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Abstract
Sign language recognition is a challenging and often underestimated problem that includes the asynchronous integration of

multimodal articulators. Learning powerful applied statistical models requires much training data. However, well-labelled

sign language databases are a scarce resource due to the high cost of manual labelling and performing. On the other hand,

there exist a lot of sign language-interpreted videos on the Internet. This work aims to propose a framework to auto-

matically learn a large-scale sign language database from sign language-interpreted videos. We achieved this by exploring

the correspondence between subtitles and motions by discovering shapelets which are the most discriminative subse-

quences within the data sequences. In this paper, two modified shapelet methods were used to identify the target signs for

1000 words from 89 (96 h, 8 naive signers) sign language-interpreted videos in terms of brute force search and parameter

learning. Then, an augmented (3–5 times larger) large-scale word-level sign database was finally constructed using an

adaptive sample augmentation strategy that collected all similar video clips of the target sign as valid samples. Experiments

on a subset of 100 words revealed a considerable speedup and 14% improvement in recall rate. The evaluation of three

state-of-the-art sign language classifiers demonstrates the good discrimination of the database, and the sample augmen-

tation strategy can significantly increase the recognition accuracy of all classifiers by 10–33% by increasing the number,

variety, and balance of the data.
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1 Introduction

Sign language (SL) is the main communication way for

most deaf or hearing-loss people. As of 2013, approxi-

mately 1.1 billion people worldwide have varying degrees

of hearing loss [1], 124 million of whom are moderate and

severe [2]. Unlike the general view that sign language is

just the direct gesture description of objects or a translation

of the spoken(written) language, sign language is actually a

natural language with its own linguistics, words, sentences,

and grammar. Sign languages were created and developed

in the deaf communities relatively independently, although

they are influenced impressively by the cultures and lan-

guages of the hearing societies. Sign language is culturally

and geographically diverse, much like all other natural

languages. Sign language was not widely believed as a

natural language until Stokoe’s publication of sign lan-

guage structure in the 1960s [3]. This is the first time that

sign language was studied with linguistic methodology.

Stokoe presented persuasive evidence that American Sign

Language (ASL) is indeed a natural language with gram-

mar and vocabulary independent of English.

Sign language recognition (SLR) research began to

emerge and received increasing attention in the 1990s,

which can improve communication between the hearing

and the deaf. Researches on sign language were initially
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mostly done along the same technical lines as speech

recognition. Numerous effective methods for speech

recognition were directly transferred to SLR. However,

asynchronous integration of multimodal articulators is a

tough and frequently ignored issue in SLR. As shown in

Stokoe’s [3] sign language model, five individual compo-

nents are present, i.e. movement, location, orientation,

handshape, and facial expression.

The hidden Markov model (HMM) [4] is the most

classical and well-known method for SLR, which can

model the transfers between latent states of sequence data.

Various variants of HMM, such as maximum entropy

Markov model (MEMM) [5], conditional random fields

(CRF) [6], product-HMM [7], and hierarchy-HMM [8],

have also been widely used in SLR studies. However, due

to the lack of a unified definition of sign language syllables

or primitives so far, HMM methods are generally only

applicable to simple, small-category, isolated SLR. In

recent years, SLR researches based on deep neural net-

works (e.g. GRU [9], TGCN [10], I3D [11]) have became

more and more popular. Deep neural networks’ enormous

number of parameters allows them to accommodate sign

language’s intricate spatio-temporal structures. A signifi-

cant amount of training data is frequently necessary to

learn a practical, powerful statistical model.

However, labelled data is a scarce resource for sign

language due to the enormous cost of transcribing these

unwritten languages. The majority of publicly accessible

sign language databases to date have been created in lab

settings. A small corpus of signs will be selected or

designed first, and each sign will then be performed

repeatedly by a number of signers (native or non-native).

Some databases use data-gloves to capture every detail of

arms and fingers [12–14], while others use RGB or RGB-

depth cameras to record the sign language videos [11, 15].

Signers are typically instructed to wear coloured gloves in

order to improve the robustness of palm detection during

the creation of visual-based sign language databases. These

laboratory-environment databases usually have restricted

size and variation due to the high cost of performance and

annotation. In fact, more and more videos of TV news,

press conferences, and parliamentary speeches have been

supplemented with real-time sign language interpretation.

There are a lot of sign language-interpreted videos on the

Internet (e.g. video websites, online deaf communities).

Unfortunately, the supervisory information of these sign

language-interpreted videos is weak and noisy due to the

lexical differences, time misalignment, and grammatical

inconsistencies between sign language and speech

language..

Data mining is a process for knowledge discovery that

can draw out latent patterns, relationships, and correlations

from massive data. Data mining methods have been largely

used in many fields, from medical to social life. For

example, influenza epidemics can be detected early by

analysing large numbers of Google search queries in a

population [16], and Kawasaki disease clinical graph signs

can be detected by a deep convolutional neural network

(CNN) [17]. The characteristic and necessary motions can

be extracted using motif-guided attention networks [18].

Then, if the unlabelled signs can be minded from plenty of

existing sign language-interpreted videos, it will be a

promising solution to the scarcity of labelled sign language

resources.

The goal of this work is to propose a novel framework to

automatically learn a large-scale sign language database

from these sign language-interpreted videos. We achieved

this by exploiting supervisory information available in the

subtitles (or audio) of the videos through learning shapelets

which are discriminative subsequences of time series that

best predict the target variable. The main contributions of

this paper are:

• We provide a framework that can automatically create a

sign language database from massive sign language-

interpreted videos by integrating pose extraction, sub-

title parsing, shapelet mining, and sample

augmentation.

• We introduce the tricks of iterative update and matrix

operation to greatly speed up the searching of shapelets.

• We propose a strategy that combines shapelet searching

and shapelet learning to benefit both speed and

accuracy.

• We demonstrate that adaptive sample augmentation can

greatly improve the database’s size, variety, and

balance.

The rest of paper will be organized as follows: Section 2

summarizes the related works of SLR, sign language

databases, multiple instances learning and sample aug-

mentation. Section 3 gives definitions of the main termi-

nology and provides an overall introduction to the

proposed framework. Section 4 describes in detail how to

process the original sign language videos (including sub-

titles) and how to generate training samples for a given

word based on supervised information. Section 5 demon-

strates how to speed up the target sign extraction of two

available shapelet discovering algorithms. The construction

of a concrete database and experiments on recall rate and

classification in Sect. 6 serve to illustrate the usefulness

and efficiency of our proposed framework. The experi-

mental results and the impacts of the parameters are ana-

lyzed and discussed in Sect. 7. Finally, Sect. 8 concludes

the whole work and provides an outlook for future work.
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2 Related works

Our work relates to several themes in the literature, such as

sign language recognition, sign language databases, mul-

tiple instance learning, and sample augmentation.

2.1 Sign language recognition

The study of automatic SLR has developed for about 30

years since the 1990s. Since non-motion features (i.e. facial

expression [19, 20]) are difficult to identify and quantify,

most of the researches only focus on motion features.

Shape-based SLR studies focus on the space features of

hands and poses through the designed descriptors of tra-

jectories and shapes [21–24]. HMMs [4–6, 25] have been

the dominant method used to model state transfers of sign

language sequences until the advent of deep learning. Deep

neural networks such as CNNs [26, 27], RNNs [9, 28–30],

TGCN [10], and Transformers [31, 32] have been proven to

be effective architectures to model the complex spatio-

temporal structures of sign language.

Meanwhile, kinds of body models [33–36] have been

proposed to extract human skeletons from images. In par-

ticular, the sequence convolution network in [35, 36] will

map images into confidence maps of skeleton keypoints.

Additionally, its accessible trained model can be used

without further training to perform a real-world posture

prediction task, making video-based SLR more convenient

and efficient. However, I3D [11], a sign language model

that convolves videos along both spatial and temporal

dimensions has shown its superiority in video-based SLR

[10, 37–39]. In this work, three state-of-the-art models

(GRU [9], TGCN [10], and I3D [11]) were adopted to

evaluate our final database.

2.2 Sign language databases

A summary and review of some outdated sign language

databases can be found in [40]. And here, we will introduce

a couple of the most representative sign language databases

currently available. Purdue RVL-SLLL [41] contains 104

words and 1834 samples, which were performed by 14

native signers in a laboratory environment under controlled

lighting. RWTH-Boston [42] contains three subsets of 50,

104, and 400 signs, which are implemented with two to five

native signers to perform isolated words and continuous

sentences. DeviSign is a large-scale word-level sign lan-

guage database containing up to 2000 Chinese sign lan-

guages and 24,000 RGB-depth recordings performed by

eight non-native signers in a laboratory environment

(controlled background) [15]. These databases, regardless

of size, are built in a laboratory environment, which is

highly expensive and mostly with limited size and

variation.

Both MSASL [37] and WLASL [10] are large-scale

word-level sign language databases that collect isolated

signs from the Internet. However, there are significant

differences between the isolated signs and the co-articu-

lated signs during ‘‘naturally’’ continuous signing. Also,

there are far fewer isolated sign language videos on the

Internet than the continuous sign language videos. BSL-1k

[38] is a sign language database that contains a vocabulary

of 1064 signs extracted from more than 1000 h of contin-

uous BBC sign language TV programmes. The extraction

of signs relies only on lip changes without concern for

body movements. Such a sign language database con-

struction framework, which relies exclusively on lip-syn-

thesis models, has low data utilization and is difficult to

migrate directly to the database construction of other sign

languages.

2.3 Multiple instance learning

Multiple instance learning (MIL) problem belongs to a

weak supervisory problem, inferring the label of individual

instances with the given labels of bags of instances

[43, 44]. Paper [45] shows that localizing the target signs

for a given word using subtitles is essentially a two-class

MIL problem, and a sliding window classifier is also pro-

posed to find the clip with the highest score as the target

sign. Paper [46] makes two improvements to [45]: first, it

shrinks the search space by exploiting the co-occurrences

of lip movements, and second, it trains a discriminative

model of the target signs using the MIL-SVM (support

vector machine) [47] method. The Aprior Mining algorithm

was adopted to infer the rules between signs and words

with positive and negative discrete-encoded sign language

video clips in the paper [48]. And in [49], the correspon-

dence between isolated signs and words was implicitly

learned through modelling the translation process between

subtitle sentences and their video clips with the transformer

model. In the latest study [39], the author used a designed

embedding architecture and the InfoNCE [50] loss to train

a feature model for the target signs. The architecture

comprises an I3D spatio-temporal trunk network [11]

attached with a MIL trunk consisting of three linear layers

separated by leaky ReLu activation and a skip connection.

The concept of shapelet proposed in [51] is actually a

solution to the MIL problem discussed above. The shapelet

and its nearest subsequence in each positive sample are the

desired target signs. In theory, finding a shapelet requires

searching all possible subsequences [51], similar to the

sliding window classifier in [45]. However, there are many

tricks, such as early abandoning, reuse of computation,

parallel computing, and candidate filtering, that can be used
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to speed up the searching process [52–56]. Furthermore,

there are works that use all of the shapelet values as

unknown parameters, and then use gradient descent

methods to learn the shapelet values [57, 58]. There are

also studies that add additional constraints during the

learning process to make the shapelet have more expected

characteristics [59, 60].

In this work, we will find the target signs for a given

word from the perspective of solving shapelet with weakly

supervised information.

2.4 Samples augmentation

Data augmentation, which generates new samples by

slightly varying the available samples, is very common in

model training. The sample augmentation of signs is a

special case of data augmentation that takes all similar

instances of a given sample in the data source as the aug-

mented samples [61]. These augmented samples obtained

from real data source have more reasonable, rich, and

realistic variations. The experiments in [61] show that the

augmented samples obtained from arbitrarily collected

unlabelled sign language videos can make a given sign

sample have the ability of one-shot learning. Papers

[38, 39] also show that although more noisy samples will

be introduced if the criteria of the sign spotting are relaxed,

more training samples can bring better recognition evalu-

ation results. The experiments in our paper are also con-

sistent with this.

3 Notation and overview

3.1 Definition and notations

To make the description of our work clear and distinct,

some key terms are defined as follows:

Definition 1 Time series. A time series T is a list of data

points ordered along time, T ¼ t1; t2; . . .; tN , each data

point is a feature vector.

Definition 2 Subsequence. A subsequence is a slice of

consecutive data points cut from a time series T. For

example, S ¼ Tk:kþm ¼ tk; tkþ1; . . .tkþm�1 is a subsequence

that cut at kth point and with length of m.

Definition 3 Dis. Dis is defined as the Euclidean square

distance function between two time series with same

length.

DisðT ;RÞ ¼
XN

i¼1

ðti � riÞ2 ð1Þ

where N is the length of two time series.

Definition 4 subDis. subDis is defined as a distance

function between two time series with different length. The

shorter time series is query sequence Q, the longer time

series is searching sequence T. subDis(Q, T) returns the

minimum of the Euclidean square distances between Q and

all jQj-length subsequences of T. That is:

subDisðQ; TÞ ¼ minDisðQ; SÞ; 8S 2 S
jQj
T

ð2Þ

S
jQj
T ¼ Tk:kþjQj j 1� k� jTj � jQj þ 1

� �
: ð3Þ

Definition 5 word & sign. To avoid the confusion of ter-

minology of the two natural languages. We specify that the

term ‘‘word’’ refers to the ‘‘isolated word’’ of the written

(spoken) language, and the term ‘‘sign’’ refers to the

‘‘isolated word’’ of the sign language.

Definition 6 Subtitle frame. The minimum unit element of

a subtitle file. It consists of three basic components: short

text, begin timestamp, and end timestamp. Which repre-

sents the interpreted information of the video clip from

begin timestamp to end timestamp.

Definition 7 Candidate Time Window. A potential time

window that contains the target ‘‘sign’’ for a given ‘‘word’’.

Because of the rough timing of the subtitles and the intri-

cate link between the two natural language, it is difficult to

pinpoint the exact location of the target sign.

3.2 Overview of framework

The proposed framework’s flowchart is shown in Fig. 1.

The framework receives files containing sign language

videos and their subtitles as input, and then a sign language

database is constructed as output. There are four main steps

in the framework. We will describe each of these steps

below.

Step one is the sign motion features extraction. For an

input video, the region around the signer will be cropped

first. Then the keypoints of his/her hands and upper body

will be detected and tracked. Finally, the sign motion

features can be designed based on the positions of key-

points. Step two prepares the training data. A corpus con-

sisting of reasonable words is constructed from the subtitle

files. Then, for each given word from the corpus, the same

number of positive and negative samples determined by the

designed candidate window are chosen as the training data.

Step three learns the shapelet from the training data with

shapelet searching and shapelet Net methods. The shapelet

is the subsequence that best classifies the training samples

using subDis distances. Step four is sample augmentation.

To increase the sample number per word and the variations

of the final database, all motion subsequences that are very
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similar to the learned shapelet will be appended to the final

database as augmented samples. Almost all the parameters

of the whole framework can be learned automatically.

4 Automatic generation of training data

This section, which discusses steps one and two, provides

the specifics of preprocessing, which covers how to extract

motion features, process subtitles, and generate training

examples for a given word.

4.1 Sign language features designing

In our framework, the region of interest (ROI) of each

video frame is first identified and cropped, and then the

openpose1 library is used to detect the keypoints of signers.

Figure 2 depicts the distribution of the detected keypoints

of openpose. There are 60 keypoints in total, including 18

trunk keypoints and 42 hand keypoints (two hands). One of

the most attractive advantages of openpose library is its

powerful model migration ability that the available trained

model can be directly used in our work without retuning.

Overall, openpose is stable for the detection of joints of the

body (including head, limbs, and torso), but the detection

of finger joints is usually not good in the situation of low

resolution, blurring, and blocking.

For sign language, only the keypoints of the upper body

and hands are considered. Due to the disturbing factors of

object blocking, target missing, perspective rotating, and

background interfering, the position coordinates of the

extracted keypoints should be filtered first to eliminate

invalid values and outliers. In addition, the coordinates of

the obtained keypoints are absolute values. To avoid

interference from the height, distance, position, viewpoint,

etc., the coordinates need to be resized with the formula

below. All coordinates are calculated relative to the chest

keypoint; then, coordinates will be normalized with the

vertical distance between the keypoints of the nose and

chest.

P̂i ¼ ðPi � P1Þ
jjPi � P1jj2
jPy

1 � Py
0j

ð4Þ

where Pi ¼ ðPx
i ;P

y
i Þ is the 2D position coordinate of the

keypoint i, and the keypoints 0 and 1 represent the key-

points of chest and nose respectively.

Fig. 1 The flowchart of the sign language database auto-construction framework

1 https://github.com/CMU-Perceptual-Computing-Lab/openpose.

Fig. 2 The output keypoints of openpose library
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4.2 Subtitle processing

The supervised information of sign language-interpreted

videos is available in three forms: stand-alone subtitle files

(e.g. vtt, srt format files), embedded subtitles, and inter-

pretation soundtracks. The latter two can be transformed

into stand-alone subtitle files through optical character

recognition (OCR) and speech recognition, respectively.

This supervised information is both weak and noisy. It is

weak since the temporal distance between sign and subtitle

is unknown and the act of signing does not follow the text

order. It is noisy because subtitles can be signed in dif-

ferent ways, and the occurrence of a subtitle word does not

imply the presence of the corresponding sign [45].

In an ideal situation, each word in subtitles may corre-

spond to a video clip, and all words in the subtitles should

be collected to construct a corpus. However, more purifi-

cation operations should be executed to make the corpus

more reasonable. First of all, the stemming and lemmati-

zation methods should be used to remove the inflections

(e.g. ‘‘s’’, ‘‘es’’, ‘‘ed’’, ‘‘ing’’) of each word in the corpus,

and the lemma form words are obtained. Second, low-

frequency words will be removed from the corpus. Third,

words with unclear meanings will be removed from the

corpus as stop words. Finally, to increase the one-to-one

correspondence between words and signs, the polysemous

words (one word has multiple meanings) will also be

removed.

4.3 Training samples generation

For a given word in the resulted corpus, all subtitle frames

[as Definition 6] whose short text contains the given word

are defined as the positive frame. Then, the corresponding

video clips are defined as the positive samples. Conversely,

the negative samples are defined as the video clips that will

not overlap with the positive samples of the given word and

its synonyms. In general, the candidate time window of a

positive sample needs to be widened to ensure the latent

target sign can be enclosed. The usual procedure is to

extend the time window ahead and backward by one sub-

title frame, denoted as:

pos win ¼ f begint�1 ; f endtþ1

h i

where ft represents the ith subtitle frame, while the super-

scripts begin and end indicate the timestamp. However,

there is a delay in signing versus speaking for most real-

time sign language translation videos. When the time span

of the following subtitle frame is too short, it is not guar-

anteed that the extended time window can enclose the

latent target sign.

In this work, an adaptive extension method is proposed

to determine the candidate time window: the time window

should contain the time span of the preceding, current, and

next k subtitle frames, where k is the minimum positive

integer that satisfies the following condition:

f endtþk � f endt � b � f endt � f begint

� �
ð5Þ

The above formula states that the extended time along the

time increase cannot be less than the b times the time span

of the positive subtitle frame. In most cases, b should be

larger than 1.

5 Automatic sign extraction

This section will describe how to find target signs for a

given word from its positive and negative samples. We

anticipate that the target sign will appear in the majority of

positive samples and would not occur in negative samples

based on the definition of samples. Then, we can formulate

the task naturally as a MIL problem. MIL generalizes the

pattern recognition problem by making a significantly

weaker assumption about the labelling information. For-

mally, there are two types of bags: positive Bp and negative

Bn. Each bag has an indefinite number of instances,

B ¼ fx0; x1; . . .g. When a bag is positive, it means that at

least one instance in the bag is positive. Conversely, for a

negative bag, all the instances in the bag must be negative.

And the goal is to learn an binary classifier for instances x.

In our task, the sample refers to the bag. The subsequence

in a sample refers to the instance in a bag, and the target

sign refers to the positive instance.

When the instance-level binary classifier is configured

as a 1-NN classifier, the training of this classifier is

essentially to learn a short sequence that optimally sepa-

rates the two classes of samples under the subDis distances.

Now the problem of target sign finding has been transferred

to the problem of shapelet discovering.

5.1 Shapelet searching

In theory, the shapelet can be any sequence shorter than the

shortest training sample, then the search space can be

infinite. For simplicity, we generally assume that the sha-

pelet is a subsequence of training samples, and then, the

shapelet discovering became the subsequence searching.

Now, for a given word, the training set is defined as:

T ¼ T1
pos; T

2
pos; . . .; T

1
neg; T

2
neg. . .

where Ti
pos represent the ith positive sample, and Ti

neg is the

ith negative sample. Each sample is a motion feature

sequence.
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5.1.1 Candidate subsequences

For subsequence searching, the candidate subsequence can

be generated using a sliding window strategy. Lines 2–4 of

Algorithm 1 show the generation process of all candidate

subsequences with the length between lmin and lmax, where

Sl
T is the set of every subsequences in sample T with length

l, as defined in Eq. 3. And the length range satisfies:

0\lmin � lmax � minðjT jÞ; 8T 2 T ð6Þ

In fact, the search range of shapelet is small because only

the reasonable lengths of real signs are taken into account.

Additionally, only positive sample subsequences will be

searched.

5.1.2 Score of subsequence

The subDis distance between a sample T 2 T and a sub-

sequence Q is calculated as d ¼ subDisðQ; TÞ. Then, the
training set T can be split into two subsets with a distance

threshold dr. A sample T will be added to subset T1 if its

subDis value d� dr, otherwise, it will be added to subset

T2. Finally, a score function is created to assess the dis-

criminating capacity Q.

ScoreðQ;TÞ ¼ max
dr

IðTÞ � IðT1;T2Þð Þ ð7Þ

¼ max
dr

IðTÞ � jT1j
jTj IðT1Þ �

jT2j
jTj IðT2Þ ð8Þ

Q� ¼ argmax
Q

ScoreðQ;TÞ; 8Q 2 T; T 2 Tp: ð9Þ

where IðTÞ ¼ �
P

c pðcÞ logðpðcÞÞ is the information

entropy function, and c is the label of each sample. In

practice, all the subDis distances can be sorted by magni-

tude first, then the optimal threshold dr can be approxi-

mated by searching the midpoint of all adjacent distances,

which allows for fast calculation and without affecting the

score. Theoretically, Q has the highest score when T1, T2

are identical to Tp, Tn, respectively. At this point, the

subsequence Q� with the highest score is actually the

shapelet of T.

5.1.3 Shapelet searching

In summary, the whole process of shapelet searching is

shown in Algorithm 1. The inputs of this algorithm are the

training set T of a given word and the possible length range

ðlmin; lmaxÞ of target sign. Length range is a hyper-

parameter that is influenced by regions, signers, words,

moods, video fps(frames per second), etc. In this paper, the

length range is set as ð0:5 � Lavg; 2 � LavgÞ empirically,

where Lavg is the average time span per word, is calculated

as:

Lavg ¼
P

iðf endi � f begini ÞP
i jf texti j

ð10Þ

where f begini ; f endi ; f texti refer to the three components of the

ith subtitle frame, and jf texti j is the word count of the short

text.

Then, the score of each candidate subsequence will be

calculated using Eq. 7, and the subsequence with the

highest score is identified as the shapelet. The score

function is the core part of the shapelet searching algo-

rithm, and the calculation of subDis distance is very time-

consuming. Tricks like early abandoning, reuse of com-

putation, parallel computing, and candidate filtering were

adopted to speed up the searching process [52–55]. Algo-

rithm 2 illustrates a sliding distance computing technique

with python–numpy style pseudo-code. Using matrix

operations, all distances between subsequence S and each

sliding subsequence of the sequence T can be calculated

simultaneously. With sliding distances, the subDis distance

can be obtained as:
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subDisðS; TÞ ¼ minðSldDistsðS; TÞÞ ð11Þ

In our experiment, the SldDists algorithm can improve the

speed of shapelet searching by about 15–40 times com-

pared with tricks of early abandon and entropy pruning.

5.1.4 Time complexity

For a given word, suppose there are 2n samples in the

training set, and half of them are positive. If the average

length of these samples is �m, then there are about �mn
candidate subsequences. For each candidate subsequence,

2n times of subDis calculations is needed, and the time

complexity of the subDis function is Oð �m2Þ. In conclusion,

the final time complexity of the shapelet searching algo-

rithm is Oð �m3n2Þ.

5.2 Distance calculation acceleration

The SldDists function has greatly sped up the calculation of

subDis. However, the current speed is still too slow to

construct a large-scale sign language database. Inspired by

the matrix profile in works [62, 63], we find that the subDis

computation of candidate subsequences with adjacent

locations and lengths involves a significant amount of

repeated calculations. In this part, we greatly reduce the

number of repeated calculations in shapelet searching by

drawing on the calculation tricks in work [63].

Given two sequences A and B of lengths m1 and m2, the

goal is to compute the distances between all subsequence

pairs of A and B, denoted as distance matrices:

M ¼ fMl
i;jj 0� i�m1 � l; 0� j�m2 � l;

1� l� minðm1;m2Þg
ð12Þ

where Ml
i;j is the Euclidean square distance between sub-

sequences Ai:iþl and Bj:jþl.

Ml
i;j ¼

Xl�1

k¼0

ðAiþk � BjþkÞ2 ¼
Xl�1

k¼0

diþk;jþk ð13Þ

5.2.1 Adjacent location subsequences

For the distance of the adjacent location subsequences:

Ml
iþ1;jþ1, we have the following decomposition:

Ml
iþ1;jþ1 ¼

Xl�1

k¼0

diþ1þk;jþ1þk ¼
Xl

k¼1

diþk;jþk

¼ Ml
i;j þ diþl;jþl � di;j

ð14Þ

which means that we can calculate the distance of two

subsequences based on the distance of its preceding sub-

sequences, and we have a iterative update formula:

Ml½iþ 1; 1 :� ¼ Ml½i; : � 1� þ d½iþ l; l :� � d½i; : � l�
ð15Þ

where d is the Euclidean square distance matrix between

each point in sequence A and each point in B. With the

iterative formula 15, we only need to calculate Ml½0; :�,
Ml½:; 0�, and d in advance. Then, the rest of distance matrix

Ml can be calculated with just matrix addition. In fact,

Ml½0; :� and Ml½:; 0� are sliding distances as described in

Algorithm 2, and the d can also be seen as a special case of

the sliding distance (the length of subsequence is 1). So

they all can be accelerated using matrix operations as

follow:

d½i; :� ¼
X

c

ðA½i� � BÞ2 ð16Þ

Ml½0; :� ¼
Xl�1

k¼0

d½0; k : k þ m2 � lþ 1� ð17Þ

Ml½:; 0� ¼
Xl�1

k¼0

d½k : k þ m1 � lþ 1; 0� ð18Þ

where c in Eq. 16 represents the dimension number of

features, and Eq. 16 does the same work as the line 5 in

Algorithm 2.

5.2.2 Adjacent length subsequences

Next, let us look at the distance of the subsequences with

adjacent length. When we change the length of subse-

quences to lþ 1, the distance between two subsequences

can be written as:

Mlþ1
i;j ¼

Xl

k¼0

diþk;jþk ¼ Ml
i;j þ diþl;jþl ð19Þ

In this way, we obtain the iterative formula of the distance

matrix M with the adjacent subsequence length:
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Mlþ1 ¼ Ml½: -1; : -1� þ d½l :; l :� ð20Þ

Combing the distance matrix updating Formulas 15

and 20, we can get the algorithm for calculating the dis-

tances between all possible subsequences of two sequences

as shown in Algorithm 3. For a distance matrix Ml, each

row of data represents the sliding distances between a

subsequence of A and the sequence B. Then, the minimum

value of the row of data represents the subDis between the

subsequence and B.

Ml½i� ¼ SldDistsðA½i : iþ l�;BÞ ð21Þ

minðMl½i�Þ ¼ subDisðA½i : iþ l�;BÞ: ð22Þ

5.2.3 Improved shapelet searching

We can efficiently obtain the subDis distances between

all subsequences of two sequences by employing itera-

tive updating of the adjacent distances. In shapelet

searching, to calculate the score for each candidate

subsequence, the Distance Matrices between each posi-

tive sample and all samples should be computed in

advance.

DistanceMatricesðTa; TbÞ; 8 Ta 2 Tp; Tb 2 T

In fact, rather than iterating over all sample pairs as

described above, a more efficient method is to concate-

nate all positive samples as a single sequence TA and all

training samples (both positive and negative) as a single

sequence TB. Then directly input TA and TB to the

algorithm DistanceMatrices, and the distance matrix of

one pair \Ta; Tb [ is the sub-matrix of the distance

matrix of \TA; TB [ and can be directly obtained by

slicing.

However, there are two practical limitations to this

concatenation method. First, as shown in Algorithm 3, at

least two matrices d and M need to be constructed. It was

supposed that we have 200 training samples (100 positives)

with an average length of 400 and the storage data type is

float32. Then, more than 23GB memory usage is needed,

and the size will grow exponentially with the number of

samples. Second, for the iteration formula 15, the matrix

addition will accumulate the error of each iteration. The

error can be remarkable when the length of the sequence TA
is too large.

Finally, as shown in Algorithm 4, we get an improved

shapelet searching algorithm based on distance matrices.

In the algorithm, we first obtain the distance matrices

M ¼ fMljl 2 ½lmin; lmax�g between each positive sample

Ta and concatenated training sequence TB. Now, the rth
row of a distance matrix Ml represents the sliding dis-

tances between a candidate subsequence Ti
a½r : r þ l� 1�

and TB. After that, by slicing Ml½r� in accordance with

where the training sample Tb is located in TB, the sliding

distances between the subsequence and Tb is determined,

and the minimum of sliding distances is subDis. Once

we obtained its subDis distances with all the training

samples, we could use Eq. 7 to calculate the score of the

subsequence. Finally, the subsequence with the largest

score will be returned as shapelet. If there are two

subsequences with the same score, the one with the

smaller standard deviation (std) of subDis distances will

be chosen.
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5.3 Shapelet net

In contrast to the above brute force searching strategy,

another option of shapelet discovering is to remove the

restriction that only searches the shapelet from all candi-

date subsequences, treating the shapelet as a sequence with

unknown parameters to learn. Paper [57] is one of the

original papers to propose this idea, and this subsection

provides a detailed introduction to the idea. When evalu-

ating a shapelet Q as an unknown sequence, we should first

calculate the subDis distances between Q and all training

samples, and then determine the linear separation with

maximum information gain using the subDis distances.

For simplicity, the subDis distance between Q and a

training sample T is denoted as X, and then its expression

(Eq. 2) is expanded in the following.

X ¼ min
j

DisðQ; Tj:jþlÞ ð23Þ

DisðQ; Tj:jþlÞ ¼
Xl�1

k¼0

ðQk � TjþkÞ2 ð24Þ

¼
Xl�1

k¼0

Q2
k þ

Xl�1

k¼0

T2
jþk � 2

Xl�1

k¼0

QkTjþk ð25Þ

¼ Q � Qþ I � T2
j:jþl � 2Q � Tj:jþl ð26Þ

where the dot operate indicates the inner product, and the

square ð�Þ2 is a point-wise operation.

When j is varying from 0 to jTj � l, the term Q � Q is

irrelevant to j and will remain constant. The terms I � T2
j:jþl

and Q � Tj:jþl will become the convolution operations of

I � T2 and Q� T . Therefore, we have a new calculation

formula of the sliding distances:

SldDistðQ; TÞ ¼ QTQþ I � T2 � 2Q� T ð27Þ

And if the linear separation of the training set can be

represented by a linear binary classifier, then the classifi-

cation result for sample T can be written as:

Ŷ ¼ xX þ x0 ð28Þ

where Ŷ is the predicted target of positive and negative, the

ðx;x0Þ are the weights. Then, the logistics loss can be used
to evaluate the performance of the classifier:

LðY ; ŶÞ ¼ �Y ln dðŶÞ � ð1� YÞ lnð1� dðŶÞÞ ð29Þ

where dðŶÞ ¼ ð1þ e�ŶÞ�1
.

Up to now, the above process of subDis computation,

sample classification can be represented as a Shapelet Net

shown in Fig. 3. The shapelet kernel and the binary clas-

sifier are the unknown parameters to be learnt. When a

Fig. 3 The structure of the shapelet Net
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sample T is entered, a predicted label is returned. It needs

to be noted that the term QTQ in Eq. 27 is ignored because

it has no impact on how the samples are classified. Then,

with a training set T and its labels Y ¼ ½Y1; . . .; YjTj�, the
optimal shapelet Q and linear hyper-plane x can be learned

by minimizing a the regularized objective function, written

as F .

F ðQ;xÞ ¼
XjTj

i¼1

LðYi; ŶiÞ þ kkxk2 ð30Þ

There are two issues that arise during the training of sha-

pelet Net. First, the minð�Þ function in Eq. 23 is not

derivable, which makes it impossible to use gradient des-

cent method in the training. This can be solved by

replacing the minimum function with a derivative softmin

function as follows:

softminðxÞ ¼
P

i xie
axi

P
j e

axi
ð31Þ

where a\0 is the parameter that controls the precision of

the softmin, and when a ! �1, the softmin is nearly equal

to the true minimum function.

Second, the objective function given by Eq. 30 is not a

convex function, and the gradient-based optimization

converges usually to a local minimum. To get a reasonable

suboptimal result, the learning parameters must be initial-

ized well. The shapelet parameters in the works [57, 59]

were initialized with clustering centres of candidate sub-

sequences. However, since our work only involves one

shapelet, employing cluster centres for initialization makes

it simple to converge to a non-target sign result. Therefore,

we finally choose to use the shapelet searched from a small

subset of training samples by Algorithm 1 as our initial

parameters.

Compared with shapelet searching, shapelet Net no

longer discovers shapelets by brute force searching but

learns the shapelet as unknown parameters through net-

work training. The shapelet Net brings two changes: the

first is the computational complexity. Shapelet Net has the

complexity of Oð �m2n	 ItemaxÞ [57] instead of the Oð �m3n2Þ
of shapelet searching. In general, Itemax\\ �mn. The sec-

ond is that, rather than being a true candidate subsequence,

the learned shapelet is more akin to the generalization of

the best candidates. which makes it theoretically more

representative than the searched shapelet.

5.4 Sample augmentation

The target sign for a given word can be assumed to be the

shapelet that was acquired through shapelet searching or

shapelet Net. With the shapelet, more instances of the

target sign can be gathered by collecting the subsequence at

the shortest distance with the shapelet in each positive

sample. However, the subtitles are weak and noisy as

introduced in Sect. 4.2. There are uncertain differences in

time displacement, occurrence, and order between subtitles

and signing. For a given word, its positive sample does not

guarantee that it contains a target sign, and its negative

sample may also contain a target sign. Thus, two tasks need

to be done: removing fake target signs from positive

samples and identifying latent target signs from negative

samples.

For a shapelet Q, the target signs from all positive

samples can be identified using the following formula:

Si ¼ argmin
S

DisðQ; SÞ; 8S 2 S
jQj
Ti
pos

ð32Þ

According to the paper [45], only 67% of their positive

samples contain true target signs. In our data resource, the

true rate of positive samples is even less than 60%. Now,

we set the true rate as f, and only the proportion f of the

most similar target signs to the shapelet are considered to

be true target sign. Without losing generality, we assume

that the identified target signs from all positive samples

were sorted in increasing order based on their distance

from Q. Then, the chosen true target signs are represented

as: S1; S2; . . .; Snf satisfying:

kQ� S1k�kQ� S2k� . . .�kQ� Snf k ð33Þ

where nf ¼ bf 	 jTpjc, and b�c is the floor round function.

Then, the threshold s ¼ kQ� Snf k can used to judge

whether a target sign is true or not:

S0 ¼
target sign kQ� S0k� s

None kQ� S0k[ s

(
ð34Þ

When the number of positive samples is small, however, s
has a limited number of candidate values and is not sen-

sitive to variations in f. An additional factor h is proposed

to allow for finer and smoother adjustment of s. First we
denote dmin ¼ kS� S1k, dmax ¼ kS� Snf k. If

kS� S1k ¼ 0, dmin will be replaced with the smallest

nonzero distance. Then, the distance threshold s is rede-

fined as:

s ¼ dmin þ hðdmax � dminÞ 0� h� 1 ð35Þ

In order to obtain more instances, we propose a sample

augmentation strategy that collects all subsequences satis-

fying Eq. 34 in all videos as target signs. Since we have at

least 1000 words and over 96 h of sign language videos, an

efficient sliding distance calculation is one of the cores of

sample augmentation. Two sliding distance calculation

methods have been proposed in our work: Algorithm 2 and

formula 27. Formula 27 transforms the sliding distance

into a combination of convolution operations.
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The convolution theorem states that the convolution in

the time domain equals the point-wise multiplication in the

frequency domain. Due to the fact that point-wise multi-

plication is much faster than convolution, we adopt the

SlidingDotProduct algorithm proposed in the paper [62] to

calculate the convolution operations. The details of the

algorithm are shown in Algorithm 5, which transforms

between time and frequency domains by forward and

inverse Fast Fourier transforms(FFT and IFFT). Before

performing the FFT, the input sequences must be padded

and reversed to ensure the following convolution is

essentially produced in the right order. The time com-

plexity of FFT and IFFT is Oðn log nÞ, and it can be cal-

culated at a very high speed with many available

mathematical libraries. According to our testing, the sliding

distance calculation based on Eq. 27 plus Algorithm 5 is

faster than Algorithm 2 by 4–5 times, whether running on

CPUs or GPUs.

Algorithm 6 shows the details of our final sample aug-

mentation strategy. For a given word, all the subsequences

with a distance less than s from the shapelet in all video

sequences are collected as instances of the target sign. The

distance threshold s is determined by Eq. 35. And the

sliding distances between the shapelet and a long video

sequence are calculated by combining Eq. 27 and Algo-

rithm 5. However, it is important to note that the sur-

rounding subsequences of a target sign subsequence may

also be very similar to the shapelet. Therefore, in lines

10–17 of the algorithm, we need to make sure the collected

instances have a lower distance from the shapelet than their

neighbours.

6 Experiments

Two main experiments will be evaluated in this sec-

tion. First, we will show how the proposed framework can

automatically construct a large-scale word-level sign lan-

guage database from sign language-interpreted videos. The

experimental environments and parameter settings will be

described in detail, and the results of two shapelet methods

(shapelet searching and shapelet Net) will also be com-

pared and discussed. Second, three cutting-edge SLR

methods are utilized to evaluate the database in order to

demonstrate the practicability of our created database.

Additionally, the sample augmentation strategy and the

effects of various shapelet methods will be examined.

6.1 Original data source

In order to avoid the impact of language differences in

different regions and fields, we collected the sign language
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videos with similar occasions and themes. Eighty-nine

Scottish Parliament’s live sign language translating videos

are downloaded from YouTube [64]. These real-time sign

language translations are supported by The Scottish Par-

liament’s BSL Plan 2018–2024.2 Our downloaded 89

videos are interpreted by 8 native British sign language

(BSL) signers and have a total video duration of about

96 h. The original downloaded sign language videos had

no subtitles, and then, we generated individual subtitle files

for these videos using the English speech recognition tool

provided by YouTube. There are about 32,000 meaningful

and meaningless words in all these subtitle files.

After deleting the meaningless words, stop words, pol-

ysemy words, and low-frequency words, the remaining

words will be processed with stemming and lemmatization

methods. Finally, we chose 1000 words with good prop-

erties to form the final corpus of our target database. The

Fig. 4 demonstrates the frequency distribution of these

words. In the figure, the words appear roughly 10 to 800

times in the subtitles (the minimum frequency is set to 10).

However, the frequency distribution shows a significant

imbalance: 80% of the words have fewer than 213 occur-

rences and 95% of the words have fewer than 553 occur-

rences. The average frequency of all words is 210, while

the average frequency of the least 80% of words is only 67.

6.2 Motion feature extraction

The skeleton keypoints of the signers in all sign language-

interpreted videos were extracted using the openpose

library. The provided models (body and hand) that trained

with CMU Panoptic Dataset3 can be directly applied to

new videos without parameters retuning. In our work, the

models were loaded by the pytorch and evaluated on GPUs.

The body keypoints were first extracted from the cropped

regions containing the signers. Then, the hands keypoints

were extracted from the regions that determined by the

extracted body points (i.e. shoulder, elbow, wrist) [36]. It

took us about a week to extract the skeleton keypoints of all

96 h of sign language video using a single GeForce-RTX-

3090 GPU.

In our work, only the keypoints of the upper body and

hands were selected to construct the motion feature using

Eq. 4. Before the feature construction, the coordinates of

the chosen keypoints will be filtered using a median filter to

remove outliers. The invalid coordinates (i.e. the position

of non-detected keypoints) will remain unchanged as

(0, 0). In addition, our work took into account the effects of

left-handedness and right-handedness, and for each motion

feature subsequence, an additional x-mirror of the motion

feature subsequence (multiplying all x coordinates by �1)

will be provided.

6.3 Shapelets learning

As Sect. 4.3, the positive and negative samples were gen-

erated for each word in the final corpus. The candidate

windows were determined using the Eq. 5, and the

parameter b was set to 1.5 by trial. In this case, most of the

ground truths of the target signs can be contained in the

positive sequences.

6.3.1 Ground truths

To be able to evaluate the shapelet methods, the ground

truths of the target signs should be provided. In this paper,

we selected 99 words and then annotated 10 to 30 positive

samples of each word. To make the annotation more

appropriate, most of the selected words should have a clear

meaning, and the corresponding examples should be

available on the Internet. If a positive sample contains the

target sign of the word, the sample is called a true positive

sample and the indexes of the begin and end frames of the

sign were recorded. Otherwise, the sample is called a false

positive sample. From the annotations of these 99 words,

we can deduce that the average truth rate of these positive

samples is about 60%, which means that about 40% of the

positive samples do not contain a target sign. And the time

span of the sign is typically 10 to 40 frames.

6.3.2 Speed test

With the training samples of a given word, the shapelet can

be discovered with two shapelet methods (Searching and

Net). In order to show the effectiveness of the distance

calculation acceleration discussed in Sect. 5.2 and

Fig. 4 The frequency distribution of the final corpus

2 https://external.parliament.scot/help/109625.aspx.
3 http://domedb.perception.cs.cmu.edu/.
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compare the speed of different available shapelet methods,

Fig. 5 illustrates the time consumption of different shapelet

discovering methods with different sample numbers.

Five shapelet methods are compared in Fig. 5, including

three shapelet searching methods and two shapelet Net

methods. The search-ori is the baseline shapelet searching

algorithm proposed in the paper [51], which uses a two-

level pruning strategy to abort the hopeless candidates

early. The search-idp is the algorithm proposed in the

paper [55] that uses sampling and filtering strategies to

greatly reduce the number of candidate shapelets. How-

ever, since the labels of our time series are weak and noisy,

and the length and content are also varied a lot, the sam-

pling strategy is not used here, only the filtering strategy is

adopted. In addition, our proposed algorithm 2 is also used

to speed up the calculation of the search-idp. The search-

dm is the improved shapelet searching algorithm 4, which

significantly reduces the repetition in the calculation of

subDis distances by the proposed distances matrices. net-

mean and net-dm are the proposed shapelet learning algo-

rithm with two different parameter initialization methods.

The net-mean uses the average values of all the candidate

shapelets for initialization [57, 59], while the net-dm uses

the shapelet obtained by search-dm as the initial shapelet.

In the test, an equal number of positive and negative

samples were chosen randomly. We fixed five candidate

lengths for the shapelet: 15, 20, 25, 30, 35. Meanwhile, the

length range of search-idp is also set to [15, 35]. In addi-

tion, the time consumption of the net-dm method involves

the time consumed for the shapelet initialization with 10%

samples.

From the experimental results in Fig. 5, we can find that

compared to the baseline method search-ori, the other four

shapelet discovering methods can greatly reduce the cal-

culation time, and the net-dm has the highest learning

speed. Among them, the time consumption of methods

search-ori, search-idp and search-dm are roughly

increasing squarely, which is consistent with the idea of

brute force searching. The two net methods have similar

learning speeds, and their time consumption increases

roughly linearly. The fact that net-dm is faster than net-

mean is probably due to the convolutional network can

converge faster with a more reasonable initialization. And

the reason why search-dm is not as efficient as method net

is that although search-dm is very efficient in computing

sliding distances (the time consumption of a new distance

matrix calculation based on Eq. 20 is almost negligible),

the time consumption of both the initialization of distance

matrix and the calculation of score also increases expo-

nentially with the number of training samples.

6.3.3 Recall rate test

The performance of the four shapelet methods (search-dm,

search-idp, net-mean, net-dm) on the annotated set of 99

words was evaluated in this experiment. The maximum

number of training samples for the search- and net-

methods is set to 100 and 600, respectively, to allow for the

learning of large-scale shapelets to be completed in a

reasonable amount of time. Moreover, according to Eq. 10,

we set the final shapelet length range to ð10; 40Þ. And the

commonly used metric recall rate [38, 45, 46] was adopted

to measure the correctness of discovered shapelets. It is

considered to be identified correctly if the overlap rate

between an identified sign and the ground truth is more

than 50%. Similarly, a word is considered to be correctly

recalled if more than 50% of the target signs are correctly

identified. And the recall rate indicates the proportion of

the correctly recalled words.

The overlap rate, identification rate, and recall rate of

the four shapelet methods are compared in Tables 1 and 2

under different conditions. The best results for each rate

under specific conditions are bolded for intuitive method

comparison. Firstly, we can find that the true ratio and the

number of positive samples have a significant impact on

the learning results. The higher true ratio means the higher

rate of overlap, identification, and recall. This is actually

predictable because the smaller the true ratio is, the more

the shapelet discovering deviates from the assumptions of

the MIL problem. At the same time, the larger the number

of training samples, the higher the rate of overlap, identi-

fication, and recall, which indicates that more training

samples can effectively enhance the ability of shapelet

discovering methods to learn true target signs.

Furthermore, we discovered that the net-mean method

produces the worst learning results, demonstrating two

facts: first, a good initialization of the shapelet net is crit-

ical, and second, the strategy of mean-valued initialization

works poorly in our task. Overall, the search-idp method is

Fig. 5 The time-consuming comparison
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worse than the search-dm because it will filter out good

candidate shapelets compared to the all-search strategy of

search-dm. However, we also find that search-idp performs

best in the case of true ratio\0:5, which is probably

because the filtering strategy can also remove a lot of

interference candidates under noisier conditions. The net-

dm method performs best under nearly all conditions. This

is probably because the net-dm is initialized with searched

shapelets, which is actually equivalent to a two-stage

learning model. The first stage is the rough learning process

using search-dm on a small subset of samples, while the

second stage removes the restrictions on the shapelet val-

ues and fine-tunes the rough shapelets.

Based on the results of the above recall rate test, only the

search-dm and net-dm methods will be used in the fol-

lowing database construction, and the terms of search and

Net in the subsequent section refer to search-dm and net-

dm.

6.4 Database construction

6.4.1 Signs collection

In this section, we applied two best shapelet methods (i.e.

search-dm and Net) to the whole corpus with the same

parameter settings as in the above subsection. Then, the

discovered shapelets will be used to collect the instances of

target signs.

Figure 6 shows the process of signs collection for a

given word ‘‘balance’’. Given a discovered shapelet, the

target signs are identified from the positive samples first.

Here, we believe that the target signs closer to the shapelet

(with green background) have higher confidence of iden-

tification, and they will be used as the criterion to judge

whether a subsequence similar to the shapelet or not.

Finally, the additional similar subsequences will be col-

lected as augmented signs. Figure 6a, b show the signs

collection process based on shapelet searching and shapelet

Net, respectively. The only difference between them is the

shapelets. As shown in figure, the shapelet discovered by

shapelet searching is an actual existing motion clip, while

the shapelet learned by shapelet Net is a parameterized

pose sequence without a corresponding actual motion clip.

6.4.2 Four subsets

Finally, we constructed a Scottish Parliament British Sign

Language database, SPBSL, which includes four large-

scale sign language subsets based on different shapelet

methods and sample strategy. That is: no_aug-search,

no_aug-net, aug-search, aug-net, where search and net

correspond to two shapelet methods, while no_aug and aug

indicate whether the samples contain the augmented signs

or not. The databases, models, and code are available at our

project page.4

The construction strategy of the no_aug sign language

databases is to only collect basic target signs (localized

from the positive samples) as samples. This strategy has

Table 1 The average overlap rate and identification rate

Opts Conditions Words Overlap rate Identification rate

dm idp net-mean net-dm dm idp net-mean net-dm

True ratio [ 0:5 83 0.5010 0.3915 0.2325 0.5428 0.5379 0.4171 0.2432 0.5819

\0:5 16 0.2427 0.2873 0.2080 0.2823 0.2803 0.3283 0.2089 0.2955

Sample num [ 50 59 0.5266 0.4831 0.2747 0.5834 0.5667 0.5168 0.2927 0.6280

\50 40 0.3920 0.2113 0.1557 0.4058 0.4238 0.2272 0.1515 0.4316

Totala – 99 0.4759 0.3814 0.2302 0.5165 0.5128 0.4084 0.2398 0.5541

aThe averaging is performed at samples level

Table 2 The recall rate
Opts Cond Words Recall rate

dm idp net-mean net-dm

True ratio [ 0:5 83 0.5783 0.4217 0.1687 0.6506

\0:5 16 0.1250 0.3125 0.1250 0.1875

Sample num [ 50 59 0.6271 0.5763 0.2373 0.6780

\50 40 0.3250 0.1500 0.0500 0.4250

Total – 99 0.5051 0.4040 0.1616 0.5758

4 https://github.com/hitmaxiang/SPBSL.
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been adopted in many studies [38, 45, 46]. Based on our

analysis and experiments on the annotated words, we know

that the true ratio of positive samples is about 0.6, while

the proportion of true positive samples being correctly

localized (i.e. the identification rate) is only about 0.5. As a

result, when building the non-augmented sign language

database, we only keep the f ratio of nearest target signs as

samples according to Eq. 33. With the test tuning, there is a

better balance between the number and confidence of the

non-augmented sign language database when f is set to 0.7.

The augmented sign language databases are constructed

by collecting similar instances (the signs with green

backgrounds in Fig. 6) of the shapelet from the whole data

source as samples. According to Algorithm 6, an instance

is considered a sample if its distance from the shapelet is

less than the threshold s and it has the shortest distance

among its neighbours. The two-level conditioning function

Eq. 35 determines the threshold s, and the parameters f and

h are both set to 0.3 in our construction.

Figure 7 illustrates the sample distributions of these four

sign language databases. Since the number of samples in

the non-augmented database is completely determined by

the number of positive samples and the parameter f, the

sample distributions of the non-augmented databases based

on two shapelet methods (no_aug-search and no_aug-net)

are identical and are represented commonly as Fig. 7a. The

sample distributions of the two augmented databases are

shown in Fig. 7b, c. As shown in the figure, the sample

augmentation strategy can significantly increase the num-

ber of samples. Compared with the original database, the

aug-search and aug-net databases showed a 3.2 and 2.8

times increase in the mean number of samples, and a 5.3

and 5 times increase in the mean number of samples of the

80% smallest-sized classes, respectively. In summary,

sample augmentation can both increase the number of

samples and improve the balance of the database (the

distribution is flatter).

6.4.3 Test sets

To evaluate the four constructed sign language databases

and compare the impact of different shapelet methods and

sample strategies, we will give the construction method of

the corresponding test set here: The test set is designed as a

collection of target signs that satisfy the condition of

Eq. 35, where both factors f and h are also set to 0.3. First,

the smaller of the f makes the test set have higher identi-

fication confidence. Second, as a common subset of the

augmented and non-augmented datasets, the test set can be

used to evaluate the sample augmentation strategy. In our

(a)

(b)

Fig. 6 The signs collection illustration of the word ‘‘balance’’
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experiments, two test sets were constructed corresponding

to two shapelet methods.

6.5 Database evaluation

6.5.1 Compared methods

In this work, we chose three state-of-the-art SLR methods

to evaluate the four subsets of SPBSL. They are I3D [11],

GRU [9], and TGCN [10]. Their structures are shown in

Fig. 8.

I3D is a spatio-temporal CNN architecture that takes a

multiple-frame video as input and outputs class probabili-

ties over sign categories. We adopt the I3D architecture

due to its success in action recognition benchmarks. The

original I3D network was trained on ImageNet [65] and

fine-tuned on Kinetics-400 [11]. To apply I3D to our SLR

task, a common approach is to treat the original trained

model as a pre-training model, then modify the final linear

classification layer to match the number of classes. Finally,

the model is further fine-tuned using the training data.

GRU is a classical architecture for motion recognition

that has good modelling ability for sequence data. In this

paper, the designed motion features were concatenated and

then fed to a stacked GRU of 2 layers. In practice, we can

adjust the fitting ability of the model by changing the

hidden layer size.

TGCN is an architecture proposed in the paper [10] that

stacks multiple residual graph convolution blocks and takes

the average pooling result along the temporal dimension as

the feature representation of pose trajectories. In the first

layer, the networks take as input the K 	 2T matrix coor-

dinates of body keypoints, where K is the number of

keypoints and T is the number of frames per sample. As

above, the coordinates of the keypoints also need to be

processed by Eq. 4. Then, a softmax layer followed by the

average pooling layer is employed for classification.

6.5.2 Implementation details

The above three recognition models are implemented using

pytorch. Our experiment settings basically follow the

training configurations in the paper [10]. For the input

video frames of I3D, the original video frames will be

resized to 256	 256 first, then we randomly crop a 224	
224 patch from an input frames and apply horizontal flip-

ping with a probability of 0.5. For the hidden layer size of

the GRU, it is empirically set to 64 when the number of

classes is less than 500, and 128 when it is greater than

(equal to) 500. And the same setting is used for the hidden

layer size of TGCN, and the stacking number of residual

graph convolution blocks in TGCN is set to 24.

According to the average length of our manually

annotated sign samples, the time length of the input

Fig. 7 The occurrence distributions of four constructed databases

(a) (b) (c)

Fig. 8 The structures of three

state-of-the-art sign language

classifiers
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samples to all three models is set to 20. When the frame

number of an original sample is greater than 20, input

frames are chosen using uniform sampling. When the

frame number of an original sample is less than 20, the

input frames will be padded forward or backwards ran-

domly using boundary frames. Finally, the Adam optimizer

is chosen to minimize the cross-entropy for all three

models.

Before the database evaluation, different sized (100,

300, 500, 1000) subsets of the four sign language datasets

were constructed first, and then, each subset was evaluated

using three recognition models (i.e. I3D, GRU, and

TGCN). In order to keep the number of samples balanced

among different classes, the maximum number of samples

for each class is set at 200. In the training, the ratio of the

number of training and validation samples is set to 3:1. The

training process will be terminated when the performance

of the validation samples no longer increases. And the two

test sets designed in Sect. 6.4.3 were used to evaluate the

performance of trained models. We use top-k classification

accuracy with k ¼ f1; 5; 10g to evaluate the performance

of the models on databases. In SLR, many misclassifica-

tions can be corrected with contextual knowledge. There-

fore, it is more reasonable to choose top-k accuracy to

evaluate the word-level SLR.

7 Discussion

7.1 Impacts of video parameters

The impacts of video parameters on database construction

are qualitatively discussed in this subsection. In general,

the higher the quality of the video resources, the higher the

quality of the constructed database. In general, high quality

video requires a high frame rate, high spatial and contrast

resolution, etc. Fast and little movements can be captured

well with a high frame rate, while more details (e.g. face,

handshape) can be clarified with a high spatial resolution.

Additionally, a high contrast resolution makes it easier to

identify the ROI. In our study, first, high quality videos can

assist the extraction of motion features with high clarity.

Then, the higher confidence shapelet can be discovered

with more accurate features and thus influence the con-

structed database based on the shapelet. Furthermore, the

database is essentially a collection of video clips, and good

video parameters can also make it easier for various clas-

sifiers to recognize them. In the end, it is worth noting that

the input images for pose extractors and sign recognizers

will be resized to a small fixed size (e.g. 256	 256).

Therefore, it is unnecessary to seek a very high spatial

resolution, and the input images typically need to be

cropped to ensure a high ROI ratio.

7.2 Performance evaluation of networks

The recognition accuracy of the three models on all data-

base subsets is shown in Table 3. The highest recognition

accuracies for different size databases under each classifier

are bolded to represent the impact of database size. Overall,

models I3D and TGCN have better performance than GRU,

which is consistent with the experimental results of the

paper [10]. However, what is not inconsistent is that the

classification accuracy of I3D is lower than TGCN, and it

performs even worse than GRU on non-augmented data-

bases with class numbers below 300. We argue for two

reasons behind this inconsistent phenomenon. First, since

I3D is more complex and larger than the other two models,

it tends to be overfitting when the number of training

samples is small. For the non-augmented databases, the

deficit of samples makes I3D poor and unstable (the clas-

sification accuracy of I3D on the non-augmented databases

of 500 classes is higher than that on the non-augmented

databases of 300 and 100 classes). And the better and more

stable performance of I3D on the augmented database also

revealed that the deficiency of training samples of the non-

augmented database is the main reason for the poor per-

formance of I3D. Secondly, since our databases are con-

structed based on shapelets that learned with extracted pose

features, the image-based I3D does not perform as well as

the pose-based TGCN.

7.3 Effects of shapelets and sample
augmentation

As shown in Table 3, the performance of the databases

based on different shapelet methods is similar for the three

models. The evaluation results are almost the same for the

augmented databases. Overall, the classification accuracy

of the net-based databases is slightly higher than that of the

search-based databases. Compared to the slight impact of

different shapelet methods, the sample augmentation

strategy improves the recognition accuracy of the models

on the databases significantly (about 20% on average), and

the top-1 accuracy of GRU, TGCN, and I3D on the aug-

mented databases can be improved by 33%, 10%, and 28%

on average.
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8 Conclusion

We propose a novel framework based on shapelet that

can build a large-scale word-level sign language database

automatically from online sign language-interpreted

videos. Two modified shapelet methods show that they

can identify the target sign from the weak and noisy

supervision information in a shorter time. The shapelet

net method that is initialized using a roughly searched

shapelet shows superiority in speed and performance.

Then, we construct a 1000 words Britten sign language

database, SPBSL, which contains four subsets based on

different shapelet methods and different sample strate-

gies. Finally, we evaluated the three state-of-the-art

network architectures and approaches as the baselines on

our database and demonstrated promising results of our

proposed framework.

For future works, in response to the current low recall

rate, a judging method should be proposed to remove

invalid words and signs. In addition, a more robust and

reasonable sign language feature descriptor needs to be

designed to hold all kinds of variants, and an appropriate

time-scale scaling needs to be introduced to make the

distance between motions more accurate.
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