generated two types of token sequences into vector repre-

sentations, using a word package model and word2vec

[59, 60] model.

Paper [75] proposed a new code representation method

by embedding code comments. The author believed that

comments of codes could reflect the semantics and func-

tions of source codes. Thus, the semantic features could be

extracted from those comments. Mainly because some

codes in the real world lack comments, the author’s testing

modules did not contain comments. In this way, the clas-

sifier could cope with the missing comments situation.

Therefore, comments were only fed into the trained model

during the testing process.

An approach proposed a program representation called

’’code gadget’’ for detecting vulnerabilities in [24]. A code

gadget is several lines of code that are semantically related

in terms of data dependency or control dependency.

Therefore, the code gadget defined could be used to capture

the vulnerabilities related to data flow or control flow

dependencies. In addition, the authors used a business tool

called Checkmarx7 to generate code gadgets.

In a recent study [76], Li et al. further extended the

’’code gadget’’ adopted in [24] and their ’’code gadget’’

contains both data dependency and control dependency of

code sequences. Furthermore, they implemented the study

based on an extended open-source parser Joern [13].

Compared with Checkmarx used in [24], it could accom-

modate new semantic information of programs.

Then, a name-based bug detection approach for detect-

ing JavaScript bugs was proposed in [77]. It detects acci-

dentally swapped function arguments, incorrect binary

operators, and incorrect operands in binary operations. The

authors think that the names of variables and functions

contain helpful information for the three types of vulner-

abilities. Similarly, a name-based vulnerability detector

was also used in C/C?? and Python programs’ vulnera-

bility detection in [78]. The authors thought function names

contain important semantic features to distinguish vulner-

ability functions in source code. However, the function

names usually can not provide enough information, and the

detector can not accurately locate the vulnerability.

The reviewed studies have shown that ASTs and CFGs

effectively represent the semantic and syntactic informa-

tion hidden in the source code. Later, a representation

method that merged ASTs, CFGs, Data Flow Graph

(DFGs), and Program Dependence Graphs (PDGs) was

proposed in [35]. Data and control dependencies are made

clear in a representation known as PDG, which uses graph

notation. These dependencies are considered during the

dependent analysis phase of compiler optimization, which

improves parallelism and uses many cores. The authors

called it to code property graph (CPG) and stored it with a

joint data structure [13]. Then, an Intermediate Represen-

tation (IR) based method was proposed in [79]. The authors

thought that as an intermediate code representation con-

taining data and control information, IR could extract

vulnerability characteristics in different programming

languages.

In addition, an automated and intelligent vulnerability

detection method was proposed in [80], and the minimum

token sequences representation was used for code repre-

sentation. The minimum token sequences representation

can ensure that more information is input into the neural

network and improve long codes’ detection ability.

Although many code representation methods have been

adopted in vulnerability detection, few studies pay atten-

tion to the performance of code representations. Later, an

evaluation of vulnerability detection performance on code

representations was proposed in [81]. To evaluate the

performance of different code representations, the authors

proposed a DL framework consisting of 3 DNNs in con-

junction with five different representations. The framework

contains ASTs, Code Gadgets (CGs), Semantics-based

Vulnerability Candidates (SeVCs), Lexed Code Represen-

tations (LCRs), and Composite Code Representations

(CCRs). Their experiments concluded that the CCRs had

the best overall improvement.

Different from the previously reviewed papers, a Kernel

Based Extreme Learning Machine (KELM) model that

focuses on the optimization of vector representation was

proposed in [82]. This paper adopted a multi-level word

embedding method to represent the features of code

structure better. Specifically, the authors obtained the

symbolic representation of the source code related to the

vulnerability through three kinds of symbolization and7 https://www.checkmarx.com.

Neural Computing and Applications (2023) 35:1279–1301 1287

123

https://www.checkmarx.com

Table 3 Reviewed studies in Sect. 3.2

Reference Data source Feature /

Representation

Neural network

model

Detection

granularity

Labels obtained from &

Provided by

Russell et al.

[62]

The Juliet Test Suite, Debian

programs & open source

project from Github

Lexed source code

with reduced

vocabulary size

RNN/CNN Function-level Combining the Clang,

Cppcheck & Flawfinder

with manual evalution [t]

Sestili D.

et al. [63]

CJOC-bAbI & s-bAbI & the

buffer overflow test cases

from Juliet Test Suite

Generated from

source code

Memory

network

Statement-level Automated & the JulietTest

Suite

Li et al. [64] The Juliet Test Suite & open

source project from Github

Intermediate code Bi-RNN-vdl Statement-level Automated & mannual effort

Srikant et al.

[37]

Ethereum Control and data

dependencies

ASTs

BiLSTM with

an attention

mechanism

Line-level Automatically generated

Liu et al.

[65]

Three open source project from

Github written in C language

ASTs BiLSTM Function-level Mannual effort

Lin et al.

[66]

Nine open source project from

Github written in C language

Source code DNN Text-CNN

and four RNN

variants

File-level and

function-level

Mannual effort

Nguyen et al.

[67]

Six open source project from

Github written in C language

in [68]

Statements in

source code

Bidrectional

RNN

Function-level Mannual effort

Saccente

et al. [69]

The Juliet Test Suite Token sequences BiLSTM File-level Automated

et al. [19] The Juliet Test Suite & open

source project from Github

Code gadgets Buliding-block

LSTM

Code

gagets(consisting

of multiple

statements)

Automated & mannual effort

Zheng et al.

[70]

Six open source project from

Github

25 manually

extracted features

13 well-known

ML models

Function-level Automated & mannual effort

Chakraborty

et al. [57]

Two open source project CPGs GNN Function-level Automatically generated

Wang et al.

[71]

Open source project from

Github

ASTs?PCDGs GNN Function-level Automatically generated [b]

Table 2 Reviewed studies which published in 2016–2017

Reference Data source Feature / Representation Neural network

model

Detection

granularity

Labels obtained from

& Provided by

Wang et al.

[32]

The PROMISE defect data sets ASTs DBN File-level The PROMISE [t]

Pradel and

Sen [50]

JavaScript ASTs Feed-forward

network

Statement-

level

Automatically

generated

Choo et al.

[48]

The synthetic data set(CJOC-

bAbI)

Generated from source code Memory network Statement-

level

Automatically

generated

Li et al.

[49]

The PROMISE defect data sets ASTs CNN File-level Automatically

generated

Lin et al.

[22]

Three open source project from

Github written in C language

ASTs BiLSTM Function-

level

Mannual effort

Viet Phan

et al. [34]

CodeChef CFGs CNN File-level Automatically

generated

Grieco

et al. [52]

Debian program binaries Static & dynamic call of

sequences of C library

functions

MLP Program-

level

Debian bug tracker

& a simple fuzzer

Wu et al.

[51]

32-bit Linux programs Dynamic call of sequences of C

library functions

CNN, LSTM, CNN-

LSTM and FCN

Program-

level

A fuzzer named zzuf

[b]

1288 Neural Computing and Applications (2023) 35:1279–1301

123

introduced Doc2vec [85] for vector representation. Thus, it

can significantly reduce the noise introduced by irrelevant

information about vulnerable codes.

In addition, Hin et al. proposed a new deep learning

system, LineVD [86], for detecting statement-level vul-

nerabilities as a node classification problem. LineVD used

a transformer-based approach, CodeBERT [83], to encap-

sulate the raw source code tokens and Graph Neural Net-

work (GNN) to utilize control and data dependencies

between statements.

(2)Discussion: This section mainly divides the feature

representation method’s improvement into two parts. On

the one hand, it improves the form of code representation.

The source codes or tokens extracted from the source codes

can be directly used as a code representation method.

However, due to various reasons, such as software updates,

the programming language contains much redundant

information, and the order of the programming language

may be different from the actual execution order in

computers. These factors may affect the learning efficiency

and effect of the deep learning model. Therefore,

researchers applied ASTs, obtained from the compilation

process of source code, as code representation methods.

After compiling, ASTs remove redundant fragments in the

source codes and restore the execution order of source

codes. Based on ASTs, researchers increased control flow

information and data flow information to AST, forming

various representation methods, such as Code gadgets

[24, 76] and IRs [79]. In addition, studies [35, 61, 74]

combined various different representations to input more

features into neural networks. These studies have proved

that richer representations help to improve the performance

of neural networks.

On the other hand, it mainly enhances the embedding

methods. The embedding methods can be divided into non-

contextual and contextual embedding technology. Non-

contextual embedding technology, such as Word2vec

[59, 60] and GloVe [87], converts each word in the text

Table 4 Reviewed studies in Sect. 3.3

Reference Data source Feature / Representation Neural network model Detection

granularity

Labels obtained from

& Provided by

Fan et al.

[61]

Java projects in Apache ASTs ? static metrics BiLSTM with an

attention mechanism

File-level Automatically

generated [t]

Harer et al.

[74]

Debian programs & open source

projects from Github

CFGs & source codes CNN Function-

level

The Clang static

analyzer

Huo et al.

[75]

The PROMISE defect data sets source code with

embedding comments

CAP-CNN File-level The PROMISE

Li et al.

[24]

The Juliet Test Suite & open

source project from Github

Code gadgets BiLSTM Slice-level Automated & mannual

effort

Li et al.

[76]

The Juliet Test Suite Code gadgets MLP CNN LSTM GRU

BiLSTM BGRU

Slice-level Automated & mannual

effort

Pradel

et al.

[77]

Open-source real-world JavaScript

code

ASTs A feedforward neural

network

File-level Automatically

generated

Li et al.

[78]

Two open source project from

Github

Function names BiLSTM Function-

level

Automated & mannual

effort

Wang

et al.

[35]

The Juliet Test Suite ASTs, CFGs, DFGs CNN & RNN File-level Automatically

generated

Zaharia

et al.

[79]

The Juliet Test Suite IRs MLP Function-

level

Automatically

generated

Li et al.

[80]

The Juliet Test Suite Minimum token

sequences

CNN Function-

level

Automatically

generated

Zheng

et al.

[81]

Data sets used in five different

work

ASTs, CGs, CCRs,

SEVCSs, LCRs

BGRU CNN BiLSTM Function-

level

Automated & mannual

effort

Tang et al.

[82]

The Juliet Test Suite & open

source project from Github

Code gadgets KELM Slice-level Automated & mannual

effort [b]

Hin et al.

[83]

Open source project from Github PDGs GNN Statement-

level

Automated & mannual

effort [b]

Neural Computing and Applications (2023) 35:1279–1301 1289

123

into a separate high-dimensional vector representation.

Contextual embedding technology, such as CodeBERT

[83], considers the context information and can recognize

polysemy and similar terms according to the context. The

effects of different word embedding methods such as

Doc2vec [82], GloVe, and CodeBERT on vulnerability

detection results in the same scenario are compared in

research [86]. The results show that context embedding

technology such as CodeBERT can effectively improve the

results of vulnerability detection.

3.4 Neural network with improved learning
ability

This section shows some works that focus on optimizing

neural networks for SVD.

(1) Summary of recent works: In order to extract more

comprehensive features from source code, a method was

proposed in [68]. In this study, a global max-pooling layer

was used to capture the most critical features of vulnera-

bilities. Similarly, the authors used the AST of function as

Table 5 Reviewed studies in Sect. 3.4

Reference Data source Feature /

Representation

Neural network

model

Detection

granularity

Labels obtained from &

Provided by

Lin et al. [68] Six open source project from Github written

in C language

ASTs BiLSTM Function-

level

Mannual effort [t]

Duan et al.

[88]

The Juliet Test Suite CPGs CNN with

attention

Line-level Automatically

generated

Fan et al. [89] Severn open source project from Github

written in C language

ASTs BiLSTM with

ATTENTION

File-level Mannual effort

Zhang et al.

[90]

Tera ASTs Transformer Function-

level

Automatically

generated

Ziems et al.

[91]

The Juliet Test Suite Source codes Bert?BiLSTM Function-

level

The Juliet Test Suite

Tang et al.

[92]

The Juliet Test Suite & open source project

from Github

Code gadgets RVFL Slice-level Automated & mannual

effort

Zhou et al.

[14]

Four open source project from Githubs

written in C/C??

AST,CFG,DFG

and NCS

GGNN Function-

level

Automatically

generated

Brauckmann

et al. [33]

The data set consists of the sevenbenchmark

suites

ASTs, CDFGs GNN Function-

level

Automatically

generated

Cao et al. [93] Four open source projects from NVD and

GitHub written in C/C??

ASTs, CFGs,

DFGs

BGNN?CNN Function-

level

Automatically

generated [b]

Table 6 Reviewed studies in Sect. 3.5

Reference Data source Feature /

Representation

Neural network

model

Detection

granularity

Labels obtained from

& Provided by

Lin et al.

[36]

Six open source project from Github written in C

language & The Juliet Test Suite

ASTs & source

codes

BiLSTM Function-

level

Automated &

mannual effort [t]

Liu et al.

[96]

The Juliet Test Suite & open source project from

Github

ASTs & Code

gagets

BiLSTM Function-

level

Mannual effort

Sheng et al.

[97]

PROMISE repository ASTs GAN-CNN File-level The PROMISE

Nguyen

et al. [98]

Six open source project in [68] Source code DUAL-GAN-

BiLSTM

Function-

level

Automated &

mannual effort

Tanwar

et al. [99]

CISCO 8.9 million functions ASTs Three-layer

Neural

network

Function-

level

Automated

Bui et al.

[100]

Open source project from Github ASTs TBCNN?

GGNN

Statement-

level

Automated [b]

1290 Neural Computing and Applications (2023) 35:1279–1301

123

the original feature. They believed that it could better

distinguish the semantic information of different sequences

in high-dimensional space. However, some vulnerable and

non-vulnerable code is hardly distinguishable, resulting in

low detection accuracy. Therefore, an attention mechanism

was adopted in paper [88] to capture the critical features of

the vulnerabilities. And the Code Property Graph (CPG)

was used to obtain semantic features in this framework. A

data structure called the CPG was created to explore big

codebases for examples of programming patterns. These

Table 7 Software vulnerability data sets collected by the reviewed studies at the time of writing

Dataset Used by Data type Granularity Data scale

PROMISE [32, 49, 75, 97] Semi-

synthetic

Statement-

level

Functions from multiple open source

projects [t]

CJOC-

bAbI

[48, 63] Synthetic Statement-

level

Training set of 10,000 functions and test

set of 4,000 functions

s-bAbI [63] Synthetic Statement-

level

38,400 files and 76,549 buffer writes

functions

SARD [19, 24, 35, 36, 62–64, 69, 76, 79, 80, 82, 88, 91, 92, 96] Semi-

synthetic

Function-

level

Test cases of 64,099 files

CodeChef [34] Semi-

synthetic

File-level Total 47,064 files

Devign [14] Real-

world

Function-

level

Total 48,687 commits, 58,965 graph

Draper [62] Real-

world

Function-

level

Total 12,753,027 functions, 9,706,269

functions from github and 3,046,758

from debian

Lin [22, 36, 65–68, 98, 101] Real-

world

Function-

level

Nine open source project from Github

written in C language, 1,471 vulnerable

and 59,297 non-vulnerable source code

functions

D2A [70] Real-

world

Trace-level Total 1,295,623 unique auto-labeler

examples and 18,653 unique after-fix

examples

REVEAL [57] Real-

world

Function-

level

Total 18,169 programs [b]

Table 8 The number of vulnerable and non-vulnerable functions on

three data sets

Dataset of vul. functions of total functions

Lin 1471 60,768

REVEAL 2239 22,734

SARD 94,710 158,007

Table 9 Cross-domain test

results of real-world data set Lin

and semi-synthetic data set

SARD

Source–Target System TOP10 TOP20 TOP50 TOP100 TOP200

Precision Precision Precision Precision Precision

(%) (%) (%) (%) (%)

Lin-REVEAL BiGRU 18.2 23.8 25.5 27.7 28.9

BiLSTM 36.4 47.6 41.2 37.6 36.8

TextCNN 45.5 33.3 37.3 38.6 33.8

SARD-REVEAL BiGRU 18.2 23.8 21.6 16.8 15.4

BiLSTM 45.4 38.9 33.3 36.6 27.3

TextCNN 27.3 19.0 27.5 20.8 20.4

The bold value indicates the best performance in the same performance metric of different methods

Neural Computing and Applications (2023) 35:1279–1301 1291

123

patterns are expressed in a language that is unique to the

area. It acts as a unified intermediate program representa-

tion for all of Joern’s supported languages. Then, a similar

study that uses an attention mechanism was proposed in

[89].

After that, DP-Transformer with improved learning

ability was applied in software defect prediction in [90].

Their transformer network consists of stacked self-attention

and position-wise, fully connected layers for both encoder

and decoder. After each input sequence was inputted to the

encoder, the decoder would generate a symbol output of an

element. Especially, only the encoder part of the trans-

former was used to extract features from the source code.

After that, the Bert model was also applied to SVD in

paper [91]. The authors adopted a neural network including

12 transformer blocks and a softmax layer. Their training

includes two stages: pre-training on English Wikipedia

data set [94] and fine-tuning process on vulnerability

detection tasks. In the fine-tuning process, the SARD data

set was used for vulnerability detection tasks.

The reviewed studies proved that the CNN and Recur-

rent Neural Network (RNN) were able to learn high-level

representations for software defect prediction. Moreover,

they have shown that graph-based code representations,

such as AST and CFG, could represent semantic and syn-

tactic information. However, the studies mentioned above

convert the code representations to sequences before

feeding them to the deep network instead of processing

their original tree/graph form. The study proposed in [14]

changed the state. The authors combined AST, CFG, DFG,

and code sequence into a joint graph to comprehensively

represent the semantic and syntactic information. Then, the

gated graph recurrent layers [95] were adopted to learn the

input graph structure. The main idea of this method was to

combine multiple code representation methods to obtain

more dense local features. Then, another GNN based

method was proposed in [33]. The authors believed that

structured information could better retain vulnerability

features. Moreover, they applied a graph-based neural

network to capture the graph representations of code

explicitly. In this paper, the ASTs and control-data flow

graphs (CDFGs) were used for code representations. Later,

Cao et al. [93] conducted a Bidirectional Graph Neural-

Network (BGNN) to improve the performance of DL-based

vulnerability detection approaches.

(2)Discussion: In this section, some researchers

strengthen CNN or other networks by introducing new

mechanisms. For example, Lin et al. [68] adopted a global

max-pooling layer to capture the most important signals;

Duan et al. [88] combined an attention mechanism with

CNN to capture the critical features.

Some researchers have used advanced neural networks

for vulnerability detection, such as Transformer [90] and

Table 12 The number of vulnerable and non-vulnerable functions on

different code representations

Feature of vul. functions of total functions

ASTs 1329 51,418

CDGs 1329 51,395

CFGs 1329 51,408

CPGs 1329 51,347

PDGs 1329 51,368

Source Codes 1471 60,768

Table 10 Test results of real-

world data set Lin in function-

level and file-level

Dataset System TOP10 TOP20 TOP50 TOP100 TOP200

Precision Precision Precision Precision Precision

(%) (%) (%) (%) (%)

Lin functions BiGRU 98.0 99.0 96.0 89.1 83.6

BiLSTM 99.1 95.2 92.2 91.1 85.0

TextCNN 97.0 96.2 94.1 92.1 86.6

Lin files BiGRU 81.8 85.7 64.7 50.5 41.8

BiLSTM 72.7 66.7 66.7 59.2 59.2

TextCNN 81.8 71.4 54.9 39.6 28.9

The bold value indicates the best performance in the same performance metric of different methods

Table 11 Test results of real-world data set Lin with different code

representations

Data set FPR(%) TPR(%) P(%) F1(%)

ASTs 1.1 75.2 64.8 69.6

CDGs 1.3 76.5 61.0 67.9

CFGs 1.3 78.8 59.8 68.0

CPGs 2.1 85.4 53.5 65.8

PDGs 1.7 80.8 53.7 64.5

Source codes 1.1 87.1 66.2 75.3

Combined all 1.6 86.2 68.9 76.5

The bold value indicates the best performance in the same perfor-

mance metric of different methods

1292 Neural Computing and Applications (2023) 35:1279–1301

123

Bert [91]. It is worth noting that more and more researchers

have applied GNN to SVD, such as [14, 33, 93]. Compared

with other neural networks, GNN can retain more structural

features [4].

3.5 Optimization for specific scenarios

This section shows some essential works that focus on

optimizing specific scenarios in DL-based SVD.

(1) Summary of recent works: The cold-start problem is

common in DL-based methods, and it means that ML tools

usually can not play a good role due to the lack of high-

quality data sets. Liu et al. proposed a method to break the

dilemma of insufficient data sets in [96]. The author hoped

to learn the common vulnerability features in the same type

of data sets to perform the test set without labels better, and

They adopted a metric transfer learning framework

(MTLF). In MTLF, the target domain’s Mahalanobis dis-

tance metric is computed by maximizing within-class

covariance and minimizing between-class covariance. It

could avoid the influence caused by the distribution dif-

ference between the target domain and the source domain.

A different method for improving the efficiency of

cross-domain detection was proposed in [97]. First, the

authors tested to bridge the distribution divergence

between source and target projects by combining adver-

sarial learning with discriminative feature learning,

extracting the transferable semantic features from source

code. In order to achieve this goal, they trained an

Adversarial Discriminative Convolutional Neural Network

(ADCNN) model. There were two independent training

stages. The labeled source data was used to train the source

encoder and source classifier in the first stage. Moreover, in

the second stage, the authors trained the target encoder to

make the target data representation similar to the source

data representation by fooling the discriminator. Finally,

the authors fed the features generated into a Logistic

Regression (LR) classifier. The experimental results

demonstrated that the proposed method performs better

compared with other related cross-project defect prediction

methods. Later, a extended method of [97] was proposed in

[98]. The authors pointed out that the method proposed in

[97] has negative impacts on the predictive performance

due to the mode collapsing problem of the GAN principle.

To tackle this problem, the authors adopted a Dual Gen-

erator-Discriminator Deep Code Domain Adaptation Net-

work (Dual-GD-DDAN).

It is also very important to apply the detection system to

an Integrated Development Environment (IDE) environ-

ment. In this way, the vulnerability can be corrected as

soon as possible. A tool integrated with IDE as a plugin

was developed in [99]. This tool worked in the background

and could label vulnerability codes in the IDE environ-

ment. In this tool, ASTs created from the source code were

used as the deep representation, and a three-layer neural

network was used as a classifier. Therefore, this tool could

detect code vulnerabilities in real-time during software

development. The experiments were conducted on both

open-source codes and Cisco codebases for C and C??

programming languages. The results showed that the

method was an assuring approach for predicting

vulnerabilities.

An interpretable model is also urgently needed. The DL

models are considered black boxes because of the difficulty

in explaining the relationship between input and output.

Table 13 Test results of methods, trained and tested based on real-

world data set Lin

System FPR(%) TPR(%) P(%) F1(%)

Flawfinder 12.3 28.9 5.4 9.1

Cppcheck 2.0 7.4 8.8 8.0

DNN 0.6 81.6 75.8 78.6

GRU 0.8 83.3 71.6 77.0

LSTM 1.4 84.3 59.4 69.7

BiGRU 1.0 85.8 69.0 76.4

BiLSTM 1.1 87.1 66.2 75.3

BiLSTM with 1.1 86.8 65.4 74.6

Attention

TextCNN 2.4 89.9 48.2 62.8

CodeBERT 1.2 67.8 27.0 38.6

CodeBERT with 2.0 86.2 55.2 67.3

BiLSTM

The bold value indicates the best performance in the same perfor-

mance metric of different methods

Table 14 Cross-domain test results of methods, trained based on real-

world data set Lin, tested based on real-world data set REVEAL

System FPR(%) TPR(%) P(%) F1(%)

Flawfinder 11.8 26.2 4.9 8.3

Cppcheck 2.3 7.6 8.9 8.2

DNN 1.9 5.5 24.0 9.0

GRU 2.9 10.2 27.6 15.0

LSTM 5.8 15.1 22.4 18.0

BiGRU 1.0 9.6 25.7 14.0

BiLSTM 4.8 14.8 25.0 18.6

BiLSTM with 4.7 12.7 22.8 16.3

Attention

TextCNN 2.4 18.3 22.1 20.0

CodeBERT 1.6 28.1 26.7 27.4

CodeBERT with 3.3 31.0 37.5 34.1

BiLSTM

The bold value indicates the best performance in the same perfor-

mance metric of different methods

Neural Computing and Applications (2023) 35:1279–1301 1293

123

Therefore, it is not conducive to the understanding and

confirmation of the output results. A method to determine

the influence of local input on output was proposed in

[100]. The authors combined two techniques to realize this

method: 1) Syntax-Directed Attention; 2) Code Perturba-

tion. Specifically, they used the attention mechanism score

as the standard to determine the impact of the disturbance

code on the output results by observing the change in the

attention mechanism score. The experiments on more than

1000 programs indicated that attention scores could explain

the output of DL-based SVD models.

(2)Discussion: This section mainly introduced the works

which solve some specific problems in DL-based SVD,

such as cold start [36], cross-project detection [96], and the

interpretability of neural networks [100]. Among them,

cold start and cross-project vulnerability detection are very

real problems. Because in the actual detection, the software

to be detected lacks labeled vulnerability data. It will

seriously limit the vulnerability effect of software vulner-

ability detection. The interpretability of DL models will

affect the confirmation and repair of software vulnerabili-

ties. The current research methods can alleviate these

problems to a certain extent, but they still face many lim-

itations in the virtual environment. The research on vul-

nerability detection based on DL is still in its infancy. We

hope that more research can explore and solve these

practical problems.

4 Challenges and future directions

This section conducts experiments based on real-data sets

and draws conclusive remarks on research challenges and

future trends based on previous works. The computational

system used was a server running Ubuntu LTS 22.04 with

two Physical Intel(R) Xeon(R) E5-2683 v4 2.00GHz CPUs

and 32GB RAM with NVIDIA RTX 3090 GPUs. The main

models involved in experiments were from GitHub.8

4.1 The lack of large-scale real-world benchmark
data sets

The DL-based SVD methods need training on large-scale

real-world data sets to achieve optimal performance [4]. At

present, the lack of large-scale data sets containing high-

quality vulnerability labels limits the research progress in

this field. Table 7 summarizes the characteristics of a few

popular software vulnerability data sets used by reviewed

works.

It can be seen from Table 7 that more than half of the

articles use synthetic or semi-synthetic data sets. The

SARD9 data set is the most widely used data set because

this data set is open and easy to obtain and has a relatively

large scale. However, this data set was initially designed

for evaluating traditional vulnerability prediction based on

static and dynamic analysis [102]. Therefore, the source

codes of this data set are simplified and isolated. Research

[57] compared The SARD data set with the real-world data

set they collected. They find that the SARD data set and

real-world data sets differ significantly in code complexity

measurement. The main drawback is that the code patterns

lack diversity compared to the code from real-world

programs.

In addition, other synthetic or semi-synthetic data sets

also have similar problems, such as CJOC-bAbI [48] and

Table 15 Test results of real-world data set REVEAL in slice-level

System FPR(%) TPR(%) P(%) F1(%)

BiLSTM 11.0 13.9 17.7 15.6

TextCNN 9.9 10.9 20.6 14.3

GNN 10.8 26.7 33.5 29.7

The bold value indicates the best performance in the same perfor-

mance metric of different methods

Table 16 Test results of BiLSTM trained based on real-world data set

Lin with different embedding methods

Embedding FPR(%) TPR(%) P(%) F1(%)

word2vec 1.1 87.1 66.2 75.3

fasttext 0.7 84.0 73.1 78.2

GloVe 2.5 22.9 18.0 20.2

doc2vec 2.2 18.8 17.0 17.9

CodeBERT 2.0 86.2 55.2 67.3

The bold value indicates the best performance in the same perfor-

mance metric of different methods

Table 17 Cross-domain test results of BiLSTM, trained based on real-

world data set Lin with different embedding methods, tested based on

real-world data set REVEAL

Embedding FPR(%) TPR(%) P(%) F1(%)

word2vec 4.8 14.8 25.0 18.6

fasttext 7.8 16.5 18.8 17.6

GloVe 3.5 13.8 30.1 18.9

doc2vec 4.4 13.9 25.7 18.0

CodeBERT 3.3 31.0 37.5 34.1

The bold value indicates the best performance in the same perfor-

mance metric of different methods

8 https://github.com/DanielLin1986/Function-level-Vulnerability-

Detection.
9 https://samate.nist.gov/SARD/testsuite.php.

1294 Neural Computing and Applications (2023) 35:1279–1301

123

https://github.com/DanielLin1986/Function-level-Vulnerability-Detection.
https://github.com/DanielLin1986/Function-level-Vulnerability-Detection.
https://samate.nist.gov/SARD/testsuite.php.

s-bAbI [63]. Besides, the scale of these two data sets is

relatively small, and the source codes of the data set CJOC-

bAbI cannot even be compiled. Furthermore, the data set

PROMISE10 cannot be found on the website provided in

the study [32] due to the lack of maintenance for a long

time. We extract the data set from the website mirror on

GitHub.11 This data set only provides the static features

extracted from the software source codes from the obtained

data. Therefore, it is not conducive to furthermore research

based on this data set.

The synthetic or semi-synthetic data sets do not fully

capture the complexities of real-world vulnerabilities

[102–104]. Many existing works created self-constructed

data sets based on different criteria. However, only a few

fully released their data sets. Lin et al. released the data set

used in their study [66]. Due to the manual extraction of

vulnerability source codes based on CVE12 information,

the real-world data set provided by Lin et al. has been used

in many studies, such as [67, 98]. In addition, high-quality

labels make this data set have the potential to become a

small-size benchmark data set at function-level.

However, due to labor costs, the scale of Lin is small.

Table 8 lists the test results of the detection ability based on

the real data set Lin, and the semi-synthetic data set SARD.

The details of the data sets are shown in Table 9, there is no

duplication between the training set and the test set (The

bold value indicates the best performance in the same

performance metric of different methods). It can be seen

from the experimental results that the detection results

based on real data sets are significantly better than semi-

synthetic data sets. However, it still with high false positive

rates due to insufficient data scale. For more general cases,

large-scale real-world benchmark data sets are still needed.

Such data sets could facilitate all research works in this

field, and the comparative experiments carried out on the

data set could fairly reveal the differences between dif-

ferent works. Of course, the granularity and label quality of

the data sets are as important as the data scale. It can be

seen from table 10 that the deep learning models trained

based on the file-level data set performed better than the

models trained based on the function-level data set.

However, other real-world data sets, such as Draper

[102], D2A [70], have a large scale, but the quality of the

labels needs to be verified. For example, the labels of the

data set Draper are mainly from static detection tools. And

the labels of data set D2A are from the analysis of software

source codes in different versions. Although their labeling

method is reasonable, there is still a big gap between their

methods with labeling based on CVE information.

Indeed, there may be potential risks in open source

vulnerability data sets, but a large-scale vulnerability data

set with a high-quality label is essential. Federated

Learning (FL) may alleviate this problem for some data

sets that are not suitable to release because this method can

share features without sharing data sets [105].

4.2 Effective code representations

In order to optimize the performance of DL-based SVD,

researchers have proposed a variety of code representation

methods to provide neural networks with richer semantic

and syntactic features. Furthermore, it has been proven that

code representation methods can preserve more useful

structure information of source code, resulting in the best

performance balance between precision and recall

[102, 106].

The current researchers attempt to integrate various code

representation methods to contain more information to

extract vulnerability features better. For example, some

studies extract features from source code-related informa-

tion such as code comments [75] and binary files [52].

These methods play a positive role in improving detection

performance.

In addition, many researchers use code structure analysis

to optimize code representation methods, such as AST

[68]. A tree representation of the abstract syntactic struc-

ture of a source code written in a formal language is known

as an AST. Each node of the tree indicates a construct that

appears in the text. Moreover, they add source codes’ data

flow, control flow, and other structural information to the

AST structure, forming various code representation meth-

ods such as CPG [88], CDFG [33], code gadgets [92]. All

possible routes through a program during execution are

referred to as a program’s control flow. And the data flow

monitors the control flow’s use of variables.

Table 12 lists the number of different code representa-

tions generated by Joern based on the same data set. The

number of generated code representations is not the same

as the number of source code samples. It is because the

code representations of some source codes are empty.

Table 11 shows that the detection method trained based on

Table 18 Cross-domain test results of different methods, trained

based on real-world data set Lin, tested based on real-world data set

REVEAL

System FPR(%) TPR(%) P(%) F1(%)

BiLSTM 4.8 14.8 25.0 18.6

AD-CNN [97] 3.5 40.6 28.3 33.4

CD-VuID [96] 3.2 37.6 35.8 36.7

10 http://openscience.us/repo/defect.
11 https://github.com/opensciences/opensciences.github.io.
12 https://cve.mitre.org/

Neural Computing and Applications (2023) 35:1279–1301 1295

123

http://openscience.us/repo/defect.
https://github.com/opensciences/opensciences.github.io.
https://cve.mitre.org/

source code has even better performance than that based on

the single code representation methods. Although the

combined code representations perform better than single

methods, the scale of the code representation to input

neural networks is also limited due to hardware limitations.

Thus, while adding these pieces of information to AST,

researchers also need to constantly remove the features of

low values, forming a dense feature representation.

How to extract the most important features from com-

bined representations to input them into the neural net-

works full is research worthy of attention. However,

detecting different vulnerabilities needs to retain features

due to the diversity of vulnerability patterns. Therefore,

customizing appropriate code representation methods for

specific types of vulnerabilities may contribute to the

detection performance of specific vulnerabilities. For

example, at present, there are code representation methods

suitable for buffer overflow vulnerability detection [63].

However, for most other types of vulnerabilities, there are

no specialized code representation methods. Therefore,

designing the optimal code representation methods for

specific programming languages and vulnerability types

may be an important research topic in future.

4.3 Humanoid DL model

Researchers’ goal is that the neural model can detect the

vulnerable code like human experts do and pinpoint the

relevant code leading to the vulnerability. In order to

achieve this goal, more complex models with stronger

learning abilities have been applied to this field, from

simple such as DBN [32], MLP [52] to relatively complex

such as CNN [49], LSTM [22]. It can be seen from

tables 13 and 14 that even the DNN model has better

performance than the traditional detection tools: Flawfinder

and Cppcheck. However, DL-based SVD methods have

poor stability in cross-domain detection due to the differ-

ence in data distribution.

Besides, these models cannot focus on and fully learn

important features or pinpoint the critical code lines that

affect the output results. Therefore, the attention mecha-

nism with this ability has been sought after by researchers.

For example, research [88] and [89] applied the attention

mechanism on CNN and RNN networks and proved that

the attention mechanism is indeed helpful in improving the

performance of DL-based SVD. In addition, study [37] and

[100] used the attention mechanism to calculate the weight

of different code lines, which showed that the attention

mechanism helps pinpoint the critical code lines that lead

to vulnerabilities.

In addition, Transformer [90] and Bert [91], which are

completely composed of attention mechanisms, have also

been applied in this field. As a result, these models have

stronger learning abilities than the previous models. In

research [91], the authors trained the BERT model in

English writing data set and then used this model to detect

vulnerabilities.

We believe that humanoid DL models maybe appear

with the continuous development of neural networks,

which can help human experts complete most of the

tedious vulnerability detection work. At present, many

advanced deep learning models such as meta-learning

[107] have been proposed. Moreover, some of them are

especially suitable for software code analysis, such as

CodeBERT [83]. Due to the limitation of the hardware

platform, we did not train the CodeBERT model locally but

used the embedding model trained by the research [83] to

fine-tune it. We hope that research can fully tap the

potential of this model in the field of SVD. As these models

are applied to the field of SVD, the SVD methods can

further improve the detection accuracy.

4.4 Semantic retention in neural networks

Notably, the neural models may not be able to capture the

code semantics as human experts do.

On the one hand, the loss of semantic information is

inevitably in the process of model training. However, the

semantic retention of each neural network model is dif-

ferent. For example, previous studies have shown that the

CNN network has advantages in local feature extraction

[49, 80], and the BiLSTM network is better in long

sequences’ feature extraction [24, 69]. However, in the

field of vulnerability detection, people’s understanding of

the preference of different neural networks for semantic

retention is not clear [76]. How to select a suitable neural

network to preserve relevant semantic features of vulner-

abilities needs further research.

On the other hand, semantic loss occurs more before the

code representations are input to neural networks. Due to

hardware limitations, the code representations are usually

limited to a fixed length in the input process. It means that

the code representations which exceed the size will be

truncated [68]. In real-world data sets, there are a lot of

lengthy codes. When using these codes for training or

detection, there is a severe problem of semantic loss.

However, this review has not found the research dealing

with this problem.

At the same time, many code representation methods,

such as AST and CFG, are graph structures. However, for

most neural network models, such as RNN, the graph

structure needs to be transformed into a sequence to input.

As a result, the structural features may be lost in the pro-

cess. GNN model can directly input structured information,

which has attracted the attention of researchers

[14, 33, 93]. From the experimental results in table 15, it

1296 Neural Computing and Applications (2023) 35:1279–1301

123

can be seen that the GNN network does have a better

learning ability at the slice-level granularity. However, due

to the input limitations of the GNN, the code needs to be

sliced and processed into a graph structure. High-quality

labels for slice-level data sets are difficult to meet. The

performance of the test results of GNN trained by slice-

level data set is not as good as other neural networks

trained by function-level data sets. SVD based on GNNs

still needs further research.

Besides, embedding methods also deserve to be atten-

tion. Table 16 shows the test results of the same BiLSTM

model trained based on different embedding methods. The

performance of GloVe and Doc2vec models perform

poorly. It is because GloVe focuses on word co-occurrence,

and Doc2vec hopes to extract sentence vectors and article

vectors. However, compared with natural languages, the

semantic information of programming languages is mainly

contained in naming functions and variables. So it is not

easy to learn semantic features for GloVe and Doc2vec.

Similarly, the performance of the CodeBERT method is

also reduced. However, because the CodeBERT model is

pre-trained on large-scale code, it learned richer semantic

information than GloVe and Doc2vec. In the cross-domain

detection, as shown in Table 17, CodeBERT achieved the

best performance.

On the whole, how to better retain the semantic infor-

mation of code needs further research.

4.5 Vulnerability detection in the cross-
environment

Another problem worthy of attention is that the current DL-

based vulnerability detection methods have a narrow range

of applicability.

One is cross programming language environment. For

example, most studies are limited to detecting part of

vulnerabilities (such as buffer overflow) written in several

mainstream programming languages (such as C, Java). Due

to software source codes usually involving multiple pro-

gramming languages and vulnerabilities, the detection

ability of these methods can not meet the detection

requirements. Zou et al. [19] tried to develop a multi-class

vulnerability detection system to cover most classes of

vulnerabilities. However, limited by the small number of

data samples, the actual detection effect of these vulnera-

bilities is still not guaranteed. Besides, Li et al. [78]

developed a detection system that can detect vulnerabilities

in different languages at the same time. However, the

model’s design is still based on these mainstream lan-

guages, which can not guarantee the same detection effi-

ciency in other languages. Therefore, it is worthy of further

study on the DL-base SVD for multiple programming

languages and multiple types of vulnerabilities.

The other is cross-project environments. Due to the

differences in dependent function libraries, DL-based SVD

methods often have low accuracy in cross-project detection

[68]. However, cross-project detection is inevitable in the

actual detection environment because the software code to

be detected usually has no label [96]. In order to alleviate

this problem, researchers have proposed some cross-project

detection methods. For example, Liu et al. [96] learned the

cross-project representation by minimizing the distribution

difference between the source and target domains to

improve cross-project detection efficiency. Furthermore,

Sheng et al. [97] tested to bridge the distribution diver-

gence between source and target projects by combining

adversarial learning with discriminative feature learning.

However, as shown in table 18, although these studies have

improved cross-project vulnerability detection perfor-

mance, the reduced accuracy problem can not be com-

pletely avoided. Therefore, more research on cross-project

vulnerability detection is needed to better meet the actual

detection needs.

5 Conclusion

With the advancement of artificial intelligence technology,

a software vulnerability detection system based on deep

learning may achieve autonomous and intelligent vulner-

ability mining, successfully avoiding the issues of large

false-positive and false-negative vulnerability rates. This

research comprehensively evaluates available deep learn-

ing-based software vulnerability detection algorithms and

examines the perception gap. At the same time, it covers

the current state of research and trends in software vul-

nerability detection approaches based on deep learning

methods to address this issue. Finally, this field’s difficul-

ties and prospects have been identified.

We believe that the two most important problems are to

be solved in this field. The first is the lack of large-scale

public data sets, making it difficult for various methods in

the current field to compare under objective conditions.

The second is the cross-environment vulnerability detec-

tion method because only by ensuring the detection result

in the real environment can this method be applied to the

real world. We hope that more research will focus on

solving these problems in future.

Acknowledgements This work was supported by the National Natural

Science Foundation of China [grant number 61772478]. (Yuhui zhu

and Guanjun Lin contributed equally to this work.)

Data availability The datasets generated during and analyzed during

the current study are available from the corresponding author upon

reasonable request.

Neural Computing and Applications (2023) 35:1279–1301 1297

123

Declarations

Conflict of interest The authors declare that they have no known

competing financial interests or personal relationships that could have

appeared to influence the work reported in this paper.

References

1. Liu L, De Vel O, Han QL, Zhang J, Xiang Y (2018) Detecting

and preventing cyber insider threats: a survey. IEEE Commun

Surveys Tutorials 20(2):1397–1417

2. Wang M, Zhu T, Zhang T, Zhang J, Yu S, Zhou W (2020)

Security and privacy in 6g networks: new areas and new chal-

lenges. Digital Commun Netw 6(3):281–291

3. Techniques NR, Expose HDD, Target A, Lucrative M (2019)

Mcafee labs threats report: December 2018. Comput Fraud

Secur 2019(1):4. https://doi.org/10.1016/S1361-3723(19)30004-

1

4. Lin G, Wen S, Han QL, Zhang J, Xiang Y (2020) Software

vulnerability detection using deep neural networks: a survey. In:

Proceedings of the IEEE pp 1–24, https://doi.org/10.1109/

JPROC.2020.2993293

5. Ghaffarian SM, Shahriari HR (2017) Software vulnerability

analysis and discovery using machine-learning and data-mining

techniques: a survey. Acm Comput Surv 50(4):56. https://doi.

org/10.1145/3092566

6. Engler D, Chen D, Hallem S, Chou A, Chelf B (2001) Bugs as

deviant behavior: a general approach to inferring errors in sys-

tems code. Symposium on operating systems principles 35.

https://doi.org/10.1145/502034.502041

7. Liang H, Wang L, Wu D, Xu J (2016) MLSA: a static bugs

analysis tool based on LLVM IR. Int J Netw Distrib Comput

4:137. https://doi.org/10.2991/ijndc.2016.4.3.1

8. Cassez F, Sloane AM, Roberts M, Pigram M, Suvanpong P,

de Aledo Marugán PG (2017) Skink: Static analysis of pro-

grams in LLVM intermediate representation - (competition

contribution). In: Legay A, Margaria T (eds) Tools and Algo-

rithms for the Construction and Analysis of Systems - 23rd

International Conference, TACAS 2017, Held as Part of the

European Joint Conferences on Theory and Practice of Soft-

ware, ETAPS 2017, Uppsala, Sweden, April 22-29, 2017, Pro-

ceedings, Part II, Lecture Notes in Computer Science, vol

10206, pp 380–384, https://doi.org/10.1007/978-3-662-54580-

5_27,

9. Jang J, Agrawal A, Brumley D (2012) ReDeBug: finding

unpatched code clones in entire os distributions. In: IEEE

pp 48–62, https://doi.org/10.1109/SP.2012.13

10. Li H, Kwon H, Kwon J, Lee H (2014) A scalable approach for

vulnerability discovery based on security patches. In: Batten L,

Li G, Niu W, Warren M (eds) Applications and techniques in

information security. Springer, Berlin, Heidelberg, pp 109–122

11. Scandariato R, Walden J, Hovsepyan A, Joosen W (2014) Pre-

dicting vulnerable software components via text mining. IEEE

Trans Softw Eng 40:993–1006. https://doi.org/10.1109/TSE.

2014.2340398

12. Wang Y, Jia P, Liu L, Liu J (2019) A systematic review of

fuzzing based on machine learning techniques. PloS one

15(8):e0237749

13. Yamaguchi F, Golde N, Arp D, Rieck K (2014) Modeling and

discovering vulnerabilities with code property graphs. In: pro-

ceedings - IEEE symposium on security and privacy, https://doi.

org/10.1109/SP.2014.44

14. Zhou Y, Liu S, Siow J, Du X, Liu Y (2019) Devign: Effective

vulnerability identification by learning comprehensive program

semantics via graph neural networks. Adv Neural Inf Process

Syst, pp 10197–10207

15. Yamaguchi F, Wressnegger C, Gascon H, Rieck K (2013)

Chucky: exposing missing checks in source code for vulnera-

bility discovery. In: proceedings of the acm conference on

computer and communications security, https://doi.org/10.1145/

2508859.2516665

16. Yamaguchi F, Maier A, Gascon H, Rieck K (2015) Automatic

inference of search patterns for taint-style vulnerabilities. vol

2015, https://doi.org/10.1109/SP.2015.54

17. Shankar U, Talwar K, Foster J, Wagner D (2001) Detecting

format string vulnerabilities with type qualifiers. USENIX

Security 10

18. Shin Y, Meneely A, Williams L, Osborne J (2011) Evaluating

complexity, code churn, and developer activity metrics as

indicators of software vulnerabilities. IEEE Trans Softw Eng

37:772–787. https://doi.org/10.1109/TSE.2010.81

19. Zou D, Wang S, Xu S, Li Z, Jin H (2019) lVulDeePecker: A
deep learning-based system for multiclass vulnerability detec-

tion. IEEE Trans Depend Secure Comput

20. Sun N, Zhang J, Rimba P, Gao S, Zhang LY, Xiang Y (2019)

Data-driven cybersecurity incident prediction: a survey. IEEE

Commun Surveys Tutorials 21(2):1744–1772

21. Miao Y, Chen C, Pan L, Han QL, Zhang J, Xiang Y (2021)

Machine learning based cyber attacks targeting on controlled

information: a survey. ACM Comput Survey 54(7):1–36

22. Lin G, Zhang J, Luo W, Pan L, Xiang Y (2017) POSTER:

vulnerability discovery with function representation learning

from unlabeled projects. In: Thuraisingham BM, Evans D,

Malkin T, Xu D (eds) Proceedings of the 2017 ACM SIGSAC

conference on computer and communications security, CCS

2017, Dallas, TX, USA, October 30 - November 03, 2017,

ACM, pp 2539–2541, https://doi.org/10.1145/3133956.3138840

23. Chen X, Li C, Wang D, Wen S, Zhang J, Nepal S, Xiang Y, Ren

K (2020) Android hiv: a study of repackaging malware for

evading machine-learning detection. IEEE Trans Inf Forensics

and Secur 15:987–1001

24. Li Z, Zou D, Xu S, Ou X, Jin H, Wang S, Deng Z, Zhong Y

(2018) VulDeePecker: a deep learning-based system for vul-

nerability detection. In: 25th annual network and distributed

system security symposium, NDSS 2018, San Diego, California,

USA, February 18-21, 2018, The Internet Society

25. Qiu J, Zhang J, Pan L, Luo W, Nepal S, Xiang Y (2020) A

survey of android malware detection with deep neural models.

ACM Computi Survey 53(6):126:1-126:31

26. Liu B, Shi L, Cai Z, Li M (2012) Software vulnerability dis-

covery techniques: a survey. In: 2012 fourth international con-

ference on multimedia information networking and security,

pp 152–156, https://doi.org/10.1109/MINES.2012.202

27. Malhotra R (2015) A systematic review of machine learning

techniques for software fault prediction. Appl Soft Comput

27:504–518. https://doi.org/10.1016/j.asoc.2014.11.023

28. Ji T, Wu Y, Wang C, Zhang X, Wang Z (2018) The coming era
of alphahacking?: a survey of automatic software vulnerability

detection, exploitation and patching techniques. In: 2018 IEEE

third international conference on data science in cyberspace

(DSC), pp 53–60, https://doi.org/10.1109/DSC.2018.00017

29. Allamanis M, Barr ET, Devanbu PT, Sutton C (2018) A survey

of machine learning for big code and naturalness. ACM Comput

Surv 51(4):81:1-81:37. https://doi.org/10.1145/3212695

30. Shahriar H, Zulkernine M (2012) Mitigating program security

vulnerabilities. ACM Comput Surveys 44(3):1–46. https://doi.

org/10.1145/2187671.2187673

31. Jie G, Xiao-Hui K, Qiang L (2016) Survey on software vul-

nerability analysis method based on machine learning. In: 2016

1298 Neural Computing and Applications (2023) 35:1279–1301

123

https://doi.org/10.1016/S1361-3723(19)30004-1
https://doi.org/10.1016/S1361-3723(19)30004-1
https://doi.org/10.1109/JPROC.2020.2993293
https://doi.org/10.1109/JPROC.2020.2993293
https://doi.org/10.1145/3092566
https://doi.org/10.1145/3092566
https://doi.org/10.2991/ijndc.2016.4.3.1
https://doi.org/10.1007/978-3-662-54580-5_27
https://doi.org/10.1007/978-3-662-54580-5_27
https://doi.org/10.1109/SP.2012.13
https://doi.org/10.1109/TSE.2014.2340398
https://doi.org/10.1109/TSE.2014.2340398
https://doi.org/10.1109/SP.2014.44
https://doi.org/10.1109/SP.2014.44
https://doi.org/10.1145/2508859.2516665
https://doi.org/10.1145/2508859.2516665
https://doi.org/10.1109/SP.2015.54
https://doi.org/10.1109/TSE.2010.81
https://doi.org/10.1145/3133956.3138840
https://doi.org/10.1109/MINES.2012.202
https://doi.org/10.1016/j.asoc.2014.11.023
https://doi.org/10.1109/DSC.2018.00017
https://doi.org/10.1145/3212695
https://doi.org/10.1145/2187671.2187673
https://doi.org/10.1145/2187671.2187673

IEEE first international conference on data science in cyber-

space (DSC), pp 642–647, https://doi.org/10.1109/DSC.2016.33

32. Wang S, Liu T, Tan L (2016) Automatically learning semantic

features for defect prediction. In: 2016 IEEE/ACM 38th inter-

national conference on software engineering (ICSE),

pp 297–308, https://doi.org/10.1145/2884781.2884804

33. Brauckmann A, Goens A, Ertel S, Castrillón J (2020) Compiler-

based graph representations for deep learning models of code.

In: Pouchet L, Jimborean A (eds) CC ’20: 29th International

Conference on Compiler Construction, San Diego, CA, USA,

February 22-23, 2020, ACM, pp 201–211, https://doi.org/10.

1145/3377555.3377894,

34. Viet Phan A, Le Nguyen M, Thu Bui L (2017) Convolutional

neural networks over control flow graphs for software defect

prediction. In: 2017 IEEE 29th international conference on tools

with artificial intelligence (ICTAI), IEEE, Boston, MA,

pp 45–52, https://doi.org/10.1109/ICTAI.2017.00019

35. Xiaomeng W, Tao Z, Runpu W, Wei X, Changyu H (2018)

CPGVA: code property graph based vulnerability analysis by

deep learning. In: 2018 10th international conference on

advanced infocomm technology (ICAIT), IEEE, pp 184–188

36. Lin G, Zhang J, Luo W, Pan L, De Vel O, Montague P, Xiang Y

(2019) Software vulnerability discovery via learning multi-do-

main knowledge bases. IEEE Trans Depend Secure Comput

18(5):2469–2485. https://doi.org/10.1109/TDSC.2019.2954088

37. Srikant S, Lesimple N, O’Reilly UM (2020) Dependency-Based

Neural Representations for Classifying Lines of Programs. arXiv

preprint arXiv:2004.10166 2004.10166

38. Nirmal I, Khamis A, Hassan M, Hu W, Zhu X (2021) Deep

learning for radio-based human sensing: recent advances and

future directions. IEEE Commun Surv Tutorials

23(2):995–1019. https://doi.org/10.1109/COMST.2021.3058333

39. Feriani A, Hossain E (2021) Single and multi-agent deep rein-

forcement learning for AI-enabled wireless networks: a tutorial.

IEEE Commun Surv Tutorials 23(2):1226–1252. https://doi.org/

10.1109/COMST.2021.3063822

40. Chen W, Qiu X, Cai T, Dai H, Zheng Z, Zhang Y (2021) Deep

reinforcement learning for internet of things: a comprehensive

survey. IEEE Commun Surv Tutorials 23(3):1659–1692. https://

doi.org/10.1109/COMST.2021.3073036

41. Romero J, Machado P (2021) Neural networks in art, sound and

design. Neural Comput Appl 33(1):1. https://doi.org/10.1007/

s00521-020-05444-y

42. Briot J (2021) From artificial neural networks to deep learning

for music generation: history, concepts and trends. Neural

Comput Appl 33(1):39–65. https://doi.org/10.1007/s00521-020-

05399-0

43. Chitradevi D, Prabha S, Prabhu AD (2021) Diagnosis of alz-

heimer disease in MR brain images using optimization tech-

niques. Neural Comput Appl 33(1):223–237. https://doi.org/10.

1007/s00521-020-04984-7

44. Bhandari AK, Rahul K, Shahnawazuddin S (2021) A fused

contextual color image thresholding using cuttlefish algorithm.

Neural Comput Appl 33(1):271–299. https://doi.org/10.1007/

s00521-020-05013-3

45. Singh M, Kumar R, Chana I (2021) Improving neural machine

translation for low-resource indian languages using rule-based

feature extraction. Neural Comput Appl 33(4):1103–1122.

https://doi.org/10.1007/s00521-020-04990-9

46. Sitender BS (2021) A sanskrit-to-english machine translation

using hybridization of direct and rule-based approach. Neural

Comput Appl 33(7):2819–2838. https://doi.org/10.1007/s00521-

020-05156-3

47. Mohan K, Seal A, Krejcar O, Yazidi A (2021) Fer-net: facial

expression recognition using deep neural net. Neural Comput

Appl 33(15):9125–9136. https://doi.org/10.1007/s00521-020-

05676-y

48. Choo J, Choi Mj, Jeong S, Oh H (2017) End-to-End prediction

of buffer overruns from raw source code via neural memory

networks pp 1546–1553

49. Li J, He P, Zhu J, Lyu MR (2017) Software Defect Prediction

via Convolutional Neural Network. In: 2017 IEEE International

Conference on Software Quality, Reliability and Security

(QRS), IEEE, Prague, Czech Republic, pp 318–328, https://doi.

org/10.1109/QRS.2017.42

50. Pradel M, Sen K (2017) Deep learning to find bugs. TU

Darmstadt Dep Comput Sci, 4(1)

51. Wu F, Wang J, Liu J, Wang W (2017) Vulnerability detection

with deep learning. In: 2017 3rd IEEE international conference

on computer and communications (ICCC), IEEE, Chengdu,

pp 1298–1302, https://doi.org/10.1109/CompComm.2017.

8322752

52. Grieco G, Grinblat GL, Uzal L, Rawat S, Feist J, Mounier L

(2016) Toward large-scale vulnerability discovery using

machine learning. In: proceedings of the sixth ACM conference

on data and application security and privacy, association for

computing machinery, New York, NY, USA, CODASPY ’16,

pp 85–96, https://doi.org/10.1145/2857705.2857720
53. Kim S, Zhang H, Wu R, Gong L (2011) Dealing with noise in

defect prediction. In: 2011 33rd international conference on

software engineering (ICSE), pp 481–490, https://doi.org/10.

1145/1985793.1985859

54. Witten Ian H (2011) EF (2011). Data Mining: Practi Mach Learn

Tools Tech 31:6. https://doi.org/10.1016/C2009-0-19715-5

55. Jureczko M, Madeyski L (2010) Towards identifying software

project clusters with regard to defect prediction. In: ACM

international conference proceeding series, vol 9, p 9, https://

doi.org/10.1145/1868328.1868342

56. He Z, Peters F, Menzies T, Yang Y (2013) Learning from open-

source projects: an empirical study on defect prediction. In:

international symposium on empirical software engineering and

measurement, pp 45–54, https://doi.org/10.1109/ESEM.2013.20

57. Chakraborty S, Krishna R, Ding Y, Ray B (2020) Deep learning

based vulnerability detection: Are we there yet? CoRR abs/

2009.07235, https://arxiv.org/abs/2009.07235, 2009.07235

58. Zhang J, Pan L, Han QL, Chen C, Wen S, Xiang Y (2021) Deep

learning based attack detection for cyber-physical system

cybersecurity: a survey. IEEE/CAA J Autom Sinica. https://doi.

org/10.1109/JAS.2021.1004261

59. Mikolov T, Sutskever I, Chen K, Corrado G, Dean J (2013b)

Distributed representations of words and phrases and their

compositionality. Adv Neural Inf Process Syst, 26

60. Mikolov T, Chen K, Corrado G, Dean J (2013a) Efficient esti-

mation of word representations in vector space. arXiv:1301.

3781 [cs] 1301.3781

61. Fan G, Diao X, Yu H, Yang K, Chen L (2019a) Deep Semantic

Feature Learning with Embedded Static Metrics for Software

Defect Prediction. In: 2019 26th Asia-Pacific Software Engi-

neering Conference (APSEC), IEEE, Putrajaya, Malaysia,

pp 244–251, https://doi.org/10.1109/APSEC48747.2019.00041

62. Russell R, Kim L, Hamilton L, Lazovich T, Harer J, Ozdemir O,

Ellingwood P, McConley M (2018) Automated vulnerability

detection in source code using deep representation learning. In:

2018 17th IEEE international conference on machine learning

and applications (ICMLA), pp 757–762, https://doi.org/10.1109/

ICMLA.2018.00120

63. Sestili CD, Snavely WS, VanHoudnos NM (2018) Towards

security defect prediction with AI. arXiv:1808.09897 [cs, stat]

1808.09897

Neural Computing and Applications (2023) 35:1279–1301 1299

123

https://doi.org/10.1109/DSC.2016.33
https://doi.org/10.1145/2884781.2884804
https://doi.org/10.1145/3377555.3377894
https://doi.org/10.1145/3377555.3377894
https://doi.org/10.1109/ICTAI.2017.00019
https://doi.org/10.1109/TDSC.2019.2954088
http://arxiv.org/abs/2004.10166
https://doi.org/10.1109/COMST.2021.3058333
https://doi.org/10.1109/COMST.2021.3063822
https://doi.org/10.1109/COMST.2021.3063822
https://doi.org/10.1109/COMST.2021.3073036
https://doi.org/10.1109/COMST.2021.3073036
https://doi.org/10.1007/s00521-020-05444-y
https://doi.org/10.1007/s00521-020-05444-y
https://doi.org/10.1007/s00521-020-05399-0
https://doi.org/10.1007/s00521-020-05399-0
https://doi.org/10.1007/s00521-020-04984-7
https://doi.org/10.1007/s00521-020-04984-7
https://doi.org/10.1007/s00521-020-05013-3
https://doi.org/10.1007/s00521-020-05013-3
https://doi.org/10.1007/s00521-020-04990-9
https://doi.org/10.1007/s00521-020-05156-3
https://doi.org/10.1007/s00521-020-05156-3
https://doi.org/10.1007/s00521-020-05676-y
https://doi.org/10.1007/s00521-020-05676-y
https://doi.org/10.1109/QRS.2017.42
https://doi.org/10.1109/QRS.2017.42
https://doi.org/10.1109/CompComm.2017.8322752
https://doi.org/10.1109/CompComm.2017.8322752
https://doi.org/10.1145/2857705.2857720
https://doi.org/10.1145/1985793.1985859
https://doi.org/10.1145/1985793.1985859
https://doi.org/10.1016/C2009-0-19715-5
https://doi.org/10.1145/1868328.1868342
https://doi.org/10.1145/1868328.1868342
https://doi.org/10.1109/ESEM.2013.20
https://doi.org/10.1109/JAS.2021.1004261
https://doi.org/10.1109/JAS.2021.1004261
http://arxiv.org/abs/1301.3781
http://arxiv.org/abs/1301.3781
https://doi.org/10.1109/APSEC48747.2019.00041
https://doi.org/10.1109/ICMLA.2018.00120
https://doi.org/10.1109/ICMLA.2018.00120
http://arxiv.org/abs/1808.09897

64. Li Z, Zou D, Xu S, Chen Z, Zhu Y, Jin H (2020b)

VulDeeLocator: a deep learning-based fine-grained vulnerability

detector. CoRR abs/2001.02350

65. Liu S, Lin G, Han QL, Wen S, Zhang J, Xiang Y (2020)

DeepBalance: deep-learning and fuzzy oversampling for vul-

nerability detection. IEEE Trans Fuzzy Syst 28(7):1329–1343.

https://doi.org/10.1109/TFUZZ.2019.2958558

66. Lin G, Xiao W, Zhang J, Xiang Y (2019a) Deep learning-based

vulnerable function detection: a benchmark. In: Zhou J, Luo X,

Shen Q, Xu Z (eds) information and communications security -

21st international conference, ICICS 2019, Beijing, China,

December 15-17, 2019, Revised Selected Papers, Springer,

Lecture Notes in Computer Science, vol 11999, pp 219–232,

https://doi.org/10.1007/978-3-030-41579-2_13,

67. Nguyen V, Le T, Le T, Nguyen K, DeVel O, Montague P, Qu L,

Phung D (2019) Deep domain adaptation for vulnerable code

function identification. In: 2019 international joint conference

on neural networks (IJCNN), pp 1–8, https://doi.org/10.1109/

IJCNN.2019.8851923

68. Lin G, Zhang J, Luo W, Pan L, Xiang Y, De Vel O, Montague P

(2018) Cross-project transfer representation learning for vul-

nerable function discovery. IEEE Trans Ind Inf

14(7):3289–3297

69. Saccente N, Dehlinger J, Deng L, Chakraborty S, Xiong Y

(2019) Project Achilles: a prototype tool for static method-level

vulnerability detection of java source code using a recurrent

neural network. In: 2019 34th IEEE/ACM international con-

ference on automated software engineering workshop (ASEW),

pp 114–121, https://doi.org/10.1109/ASEW.2019.00040

70. Zheng Y, Pujar S, Lewis BL, Buratti L, Epstein EA, Yang B,

Laredo J, Morari A, Su Z (2021b) D2A: A dataset built for AI-

Based vulnerability detection methods using differential analy-

sis. In: 43rd IEEE/ACM International Conference on Software

Engineering: Software Engineering in Practice, ICSE (SEIP)

2021, Madrid, Spain, May 25-28, 2021, IEEE, pp 111–120,

10/gkgd53, https://doi.org/10.1109/ICSE-SEIP52600.2021.

00020

71. Wang H, Ye G, Tang Z, Tan SH, Huang S, Fang D, Feng Y,

Bian L, Wang Z (2021b) Combining Graph-based learning with

automated data collection for code vulnerability detection

16:1943–1958, 10/gkgf4k, https://ieeexplore.ieee.org/document/

9293321/

72. Zhu X, Goldberg A (2009) Introduction to semi-supervised

learning. Synth Lect Artif Intell Mach Learn 3(1):1–130

73. Grandvalet Y, Bengio Y (2004) Semi-supervised Learning by

entropy minimization. Adv Neural Inform Process Syst, 17

74. Harer JA, Kim LY, Russell RL, Ozdemir O, Kosta LR,

Rangamani A, Hamilton LH, Centeno GI, Key JR, Ellingwood

PM, Antelman E, Mackay A, McConley MW, Opper JM, Chin

P, Lazovich T (2018) Automated software vulnerability detec-

tion with machine learning. arXiv:1803.04497 [cs, stat]

1803.04497

75. Huo X, Yang Y, Li M, Zhan DC (2018) learning semantic

features for software defect prediction by code comments

embedding. In: 2018 IEEE international conference on data

mining (ICDM), IEEE, Singapore, pp 1049–1054, https://doi.

org/10.1109/ICDM.2018.00133

76. Li Z, Zou D, Tang J, Zhang Z, Sun M, Jin H (2019) A com-

parative study of deep learning-based vulnerability detection

system. IEEE Access 7:103184–103197

77. Pradel M, Sen K (2018) DeepBugs: A learning approach to

name-based bug detection. In: proceedings of the ACM on

programming languages 2(OOPSLA):147:1–147:25, https://doi.

org/10.1145/3276517

78. Li R, Feng C, Zhang X, Tang C (2019) A lightweight assisted

vulnerability discovery method using deep neural networks.

IEEE Access 7:80079–80092. https://doi.org/10.1109/ACCESS.

2019.2923227

79. Zaharia S, Rebedea T, Trausan-Matu S (2019) Source code

vulnerabilities detection using loosely coupled data and control

flows. In: 2019 21st international symposium on symbolic and

numeric algorithms for scientific computing (SYNASC),

pp 43–46, https://doi.org/10.1109/SYNASC49474.2019.00016

80. Li X, Wang L, Xin Y, Yang Y, Chen Y (2020) Automated

vulnerability detection in source code using minimum interme-

diate representation learning. Appl Sci 10(5):1692

81. Zheng W, Semasaba AOA, Wu X, Agyemang SA, Liu T, Ge Y

(2021a) Representation vs. model: what matters most for source

code vulnerability detection. In: 28th IEEE international con-

ference on software analysis, evolution and reengineering,

SANER 2021, Honolulu, HI, USA, March 9-12, 2021, IEEE,

pp 647–653, 10/gk52qg, https://doi.org/10.1109/SANER50967.

2021.00082

82. Tang G, Yang L, Ren S, Meng L, Yang F, Wang H (2021b) An

automatic source code vulnerability detection approach based on

KELM 2021:5566423:1–5566423:12, 10/gmbqfw, https://doi.

org/10.1155/2021/5566423

83. Feng Z, Guo D, Tang D, Duan N, Feng X, Gong M, Shou L, Qin

B, Liu T, Jiang D, Zhou M (2020) Codebert: A pre-trained

model for programming and natural languages. In: Cohn T, He

Y, Liu Y (eds) Findings of the Association for Computational

Linguistics: EMNLP 2020, Online Event, 16-20 November

2020, Association for Computational Linguistics, Findings of

ACL, vol EMNLP 2020, pp 1536–1547, https://doi.org/10.

18653/v1/2020.findings-emnlp.139,

84. Lattner C, Adve V (2004) LLVM: A compilation framework for

lifelong program analysis transformation. In: international

symposium on code generation and optimization, 2004. CGO

2004., pp 75–86, https://doi.org/10.1109/CGO.2004.1281665

85. Le Q, Mikolov T (2014) Distributed representations of sentences

and documents. In: proceedings of the 31st international con-

ference on international conference on machine learning - vol-

ume 32, JMLR.org, ICML’14, pp II–1188–II–1196

86. Hin D, Kan A, Chen H, Babar MA (2022) Linevd: Statement-

level vulnerability detection using graph neural networks. CoRR

abs/2203.05181, https://doi.org/10.48550/arXiv.2203.05181,

2203.05181

87. Pennington J, Socher R, Manning CD (2014) Glove: global

vectors for word representation. In: Moschitti A, Pang B,

Daelemans W (eds) proceedings of the 2014 conference on

empirical methods in natural language processing, EMNLP

2014, October 25-29, 2014, Doha, Qatar, A meeting of SIG-

DAT, a Special Interest Group of the ACL, ACL, pp 1532–1543,

https://doi.org/10.3115/v1/d14-1162,

88. Duan X, Wu J, Ji S, Rui Z, Luo T, Yang M, Wu Y (2019)

VulSniper: Focus your attention to shoot fine-grained vulnera-

bilities. In: IJCAI, pp 4665–4671

89. Fan G, Diao X, Yu H, Yang K, Chen L (2019b) Software defect

prediction via attention-based recurrent neural network. Scien-

tific Programming 2019

90. Zhang Q, Wu B (2020) Software defect prediction via trans-

former. In: 2020 IEEE 4th information technology, networking,

electronic and automation control conference (ITNEC), vol 1,

pp 874–879, https://doi.org/10.1109/ITNEC48623.2020.

9084745

91. Ziems N, Wu S (2021) Security vulnerability detection using

deep learning natural language processing. In: 2021 IEEE

Conference on Computer Communications Workshops, INFO-

COM Workshops 2021, Vancouver, BC, Canada, May 10-13,

2021, IEEE, pp 1–6, 10.1109/

INFOCOMWKSHPS51825.2021.9484500,

1300 Neural Computing and Applications (2023) 35:1279–1301

123

https://doi.org/10.1109/TFUZZ.2019.2958558
https://doi.org/10.1007/978-3-030-41579-2_13
https://doi.org/10.1109/IJCNN.2019.8851923
https://doi.org/10.1109/IJCNN.2019.8851923
https://doi.org/10.1109/ASEW.2019.00040
https://doi.org/10.1109/ICSE-SEIP52600.2021.00020
https://doi.org/10.1109/ICSE-SEIP52600.2021.00020
https://ieeexplore.ieee.org/document/9293321/
https://ieeexplore.ieee.org/document/9293321/
http://arxiv.org/abs/1803.04497
https://doi.org/10.1109/ICDM.2018.00133
https://doi.org/10.1109/ICDM.2018.00133
https://doi.org/10.1145/3276517
https://doi.org/10.1145/3276517
https://doi.org/10.1109/ACCESS.2019.2923227
https://doi.org/10.1109/ACCESS.2019.2923227
https://doi.org/10.1109/SYNASC49474.2019.00016
https://doi.org/10.1109/SANER50967.2021.00082
https://doi.org/10.1109/SANER50967.2021.00082
https://doi.org/10.1155/2021/5566423
https://doi.org/10.1155/2021/5566423
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.1109/CGO.2004.1281665
https://doi.org/10.48550/arXiv.2203.05181
https://doi.org/10.3115/v1/d14-1162
https://doi.org/10.1109/ITNEC48623.2020.9084745
https://doi.org/10.1109/ITNEC48623.2020.9084745

92. Tang G, Meng L, Ren S, Cao W, Wang Q, Yang L (2021a) A

comparative study of neural network techniques for automatic

software vulnerability detection abs/2104.14978, https://arxiv.

org/abs/2104.14978, 2104.14978

93. Cao S, Sun X, Bo L, Wei Y, Li B (2021) BGNN4VD: con-

structing bidirectional graph neural-network for vulnerability

detection. Inf Softw Technol 136:106576. https://doi.org/10.

1016/j.infsof.2021.106576

94. Devlin J, Chang M, Lee K, Toutanova K (2019) BERT: pre-

training of deep bidirectional transformers for language under-

standing. In: Burstein J, Doran C, Solorio T (eds) Proceedings of

the 2019 Conference of the North American Chapter of the

Association for Computational Linguistics: Human Language

Technologies, NAACL-HLT 2019, Minneapolis, MN, USA,

June 2-7, 2019, Volume 1 (Long and Short Papers), Association

for Computational Linguistics, pp 4171–4186, https://doi.org/

10.18653/v1/n19-1423,

95. Li Y, Tarlow D, Brockschmidt M, Zemel R (2015) Gated graph

sequence neural networks

96. Liu S, Lin G, Qu L, Zhang J, De Vel O, Montague P, Xiang Y

(2020b) CD-VulD: Cross-Domain Vulnerability Discovery

based on Deep Domain Adaptation. IEEE Trans Dependable

Secure Comput pp 1–1, https://doi.org/10.1109/TDSC.2020.

2984505

97. Sheng L, Lu L, Lin J (2020) An adversarial discriminative

convolutional neural network for cross-project defect prediction.

IEEE Access 8:55241–55253. https://doi.org/10.1109/ACCESS.

2020.2981869

98. Nguyen V, Le T, de Vel OY, Montague P, Grundy JC, Phung D

(2020) Dual-component deep domain adaptation: A new

approach for cross project software vulnerability detection. In:

Lauw HW, Wong RC, Ntoulas A, Lim E, Ng S, Pan SJ (eds)

Advances in Knowledge Discovery and Data Mining - 24th

Pacific-Asia Conference, PAKDD 2020, Singapore, May 11-14,

2020, Proceedings, Part I, Springer, Lecture Notes in Computer

Science, vol 12084, pp 699–711, https://doi.org/10.1007/978-3-

030-47426-3_54,

99. Tanwar A, Sundaresan K, Ashwath P, Ganesan P, Chan-

drasekaran SK, Ravi S (2020) Predicting vulnerability in large

codebases with deep code representation. arXiv preprint arXiv:

2004.12783 2004.12783

100. Bui NDQ, Yu Y, Jiang L (2019) Autofocus: Interpreting atten-

tion-based neural networks by code perturbation. In: 34th IEEE/

ACM International Conference on Automated Software Engi-

neering, ASE 2019, San Diego, CA, USA, November 11-15,

2019, IEEE, pp 38–41, https://doi.org/10.1109/ASE.2019.

00014,

101. Lin G, Xiao W, Zhang LY, Gao S, Tai Y, Zhang J (2021) Deep

neural-based vulnerability discovery demystified: data, model

and performance. Neural Comput Appl 33(20):13287–13300.

https://doi.org/10.1007/s00521-021-05954-3

102. Liu Z, Qian P, Wang X, Zhu L, He Q, Ji S (2021) Smart contract

vulnerability detection: from pure neural network to inter-

pretable graph feature and expert pattern fusion. In: Zhou Z (ed)

Proceedings of the Thirtieth International Joint Conference on

Artificial Intelligence, IJCAI 2021, Virtual Event / Montreal,

Canada, 19-27 August 2021, ijcai.org, pp 2751–2759, https://

doi.org/10.24963/ijcai.2021/379,

103. Ashizawa N, Yanai N, Cruz JP, Okamura S (2021) Eth2vec:

Learning contract-wide code representations for vulnerability

detection on ethereum smart contracts. In: Gai K, Choo KR

(eds) BSCI ’21: Proceedings of the 3rd ACM International

Symposium on Blockchain and Secure Critical Infrastructure,

Virtual Event, Hong Kong, June 7, 2021, ACM, pp 47–59,

https://doi.org/10.1145/3457337.3457841,

104. Ding M, Li P, Li S, Zhang H (2021) Hfcontractfuzzer: Fuzzing

hyperledger fabric smart contracts for vulnerability detection.

In: Chitchyan R, Li J, Weber B, Yue T (eds) EASE 2021:

Evaluation and Assessment in Software Engineering, Trond-

heim, Norway, June 21-24, 2021, ACM, pp 321–328, https://doi.

org/10.1145/3463274.3463351,

105. Cao X, Jia J, Gong NZ (2021b) Provably secure federated

learning against malicious clients. In: Thirty-Fifth AAAI Con-

ference on Artificial Intelligence, AAAI 2021, Thirty-Third

Conference on Innovative Applications of Artificial Intelligence,

IAAI 2021, The Eleventh Symposium on Educational Advances

in Artificial Intelligence, EAAI 2021, Virtual Event, February

2-9, 2021, AAAI Press, pp 6885–6893, https://ojs.aaai.org/

index.php/AAAI/article/view/16849

106. Wu Y, Lu J, Zhang Y, Jin S (2021) Vulnerability detection in

C/C?? source code with graph representation learning. In: 11th

IEEE annual computing and communication workshop and

conference, CCWC 2021, las vegas, NV, USA, january 27-30,

2021, IEEE, pp 1519–1524, 10/gmbqf6, https://doi.org/10.1109/

CCWC51732.2021.9376145, tex.bibsource: dblp computer sci-

ence bibliography, https://dblp.org tex.biburl: https://dblp.org/

rec/conf/ccwc/WuLZJ21.bib tex.timestamp: Thu, 25 Mar 2021

08:31:10 ?0100

107. Wang C, Qiu M, Huang J, He X (2021a) KEML: A knowledge-

enriched meta-learning framework for lexical relation classifi-

cation. In: Thirty-Fifth AAAI conference on artificial intelli-

gence, AAAI 2021, Thirty-Third conference on innovative

applications of artificial intelligence, IAAI 2021, The eleventh

symposium on educational advances in artificial intelligence,

EAAI 2021, Virtual Event, February 2-9, 2021, AAAI Press,

pp 13924–13932, https://ojs.aaai.org/index.php/AAAI/article/

view/17640

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds

exclusive rights to this article under a publishing agreement with the

author(s) or other rightsholder(s); author self-archiving of the

accepted manuscript version of this article is solely governed by the

terms of such publishing agreement and applicable law.

Neural Computing and Applications (2023) 35:1279–1301 1301

123

https://arxiv.org/abs/2104.14978
https://arxiv.org/abs/2104.14978
https://doi.org/10.1016/j.infsof.2021.106576
https://doi.org/10.1016/j.infsof.2021.106576
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.1109/TDSC.2020.2984505
https://doi.org/10.1109/TDSC.2020.2984505
https://doi.org/10.1109/ACCESS.2020.2981869
https://doi.org/10.1109/ACCESS.2020.2981869
https://doi.org/10.1007/978-3-030-47426-3_54
https://doi.org/10.1007/978-3-030-47426-3_54
http://arxiv.org/abs/2004.12783
http://arxiv.org/abs/2004.12783
https://doi.org/10.1109/ASE.2019.00014
https://doi.org/10.1109/ASE.2019.00014
https://doi.org/10.1007/s00521-021-05954-3
https://doi.org/10.24963/ijcai.2021/379
https://doi.org/10.24963/ijcai.2021/379
https://doi.org/10.1145/3457337.3457841
https://doi.org/10.1145/3463274.3463351
https://doi.org/10.1145/3463274.3463351
https://ojs.aaai.org/index.php/AAAI/article/view/16849
https://ojs.aaai.org/index.php/AAAI/article/view/16849
https://doi.org/10.1109/CCWC51732.2021.9376145
https://doi.org/10.1109/CCWC51732.2021.9376145
https://ojs.aaai.org/index.php/AAAI/article/view/17640
https://ojs.aaai.org/index.php/AAAI/article/view/17640

	The application of neural network for software vulnerability detection: a review
	Abstract
	Introduction
	The gap between human understanding and vulnerability detection systems
	The dilemma and potential of vulnerability detection systems
	Preliminary researches in DL-based SVD
	Vulnerability perception gap

	DL-based SVD for bridging the perception gap
	Human experience facilitating DL-based SVD
	Improvements in the quality of data sets
	More suitable feature representation methods
	Neural network with improved learning ability
	Optimization for specific scenarios

	Challenges and future directions
	The lack of large-scale real-world benchmark data sets
	Effective code representations
	Humanoid DL model
	Semantic retention in neural networks
	Vulnerability detection in the cross-environment

	Conclusion
	Data availability
	References

