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Abstract
Process fault detection and diagnosis (FDD) is a predominant task to ensure product quality and process reliability in

modern industrial systems. Those traditional FDD techniques are largely based on diagnostic experience. These methods

have met significant challenges with immense expansion of plant scale and large numbers of process variables. Recently,

deep learning has become the newest trends in process control. The upsurge of deep neural networks (DNNs) in leaning

highly discriminative features from complicated process data has provided practitioners with effective process monitoring

tools. This paper is to present a review and full developing route of deep learning-based FDD in complex process

industries. Firstly, the nature of traditional data projection-based and machine learning-based FDD methods is discussed in

process FDD. Secondly, the characteristics of deep learning and their applications in process FDD are illustrated. Thirdly,

these typical deep learning techniques, e.g., transfer learning, generative adversarial network, capsule network, graph

neural network, are presented for process FDD. These DNNs will effectively solve these problems of fault detection, fault

classification, and fault isolation in process. Finally, the developing route of DNN-based process FDD techniques is

highlighted for future work.
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1 Introduction

Manufacturing industry refers to the use of specific

resources (e.g., materials, equipment, tools) to create

products that can be used by people through the manu-

facturing process [1]. It is an important pillar industry of

national economy and social development, with process

safety and product quality being two critical issues in

modern industries [2]. In general, the manufacturing

industry is divided into two categories: discrete industry

and process industry. Typical discrete manufacturing

industry mainly includes mechanical processing and

assembly, electronic and electrical appliances, automobile

manufacturing, etc. [1]. Process industry mainly includes

chemical industry, metallurgy, pharmacy, etc. [2]. The

manufacturing process refers to the entire process from raw

material input to finished product production. For the

process industry, the actual industrial processes are mostly

complex processes that will involve complex physical and

chemical reactions, and each subsystem is interconnected.

The main data characteristics in the complex process

industries are high dimensionality, non-Gaussian distribu-

tion, nonlinear relationships, time-varying and multimode

behaviors, data autocorrelations, and other data character-

istics [2]. With the expansion of production scale and the

rapid development of technology, fault detection and

diagnosis (FDD) in modern industry becomes more and

more complex and important. A small fault in the industrial

process may spread through the system, eventually leading

to equipment damage or product quality degradation.

Effective FDD models can detect process faults in the early

stage of production and classify faults accurately for

manufacturing process improvement [3]. Process fault

refers to the abnormal operation of production, which

means that at least one feature or variable appears some

unexpected deviations for process industrial system, while

fault detection method has been employed to monitor
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process data and determine whether some faults happened

[4]. Fault diagnosis is to determine which kind of fault

occurs, specifically to determine the type of fault, fault

magnitude, fault location, and time to mitigate potential

risks. MSPC has long been recognized as one of the most

essential tools for FDD in processes industries [5–8].

Currently, prevalent data-driven techniques include

projection-based methods, traditional machine learning

methods, and deep learning methods. Over the past few

decades, these methods have been intensively investigated

for solving various process FDD issues. The most widely

used data-driven methods, e.g., principle component anal-

ysis (PCA) [9], independent component analysis (ICA)

[10, 11], partial least squares (PLS) [12], fisher discrimi-

nant analysis (FDA) [13], subspace-aided approach (SAP)

[14] as well as their variants, have shown great significance

in process FDD because their simplicity. Among these

techniques, PCA and ICA are two typical unsupervised

methods. PCA is a data projection-based feature extraction

method for the process data with Gaussian distribution.

ICA is able to extract independent components from pro-

cess measurements. PLS is a supervised method that can

extract the correlation model of the process inputs for

prediction. FDA is a typical dimensionality reduction

technique and has been widely applied for process FDD.

SAP offers a unique way for data-driven design of obser-

ver-based process monitoring system without identification

of the complete process model.

The nonlinear extensions of the aforementioned models

(e.g., kernel PCA (KPCA), kernel PLS (KPLS), kernel

FDA (KFDA)) were developed about two decades ago and

have achieved wide applications in process monitoring

systems [15–18]. These methods basically utilize a kernel

function to map the original data into a higher-dimensional

space in which they vary linearly. The nonlinear structure

of input data space is more likely to be linear after high-

dimensional nonlinear mapping [16]. Then, the latent

variables can be extracted from the higher-dimensional

space. Although kernel-based methods are attractive in

nonlinear nonstationary process monitoring, there are still a

lot of critical issues. For instance, conventional KPCA only

considers normal operation data for statistical modeling

and ignores prior fault data in the historical database. A

wealth of surveys given by [19–22] provided the readers

with more comprehensive information on popular data-

driven methods and their applications in process FDD.

These methods rely heavily on statistical models to deter-

mine the existence of process faults. However, the explo-

sion of data volume and dimension makes these traditional

data-driven methods limited in process feature extraction.

Modern industrial processes are usually featured with

complexity and distributed. Manifold learning is widely

acknowledged as an effective technology to enhance the

performance of regular classifiers because it can find the

distribution of input data and preserve their local and

global manifold information [23]. Typical manifold learn-

ing algorithms including isometric feature mapping (Iso-

Map) [24] local linear embedding (LLE) [25], Laplacian

eigenmaps (LE) [26], local tangent space alignment

(LTSA) [27], and locality preserving projections (LPP)

[28, 29] have achieved remarkable successes in diverse

applications. More recently, global/local variance-pre-

serving algorithms are embedded in conventional projec-

tion-based methods to [30–32] discover the intrinsic

manifold in the data for more precise feature extraction.

Manifold learning exhibits great popularity in dimension-

ality reduction and learning geometric distribution of data.

It has been intensively studied in different fields. Other

manifold learning approaches can refer to [33–36].

The ever-increasing amount of big data produced in

modern process systems, coupled with the complexities of

correlating process variables, could result in barriers that

were not anticipated by the practitioners in the manufac-

turing process. This eventually results in high-level of

uncertainty during process fault diagnosis [37]. The advent

of artificial intelligence (AI) accelerates the development

of process FDD techniques. AI in a broad sense refers to

the realization of human mind thinking through computers

(machines), so that machines like human decision-making.

Machine learning is a method to implement AI, and deep

learning is a subarea of machine learning. The concept of

deep learning stems from the study of artificial neural

networks (ANNs), and multi-layer perceptron with multi-

ple hidden layers is a deep learning structure. Deep

learning generates abstract high-level representations of the

given data. The most traditional machine learning models

are usually simple in structure and have only a few shallow

layers. The features for traditional machine learning

methods are usually predetermined and selected manually

according to specific scenarios, which bring many diffi-

culties for practitioners. Moreover, these methods mainly

focus on various classification tasks.

In this context, it is essential to exploit effective process

FDD models that can automatically extract highly repre-

sentative features from complicated process data. In recent

years, deep learning has attracted many attentions in pro-

cess FDD due to its unparalleled feature learning ability.

Different from conventional machine learning-based fea-

ture learners, a deep neural network (DNN) usually con-

sists of multiple layers that can hierarchically convert input

data into hidden abstractions and use these extracted fea-

tures for FDD tasks. The most popular DNNs, e.g.,

autoencoder (AE) [38] and its variant, convolutional neural

network (CNN) [39], deep belief network (DBN) [40],

recurrent neural network (RNN) [41], residual network

(ResNet) [42], have been widely employed as
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representation learners to extract comprehensive features

for different pattern recognition tasks in the fields of

computer vision, natural language processing, and speech

recognition. These DNNs now have become promising

techniques for handling complicated process signals with

high nonlinearity and correlations. There is a wealth of

literature that investigated the effectiveness of DNN-based

models for solving process FDD issues. Their excellent

performance in learning high-level features remarkably

increases the process FDD accuracy of the classifiers.

Different from the model-based approaches that require

prior knowledge of the process, the data-driven methods

only need the availability of a large amount of historical

process data. Feature extraction can transform these data

and present them to the FDD system as prior knowledge.

This extraction process can be either qualitative or quan-

titative. The three main symbolic AI-based methods for

extracting qualitative historical information are expert

systems, fault tree, and signed diagraph. These machine

learning-based quantitative extraction methods can be

divided into four categories: unsupervised learning,

supervised learning, semi-supervised learning, and rein-

forcement learning. Supervised learning and unsupervised

learning have been widely adopted in process control,

while semi-supervised learning methods and reinforcement

learning methods have rarely been used in this field. The

data-driven-based machine learning methods for process

FDD are shown in Fig. 1.

Anupam et al. [43] presented a general framework

common to all the process monitoring fault detection

(PMFD) and discussed the future challenges of this

research. Ge et al. [2] provided a review about data-based

process monitoring. Yin et al. [22] reviewed the wide

applications of data-driven methods in process monitoring

and fault diagnosis, which provides a reference for indus-

trial process monitoring of large-scale industrial processes.

Qin et al. [44] provided a review about data-driven FDD

methods and their applications in industrial processes from

the perspective of multivariate statistical methods and

finally summarized the challenges, opportunities, and

expansion. From the perspective of machine learning, Ge

et al. [45] reviewed the application of data mining and

analysis in process industry in recent decades. Nor et al.

[46] reviewed a comprehensive literature review on

applications of data-driven methods in FDD systems for

chemical process systems. Taqvi et al. [47] reviewed the

methods of chemical process FDD based on supervised and

unsupervised learning technology and presented the chal-

lenges in this field. Lei et al. [48] presented a review and

roadmap to deep learning-based machinery fault diagnosis

and offered a future perspective of intelligent fault diag-

nosis (IFD). Wang et al. [1] presented a comprehensive

survey of commonly used deep learning algorithms and

discussed their applications in smart manufacturing.

Although numerous studies and reviews have been dedi-

cated to process detection and diagnosis, the coverage

about data-driven methods using deep learning is still

rather limited. For examples, Refs. [2, 43–47] just

reviewed applications of traditional machine learning to

process FDD. Refs. [1, 22, 48] mainly focused on the

applications on specific application areas using machine

learning models. Therefore, it is still a blank to systemat-

ically review the development of process FDD from the

past to the future. Furthermore, these reviews have not

given a detailed process FDD developing route for fore-

casting future trends, which is very meaningful for readers.

In recent years, a large number of new deep learning

methods have emerged, which have not been explained in

detail in other review papers. Therefore, it needs a new

review to summarize the current research progress of

process FDD.

This paper provides a systematic review on the devel-

opment of process (especially complex industrial pro-

cesses) FDD by using machine learning (especially deep

learning) methods and presents a future development on

this field. It is a special and completely different topic. The

developments of deep network, their applications, and

future prospects in process FDD in this paper are quite

different from the previous review articles. The discussions

on the applications of these deep learning methods (i.e.,

deep residual shrinkage network (DRSN), transformer,

large-scale neural network, edge computing, etc.) in pro-

cess FDD are presented in this review. The aims of this

review are refined as follows: (1) The developments of

data-driven process FDD are summarized into three periods

from traditional machine learning to deep learning. In the

future, these new deep learning techniques, e.g., transfer

learning, graph neural network (GNN), deep Gaussian

process (DGP), are viewed to promote the further devel-

opment of process FDD; (2) A developing route of process

FDD is presented in this review. The developing route

includes potential research trends and can provide direction

and valuable guidance for researchers.

The rest of the study is structured as follows. Section 2

presents a comprehensive review on the development of

process FDD in the past. Section 3 reviews the application

of deep learning, which are considered as the present

period in the development of process FDD. Section 4

argues applications of transfer learning to process FDD.

Section 5 displays a developing route in deep learning-

based process FDD. Conclusions are drawn in Sect. 6.
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Fig. 1 Applications of machine learning methods in process FDD
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2 Traditional methods of process fault
detection and diagnosis in the past

This section reviews the traditional machine learning-based

methods for process FDD. The process of process FDD

mainly includes three steps: data acquisition and prepro-

cessing, feature extraction and selection, and model train-

ing and feature classification. Different models have their

own characteristics, and they are applicable to different

industrial scenarios. In general, there are these represen-

tative processes in industrial processes, e.g., continuous

processes, batch processes, multimode processes [2]. (1)

The continuous process always operates through a contin-

uous way [49]. After the process has been started up, it runs

around the best state most of the time and produces con-

stant output. Continuous process is a traditional industrial

process, which has been widely existed in chemical,

petrochemical and metallurgical industries. (2) Batch pro-

cess is a discontinuous process with a limited operation

duration [50]. Compared with continuous process, the set

point of batch process always changes, which means that

the process usually operates under different process con-

ditions. Thus, batch process can produce various grades of

products in a single batch process. It is inherently nonlin-

ear, time varying, and often has a strong dynamic data

behavior. The batch processes exist in the plastic engi-

neering, food engineering and biochemical industries. (3)

Multimode process refers to an industrial process with

multiple modes, and its operating conditions are always

switched from one operating mode to another [51]. There

are many multimode methods for process monitoring

[8, 52–54]. In these methods, the predefined model matches

the corresponding operation mode of the process.

The process FDD methods based on machine learning

are mainly based on supervised learning or unsupervised

learning [45]. The data in supervised learning method

consist of input samples and their corresponding labels. By

learning the relationship between samples and labels, the

model predicts the labels of unknown samples for process

fault classification. Common supervised learning models

include PLS, k-nearest neighbor (kNN), ANN, etc.

Accordingly, the data in the unsupervised learning method

consist of only inputs without any corresponding labels.

The goal of this unsupervised learning problem may be to

find a group of similar samples in the data (i.e., clustering

problem), or determine the distribution of the data in the

input space (i.e., density estimation), or project the data

from the high-dimensional space to the low-dimensional

space (i.e., dimensionality reduction and data visualiza-

tion). Common unsupervised learning models include

PCA, KPCA, ICA, etc.

The effectiveness of these machine learning methods

needs to be verified in real industrial processes. Most of the

proposed FDD methods are applied to chemical process

benchmarks, e.g., Tennessee Eastman process (TEP) [49],

Fed-batch fermentation penicillin process (FBFP) [55],

continuous stirred tank reactor (CSTR) [56]. Other indus-

trial processes include semiconductor manufacturing pro-

cess [57], air separation process [58], grinding process

[59], boring processes [60], laminar cooling process [61],

assembly process [62], and aluminum smelting process

[63]. In these modern industrial processes, sensors are often

used to monitor and evaluate process variables and obtain a

large number of process history data. Industrial process

data usually involve the following main characteristics, i.e.,

high dimensionality, non-Gaussian distribution, nonlinear

relationships, time varying, autocorrelations, and multi-

variate [2]. According to different data characteristics,

different FDD models should be reasonably selected. For

example, PLS is a linear estimation method, which is not

suitable for the monitoring of nonlinear processes. In

addition, although GMM can handle the nonlinearity of the

process, it may not be able to model all types of non-

Gaussian data. According to the characteristics of different

methods, the advantages and disadvantages of these tradi-

tional machine learning methods and their applications in

process FDD are summarized in Table 1.

2.1 Overview

Process monitoring refers to the continuous monitoring of

the industrial process to detect abnormal conditions or

abnormal behavior. Once the fault is detected in the

industrial process, the fault diagnosis is needed to deter-

mine the root cause of the fault. Through the fault detection

and diagnosis technology to eliminate the fault causes, it is

helpful to maintain the smooth operation of the process

industry.

Some traditional machine learning methods (e.g., ANN,

SVM, PCA) are applied to process FDD. The procedure

includes three steps, e.g., data acquisition and preprocess-

ing, feature extraction, feature selection and model selec-

tion, training and validation, as shown in Fig. 2. Each step

will be detailed in the following subsections.

2.2 Step 1: data acquisition and preprocessing

Data include history data and real-time data in process

industry. Data acquisition is the first step of process mon-

itoring. There are several main types of data collected

through sensors: vibration signal, speed, pressure, temper-

ature, force, current signal, audio signal, images, etc. In this

step, the process data structure is checked, different data

features are analyzed, the operation area of the current
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Table 1 Summary of applications of the traditional machine learning methods in process FDD

Methods Advantages Disadvantages Applications

Supervised learning methods

PLS It is commonly used in Gaussian

process monitoring

It is very difficult to be applied in

nonlinear process

Industrial processes [64–71]

kNN (1) It is simple and effective in

classification

(2) It is more suitable for automatic

classification with large sample size

(3) It can deal with multiple fault

classification problems

(1) When the class labels are

unbalanced, the classification

accuracy will decrease

significantly

(2) It is difficult to deal with multi-

dimensional data

Semiconductor manufacturing process

[57, 72–75]

ANN (1) It shows strong fault tolerance to

noise data

(2) It can fully approximate the

complex nonlinear relation in the

data

(1) A large number of parameters

need to be learned on a big dataset

(2) It is difficult to observe the

learning process

Engineering processes [76], air separation

process [58], grinding process [59], boring

processes [60], multivariate processes

[77–80], laminar cooling process [61],

continuous process [81], nonlinear process

[82, 83], batch process [84], assembly

processes [62]

Support vector

machine

(SVM)

It can solve high-dimensional

problems and has good

generalization performance

(1) It is sensitive to missing data

and has no general solution to

nonlinear problems

(2) It is difficult to deal with large-

scale training samples

Chemical process [85], TEP [49, 86], FBFP

[55], batch process [87]

FDA It can effectively reduce the

dimension of high-dimensional

data and is conducive to fault

detection

It is difficult to solve complex

process control problems

Complex chemical process [88], batch process

[17, 89, 90], TEP [91–94], multimode process

[95]

Unsupervised learning methods

PCA (1) It is used for dimension reduction

and feature extraction from the data

(2) It can reduce the computational

cost of the classifiers

(1) It is difficult to deal with

nonlinear data

(2) It is very difficult to be applied

in non-Gaussian process

Batch processes [96, 97], multivariate processes

[98], industrial boiler process [99],

multivariable continuous processes [100], TEP

[31], multivariate statistics process [101–103],

chemical process [104]

KPCA It is suitable for solving the problem

of nonlinear feature extraction from

the data

The calculation of KPCA is more

complex than that of PCA

Nonlinear multimodal process [105], nonlinear

processes [106], chemical process [107]

ICA (1) It can extract high-order

information from the data

(2) It can deal with non-Gaussian

process

(1) It is difficult to determine the

control limit

(2) It cannot be used to estimate

Gaussian distribution of the data

Multivariate statistical process [108–110], TEP

[111–113]

Gaussian

mixture

model

(GMM)

(1) It is easy to estimate the

distribution of the data with

multimodal characteristics

(2) It can handle the nonlinearity of

the process

(3) It is commonly used in non-

Gaussian process monitoring

(1) The model training is

complicated

(2) It may not be able to estimate

very complex distributions of the

data

CSTR [56], TEP [56], semiconductor

manufacturing processes [114, 115],

manufacturing process [32, 116], chemical

processes [117]

Hidden

Markov

model

(HMM)

(1) It can fully mine historical data

information and can be used for

process fault prediction

(2) It has the ability to process

dynamic data

It requires large-scale training data Multimode processes [52–54], nonlinear

multimodal process [118]

Support vector

data

description

(SVDD)

(1) It can handle both of the linear

and nonlinear process data

(2) The trained model can be used for

process monitoring directly based

on a threshold

(1) It is difficult to setup the

threshold of SVDD that could

trigger many false alarms

(2) It is difficult to analyze and

interpret the process

Multivariate processes [119], batch process

[120], non-Gaussian process [121]
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process is identified, and the modeling and evaluation

datasets are determined. After data collection, data pre-

processing is needed to improve the quality of data. The

methods of data preprocessing include data cleaning, data

integration, data transformation, data reduction, etc. Data

cleaning is to process the missing data through sample

deletion, missing value estimation, Bayesian inference, and

other methods to eliminate the inconsistency of data. Data

integration removes outliers and gross errors in datasets

through data combination and unified storage. Data trans-

formation is to transform data into a form suitable for data

mining by means of smooth aggregation, data generaliza-

tion, and normalization.

2.3 Step 2: feature extraction/feature selection

Feature extraction includes two steps. Firstly, some com-

mon features are extracted from the collected data. Sec-

ondly, feature selection methods, such as filter, wrapper,

and embedding method, are used to select features that are

sensitive to process status from the extracted features.

2.3.1 Feature extraction

Feature extraction generates a subset of new features

through the combination of existing features. Its purpose is

to obtain the essential features of process data, remove

useless noise and realize data visualization. These common

feature extraction methods consist of PCA, ICA, linear

discriminant analysis (LDA) and manifold learning. In

general, LDA is used to reduce the dimension if the data

have class labels. Otherwise, PCA is used if the training

data have no class labels.

2.3.2 Feature selection

These feature selection methods, e.g., filters, wrappers, and

embedded methods, are used to select sensitive features to

Table 1 (continued)

Methods Advantages Disadvantages Applications

K-means (1) It is an un-supervised clustering

algorithm

(2) The calculation cost is very small,

and it is easy to use in applications

(1) The number of clusters needs to

be given in advance. In many

cases, it is very difficult to

estimate it

(2) It is vulnerable to noise in the

data

Batch process [122], aluminum smelting process

[63], multimode process [51, 123]

Self-

organizing

map (SOM)

(1) It is a kind of unsupervised

learning method with self-

organization and visualization

(2) It is very effective to estimate the

distribution of the data

(1) The convergence of the network

is greatly affected by the model

parameters

(2) It requires long running time

Manufacturing process [124], industrial gas

fractionation process [125], TEP [126–128]

Data acquisition and 
preprocessing

Feature 
extraction

Model selection, training and 
validation (feature classification )

Feature 
selection

PCA

ICA

Linear 
discriminant 

analysis (LDA)

Filter

Wrapper

Embedded

Statistical features 
amplitude, root 

mean square 
(RMS), kurtosis

Images

Data types:

Vibration 
signal

Current 
signal

Audio signal

Data cleaning

Data 
integration

Data 
transformation

Data 
reduction

Methods: Data
preprocessing

Methods: 
Feature 

selection PLS

kNN

ANN

Supervised 
learning methods:

SVM

FDA

Unsupervised 
learning methods:

PCA/KPCA

ICA

GMM

HMM

SVDD

Fig. 2 Detection and diagnosis procedure of process FDD using traditional machine learning methods
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process state from the extracted features. It is beneficial to

remove the redundant information and further improve the

process FDDs.

Filter-based methods. The filter directly preprocesses the

collected features, which are independent of the training of

the classifier [129]. Firstly, feature selection is carried out,

and then, the learner is trained, so the process of feature

selection has nothing to do with the learner. It is equivalent

to filtering the features first and then training the classifier

with feature subset.

Wrapper-based methods. The final classifier is directly

used as the evaluation function of feature selection, and the

feature subset is selected for a specific classifier. Different

from the filter-based method, wrapper focuses on the

interaction between feature selection and training classifier

[129].

Embedded methods. Embedded method combines the

process of feature selection with the process of classifier

learning and selects features in the process of learning. The

most common feature selection method is L1 regularization

or L2 regularization [129].

2.4 Step 3: model selection, training,
and validation

Different models can be selected according to the charac-

teristics of data relationship and process variables. For

example, if the data relationship is linear and most process

variables are Gaussian distribution, PCA or PLS can be

selected for process FDD. If there are process variables that

are non-Gaussian, ICA and other non-Gaussian modeling

methods can be selected. If the relationship between dif-

ferent process variables is nonlinear, the nonlinear mod-

eling methods, e.g., ANN and SVM, can be selected for

classification.

The next step is to train the model and evaluate its

effectiveness. Based on the training model of labeled

samples, input unlabeled samples can achieve the purpose

of feature classification. Several typical process FDD

methods using traditional machine learning are briefly

introduced in the following section.

2.4.1 Supervised learning methods

The data in supervised learning methods must be classified

and labeled with tags that indicate the system conditions,

such as health, fault, and fault type. In supervised learning-

based process FDD, the labeled data are used to train the

machine learning model, and the trained model can classify

the unlabeled data [22].

2.4.1.1 PLS-based approaches PLS is a basic multivariate

statistical method and extensively used for process FDD. It

establishes a linear regression model by simultaneously

projecting the predicted variables and observable variables

into the latent variable space. PLS needs to use label

information in modeling procedure, which is a commonly

used in supervised learning. Collect the data under normal

operation to generate an input matrix X ¼ ½x1; x2; . . .; xn� 2
Rn�m and an output matrix Y ¼ ½y1; y2. . .; yn� 2 Rn�p with p

process variables. PLS projects X and Y to a low-dimen-

sional space defined by l latent variables as follows:

X ¼
Pl

i¼1

tip
T
i þE¼ TPTþE

Y ¼
Pl

i¼1

tiq
T
i þF¼ TQTþF

8
>><

>>:
ð1Þ

where T ¼ ½t1; . . .; tl� denote the latent score vectors,

P ¼ ½p1; . . .; pl� and Q ¼ ½q1; . . .; ql� denote the loadings for
X and Y, respectively, E and F denote the residuals of PLS

corresponding to X and Y, respectively, and l is generally

determined cross-validation. The details of the PLS algo-

rithm can refer to [130, 131].

The latent vectors ti are computed sequentially from the

data such that the covariance between the deflated input

data, Xi¼ Xi�1�ti�1p
T
i�1;X1 ¼ X, and output data Y for

each factor can be maximized, and wi is the weight vectors

to compute the scores ti ¼ Xiwi. The scores can be denoted

as:

T ¼ XR ð2Þ

where R ¼ WðPTWÞ�1
with the following relation [132]:

PTR ¼ RTP ¼ Il ð3Þ

PLS uses an oblique projection toward the input data

space, such that the model estimate and residual on the new

sample x can be obtained:

x̂ ¼ PRTx ð4Þ

ŷ ¼ QRTx ð5Þ

~x ¼ ðI � PRTÞx ð6Þ

where x̂ and ~x denote the oblique projections of x [44].

Although the FDD technology based on PLS has been

widely used in industrial process, there are still two prob-

lems: (1) PLS needs to select more principal components to

describe the process related changes, which makes the

interpretation of the model very difficult; (2) PLS does not

extract principal components according to the order of

variance in the process variable matrix. It is not suitable to

monitor the residual subspace with Q statistic. In order to

solve the above problems, the following extended models

are proposed based on the basic PLS model.

Zhou et al. [133] proposed a PLS-based scheme, total

projection to latent structure (TPLS), to deal with skew
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decomposition in standard PLS. However, TPLS does not

clearly explain the reason that the principal component

space of PLS contains the change independent of the fault

in the practical application, and the principal component

space does not need to be decomposed into four subspaces,

which can be completely decomposed into the subspace

related to the process fault and the subspace related to the

input. Qin et al. [134] proposed concurrent projection of

latent structure (CPLS), which simplified the structure of

TPLS. Based on the consistent projection of input and

output data spaces, CPLS provides complete monitoring of

process faults occurring in predictable output subspace and

unpredictable output residual subspace. In order to solve

the dynamic problem of industrial process, dynamic prin-

cipal component analysis (DPCA) and dynamic PLS

(DPLS) method are proposed [64–68]. Similar to TPLS,

CPLS does not change the prediction ability of PLS for

fault variables, but further decomposes the measurement

variable space according to the fault variable space. Ding

et al. [69] and Yin et al. [69, 70] constructed the modified

PLS (MPLS), which cleverly used SVD to decompose the

process variable space into two subspaces, but required that

the principal component subspace should not contain

components orthogonal to the fault variables. MPLS avoids

the complex iterative calculation process of CPLS in

practical application, which is conducive to the prediction

of process faults, but the residual space has no contribution

to its prediction. In order to ensure the completeness of

spatial decomposition, Peng et al. [71] proposed an effi-

cient latent structure projection (EPLS) based on MPLS.

Das et al. [135] combined cluster analysis with multiple

multi-block PLS (MBPLS) for process monitoring.

2.4.1.2 kNN-based approaches kNN is one of the sim-

plest machine learning algorithms, which are often used to

complete classification tasks [136]. In this method, a dis-

tance metric is used to search for k samples near a given

unlabeled sample. As shown in Fig. 3, in the decision-

making of classification, kNN only determines the category

of the sample to be classified according to the category of

the nearest one or several samples.

The kNN-based method is widely used in semiconductor

manufacturing process. He et al. [57] proposed a fault

detection method based on k-nearest neighbor rule (FD-

kNN) for semiconductor manufacturing process. In order to

enable FD-kNN to monitor online process, He et al. [72]

proposed a principal component-based kNN (PC-kNN) for

fault detection. For nonlinear, multimodal, and non-Gaus-

sian batch processes, Guo et al. [73] proposed an improved

fault detection method based on KNN. The results show

that the proposed method can achieve better fault detection

performance compared with MPCA, FD-kNN and PC-

kNN. Li et al. [74] proposed a diffusion mapping-based

kNN rule (DM-kNN) technology, which can reduce the

cost of data storage and improve the performance of fault

detection. Zhang et al. [75] proposed a new fault detection

model based on weighted distance of kNNs (FD-wkNNs),

which is more suitable for multimodal process monitoring

than kNN. kNN and its extensions are simple and can be

applied in the process FDD effectively. When the number

of features increases, however, the amount of calculation

for kNNs increases significantly. Thus, it is difficult to

effectively solve the problem of sample imbalance.

2.4.1.3 ANN-based approaches ANN generally consists

of a complex network structure formed by the intercon-

nection of a large number of processing units (neurons). It

is a kind of abstraction, simplification, and simulation of

human brain organization structure and operation

mechanism.

Multi-layer perceptron (MLP) trained by back propa-

gation (BP) algorithm is the most successful neural net-

work model. An ANN consists of three components: input

layer, hidden layer, and output layer. The signal propagates

forward, and the error propagates backward. ANN is based

on numbers of simple processors and neurons, as shown in

Fig. 4. Given the training dataset

f x1; y1ð Þ; x2; y2ð Þ; . . .; xm; ymð Þg, where xm 2 Rd includes d

features and ym 2 Rl includes l health states, the output of

the hth hidden layer is expressed as:

ðxhi Þj ¼ f h
Xnh�1

i¼1

xh
j � xh�1

j þ bhj

 !

; j ¼ 1; 2; . . .; nh; h

¼ 1; 2; . . .;H ð7Þ

where ðxhi Þj is the output of the jth neuron in the hth hidden

layer, and x0i ¼ xi, nh is the number of neurons in the hth

hidden layer, f h is called the activation function of the hth

hidden layer, often chosen to be the sigmoid function, nh�1

is the number of neurons in the ðh� 1Þth hidden layer, xh
j

is the weights between the neurons in the previous layer

and the jth neuron in the hth hidden layer, and bhj is the bias

test sample

k =1 

is classified as 

is classified as 

k =3 

k =5 

is classified as 

Fig. 3 Illustration of the kNN algorithm
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of the hth hidden layer. The output of BPNN can be

obtained by:

yk ¼ f out
XnH

i¼1

xout
j � xHj þ boutj

 !

; k ¼ 1; 2; . . .; l ð8Þ

where yk is the predicted output of the kth neuron in the

output layer, f out is the activation function of the output

layer, and xout
j and boutj are the weights and bias of the

output layer, respectively.

Numerous research activities have shown that ANN has

powerful pattern classification and recognition. As a result,

ANN is one of the classifiers commonly used in intelligent

fault diagnosis [137, 138]. MLP is an ANN made of units

arranged in layers with only forward connections to units in

subsequent layers [139]. This model has been successfully

applied to fault detection and identification of turning

processes [76], air separation process [58], grinding pro-

cess [59], boring processes [60], multivariate attribute

process [78].

The radial basis function (RBF) network has a feedfor-

ward structure, consisting of only one hidden layer with no

weighted connections and fully interconnected to the out-

put layer. Compared with MLP, RBF is faster to train

[140]. RBF has been used in several applications

[61, 77, 81]. Probabilistic neural network (PNN) [141] is

similar with MLP in structure, but due to the smaller

number of connections, PNN is normally easier to train

than MLP. PNN and its variants have been used at fault

diagnosis of nonlinear process [82, 83] and batch process

[84]. In addition, Yu et al. [78, 79] developed a selective

neural network ensemble method (DPSOEN, discrete par-

ticle swarm optimization) to accurately locate the source of

runaway signals in multivariate manufacturing processes.

Du et al. [62] explored a selective neural network ensemble

algorithm for detecting and isolating process fault in

assembly processes.

2.4.1.4 SVM-based approaches SVM is a computational

learning method for small samples classification [142]. A

hyperplane f xð Þ ¼ 0 is expected to be found to separate the

given datasets into two classes, and the hyperplane is

defined as:

f xð Þ ¼ xTxþ b ¼
Xm

i¼1

xixi þ b ¼ 0 ð9Þ

where x is a m-dimensional vector and b is a scalar. As

shown in Fig. 5, SVM constructs two parallel hyperplanes

as the interval boundary, that is, the maximum margin, to

distinguish the classification of samples.

Due to the data classification ability of SVM, it has been

used for process FDD in the past years. Peng et al. [85]

proposed a novel process fault detection and classification

approach via non-negative matrix factorization with

sparseness constraints (NMFSC) and structural SVMs. Yin

et al. [86] reviewed the research and development of FDD

based on SVM in complicated industrial processes. Onel

et al. [49] proposed a new feature selection algorithm based

on nonlinear (kernel correlation) SVM and applied it to

continuous process monitoring and fault detection. Yang

et al. [55] combined PCA and recursive feature elimination

(RFE) with SVM for process FDD. Onel et al. [87] pre-

sented a novel data-driven framework for process moni-

toring in batch processes, where a feature selection

algorithm based on nonlinear SVM is used to exploit high-

dimensional process data.

2.4.1.5 FDA-based approaches FDA is an optimal

dimension reduction method that has been intensively

studied in process fault diagnosis. It can separate process

faults from normal samples by searching for the directions

with the maximized discrimination between faults and

Input layer

yl

x1

x2

xd

...

... ...

y1

y12

...

Hidden layer Output layer

Fig. 4 An artificial neural network with two hidden layers

Positive class

Negative
class

Fig. 5 Classification by the linear SVM
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normal data instead of the largest variability only within

normal samples [88]. The objective of FDA is to seek a

mapping to maximize the scatter between the classes and

minimize the scatter within each class.

In the past few years, FDA is mainly used in process

monitoring, fault classification and fault diagnosis in pro-

cess industry. Xi et al. [17] proposed a novel nonlinear

biological batch process monitoring and fault identification

approach based on kernel FDA. In order to deal with highly

correlated, complex, and noisy high-dimensional databases

effectively, Nor et al. [91] proposed a process FDD method

based on wavelet analysis, kernel FDA (KFDA), and SVM.

Nor et al. [94] proposed a multi-scale KFDA adaptive

neuro-fuzzy inference system (KFDA-ANFIS) framework.

Yu [88] proposed a novel localized FDA (LFDA)-based

process monitoring approach to monitor the processes

containing multiple types of steady-state or dynamic faults.

Yu [89] proposed a multiway kernel localized FDA

(MKLFDA) for batch bioprocess monitoring. Zhao et al.

[90] proposed a FDD method based on extreme learning

machine (ELM) and multiway FDA (MFDA). Ren et al.

[95] integrated local consistency Gaussian mixture model

(DLCGMM) with modified local FDA (MLFDA) for

multimode process monitoring. Tang et al. [92] proposed a

novel data-driven process monitoring method named Fisher

discriminant global–local preserving projection (FDGLPP)

and applied it to diagnosis fault in industrial process. Yang

et al. [93] presented a class-incremental scheme of FDA to

improve the performance of process fault diagnosis.

2.4.2 Unsupervised learning methods

The difference between supervised learning and unsuper-

vised learning is whether the training data of the model

need labels. Unsupervised learning models can be con-

structed on training data without class labels [22].

2.4.2.1 PCA-based approaches PCA is a typical statistical

approach that has been widely used in process monitoring

field. PCA does not use label information in the modeling

procedure and is a unsupervised learning method for

dimension reduction [45]. It is capable of projecting the

high-dimension data onto a lower-dimension space that

contains the most variance of the original data and accounts

for correlation among variables.

Denote the dataset X ¼ ½x1; x2; . . .; xn�, PCA seeks a

mapping axis a, such that the mean square of the Euclidean

distance between all pairs of the projected samples

Y ¼ ½y1; y2. . .; yn�, i.e.,yi ¼ aTxi(i ¼ 1;. . .; n), is maximized

as follows:

JgðaÞ ¼
1

n

Xn

i¼1

ðyi � yÞ2 ¼ 1

n

Xn

i¼1

aTðxi � xÞðxi � xÞTa ¼aTCa

ð10Þ

where y ¼ 1
n

P
yi, x ¼ 1

n

P
xi and C ¼

1
n

Pn
i¼1 ðxi � xÞðxi � xÞT is the covariance matrix. The

eigenvectors of the data covariance matrix associated with

the largest eigenvalues are the basis functions of PCA. The

output of principal vectors a ¼ a1; . . .al is an orthonormal

set of vectors representing the eigenvectors of the sample

covariance matrix associated with l\m (l is the selected

number of principal components (PCs) and m is the number

of all PCs).

PCA and PLS are two typical multivariate statistical

approaches in FDD [143]. Some literatures reviewed the

applications of PCA and PLS in process analysis and

control, FDD [96–98, 144]. The first attempt of applying

PCA in FDD can be found in [99]. This method was

extended to batch processes by using multiway PCA [97].

To deal with nonlinearity, a nonlinear PCA [97] and a

neural net PLS [145] were proposed. In [100], an integral

statistical methodology combining PCA and discrimination

analysis techniques was proposed. Yu [31] presented a

local and global principal component analysis (LGPCA),

which is a linear dimensionality reduction technique

through preserving both of local and global information in

the observation data. Chaouch et al. [146] developed an

off-line monitoring method based on multilayer neural

PCA and nonlinear gain scheduling and applied it to a

photovoltaic system.

For high-dimensional-related process variables, the

main data information can be retained, and the data

information can be greatly compressed through the

dimensionality reduction in PCA. After the dimension of

process variables is reduced, further data analysis will

become easier. In the past few years, PCA has many

applications for dimensionality reduction and data visual-

ization [101–103].

2.4.2.2 KPCA-based approaches Kernel methods, e.g.,

kernel PCA (KPCA), KPLS, are utilized to avoid nonlinear

optimization and has been widely applied in nonlinear

process monitoring. The basic idea of kernel methods is

first projecting the process data into a high-dimensional

feature space and then performing linear PCA or PLS in the

feature space [105]. Take KPCA as an example, the

specific implementation of KPCA is presented as follows:

Denote a dataset X ¼ ½x1; x2; . . .; xn�,
xi¼ ½xi1; xi2; . . .; xip�;i¼ 1; 2;. . .; n with p measured process

variables. The covariance matrix of the dataset is calcu-

lated as follows:
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1

n

Xn

j¼1

xTj xj ð11Þ

where n is the number of samples. Suppose the nonlinear

mapping:

Ux ! F ð12Þ

Thus, F is generated as Uðx1Þ;Uðx2Þ;. . .;UðxnÞ. Denote
the kernel function as:

K ¼ UðXÞTUðXÞ ¼ ½kðxi; xjÞ�n�n ð13Þ

The kernel function must satisfy the Mercer theorem. In

other words, the kernel is the inner product of the feature

space. Through the kernel function, the calculation in the

feature space can be calculated in the original input space,

without knowing the high-dimensional transformation:

kðxi; xjÞ ¼ UðxiÞT ;UðxjÞ
� �

¼ UðxiÞT ;UðxjÞ ð14Þ

Then, the covariance matrix in the feature space is

calculated:

C ¼ 1

n

Xn

j¼1

UðxjÞT ;UðxjÞ ð15Þ

Thus, the operation of PCA in the feature space is:

kV ¼ CV ð16Þ

where k is the eigenvalue and V is the eigenvec-

tor,V 2 F 0f g. Since V belongs to the generated space of

Uðx1Þ;Uðx2Þ;. . .;UðxnÞf g, the following formula can be

obtained:

kðUðxkÞ � VÞ ¼UðxkÞ � CVðk ¼ 1; 2;. . .; nÞ ð17Þ

There exists a parameter a¼ fa1; a2; . . .; ang, such that V
can be expressed linearly by UðxkÞðk ¼ 1; 2;. . .; nÞ,
namely:

V ¼
Xn

i¼1

aiUðxiÞ ð18Þ

By combining Eqs. (1) and (2), the following expression

is obtained:

k
Xn

i¼1

ai UðxkÞUðxiÞ½ � ¼ 1

n

Xn

i¼1

ai UðxkÞ
Xn

j¼1

ai UðxjÞ
� �

" #

UðxjÞTUðxiÞ
� �

ð19Þ

Then, the kernel function is introduced:

nka ¼ Ka ð20Þ

Finally, the eigenvalues and eigenvectors of K are

obtained, and the principal components are extracted by

performing PCA.

KPCA has been used to monitor nonlinear processes, but

it is not very suitable for process fault diagnosis. Thus, it

often combines other methods to solve the problems of

FDD. Li et al. [106] presented a new method of FDD for

nonlinear processes based on KPCA and least squares

support vector machine (LSSVM). A new detection and

diagnosis system combining the decision directed acyclic

graph (DDAG) with KPCA is proposed in [147]. Xu et al.

[107] used an improved multi-scale KPCA to analyze the

multi-scale and nonlinear property of chemical data.

2.4.2.3 ICA-based approaches ICA is a multivariate sta-

tistical approach that can extract statistically independent

components (ICs) from the given data. Because it is suit-

able for process measurement with non-Gaussian distri-

bution, it has been intensively applied for solving process

fault detection issues during the past few decades [148].

Denote a given input vector xðiÞ ¼
½x1ðiÞ;x2ðiÞ;. . .; xmðiÞ�T with m observed measurements at

sample i, which can be described as a linear combinations

of k unknown independent components (IC) s1; s2; . . .; sk,

then [11]:

xðiÞ ¼
Xk

j¼1

ajsjðiÞ ¼ AsðiÞ ð21Þ

The relationship between the original data and ICs is

expressed as:

X ¼ ASþ E ð22Þ

where X ¼ ½xð1Þ;xð2Þ;. . .; xðnÞ� 2 Rm�n denotes the input

matrix with n samples, A ¼ ½a1; a2; . . .; ak� 2 Rm�k denotes

the mixing matrix, S ¼ ½sð1Þ;sð2Þ;. . .; sðnÞ� 2 Rk�n denotes

the IC matrix. E 2 Rm�n denotes the residual matrix. ICA

aims to calculate a separating matrix W to enable the

components of the reconstructed data matrix Ŝ to be as

independent of each other as possible. Ŝ is expressed as

follows:

Ŝ ¼ WX ð23Þ

There are many types of ICA algorithm. The fixed-point

algorithm (also known as Fast ICA) algorithm has fast

convergence speed and has achieved remarkable perfor-

mance. Fast ICA is widely used in signal processing

because it is easy to converge, and it has good separation

performance. The algorithm can estimate the original sig-

nals that are statistically independent and mixed by

unknown factors from the observed signals.

ICA is a multivariate statistical tool to extract statisti-

cally independent components from observed data, which

has drawn considerable attention in FDD. Lee et al. [108]

analyzed the defects of the original ICA algorithm and

presented a novel multivariate statistical process monitor-

ing (MSPM) method based on modified ICA. Zhang et al.
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[109] proposed a modified ICA algorithm based on particle

swarm optimization (PSO-ICA) for the purpose of MSPM.

Hsu et al. [110] integrated ICA and SVM (ICA-SVM) for

monitoring multivariate processes, where ICA was used to

extract the hidden information of a non-Gaussian process.

In order to solve the problem of complex industrial process

monitoring, Zhang et al. [111] combined kernel ICA

(KICA) and LSSVM to establish the industrial process

monitoring model. Li et al. [112] advised a correlated and

weakly correlated process fault detection approach based

on variable division and ICA. Wang et al. [113] proposed a

totally data-driven ICA model to improve the ability of

monitoring non-Gaussian process.

2.4.2.4 GMM-based approaches Gaussian model is to use

Gaussian probability density function (normal distribution

curve) to accurately quantify things, and decompose a thing

into several models based on Gaussian probability density

function. Gaussian mixture model (GMM) is a clustering

algorithm, which belongs to unsupervised learning. It

organizes itself according to the nature of input data with

complex distribution (e.g., multimodal, or nonlinear dis-

tribution) and can monitor health status of industrial pro-

cess without prior knowledge of abnormal patterns.

GMM can be used in general process applications, e.g.,

data clustering analysis, process monitoring, dimension

reduction, data visualization. Yu et al. [56] proposed a

multi-modal process monitoring method based on finite

Gaussian mixture modes and Bayesian inference strategy

for complex multi condition industrial processes. In order

to solve the problems of the particularity of semiconductor

process, the nonlinearity of most batch processes, and the

multipeak intermittent trajectory under multiworking con-

ditions, Yu [114] proposed a principal component-based

GMM (PCGMM). After that, in order to find meaningful

low-dimensional information hidden in high-dimensional

observations, Yu [115] proposed a manifold learning fea-

ture extraction algorithm based on local and nonlocal

preserving projection (LNPP) and then used GMM to

process data with nonlinear or multimodal features. Yu

[32] proposed local/nonlocal manifold regularization-based

GMM (LNGMM) to estimate process data distributions

with nonlinear and multimodal characteristics. Yu [116]

presented a GMM-based process patterns recognition

(PPR) model, which employs a collection of several

GMMs trained for process pattern recognition. Jie [117]

proposed a nonlinear kernel Gaussian mixture model-based

inferential monitoring approach for FDD of chemical

processes.

2.4.2.5 HMM-based approaches Hidden Markov model

(HMM) is a statistical model, which is used to describe a

Markov process with hidden unknown parameters. The

difficulty is to determine the hidden parameters of the

process from the observable parameters and then use these

parameters for further analysis, e.g., pattern recognition.

HMM contains a limited number of states, in which each

state generates an observation at a certain time point.

HMM performs two random processes: one is a random

transition from one state to another, and the other is to

generate a random output symbol in each state. Thus, these

models can only be observed through another set of ran-

dom processes. The actual state sequence is hidden and

cannot be observed directly.

For HMM with N states and M observations, the

observation sequence up to time T is denoted as

O 2 fO1;O2; . . .;OTg, where Ot 2 fv1; v2; . . .; vMg, the

corresponding state sequence is denoted as

OT 2 fq1; q2; . . .; qTg, where qt 2 fS1; S2; . . .; SNg. Assume

that the underlying state sequence is transferred based on

Markov process, the transition probability matrix is

expressed asA ¼ aij
� �

; 1� i; j�N, where

aij ¼ Pðqtþ1 ¼ Sjjqt ¼ SiÞ, and qt represents the hidden

state at time t. For a HMM, these states are observable. On

the contrary, the observed value depends on whether it is

visible in this state and is represented by a matrix according

to the conditional probability distribution. In addition, if

the initial state probability distribution is

bjðkÞ ¼ PðOkjqt ¼ SjÞ, an HMM can be represented by

B ¼ fbj kð Þgð1� j�NÞ. HMM adopts these basic algo-

rithms pi ¼ Pðqt ¼ SjÞ, namely forward backward algo-

rithm k ¼ fA;B; pg, Baum Welch algorithm, and Viterbi

algorithm, which are used k for model parameter learning

and recognition.

In the past years, HMMs have been applied to the pro-

cess industry. In order to effectively monitor multimode

processes, Wang et al. [52] proposed a process monitoring

scheme based on orthogonal nonnegative matrix factor-

ization (ONMF) and HMM. Afzal et al. [53] proposed a

monitoring method based on HMM for multimodal pro-

cesses with mode reachability constraints. Lou et al. [54]

combined hidden semi-Markov model (HSMM) with PCA

(HSMM-PCA) and introduced mode duration probability

into HMM. Regarding the complex nonlinear industrial

process, Peng et al. [118] combined HMM and KPCA for

fault detection of nonlinear multimodal process.

2.4.2.6 SVDD-based approaches Support vector data

description (SVDD) is a single-value classification algo-

rithm, which can distinguish target samples from non-tar-

get samples, and is usually applied in anomaly detection

and fault detection. In this method, there is no restriction

that the process data should be assumed to be Gaussian.

Thus, SVDD is considered as a promising method for non-

Gaussian process monitoring. Cho [149] dealt with the data
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description and noise filtering issues based on SVDD and

applied it for process fault detection. Ge et al. [119] further

proposed an SVDD-based reconstruction algorithm for

sensor fault identification and isolation of multivariate

processes. Based on FDD, Yao et al. [120] extended the

single class classification method of SVDD to functional

SVDD (FSVDD) and applied it to batch process monitor-

ing. For further improving the competence of ICA, Chen

et al. [121] integrated ICA, Durbin–Watson (DW) crite-

rion, and SVDD to monitor non-Gaussian process for

detecting faults.

2.4.2.7 K-means-based approaches K-means is an itera-

tive clustering analysis algorithm, and the calculation steps

are as follows: (1) Divide the data into k groups; (2)

Randomly select k objects as the initial clustering center;

(3) Calculate the distance between each object and each

seed clustering center; (4) Assign each object to the nearest

clustering center. K-means is a widely used unsupervised

machine learning clustering algorithm. The main applica-

tion of this method in process industry is to divide the

process data into different operation modes, different fault

types, or different grades of products. For example, Lv

et al. [122] employed K-means to derive the segmentation

rule of variable subspace for batch process monitoring.

Majid et al. [63] used K-means as a data mining tool to

isolate different types of faults in aluminum smelting

process. Zhou et al. [123] combined K-means and PCA for

fault detection and identification in multiples processes.

Tong et al. [51] proposed an adaptive multimode process

monitoring strategy based on K-means.

2.4.2.8 SOM-based approaches Self-organizing map

(SOM) is an unsupervised learning algorithm derived from

competitive learning. It uses neighborhood function to

maintain the topological properties of input space. It is

usually represented by low dimensional discretization to

train the input space of samples. SOM can reduce dimen-

sion and model for highly discrete and nonlinear data.

When SOM is used to monitor the production process, a

certain amount of controlled data is collected for the first

time to create and train the SOM model and generate the

data feature space model of the controlled process. Then,

the observation vector is collected online from the manu-

facturing process, and the best match unit (BMU) is

obtained by comparing with the weight vector of all

primitives in SOM. The distance between the input vector

and BMU is defined as MQE [124] as follows:

MQE ¼ D�WEMUj jj j ð24Þ

where D is the input vector and WBMU is the weight vector

of BMU. The size of MQE represents the distance between

the input vector and the normal state space. MQE can be

used as a process monitoring indicator.

In the past few years, SOM has been widely used in

process industry. Yu et al. [124] proposed a process mon-

itoring method based on SOM and developed a novel

minimum quantization error (MQE) chart for monitoring

process changes. Corona et al. [125] introduced the

advantages of SOM in combination with industrial data and

its application in a series of process measurements in

industrial gas processing plants. In order to clearly show

the occurrence of complex chemical process fault, Chen

et al. [128, 150] proposed a novel fault diagnosis method

that combines SOM with correlative component analysis

(CCA). Yu et al. [126] proposed a SOM-based methodol-

ogy for process FDD with nonlinear and non-Gaussian

features. In order to solve the problems of highly dimen-

sional input variables, high correlation among some input

variables, overlap among the input variable spaces of dif-

ferent fault classes, and invisible distribution of fault

classes, Song et al. [127] integrated canonical variate

analysis (CVA) with multiple SOM (multi-SOM) for pro-

cess monitoring and fault diagnosis.

3 Process fault detection and diagnosis
based on deep learning at present

The generalization performance and self-learning perfor-

mance of traditional machine learning-based process FDD

models are insufficient because it is difficult for them to

extract effective features from the process data. Thus, it is

necessary to extract features from the original data, and

then achieve effective process FDD. Process control in

industry refers to the automatic control using the real-time

data collected by computer and taking the process param-

eters (e.g., temperature, pressure, flow, liquid level and

composition) as the controlled variables. It usually includes

control of the whole industrial process. This section

reviews the typical deep learning methods and their

applications in process FDD in recent years. First, this

section presents detection and diagnosis procedure of

industrial process by using deep learning. The process FDD

procedures are mainly divided into data collection, deep

learning model construction, and process monitoring.

Second, the application of deep learning in industrial pro-

cesses is reviewed.

3.1 Overview

With the rapid development of internet technologies and

internet of things (IOT), the amount of data collection is

unprecedented. Due to the constraints of the number of

model parameters and operation speed, the traditional
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machine learning-based process FDD method is not suit-

able for industrial big data scenarios. At this time, the deep

learning-based process FDD method is proposed in recent

years. It uses deep hierarchical structure to automatically

represent abstract features from process data and then

directly establishes the relationship between learning fea-

tures and target output, which can effectively solve the data

explosion. As shown in Fig. 6, the deep learning-based

process FDD procedure mainly includes three steps,

namely big data collection, deep learning-based model

construction, and process monitoring. Each step is pre-

sented in the following subsections.

3.2 Step 1: big data collection and preprocessing

Big data are massive information. Massive information in

modern industrial process comes from the data generated

by equipment operation. With the development of sensor

and computing technology, the amount of data increases

almost exponentially. Different sensors are usually

employed, e.g., vibration, acoustic emission, temperature,

current transformer. There are four main types of big data

collected based on these sensors (i.e., vibration signal,

current signal, audio signal, and images.) [151]. However,

the big data are not fully utilized in knowledge mining or

intelligent decision-making. Big data have the following

four characteristics, i.e., volume, variety, velocity, and

value [152, 153]: (1) Volume. Due to the development of

data storage technology, in the long-term operation of the

machine, the amount of information collected continues to

grow, forming a huge historical database. (2) Variety.

Multisource data collected by different types of sensors, a

wide range of data sources, determine the diversity of the

form of big data. (3) Velocity. Data generation is very fast;

mainly through the Internet transmission, high-speed

transmission channel can immediately collect data from the

machine. (4) Value. There is incomplete information in the

collected big data. In addition, a large number of data are

mixed with some poor-quality data.

With the big data era coming, machine learning has

attracted increasing interest for various applications.

Lavasani et al. [154] discussed the latest applications of big

data in the chemical industry and stressed the necessity of

big data analysis in various fields of process engineering.

Shu et al. [155] proposed a new abnormal situation man-

agement (ASM) framework to solve the big data problem

in the cloud computing environment of a big chemical

corporation. Onel et al. [87] presented a new data-driven

batch process monitoring model, which uses the nonlinear

SVM-based feature selection for big data fault detection

and diagnosis. Aiming at plant-wide processes with big

data, Yao et al. [156] proposed a distributed parallel

modeling and monitoring framework for process fault

detection and diagnosis. Jiang et al. [157] proposed a local–

global modeling and distributed computing method to

achieve efficient fault detection and isolation for nonlinear

plant-wide processes.

After obtaining big data, data preprocessing is needed to

improve data quality, because the quality of data determi-

nes the effectiveness of deep learning model. If the quality

of process data cannot be well guaranteed, the deep

learning model may produce misleading results. If the data

are too noisy, a data processing step is required. For

example, Guo et al. [158] used the improved local entropy

method to eliminate the multimodal and non-Gaussian

characteristics of the raw data and improve the fault

detection performance of locality preserving projection

(LPP) in multimodal industrial processes. Geng et al. [159]

Big data collection and 
preprocessing

Deep learning model 
establishment Online process monitoring

Value

Data 
characteristics:

Volume

Variety

Velocity

Deep AE

CNN

RNN

Traditional 
DNN methods: 

DBN

Novel DNN 
methods:
Transfer
Learning

GAN

CapsNet

GNN

Fault
detection

Fault
diagnosis

Fault
reconstruction

Steps of process 
monitoring:

Fault
identification

Fault isolation

Process 
improvement:

Knowledge
discovery

Knowledge
automation

Control
strategies

Decision
supports

Data preprocessing
(Data cleaning/ 

quality evaluation)

Missing data

Anomaly 
detection

Noise 
elimination

Time alignment

Fig. 6 Fault detection and diagnosis procedure of deep learning-based methods

Neural Computing and Applications (2023) 35:211–252 225

123



used the parameters of the variable modulus decomposition

for data preprocessing to suppress the data noise of non-

linear complex chemical process and fed the data into a

sparse principal component analysis (SPCA). Alrifaey et al.

[160] used wavelet packet transform (WPT) to process the

collected photovoltaic voltage signal and fed the prepro-

cessed signal into long short-term memory (LSTM) model.

Thus, the data cleaning and quality assessment should be

carried out before they are fed to those deep learning

models [45]. Xu et al. [161] reviewed data cleaning in

process industry and introduced different data cleaning

methods (i.e., missing data interpolation [162], anomaly

detection [163], noise elimination [159], and time align-

ment [164]). Ding et al. [163] proposed a system for

industrial time series cleaning, which can discover

knowledge from high-quality time series and be used for

industrial production optimization and anomaly detection.

To sum up, data cleaning and quality assessment mainly

include the following aspects: (1) Appropriate methods

should be used to deal with missing data (e.g., sample

deletion, missing value estimation, Bayesian inference). (2)

The outliers in the data should be detected, and the problem

of different sampling rates between process variables

should also be considered. (3) The noise from the process

itself and measuring equipment should be fully considered.

The noise can be removed by filtering methods. (4) The

scale difference between process variables needs to be

considered. In the face of data imbalance, the performance

of the learners can be improved by data scaling and data

conversion.

3.3 Step 2: deep learning model construction

The process control method based on deep learning can

effectively deal with big data scenarios, and the develop-

ment of deep learning is shown in Fig. 7. Overall, the

development of deep learning can be divided into four

stages: embryonic stage, the first climax, the second cli-

max, and the third climax [150].

In embryonic stage, the McCulloch-Pitts (MP) model

was proposed in 1943 by Warren McCulloch and Walter

Pitts. As the origin of ANN, MP model not only creates a

new era of ANN, but also lays the foundation of neural

network model. In the late 1950s, based on the research of

MP model and Hebb learning rules, a learning algorithm

similar to human learning process, perceptron learning,

was proposed. In 1958, a neural network composed of two

layers of neurons was formally proposed, which is called

‘‘perceptron.’’ The proposal of perceptron has attracted a

large number of scientists’ interest in the research of ANN,

which is of milestone significance to the development of

neural network.

In the second climax, the famous physicist John Hop-

field invented Hopfield neural network in 1982. However,

due to the defect that it is easy to fall into local minimum,

this algorithm did not cause a great sensation at that time.

Until 1986, a back-propagation algorithm for multilayer

perceptron, BP algorithm, was proposed. The BP algorithm

perfectly solves the nonlinear classification problem, so

that ANN has attracted extensive attention again. However,

due to the limited hardware level of computers in the

1980s, the problem of ‘‘vanishing gradient’’ will appear

when the scale of neural network increases. This has

greatly limited the development of BP algorithm, and the

development of ANN has entered the bottleneck period

again.

In the third climax, the concept of deep learning was

formally proposed in 2006. This method describes the

solution of the problem of vanishing gradient in detail. The

proposal of deep learning immediately aroused great

repercussions in the academic circle and then quickly

spread to the industry.

In recent years, many novel deep learning methods have

been proposed for complex real production and manufac-

turing systems, e.g., GAN, GNN, DGPs, which solve the

problems of unbalanced data types and model migration

under different datasets.

3.3.1 AE-based approaches

3.3.1.1 A brief introduction to AE AE is an unsupervised

deep learning model, which consists of the encoder and

decoder [165]. As depicted in Fig. 8, an AE is a special

neural network consists of three layers: input layer, hidden

layer, and output layer. The difference is that in the

structure of AE, the input and output layers have the same

number of neurons. Given the dataset

f x1; y1ð Þ; x2; y2ð Þ; . . .; xm; ymð Þg with m samples, the repre-

sented features hi are defined as:

hi ¼ f eðxT � xi þ bÞ ð25Þ

The decoding step tries to reconstruct input values from

hidden values; the reconstructed sample bxi is expressed as

follows:

bxi ¼ f dðx0T � hi þ b0Þ ð26Þ

where f e; f d are the activation function of the encoder and

decoder network, respectively, and x; bf g; x0; b0f g repre-

sent the training parameters of the encoder and decoder

network, respectively. The loss function is defined the

following equation with squared error as:

J x;x
0
; b; b

0
� 	

¼ 1

2m

Xm

i¼1

ðbxi � xiÞ2 ð27Þ
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3.3.1.2 Application of AE and its variations-based approa-
ches to fault detection and diagnosis AE and its common

varieties have been applied to process FDD. Gavneet et al.

[166] compared deep stacking networks and sparse stacked

AE for process fault detection. Yan et al. [167] separated

the feature extraction and model construction by designing

teacher and supervise dual stacked auto-encoder (TSSAE)

for quality-relevant fault detection in industrial process. Yu

et al. [168] presented an effective deep learning method

known as stacked denoising AE (SDAE) for process pat-

tern recognition (PPR) in manufacturing processes. Yu

et al. [169] concentrated on developing a SDAE model for

multivariate process pattern recognition to learn effective

discriminative features from the process signals through

deep network architecture. Zhang et al. [170] integrated

one-dimensional CNN (1-DCNN) and SDAE to extract

high level features from complex process signals. Li et al.

[171] proposed a distributed ensemble stacked AE (DE-

SAE) model based on deep learning technology for mon-

itoring non-linear, large-scale, multi-unit processes. Liu

et al. [172] proposed a new DNN, residual attention con-

volutional AE (RACAE) for complex nonlinear process

monitoring. Yu et al. [173] suggested a one-dimension

residual convolutional AE (1DRCAE) model, which used

unsupervised learning to extract representative features

from complex industrial processes. Li et al. [174] proposed

a slow feature analysis-aided autoencoder (SFA-AE) for

interpretable process monitoring. It enables the learning of

deep slow variation patterns from the high-level features

extracted by the AE.

Zhang et al. [175] presented a new DNN, manifold

regularized stacked AE (MRSAE) for fault detection in

complex industrial processes. In this study, the fault

detection process based on MRSAE is divided into two

stages: offline modeling and online monitoring, as shown

in Fig. 9. Their testing results reveal that MRSAE is

effective in learning representative features from the

complicated data for process fault detection.

The off-line modeling phase includes six steps. Step1 is

to collect the training dataset under the normal operation.

Step 2 is to normalize samples in the dataset within 0 and 1.

Step 3 is to train a MRSAE model in an unsupervised way

with greedy layer-wise training algorithm. Step 4 is to

generate the feature and residual spaces from the well-

trained model. Step 5 is to calculate the monitoring statistic

(i.e., T-squared (T2) and squared prediction error (SPE)),

respectively. Step 6 is to setup the thresholds by using the

kernel density estimation (KDE) method.

Fig. 7 Development of deep learning
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The on-line modeling phase includes five steps. Step 1 is

to collect a new observation x from the process online. Step

2 is to normalize the input within 0 and 1. Step 3 is to input

x to the well-trained MRSAE model and project it into

feature space and residual space. Step 4 is to compute the

T2 and SPE statistic based on the feature maps, respec-

tively. Step 5 is to trigger an alarm once any of the two

statistics exceed its corresponding threshold.

3.3.2 CNN-based approaches

3.3.2.1 A brief introduction to CNN CNN, as a deep feed-

forward neural network, has commonly used in supervised

learning problems in image recognition, computer vision,

and target tracking [176]. A CNN model includes convo-

lutional layers, pooling layers, and full-connected layers

[39]. The fully connected layer has the same structure and

operation mode as the conventional feedforward neural

network. The structure diagram of CNN for processing

two-dimensional data is given in Fig. 10.
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A convolutional layer consists of multiple learnable

kernels. Each kernel has a trainable weight and bias. The

math operation in the l th layer between the specific j th and

the input data xl�1 can be described by:

xlj ¼ f
X

i2Mj

xl�1
j � klj þ blj

 !

ð28Þ

where (*) represents the convolution operation and f is the

activation function of rectified liner unit (ReLU). Assume

that the input data xl�1 include m 2-D matrices. Every input

matrix xl�1
i ði 2 mÞ is convolved with the kernel kj, and the

sum of all convolution operation results will be added with

the bias. Finally, the result will be fed into the activate

function f to produce the final output of kernel j.

3.3.2.2 Application of CNN CNN can map low-dimen-

sional shallow features to high-dimensional high-level

features, which have been applied to many fields, e.g.,

image identification, text generation, machine translation,

video classification. Zhang et al. [177] proposed an

amplitude-frequency images-based CNN (ConvNet) for

FDD in chemical processes. Each ConvNet works on a

specific fault, so a flexible FDD framework can be trained

and extended. Kim et al. [178] proposed a self-attentive

CNN to detect and diagnose faults directly from the vari-

able-length status variables identification (SVID). In order

to extract effective features of complex multivariable

process and improve fault diagnosis performance, Chen

et al. [179] proposed a multivariable process fault diagnosis

model based on CNN feature learning. Lee et al. [180]

proposed a CNN model, which uses the receptive field of

multivariable sensor signal to slide along the time axis to

extract fault features of semiconductor manufacturing

process. Wu et al. [181] developed a deep CNN (DCNN)

model for chemical process fault diagnosis and verified the

superiority of this method in TEP. Chen et al. [182] pro-

posed a one-dimensional convolutional auto-encoder (1D-

CAE) model for FDD of multivariable processes. Zheng

et al. [183] proposed a hybrid system integrating SVM and

CNN for pattern recognition of multivariable processes.

Zheng et al. [184] presented a fault detection method based

on convolutional gated recurrent unit auto-encoder for

TEP. Hsu et al. [185] presented a multiple time-series CNN

(MTS-CNN) model for FDD in semiconductor manufac-

turing process. In order to update the diagnosis model

effectively to include new coming abnormal samples, Yu

et al. [186] proposed a broad convolutional neural network

(BCNN) with incremental learning capability for industrial

processes.

Zhang et al. [187] proposed a new DNN, multichannel

one-dimensional CNN (MC1-DCNN) to investigate feature

learning from high-dimensional process signals. The

application procedure of MC1-DCNN-based fault diagno-

sis comprises an off-line modeling phase and an on-line

testing phase, which is presented in Fig. 11. The recogni-

tion rate of MC1-DCNN for 21 faults of TEP is shown in

Fig. 12. It can be seen that MC1-DCNN has significant

performance in feature extraction and process fault

diagnosis.

3.3.3 RNN-based approaches

3.3.3.1 A brief introduction to RNN RNN [41] is a state-

of-the-art neural network with recurrent hidden layers to

perform sequence data processing and prediction. How-

ever, RNN has encountered the challenge of vanishing

gradient and exploding gradient in the training procedure

[188]. Thus, long short-term memory network (LSTM) is
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CNN
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proposed to solve this problem [189]. The unit structure of

RNN and LSTM is shown in Fig. 13.

The hidden layer information of RNN only comes from

the current input and the previous hidden layer information,

and the calculation formula is as follows:

ht�1 ¼ tanhðWh � ht�1; xt½ � þ bhÞ ð29Þ

where ht�1 represents the output of the previous cell, xt
represents the input of the current cell, and Wh and bh
represent the weight and bias of forget gate, respectively.

An LSTM layer is composed of recurrently connected

memory blocks, each of which contains one or more

memory cells, along with three multiplicative ‘‘gate’’ units:

the input, output, and forget gate. LSTM overcomes the

problems of vanishing gradient and exploding gradient.

Forget gate The forget gate of LSTM can selectively

discard part of the information from the memory unit, and

the calculation is as follows:

f t ¼ rðWf � ht�1; xt½ � þ bf Þ ð30Þ

where ht�1 represents the output of the previous cell, xt
represents the input of the current cell, r represents the

sigmoid function, and Wf and bf represent the weight and

bias of forget gate, respectively.

Input gate The input gate decides to add new infor-

mation to the memory unit. This process includes two

steps: one is to determine the information to be updated

through sigmoid layer; the other is to generate alternative

information by the tanh function.

Fig. 11 Application flowchart of the MC1-DCNN-based fault diagnosis model
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Fig. 12 Recognition rates (%) of MC1-DCNN in a confusion matrix

(a) (b)

Fig. 13 Unit structure of RNN and LSTM, a RNN, b LSTM
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it ¼ rðWi � ht�1; xt½ � þ biÞ ð31Þ
eCt ¼ tanhðWc � ht�1; xt½ � þ bcÞ ð32Þ

where it and eCt are the output of the input gate and the

alternative information of the memory unit, respectively,

and tanh is the hyperbolic tangent function.

Memory unit The memory unit updates the memory

information as follows:

Ct ¼ f t � Ct�1 þ it � eCt ð33Þ

where Ct is the information saved by the memory unit.

Output gat Finally, the output gate will determine the

final output based on the previous calculation. First, a

sigmoid layer is used to determine the information, and

then, the tanh function is used to calculate the final result.

ot ¼ rðWo � ht�1; xt½ � þ bo ð34Þ
ht ¼ ot � tanhðCtÞ ð35Þ

where ot and ht are the output results of the output gate and

LSTM unit at the current time, respectively.

3.3.3.2 Application of RNN LSTM is a kind of specific

RNN, which is mainly used to solve the problems of gra-

dient disappearance and gradient explosion in the process

of long-term training. Chadha et al. [190] presented a

bidirectional RNN-based process condition monitoring and

fault diagnosis method. Cheng et al. [191] proposed a new

process monitoring method based on variational recurrent

AE (VRAE). Ouyang et al. [192] proposed a fault detection

and identification method based on the multidimensional

gated recurrent unit (GRU) network for monitoring the

blast furnace ironmaking process. Wang et al. [193] pre-

sented a high-level spatiotemporal feature extraction based

on deep convolutional bidirectional encoder–decoder rep-

resentation network with GRU cell for dynamic process

fault diagnosis. Chen et al. [194] developed a deep RNN

model of process variables with different time delays and

established a residual graph to detect the mean shift of

autocorrelated processes. Zhang et al. [195] employed a

bidirectional RNN (BiRNN) to construct process FDD

models with sophisticated RNN cells. Liu et al. [196]

proposed a method based on the combination of LSTM and

DBN. DBN-LSTM was used for feature extraction, time

correlation analysis and fault diagnosis, and the method

was applied to a class of semiconductor etching process.

Yu et al. [197] proposed a convolutional LSTM-AE

(CLSTM-AE) for feature learning from complex process

signals.

3.3.4 DBN-based approaches

3.3.4.1 A brief introduction to DBN Restricted Boltzmann

machine (RBM) is a generative stochastic neural network

that can learn probability distribution from input data set.

DBN is a deep model constructed by stacking multiple

RBMs, where the input of a layer is the output of the

preceded layer.

RBM includes visible units v ¼ fv1; v2; . . .; vmg and

hidden units h ¼ fh1; h2; . . .; hng [198]. It is noted that all

the units are binary, i.e., v; h ¼ f0; 1g. The relationship of

the visible layer and hidden layer is defined by energy

function as follows:

E v; hð Þ ¼ �
Xm

i¼1

Xn

j¼1

xijvihi �
Xm

i¼1

bivi �
Xn

j¼1

ajhj ð36Þ

where h ¼ fx; a; bg represents the parameters of RBM.

With the energy function, the probability distribution of the

visual units can be assigned as:

p v; hð Þ ¼ 1

Z
exp½�E v; hð Þ� ð37Þ

where Z is the partition function, and is calculated by

summing all possible visible-hidden node pairs.

Z ¼
X

v;h

exp½�E v; hð Þ� ð38Þ

The conditional probability distributions of each unit are

defined as follows:

p vi ¼ 1jhð Þ ¼ 1

1þ expð�aj �
P

jxi;jhjÞ
ð39Þ

p hj ¼ 1jv

 �

¼ 1

1þ expð�bi �
P

ixi;jviÞ
ð40Þ

Deep Boltzmann machine (DBM) is a deep model with

many hidden layers stacked into a hierarchy structure. In

order to obtain the DBN model, Bayes belief network is

used at the part closer to the visible layer, while RBM is

used at the part away from the visible layer, as shown in

Fig. 14.

3.3.4.2 Application of DBN Compared with the traditional

fault diagnosis, DBN does not need too much signal

technology and diagnosis experience to support, and has

relatively strong adaptability, versatility, the ability to deal

with high-dimensional and nonlinear data. The comparison

between DBN-based fault diagnosis is shown in Fig. 15.

The raw data in Fig. 15 include the training data and

testing data, which are used for DBN model training and

testing, respectively. Data preprocessing is a critical step

for data-based process monitoring. It can transform the raw

232 Neural Computing and Applications (2023) 35:211–252

123



data into an appropriate manner (i.e., features) and can be

effectively used for process modeling.

DBN is an effective method to solve the problem of

FDD in industrial process. Zhang et al. [199] presented an

extensible DBN-based fault diagnosis model for complex

chemical processes. Tang et al. [200] proposed a fault

detection model based on DBN for nonlinear processes and

used the feature variables and residual variables generated

by DBN to establish test statistics for abnormal monitoring

of industrial processes. Kim et al. [201] proposed a DBN-

based multi-classifier for fault detection prediction in the

semiconductor manufacturing process. In order to select

the features that are beneficial to process monitoring, Yu

et al. [202] presented the concept of active feature, and

applied the active features extracted by DBN (AF-DBN) to

process monitoring. Based on the theoretical analysis and

experimental study of unstable neurons, Yu et al. [203]

proposed a novel method (UN-DBN) based on the unsta-

ble neurons in hidden layers for process monitoring. Wang

et al. [204] proposed an extended deep belief network

(EDBN) to make full use of the useful information in the

original process data. Yu et al. [205] proposed multiple

DBNs (M-DBN) to extract abstract and high-order infor-

mation from each pattern in large-scale industrial pro-

cesses. The training efficiency, accuracy of feature

extraction, and monitoring performance of the model sys-

tem are better than traditional DBN.
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...
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Fig. 14 Network structure of

RBM, DBM and DBN, a RBM,
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3.4 Step 3: process monitoring

After construction of the deep learning-based models, they

are used for the process FDD. Control chart is a functional

chart that can detect the out-of-control signals in processes.

It is an important statistical tool in on-site quality man-

agement. In process monitoring, control charts are often

used to analyze and judge whether the process is in a

stable state. For example, two monitoring statistics T.2 and

SPE are typically constructed in the multivariate statistical

approaches-based process monitoring. When a possible

fault is detected in the process, the next step is to diagnose

it to find the root cause of the fault, reconstruct its direction

and size, and identify the type of fault. Based on the above

analysis, the operation process can be restored under nor-

mal conditions through process control strategies. Finally,

process recovery can be completed through fault isolation.

[2]

3.4.1 Fault detection

Fault detection refers to the real-time monitoring of process

data by various sensors and equipment to determine whe-

ther a fault occur in the process. The process stage is

usually judged according to the selected monitoring

statistics (e.g., T2, SPE). If the monitoring statistical value

exceeds its corresponding threshold, a fault alarm shall be

triggered. The steps of fault detection based on deep

learning are shown in Fig. 16, which includes two stages:

offline modeling and online monitoring.

3.4.2 Fault diagnosis

Fault diagnosis is to determine what kind of fault occurs in

the process, specifically to determine the type of fault, fault

magnitude, fault location and time. The basic framework of

process fault diagnosis based on deep learning is shown in

Fig. 17, which includes five steps: state definition, data

preprocessing, training, testing and diagnosis result evalu-

ation. The fault diagnosis method based on deep learning

has the following advantages: (1) unlike those shallow

networks, deep learning does not need fault feature links

manually, but integrates fault feature learning and classi-

fication model; (2) deep learning is a multi-hidden layer

network, which can avoid the limitation of dimension

disaster and insufficient diagnostic ability of shallow

networks.

3.4.3 Fault reconstruction

Fault reconstruction is to estimate the nominal normal

measurement value according to the measured value of the

process variables that have been affected by the fault when

the fault occurs. The purpose is to explore the direction and

size of the fault and minimize the influence of fault factors

on the normal part of the data. Through fault reconstruc-

tion, the severity of the fault can be estimated, and

Train data

Normalization

Deep learning modelReconstruct 
data

Realtime data

Normalization

Reconstruct 
data

SPE 
statistics

Offline Modeling Online Monitoring

Feature

SPE 
statistics

Feature

T2 statistics

Statistic>Threshold——Abnormal
Statistic<=Threshold——Normal

Residual Residual

T2 statistics

determine the threshold by KDE 

Fig. 16 Procedure of deep learning-based process fault detection
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corresponding measurements can be taken to eliminate the

impact of the fault on the process.

3.4.4 Fault identification

Fault identification is to find out the most relevant obser-

vation variables after a fault occurs. The information of

fault type can help the operator quickly understand the fault

and find the appropriate maintenance strategy to make the

process return to normal as soon as possible. Fault recog-

nition can be regarded as a pattern matching and recogni-

tion problem. Different data-based pattern analysis

methods can be used for fault identification.

3.4.5 Fault isolation and process recovery

The process needs to be adjusted according to the analysis

results. Fault isolation is to determine the location of the

fault in the process and isolate the fault from other parts of

the process after detecting the detailed information of the

fault. The industrial process after fault isolation will not be

significantly affected. Then, based on the process control

strategies, the operation process can be restored under

normal conditions through process maintenance and repair

(e.g., parameters selection, process optimization, equip-

ment maintenance). Control strategies were set according

to different production objectives.

4 Process fault detection and diagnosis
using transfer learning and deep learning-
based approaches in the future

Under the premise of sufficient labeled data and balanced

data, traditional deep learning methods presented in Sect. 3

can effectively mine and extract the relationship between

the input process variables and industrial process faults.

However, in actual industrial process, the fault data and

normal data are often unbalanced, and the data are often

incomplete and noisy. According to the above

Define fault state

Data preprocessing

Partition data set

Training set Test set

Construction of 
DNN model

Training 
classification model

Fine tuning

Substitution 
classification model

Determine 
fault type

Evaluation of 
diagnostic resultsTraining completeNo Yes

Step 1

Step 2

Step 3 Step 4

Step 5

Data cleaning, segmentation, reconstruction, normalization, denoising

Fig. 17 A basic framework of

process fault diagnosis based on

deep learning
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characteristics, it is necessary to train a reliable FDD model

for industrial process.

This section presents the most potential research pro-

spects of process FDD from four parts. The first part pre-

sents the novel deep learning models evolved from

traditional deep learning models, i.e., deep residual

shrinkage network (DRSN), independent RNN (IndRNN),

and transformer. The second part introduces the applica-

tions of transfer learning and GAN in the process FDD.

The third part presents the advantages of capsule network

(CapsNet), GNN, DGP, and deep Gaussian mixture model

(DGMM) in solving process FDD problem in the future.

Finally, the application prospects of large-scale neural

networks in process monitoring are presented.

Generally, it requires a large number of process data in

the training of deep learning model. The possible data

problems (e.g., inaccurate data, missing data, unbalanced

data) will have a great negative impact on process moni-

toring. Moreover, it is very difficult for traditional machine

learning methods to solve these problems. In recent years,

DNNs have been applied to the process FDD widely. For

example, CNN can process high-dimensional data effec-

tively by sharing convolution kernel. However, it needs to

be trained with sufficient labeled samples. On the basis of

CNN, CapsNet considers the spatial relationship of data

and can achieve good performance in small sample data.

RNN can mine the sequence information in the data to

solve time-varying process, but it takes a large time cost to

train the model. As a variant of RNN, transformer can

effectively solve the problem of high time cost of RNN

training.

The deep learning-based process FDD model automati-

cally learns features from the input data, and identifies the

state of industrial process [206]. The DNNs mainly include

feature extraction layer and classification layer. The feature

extraction layer usually includes multiple hidden layers,

which can be superimposed by the networks (e.g., AE,

CNN, RNN, DBN) to learn abstract features layer by layer.

The last layer of the DNN is the classification layer, which

is used to classify the extracted features. In the training

process, the back propagation (BP) algorithm is often used

to update the training parameters of the DNNs to minimize

the error between the actual output and the target. In recent

years, various novel deep network architectures have been

proposed (e.g., DRSN, transfer learning, GAN, CapsNets,

GNN). Transfer learning and GAN can solve the problem

of small sample problems in process FDD through

knowledge transfer. However, the performance of the

model is affected by the source domain and network

parameters. CapsNets considers the spatial relationship of

data, which makes it obtain higher classification perfor-

mance. However, the time cost of the model training is

high, which limits its further applications in process FDD.

In addition, some emerging deep models, e.g., GNN, DGP,

DGMM, are different from traditional DNNs in network

architecture. It will be interesting to apply these specific

deep learning models in process FDD in the future.

According to the characteristics of these models, the

advantages and disadvantages of them and their applica-

tions in process FDD are summarized in Table 2.

4.1 Deep learning

These traditional DNNs, e.g., CNN, RNN, AE, DBN, have

been widely applied to industrial process FDD. However,

these DNNs still have these defects: (1) the feature reso-

lution of CNN will decrease with the growth of layers,

resulting in the loss of information. In addition, due to the

fixed size of the core, CNN is not suitable for fault diag-

nosis under non-stationary conditions; (2) RNN has the

problem of gradient disappearance and explosion and

cannot be stacked into deeper networks; (3) AE does not

capture the correlation of information. In recent years,

some novel deep learning models have been developed on

the basis of traditional DNNs to improve the performance

of the model. The subsection presents several new network

models of CNN and RNN, which will effectively solve

these problems, e.g., data imbalance, multi fault categories,

time correlation, attention mechanism in industrial process

control.

4.1.1 Deep residual shrinkage network

Deep residual shrinkage network (DRSN) is an improved

method of ResNet. Its characteristic is ‘‘shrinkage,’’ which

refers to soft thresholding that is almost the necessary step

of signal denoising algorithm [215]. As shown in Fig. 18,

the cross-layer identical path has the following improve-

ments compared with CNN: (1) soft thresholding is used to

eliminate redundant information; (2) SENet type subnet

structure is adopted to automatically set the threshold.

Under the effect of soft thresholding, compared with

ordinary CNN, deep residual shrinkage network is more

suitable for noisy data classification task.

4.1.2 Independent RNN

RNNs are usually difficult to train and learn long-term

patterns due to gradient vanishing and exploding problems.

The gated cycle unit (GRU) is used to solve the above

problems, but the use of hyperbolic tangent and S-type

action function will lead to gradient attenuation on the

layer. Thus, it is challenging to construct an effective and

trainable deep network. To solve these problems, Li et al.,

[216] proposed a new neural network called IndRNN. The

neurons in the same layer are independent of each other
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and connected across layers. IndRNN is easy to adjust,

which can prevent the problem of gradient explosion and

disappearance, and allows the network to learn long-term

dependence.

The basic architecture of IndRNN is shown in Fig. 19,

where ‘‘weight’’ and ‘‘Recursion ? ReLU’’ represent the

input process and the recursive process of each step with

ReLU as the activation function. Compared with LSTM,

sigmoid and hyperbolic tangent functions are used to

attenuate the gradient on the layer, and unsaturated acti-

vation function such as ReLU reduces the gradient van-

ishing problem on the layer. In addition, before or after the

activation function shown in Fig. 19, the batch

standardization represented as ‘‘BN’’ can also be used in

the IndRNN network.

4.1.3 Transformer

Transformer improves the most criticized shortcoming of

RNN, which is slow training, and uses self-attention

mechanism to achieve fast parallel. The structure of

transformer is composed of encoder and decoder [217].

The overall architecture of transformer is shown in

Fig. 20a, which uses stacked self-focus and point type.

Figure 20a shows the full connection layer of encoder and

decoder, respectively. Transformer uses multi attentions to

linearly project queries, keys, and values to dk, dk; and dv

Table 2 Summary of applications of deep learning in process FDD

Methods Advantages Disadvantages Applications

AE (1) It can handle both linear and nonlinear

data

(2) It can be used for complex large data

sets

It needs to be trained with

sufficient samples

TEP[166, 167, 169–175], multivariate process

[169], FBFP [170, 173], CSTR [175]

CNN (1) It is very effective to learn features from

high dimensional data

(2) It is able to directly learn features from

the data without preprocessing

(1) It spends high time cost to train

the model on a large dataset

(2) It needs to be trained with

sufficient labeled samples

TEP [170, 172, 181–184, 186, 187], FBFP

[170, 182], CSTR [172], chemical processes

[177], multivariable process [179],

semiconductor manufacturing process

[178, 180, 185]

LSTM (1) It can make full use of the received

information to obtain good performance

(2) It can deal with autocorrelated process

data

(1) It takes a high time cost to train

the model

(2) Its ability to process high-

dimensional data is limited

TEP [190, 191, 193, 195, 197], blast furnace

ironmaking process [192], autocorrelated

process [194], semiconductor etching process

[196], CSTR [197]

DBN (1) It can deal with high-dimensional

nonlinear data

(2) It is able to obtain high-level

information in process data

It needs to be trained with

sufficient labeled samples

Semiconductor etching process [196, 201], TEP

[199, 200, 202–205]

Transfer

learning

It can solve the problem of small data in

process monitoring

It is difficult to guarantee the

effectiveness of knowledge

transfer and the performance of

the model

FBFP [207], multimode chemical processes

[208], industrial multiphase flow process [209]

GAN It can solve the problems of small data and

uneven data distribution

It is difficult for model training

and its performance is unstable

TEP [210, 211], smoke detection process [212],

chiller process [213]

CapsNets It can achieve good performance on small

sample data sets

(1) It takes a high time cost to train

the model

(2) Its performance in large-scale

data sets is unknown

GNN It can construct the relationship in the data

from the perspective of graph, and can

mine the high-order information of the

data

It is difficult to construct one-

dimensional data into graphic

data

Converter steelmaking process [214]

DGP It is a highly flexible multi-layer prediction

model, which can accurately model the

uncertainty

It takes a high time cost to train

the model

DGMM (1) It can deal with nonlinear process

(2) It can be used for unsupervised fault

detection

It needs to be trained with

sufficient labeled samples
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dimensions and uses different linear projections for h

times. On each projection version of queries, keys and

values, it performs the attention function in parallel to

generate dv-dimension output value. These values are

concatenated and projected again to output the final value,

as depicted in Fig. 20b.

4.2 Applications of transfer learning

4.2.1 Transfer learning

In the typical intelligent fault diagnosis model, it is gen-

erally assumed that the training dataset and the testing

dataset follow the same distribution. Thus, these models

directly use the pretrained fault diagnosis model on the

training set to diagnose the testing set. However, in the real

industry, due to the influence of various factors, there are

inevitably some differences between the source domain

and the target domain. The intelligent fault diagnosis based

on transfer learning considers that there are differences

between the target domain and the source domain. The

transfer learning algorithm learns the difference between

the source domain and the target domain on the basis of

learning the source domain, so as to further improve the

generalization ability of the model. The comparison

between the intelligent algorithm based on transfer learning

and the traditional algorithm is shown in Fig. 21.

Transfer learning aims at the defect of traditional

machine learning, which is based on the assumption of the

same distribution and needs a large number of labeled data.

It solves the problem of data distribution difference and

labeled data overdue in practical work and ensures the

model accuracy in new tasks by making full use of labeled

data (existing knowledge). Xu et al. [218] proposed an

online fault diagnosis method based on deep transfer CNN.

By transferring the shallow layer of trained offline CNN to

online CNN, the real-time performance of process FDD

can be significantly improved. Zhu et al. [207] developed a

transfer learning framework to improve effectiveness of

process monitoring in similar batch scenarios and verified

the feasibility and effectiveness of the framework. Wu

et al. [208] proposed a FDD method based on transfer

learning for multimode chemical processes. Chai et al.

[209] proposed a multisource-refined transfer network

(MRTN) to solve the problem of fault diagnosis when the

source and target fault category sets are inconsistent, and

the superiority of this method is proved in a case of

industrial multiphase flow process.

Fig. 18 Deep residual shrinkage

network, a basic residual

shrinkage module, b overall

architecture of DRSN [215]

Weight

BN

Recurrent+ReLU

BN

Weight

BN
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Fig. 19 Basic network structure of IndRNN
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4.2.2 GAN

The idea of adversarial learning in GAN is inspired by the

Nash equilibrium in game theory, and the structure of GAN

is shown in Fig. 22. In the model, both sides of the game

are realized by generator (G) and discriminator (D). The

generator G is mainly responsible for generating samples

subject to real distribution through random hidden vari-

ables z, and the discriminator D is responsible for identi-

fying whether the input samples are false samples or real

samples. Through the iterative adversarial learning

between the two generators, the potential distribution of

real samples is obtained and new samples are generated.

In real-world scenarios, it is usually very difficult to

collect enough faulty training samples to generate a bal-

anced training dataset. Thus, some data generation methods

are proposed to identify those process faults with unbal-

anced data distribution in industrial process. Gao et al.

[210] proposed a data augmentation method based on

Wasserstein GAN with gradient penalty (WGAN-GP) to

improve the fault diagnosis accuracies. Yang et al. [211]

proposed a bidirectional GAN (BiGAN) and applied it to

process fault detection. Inspired by the GAN, Huang et al.

[212] proposed an end-to-end attentive DesmokeGAN,

which realized the visual attention in the generation net-

work and effectively applied to the smoke detection pro-

cess. Yan [213] proposed a new GAN to generate high-

quality synthetic fault samples for data-driven fault

detection and diagnosis of chiller.

4.3 Other deep learning-based methods

4.3.1 CapsNet-based methods

The traditional DNNs, e.g., CNN, ignore the location

relationship of features in classifying fault time–frequency

graphs. In order to overcome the limitations, CapsNet takes

into account the size and location of the image. The

architecture of CapsNet is shown in Fig. 23. CapsNet can

solve the problem that the traditional DNNs cannot reflect

Fig. 20 Transformer, a network architecture, b multi-head attention consists of several attention layers running in parallel

Neural Computing and Applications (2023) 35:211–252 239

123



the internal relationship. Although the application of

CapsNet in industrial process is still blank, there are some

successful applications in machinery fault diagnosis. For

example, Wang et al. [219] proposed a capsules network

combined with the Xception module (XCN) to improve the

classification accuracy of intelligent fault diagnosis. Chen

et al. [220] proposed a novel method called deep CapsNet

with stochastic delta rule (DCN-SDR) for rolling bearing

fault diagnosis. Chen et al. [221] used a contemporary

novel neural network architecture called CapsNet to

accomplish the recognition and classification of seven

working conditions of a high-speed train (HST) bogie.

These applications demonstrate the advantages of CapsNet

over traditional DNNs in machinery fault diagnosis.

Applications of CapsNet and the expansion to industrial

process FDD will be an interesting issue in the future.

4.3.2 GNN-based approaches

Graph is a data structure that models a group of objects

(nodes) and their relationships (edges). GNN [222] is a

deep learning method based on graph domain. Although

deep learning has achieved great success in Euclidean

space data, the data in many practical application scenarios

are generated from non-Euclidean space and need to be

analyzed effectively. The complexity of graph data poses a

great challenge to existing machine learning algorithms.

Graph analysis is a data structure that models nodes and

their relationships. Graph analysis can be used for node

classification, link prediction and clustering.

The core assumption of existing deep learning algo-

rithms is that data samples are independent of each other.

However, this is not the case for a graph. Each data sample

(node) in the graph has edges related to other real data

samples (nodes) in the graph, which can be used to capture

the interdependence between instances. GNN can well

construct the influence relationship among the key com-

ponents in process control problems and provides a new

idea for process FDD from the perspective of node

association.

In order to apply GNN to process control, it is necessary

to construct one-dimensional process data into graph

structure data. There are two common methods of graph

construction. One is unsupervised composition by mea-

suring joint feature statistics. The other is supervised
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Fig. 21 Fault diagnosis model based on traditional methods and

transfer learning-based methods, a traditional methods, b transfer

learning-based methods

Fig. 22 Architecture of GAN
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composition by using initial network as a proxy for the

estimation [223]. Feng et al. [214] proposed a multichannel

diffusion graph convolutional network (MCDGCN) to

solve the problem of composition prediction in realistic

converter steelmaking process. At present, there are still

less researches on GNN-based process FDD. However, it is

very interesting to apply GNN to process FDD in the

future.

4.3.3 DGP-based approaches

DGP is multilayer predictive model that is highly flexible

and can accurately model uncertainty [224]. As depicted in

Fig. 24, the input to the hidden layer is the input data x and

the output of the hidden layer f 1 serves as the input data to

the output layer, which itself is formed by GPs. The output

of the layer is probabilistic rather than exact, so uncertainty

propagates through the network [225]. Santiago et al. [226]

presented a hybrid deep learning-Gaussian process method

for Diabetic Retinopathy diagnosis and uncertainty quan-

tification. Tagade et al. [227] proposed a deep Gaussian

process algorithm for lithium-ion battery health monitor-

ing. The application of this method in industrial process is

still blank.

4.3.4 DGMM-based approaches

DGMM is a network of multiple layers of latent variables

[228]. In each layer, the variables follow the mixture of

Gaussian distribution. The deep hybrid model consists of a

set of nested linear hybrid models, which provides a non-

linear model that can describe the data in a very flexible

way.

As depicted in Fig. 25, structure of a DGMM model

with h ¼ 3 and the number of layer components be k1 ¼ 3,

k2 ¼ 3 and k3 ¼ 2. In the first layer, the conditional dis-

tribution of the observed data for a given Zð1Þ is a mixture

of three components. If y ¼ Zð0Þ is regarded as zero level,
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Fig. 23 Architecture of CapsNet

Fig. 24 Deep Gaussian process with a single hidden layer. a Deep

Gaussian process illustration. b Histograms of a random selection of

inducing outputs. The best-fit Gaussian distribution is denoted with a

dashed line. Some of them exhibit a clear multimodal behavior. c P-

values for 100 randomly selected inducing outputs per dataset. The

null hypotheses are that their distributions are Gaussian [225]
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all conditional distributions follow the first order Markov

property, that is,

f ðz lð Þjðz lþ1ð Þ; ðz lþ2ð Þ; . . .; ðz hð Þ; hÞ ¼ f ðz lð Þjðz lþ1ð Þ; hÞ

for l ¼ 0; . . .; h� 1. At each layer:

f ðz lð Þj z lþ1ð Þ; h
� 	

¼
Xklþ1

i¼1

pi
lþ1ð ÞNðu lþ1ð Þ

i þ c lþ1ð Þ
i z lþ1ð Þ; q lþ1ð Þ

i Þ

ð41Þ

where z
nð Þ
i 	N 0; Ip


 �
i ¼ 1; . . .; nð Þ and u

1ð Þ
i ; . . .; u

nð Þ
i are

specific random errors that follow a Gaussian distribution

with zero expectation and covariance matrices

q 1ð Þ
s1 ; . . .; q

hð Þ
sh . u 1ð Þ

s1 ; . . .;u
hð Þ
sh are vectors of length p, and

c 1ð Þ
s1 ; . . .; c

hð Þ
sh are square matrices of dimension p. Purohit

et al. [229] suggested a deep autoencoding GMM with

hyper-parameter optimization (DAGMM-HO) to solve the

problem of unsupervised anomaly detection.

4.4 Large-scale neural network

DNN is usually over parameterized, which leads to a huge

waste of calculation and storage. In view of the large

number of parameters of large-scale DNNs and the need to

rely on the hardware platform with large storage space and

excellent computing performance, it is necessary for the

structure compression and optimization acceleration of

large-scale neural network for process FDD. The goal is to

shorten the training of DNNs and broaden the application

scope of DNNs.

With the development of artificial intelligence technol-

ogy, the depth of neural network is getting deeper and

deeper, followed by the disadvantages of high storage and

high-power consumption. This restricts the application of

DNNs in the resource limited application environment. A

large amount of redundant information is stored in a DNN

model with more than one million levels. Thus, the

compression and acceleration of DNNs are a feasible and

effective solution.

Process FDD in modern industry involves a large

number of equipment and data. Small scale DNNs cannot

describe and model such process control system well. As a

result, large-scale neural network will gradually replace

small-scale neural network in the application in modern

industrial process control. Although large-scale neural

network can effectively improve the accuracy of process

FDD, ‘‘large-scale’’ also brings many problems, such as

complex neural network structure, network parameter

explosion and model operation difficulty. There are five

main methods to compress and accelerate large-scale

neural networks: parameter pruning, parameter sharing,

low-rank decomposition, designing compact convolutional

filters, and knowledge distillation [230]. Parameter pruning

can remove redundant parameters by a criterion that can

judge whether the parameters are important or not. Low-

rank decomposition uses matrix or tensor decomposition to

estimate and decompose the original convolution kernel in

the depth model. The compact convolutional filters mainly

reduce the storage and computational complexity of the

model by special structured convolution kernel or tight

convolution computing unit. This study mainly uses the

knowledge of large-scale network and transfers it to the

model of compact distillation. Knowledge distillation

mainly uses the knowledge of large-scale network and

transfers its knowledge to the compact distillation model.

5 Discussion about future challenges
and opportunities in process fault
detection and diagnosis

With the continuous development of technology and pro-

duction, the process of modern industrial system has

become extremely complex. It is necessary to provide

effective guidance for future industrial process FDD. Rel-

evant technologies for process FDD are essential to

improve the safety and efficiency of the production pro-

cess. A developing route for process FDD is shown in

Fig. 26. Figure 26 presents three main problems of

machine learning-based process monitoring, i.e., data

acquisition and preprocessing, machine learning model

training and validation, results visualization, and process

recovery. The problems, characteristics, and corresponding

methods of each stage are listed in the developing route.

Future challenges and research directions related to process

monitoring are discussed in detail below.

Fig. 25 Structure of a DGMM model with h ¼ 3 and the number of

layer components k1 ¼ 3,k2 ¼ 3 and k3 ¼ 2
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5.1 Collection of high-quality data in complex
industrial processes

In modern industrial production, the process data are more

numerous and complex than ever before. However, due to

the interference of working environment or the abnormality

of data acquisition equipment, the collected data are often

uncertain and incomplete. Generally, deep learning

requires a large amount of process data to be trained, and

these inaccurate data will have a large negative impact on

the related research of process monitoring. Continuous

processes, batch processes, and multimode processes are

three common types in industrial processes. Modern

industrial processes always consist of various parts, and

each of these parts may have a significant impact on pro-

cess variables. As a result, these main characteristics are

often involved in industrial process data: high dimension-

ality, non-Gaussian distribution, nonlinear relationships,

autocorrelations, time varying, data autocorrelation, and

multimode behaviors. These complex characteristics of the

process also pose a great challenge to process monitoring.

In order to ensure the quality of process data and model

with the most appropriate data, the inspection and selection

of data are a necessary step. Data preprocessing is also a

critical step for data-based process monitoring. It can

transform raw data into a more appropriate manner and can

be effectively used for system modeling. Finally, a com-

plete database should be constructed to manage these data

and improve data quality for future process monitoring

based on deep learning.

In many application scenarios, the uncertainty is very

important, but the accuracy is not so important. DGP is a

hierarchical generalization of Gaussian process. The model

combines the uncertainty estimation of multi-layer model

and has high scalability. It can model uncertainty and deal

with missing data and abnormal data. Besides, GAN can be

used to solve the problem of data missing and data

imbalance in industrial processes.

5.2 Traditional methods-based process detection
and diagnosis in complex environments

Over the past decades, the data projection-based and

machine learning-based methods have been widely used in

process monitoring. (1) These data projection-based

methods, e.g., PCA, PLS, ICA, FDA, solve the problem of

process monitoring (especially for fault detection) to some

extent by dimension reduction or data projection. However,

in the face of complex industrial environment, e.g., non-

linearity, autocorrelation, multimode, the fault detection

results of these methods are often unsatisfactory. A com-

mon method is to modify or extend these projection-based

methods to adapt to different process environments. In

addition, based on the advantages of feature extraction of

deep learning, these methods can be further combined with

deep learning and applied to fault detection in complex

environments. This strategy can also obtain better results of

process fault detection. (2) Traditional machine learning

methods, e.g., kNN, ANN, SVM, adopt a simpler network

structure and are suitable for various classification tasks,

and they have been widely used for process fault diagnosis.

To further improve the performance of machine learning

for process fault diagnosis in complex environments, these

methods can be combined with MSPM methods. Firstly,

dimension reduction and data projection are used to reduce

the complexity of datasets. Secondly, machine learning

techniques are used to model and perform process FDD

tasks.

5.3 Deep learning-based process monitoring
in complex environments

The traditional MSPM methods (e.g., PCA, PLS, LDA,

LCA) directly use the raw data as model input. There is no

effective way to deal with high-dimensional and noisy data,

resulting in inefficient identification of process faults. In

addition, it is difficult for traditional methods to model

auto-correlation processes accurately, resulting in a large

number of false alarms triggered by control charts. Due to

the limited parameters and calculation units, the regular

ANNs have limited representation learning. Thus, it is

unable to extract effective features from process data.

Compared to the MSPM method, deep learning simpli-

fies the preprocessing of raw data and directly inputs the

raw data into the model. In the pre-training process, the

model filters the input data by a deep network structure and

multi-layer nonlinear transformation, reduces the dimen-

sion, and uses the extracted features for regression pre-

diction or classification model construction. Compared

with the shallow model, it has better convergence and

optimization mechanism, and has a broad application

prospect in the FDD of complex process. For example,

CNN uses convolution layer to extract features automati-

cally and processes high-dimensional data effectively by

sharing convolution kernel. DBN does not need too much

signal technology and diagnosis experience to support, and

has relatively strong adaptability, versatility, the ability to

deal with high-dimensional and nonlinear data. RNN is a

neural network with recurrent hidden layers, which can

effectively mine the sequencing information in the data.

5.3.1 Different process control tasks

Due to the powerful feature extraction ability, deep learn-

ing has been widely applied in process FDD. (1) The
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typical deep learning methods, e.g., AE, DBN, CNN, have

achieved great success in process monitoring, which is

discussed in Sect. 3. A great advantage of deep learning is

the flexibility of its network, and users can change their

network structure according to their demands to adapt to

different process environments. For example, combining

CNN with RNN can effectively process autocorrelation

data. The attention mechanism can improve its ability of

adaptive learning. (2) In recent years, transfer learning,

GAN, and CapsNet have been applied to process FDD.

Transfer learning imposes constraints on the parameters by

minimizing the distance metric to distribution discrepancy,

which can correct the serious cross-domain discrepancy.

GAN uses an adversarial game mechanism to generate

better samples from generators and discriminators. Con-

sidering the size and location of images, CapsNet can

effectively locate and identify process faults. These three

deep learning models can be further developed for future

research in process FDD.

5.3.2 Optimization of deep network structure

The fault diagnosis method based on deep learning has the

characteristics of large amount of training data and large

amount of calculation, which is one of the bottlenecks for

deep learning in online process FDD. At present, the main

optimization methods of network model are as follows: (1)

Combination of deep learning models and traditional

shallow models to construct a hybrid model shows good

performance in feature learning and classification

[231, 232]. Through the organic combination of various

methods to learn from each other’s strong points and

complement each other’s strong points, the fault diagnosis

and prediction of complex industrial system with high

efficiency and high accuracy can be realized; (2) During

and after training, different calculation strategies are

adopted to adjust the network parameters [233–235]; (3)

Network structure optimization. The computational com-

plexity of various deep learning architectures is reduced by

imposing structural constraints. On the premise of ensuring

the accuracy, the computing speed of the model is

improved, and the parallel operation, GPU acceleration,

data parallel, and model parallel are realized.

5.3.3 Edge computing

The model of deep learning has a multi-layer structure, and

the amount of calculation parameters increases exponen-

tially with the increase in the number of network layers.

The most outstanding performance is the number of

parameters of convolution layer and full connection layer

of DNN. In order to improve the training speed of DNN

and realize online process monitoring, edge computing

emerges as the times require. Edge computing is an open

platform that integrates network, computing, storage, and

other core capabilities on the side close to the object or data

source. IOT devices are not suitable for running deep

learning model, but edge computing-based DNN model can

effectively solve this problem. In terms of timeliness, edge

computing is faster than the traditional centralized cloud

computing method, and it can also reduce the burden of

cloud computing. Deep learning for edge computing can

automatically extract high-level features of data and can

also mine accurate information from sensor data. To sum

up, edge computing and deep learning provide solutions for

mining big data of IOT devices and can effectively

improve process FDD.

5.3.4 The prospect of transfer learning and GAN in FDD

The existing large amount of data is used to provide

solutions to the problem of insufficient data in industrial

process monitoring. Because transfer learning does not

need to be trained from the beginning, it can effectively

reduce the training time. In addition, transfer learning only

needs a small amount of target domain data, which can

effectively solve the problem of less data in the process

industry.

In the process monitoring model training, it is usually

assumed that the data are labeled and balanced. However,

data are often unlabeled and unbalanced in real process

industry. To solve these problems, GAN can generate fault

data according to specific probability distribution, which

balances process dataset. Moreover, a GAN with unsu-

pervised training can realize the training of unlabeled data

and improve the accuracy of the FDD model.

5.3.5 Application prospect of GNN in FDD

In the face of massive monitoring data and huge distributed

system, maintenance personnel need to locate faults and

make rapid and accurate maintenance decisions, which

requires intelligent FDD technology to improve the avail-

ability of the system. GNN can effectively describe and

store all kinds of information of the process control system,

including the attributes of each sensor node, the connection

relationship between different fault nodes and the node

importance. The intelligent process FDD system based on

GNN can realize fault location and fault correlation anal-

ysis and improve the reliability and availability of process

control system. At present, GNN has been widely used in

community network, social network, recommendation

system, and so on by virtue of its powerful information

description and relationship expression. GNN is also suit-

able for process control systems to describe the interaction
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between faults, which will be a valuable exploration

direction in the future.

5.4 Interpretability and visualization of deep
learning models

In general, these DNN models are considered as a black

box, and researchers cannot understand their internal

operations. Although deep learning has obtained tremen-

dous success in process FDD, it is not known how it learns

from process data about FDD. (1) Statistical learning the-

ory can better explain the operation mechanism of network

through strict theoretical knowledge. For example, the

composition of the network, related parameters, and mon-

itoring results can be described in a statistical way. In

addition, adaptive filter theory is useful for analyzing the

physical significance of deep learning-based models. (2) At

present, the methods commonly used in deep learning

models are visualization techniques. For the features

extracted from the network, t-SNE and other techniques

can be used to project the features to two-dimensional or

three-dimensional planes, which can help readers under-

stand the distribution of features. In addition, the deep

network model can also be visualized to understand its

internal structure and operation mechanism. (3) Knowledge

extraction of neural network. By combining symbolic rules

with deep neuron model, knowledge is extracted from deep

network, and the dynamic operation mechanism of deep

network is described [236, 237]. Yu et al. [236] proposed

the knowledge-based artificial neural network (KBANN)

model and a genetic algorithm-based rule extraction

approach (GARule) to discover the causal relationship

between manufacturing parameters and product quality.

These rules are applied to the diagnosis of manufacturing

process, to provide guidance for improving product quality,

and to construct knowledge-based neural network. Based

on this study, Liu et al. [238, 239] explained the principle

of neural network fault diagnosis by symbolic language,

realized accurate prediction, and effectively extracted the

key knowledge of manufacturing process.

6 Conclusions

In this study, the technology of process FDD in recent

decades is reviewed. The development of process FDD is

divided into three stages. In the past, the prevalent tech-

niques of FDD are data projection-based methods and

machine learning methods. Although these methods have

achieved some successes in process FDD in the past few

decades, they are difficult to extract effective features of

complex processes. In recent years, deep learning has

attracted extensive attentions and brought many

constructive ideas and methods to process FDD. They learn

and extract deep features of the process signals through

multi-layer networks, which is conducive to detect and

diagnose those faults in the process. The sample imbalance

of training data sets in industrial processes poses a certain

challenge to the development of deep learning in process

FDD. At present, transfer learning and GAN overcome

these problems and have been gradually applied to process

FDD. Transfer learning and GAN will attract extensive

attention and be widely used in process FDD in the near

future. In addition, CapsNet, GNN, DGP, and DGMM also

provide new ideas for solving process control problems.

Finally, a developing route is provided and the future

development and research plan of process FDD is dis-

cussed, which provides some valuable ideas for future

research in process FDD.
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