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Abstract
This research proposes a novel mobile health-based hospital selection framework for remote patients with multi-chronic

diseases based on wearable body medical sensors that use the Internet of Things. The proposed framework uses two

powerful multi-criteria decision-making (MCDM) methods, namely fuzzy-weighted zero-inconsistency and fuzzy decision

by opinion score method for criteria weighting and hospital ranking. The development of both methods is based on a

Q-rung orthopair fuzzy environment to address the uncertainty issues associated with the case study in this research. The

other MCDM issues of multiple criteria, various levels of significance and data variation are also addressed. The proposed

framework comprises two main phases, namely identification and development. The first phase discusses the telemedicine

architecture selected, patient dataset used and decision matrix integrated. The development phase discusses criteria

weighting by q-ROFWZIC and hospital ranking by q-ROFDOSM and their sub-associated processes. Weighting results by

q-ROFWZIC indicate that the time of arrival criterion is the most significant across all experimental scenarios with

(0.1837, 0.183, 0.230, 0.276, 0.335) for (q = 1, 3, 5, 7, 10), respectively. Ranking results indicate that Hospital (H-4) is the

best-ranked hospital in all experimental scenarios. Both methods were evaluated based on systematic ranking and sensi-

tivity analysis, thereby confirming the validity of the proposed framework.

Keywords Hospital selection � Internet of things � Mobile health � Remote multi-chronic disease patients �
Multi-criteria decision-making � Wearable body medical sensors

1 Introduction

Chronic diseases (CDs) are amongst the world’s leading

causes of death and disability, and they are predicted to

account for a third of total global deaths [1–3]. Although

CDs include many diseases, such as diabetes, hypertension

and cardiovascular diseases (CVDs), some of them present

more risks than others (in particular, CVD) [4, 5]. It pre-

sents risks for populations in terms of vitality and amongst

the leading causes of disability [6]. CVD is a global con-

cern because it results in conditions that affect heart

functionality, including hypertension, arrhythmia, stroke,

and heart attack, and it even causes death [7, 8]. CVD is a

life-threatening disease, and its diagnosis, monitoring and

treatment are needed [9, 10]. However, diagnosis and

treatment can be hindered by issues, such as the unavail-

ability of expert cardiologists or patients living in remote

areas and are far from hospitals [11, 12]. To address such

shortcomings, modern technologies are used to monitor
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patients with CD; the Internet of Things (IoT) was a

prominent example [6, 13]. IoT has paved the way for

many applications, and its role in health care telemedicine

services and managing remote patients has been remark-

able [14]. Telemedicine care services empowered by IoT

are based on a three-tier architecture, comprising the fol-

lowing: Tier 1, medical body sensors; Tier 2, mobile health

(mHealth); and Tier 3, the medical centre server side,

which connects and manages the distributed hospitals’

servers. One part of the integration of telemedicine and IoT

medical sensors is the consistent observation of health

conditions, such as blood pressure, heartbeat and move-

ment patterns [15]. These medical sensors can remotely

monitor patient status and help provide health care details

for diagnosis, treatment and monitoring patient activities.

Despite the wide integration of medical sensors in tele-

medicine and IoT environments, many issues remain and

are addressed differently. One main issue in managing and

providing health care services is hospital selection.

Demand for health care services has increased, especially

for patients in remote areas, placing an unprecedented

burden on medical health care centres [16, 17]. This issue

was addressed in a previous study [18], where the authors

used multi-criteria decision-making (MCDM) to propose

smart real-time health monitoring based on wearable body

health data sensors. The authors also proposed a new four-

level remote triage and package localisation and used it to

construct a decision matrix (DM) for hospital selection

based on the crossover of ‘multi-health care services’ and

‘hospital list.’ Therefore, hospital rankings for each patient

based on these health care services were achieved using

MCDM techniques. The analytical hierarchy process

(AHP) was applied to obtain the weights for each expert,

and VIseKriterijumska Optimizacija I Kompromisno

Resenje (VIKOR) was used to rank the alternatives.

Another hospital selection problem occurs when IoT tele-

medicine sensors are subjected to service interruptions.

This problem occurs when connected telemedicine archi-

tecture is interrupted due to scalability challenges, leading

to network failure between Tiers 2 and 3. Amongst the

main causes for such issues are disasters and mass casualty

incidents, ageing population and network congestion

[16, 19]. Service interruption also occurs when wearable

body sensor failures fully or partially malfunction, thereby

degrading the performance or destroying the stability of the

overall telemedicine health care systems [20]. Thus,

selecting a hospital is an issue worth considering. In

response to these health care issues, authors in [21] pro-

posed the use of an MCDM fault-tolerant mHealth

framework in the context of IoT-based real-time wearable

body health care data sensors. Their proposed framework

can triage patients and detect their emergency cases. They

directly connect with servers of distributed hospitals to

ascertain available health care services for the risk-level

package in those hospitals. The framework also considers

patient arrival time. Based on the two challenges discussed

in [18, 21] for hospital selection in terms of distributing

health care services and network failure, the authors elu-

cidated situations in which both challenges occur simulta-

neously. When the connection with medical centres is

interrupted and the use of mHealth is warranted, confusion

ensues when patients select a particular hospital for its

suitable health care services. However, both studies failed

to mitigate the situation in health care service provision, in

which all health care services used in evaluating hospitals

were only based on yes/no value represented by 1/0. This

representation is insufficient, because even with the exis-

tence of hospital services, such services might only be

equipped for certain types of patients (i.e., risk, urgent and

sick). In addition, despite the consideration of time of

arrival (TAH), the representation was based on numerical

values. The actual values measured in kilometres and those

measured using the Global Positioning System (GPS)

coordinates were not considered. Addressing these gaps

was the aim of [22], where the authors developed a new

mHealth framework for the evaluation and prioritisation of

decentralised telemedicine hospitals based on the inte-

grated techniques of Haversine-GPS and AHP-VIKOR.

Another contribution of this study is that it presented a

combined dataset related to health care service criteria and

TAH using Haversine-based GPS for remote distance

measurement. The major limitation of all previous studies

was that their main discussions were only for patients with

CHD. They did not consider hospital selection for patients

who have multi-chronic diseases (MCDs). Subsequent

research addressing this issue was proposed by [23], where

the authors discussed the difficulty of hospitals receiving

large numbers of critically ill or injured patients. In this

situation, prioritisation is difficult, especially when the

patients have MCDs. The authors proposed a novel deci-

sion technique to prioritise the patients with MCDs with a

real-time remote health-monitoring system based on vari-

ous triage levels. Results obtained using their method

indicated that patients with the most severe MCD were

treated first on the basis of their highest priority levels. The

treatment for patients with less severe cases was delayed

more than that for other patients. After discussing the

major limitations of all previous studies, we found that they

have their respective issues and challenges. The work by

[22] addressed the issues of two previous studies [18, 21] in

hospital selection in relation to the distribution of health

care services and network failure. However, [22] has the

shortcoming of focussing on only CHD and not considering

MCD. Furthermore, [23] considered MCD but only

focussed on prioritising patients; hospital selection in terms

of health care services or fault tolerance was not applied.
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The same group of authors extended their work in [24],

where the main prioritisation problem for CHD was the big

data generated from multiple disease conditions. However,

hospital selection based on health care services was still not

applied. Therefore, hospital selection for patients with

MCD was identified as a clear research gap due to the

complexity of the case study and due to the nature sur-

rounding the criteria of MCDs, including multiple criteria

presenting conflicts and trade-offs. To address these issues

in the concept of hospital selection, a robust methodology

that considers all previously mentioned issues is needed.

MCDM was pioneered in the type of research that

addresses a certain selection problem (i.e., Hospital

Selection). This type of research is most suited for this case

study, because it deals with the main issues, such as the

availability of many criteria (each disease has its own

criteria), trade-offs and data variation [25–32]. Addressing

all these issues requires a robust MCDM method

[21, 33–44]. An examination of the literature shows that

various techniques were proposed, and many of them are

unique [23, 24, 45–50]. Nevertheless, a recently published

technique has been proven to address most of the short-

comings of the previous ones; this method is known as the

fuzzy decision by opinion score method (FDOSM), which

has been presented by Salih et al. [51]. Since its release, the

method has been intensively used in a variety of complex

decision cases [52–57]. However, the method is prone to a

certain limitation, namely criteria weighting. FDOSM

weighs the criteria values of each application implicitly and

is limited to weighting each criterion explicitly. To solve

this issue, FDOSM was supported by fuzzy-weighted zero-

inconsistency (FWZIC), which is a powerful weighting

MCDM method for providing exact weights for criteria

with zero inconstancies [58–63]. FWZIC and FDOSM

were used together to address the uncertainty and vague-

ness issues by integrating many fuzzy environments in

complex case studies like COVID-19 vaccine distribution

using Pythagorean fuzzy set [64], T-spherical fuzzy sets

[65] and Q-rung orthopair fuzzy sets (q-ROFS) [66]. All

the aforementioned environments supported FDOSM and

FWZIC in dealing with complex decision problems, which

were medically relevant and thus suitable for the current

aim of this work.

However, the most recent version was developed under

q-ROFS. Yager [67] invented a novel fuzzy idea known as

the q-rung orthopair fuzzy set (q-ROFS) to overcome the

drawbacks of information expression in conventional fuzzy

sets (i.e., IFSs and PFSs). In q-ROFSs, the constraint

imposed by other fuzzy sets is eliminated, and the sum of

the q powers of membership and non-membership grades is

real numbers between [0, 1]. Thus, the DMs are permitted

to freely select any grade for [0, 1] and [0, 1] [68]. When

DM is asked for his or her preference about a particular

situation, he or she assigns a value of 0.9 for membership

grade and a value of 0.8 for non-membership grade. In this

instance, the IFS and PFS criteria cannot be met due to

their restrictions. However, the membership and non-

membership grades in the examples can be expressed using

a q-ROFS with a q parameter equal to or greater than 4.

When q equals 1, the q-ROFS becomes an IFS. When

q = 2, the q-ROFS changes to PFSs. Considering the

structure representation, the q-ROFS constraint is superior

to the other constraints, because it provides more space and

flexibility under unknown conditions and permits DMs to

freely select membership and non-membership degrees

[69]. Since its inception, a large number of scholars have

intensively examined and utilised it to handle difficult and

convoluted fuzzy issues from many aspects.

Therefore, FWZIC and FDOSM are to be integrated,

while the latest version of fuzzy environment Q-rung

orthopair is considered to be used to address the hospital

selection problem in terms of health care services and

service interruptions for case studies that involve MCD

patients. The main contribution of this research is that it

uses both techniques based on fuzzy environment Q-rung

orthopair in a pioneering case study by creating an

mHealth-based hospital selection framework for remote

MCD patients based on IoT wearable body medical

sensors.

2 Methodology

2.1 Identification

This work is proposed for the telemedicine and IoT con-

texts, but different architecture tiers exist [22]. The work is

based on a mHealth client in Tier 2, which is prone to the

disruption of service. Thus, it is considered in this study.

This work addresses a gap for patient datasets identified

from different studies. The first study is [22] for hospital

selection and health care service datasets, and the second

one is [23] for MCD patient datasets. From [22], a health

care service package (HSP) for risk emergency level that

includes different services, such as prepare surgery room

(PSR), prepare surgery team (PST), prepare surgery doctor

(PSD), prepare O2 supplier (POS), send ambulance (SA),

provide medications (PM) and TAH, has been adopted. In

[23], patient datasets are presented for remote patients with

three diseases, as follows: CHD, high blood pressure

(HBP) and low blood pressure (LBP). Each of these dis-

eases has its own risk level ranging from Risk, Urgent,

Sick, Cold State and Normal. However, only patients with

consistent RL across all the MCDs are considered. They

meet the inclusion criteria where all their MCDs’ RLs are
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at risk. The proposed matrix in this phase combining these

aspects is presented in Table 1.

The values represented in these criteria represent the

number of available services for those particular criteria,

except for TAH, which represents the distance to each of

the hospitals. The nature of all criteria is beneficial; the

more they increase, the better. An exception is TAH, which

is deemed a cost criterion; the more it decreases, the better.

A DM is created to choose a suitable hospital for remote

patients in a telemedicine environment.

2.2 Development

2.2.1 Criteria weighting by q-ROFWZIC

Q-ROFWZIC is used in weighting the evaluation criteria

used in this study. It has different steps, as follows.

2.2.1.1 Criteria definition This step comprises the iden-

tification of the evaluation criteria to be used for ranking

the hospitals for patients with MCD. Experts in charge of

assigning proper importance levels for these criteria are

discussed in the following phase.

2.2.1.2 Structured expert judgement (SEJ) This step dis-

cusses how different experts are selected based on their

knowledge and expertise in telemedicine and IoT. Then,

experts receive an evaluation form to collect their data

using a five-point Likert scale. The last process converts

the linguistic scale terms into their numerical equivalent in

reference to [66], as presented in Table 2.

2.2.1.3 Expert decision matrix (EDM) This step includes

creating an EDM comprising a crossover between selected

evaluation criteria (HSP) and the SEJ panel. Each of the

experts is intersected with each of the criteria to assign the

level of importance.

2.2.1.4 Application of a fuzzy membership function Upon

completion of the latter, data are transformed into q-ROF-

EDM for additional precision. The q-ROFS is an objective

with the form of [70] and defined in Eqs. (1) and (2), as

follows:

P ¼ hm; ldðmÞ; vdðmÞð Þi j m 2 Mf g; ð1Þ

where ld : Mð Þ ! ½0; 1� is the membership function, and

vd : Mð Þ ! ½0; 1� is the non-membership function of ele-

ments m 2 M to p; it must fulfil the restriction seen in

Eq. (2).

0\ ldðmÞð Þq þ vdðmÞð Þq\1;where q[ 1: ð2Þ

The degree of hesitancy is presented in Eq. (3), as

follows:

pm mð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ld mð Þð Þq þ vd mð Þð Þq � ld mð Þð Þq: vd mð Þð Þqq

q

:

ð3Þ

The applied q-rung orthopair fuzzy arithmetic mean (q-

ROFA) aggregation operation is shown in Eq. (4), as

follows:

q� ROFA ea1; ea2; . . .; eanð Þ ¼ 1�
Y

n

k¼1

1� lqk
� �

 !1
q

;
Y

n

k¼1

vk

* +

:

ð4Þ

Equation (5) shows the q-ROFS division operation, as

follows:

p1
p2

¼ l1
l2

;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

vq1 � vq2
1� vq2

s

 !

; if l1 �min l2;
l2p1
p2

� �

; v1 � v2:

ð5Þ

Equation (6) shows the equation of q-ROFS division on

a crisp value. The value of each linguistic term with q-

ROFS is in reference to [66], as shown in Table 3.

Table 1 Decision matrix

Criteria PSR PST PSD POS SA PM TAH Value

Hospital

H-1 14 23 2 28 5 100 18.00221

H-2 10 45 3 20 6 90 20.35723

H-3 5 28 5 10 4 75 42.41364

H-4 6 40 6 11 5 95 17.14394

H-5 12 30 4 25 7 150 23.88126

H-6 9 36 2 20 3 110 28.3679

H-7 4 29 3 10 4 45 20.5314

H-8 7 42 2 17 5 80 19.7176

H-9 3 45 2 8 4 50 19.1508

H-10 5 33 1 13 3 60 19.75615

H-11 5 19 2 14 8 40 22.26299

H-12 7 24 2 18 4 125 35.81598

Table 2 Linguistic terms, numerical scoring

Numerical scoring scale Linguistic scoring scale q-ROFS

1 Not important (0.20, 0.90)

2 Slight important (0.40, 0.60)

3 Moderately important (0.65, 0.50)

4 Important (0.80, 0.45)

5 Very important (0.90, 0.20)
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p=k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 1� lp
� �q� �

1
k

q

q

; vp
� �1

k

� �

; k ð6Þ

2.2.1.5 Computation of the final values of the weight
coefficients of the evaluation criteria In accordance with

the defuzzification from the previous step, the final weight

values of the evaluation criteria (w1;w2; . . .;wnÞT are

calculated as follows.

• The fuzzification data ratio is calculated using Eqs. (3),

(4) and (5).

The mean values for fuzzy values identification are

calculated from the weight coefficients of the evalua-

tion criteria (fw1;fw2; . . .; fwnÞ. q-ROF-EDM is used to

compute the weight value with Eqs. (3)–(6), where

Eq. (7) symbolises the process.

fwj ¼
X

m

i¼1

gImpðEij=CijÞ
Pn

j¼1
gImpðEij=CijÞ

Þ=m

0

@

1

A; for

i ¼ 1; 2; 3; ::mand j ¼ 1; 2; 3; ::n:

ð7Þ

• Defuzzification is performed to determine the final

weight using Eq. (8) while considering the weight for

each criterion assigned given the sum of the weights of

all the criteria for rescaling.

Sk ¼ lk
q � vk

q;where q� 1: ð8Þ

2.2.2 Formulation of q-ROFDOSM

Q-ROFDOSM is used to rank the alternatives based on the

weight assigned for the evaluation criteria from the last

step. Different stages, including data transformation and

data processing, are needed to accomplish the ranking

process. The details of the stages are as follows.

2.2.2.1 Data transformation unit This stage comprises

the transformation of a DM into an opinion matrix. Firstly,

the ideal solution of each sub-evaluation criterion is

determined using Eq. (9).

A� ¼ max
i
vijjj 2 J

� �

; min
i
vijjj 2 J

� �

; Opij 2 I:J
� �

i ¼ 1:2:3:. . .:mj
	 
� �

;

ð9Þ

Max is the ideal value for benefit criteria, and min is the

ideal value for the cost criteria. The Opij is the ideal value

for critical criteria, when the ideal value lies between the

max and min. The next step comprises selecting the ideal

solution for every evaluation criteria and then performing a

reference comparison using a five-point Likert scale. This

comparison takes place between the ideal and other

remaining values in each criterion, as presented by

Eq. (10).

OpLang ¼ ev
ij
�vijjj 2 J

� �

:ji ¼ 1:2:3:. . .:m

� �� �

; ð10Þ

where � represents the reference comparison between

the ideal solution and the value of alternatives in the same

criterion. The final output of this block that indicates the

linguistic term is the opinion matrix, which is ready to be

transformed into a fuzzy opinion matrix by using q-ROFSs,

as expressed in Eq. (11).

Op Lang ¼
A1

..

.

Am

op11 � � � op1n

..

. . .
. ..

.

opm1 � � � opmn

2

6

4

3

7

5

ð11Þ

2.2.2.2 Data processing unit In this stage, the opinion

matrix is transformed into a q-ROF opinion matrix by

converting linguistic terms into q-ROFSs using Table 4

based on [66]; when there is no difference in ideal lin-

guistic term, the value is considered the highest. Therefore,

the q-ROFS values are presented in ascending sequence.

The individual decision-making context begins by

acquiring the weight generated by q-ROFWZIC to rank the

alternatives. The opinion matrix from the previous step is

aggregated using the q-rung orthopair fuzzy-weighted

arithmetic mean (q-ROFWA) aggregation operation (12).

q� ROFWA ea1; ea2; . . .; eanð Þ ¼ 1�
Y

n

k¼1

1� lqk
� �wk

 !1=q

;
Y

n

k¼1

vwk

k

* +

ð12Þ

Then, defuzzification is performed using Eq. (8). After

the completion of this process, alternatives can be ranked
Table 3 Linguistic terms and their equivalent Q-ROFS

Linguistic scale q-ROFS

Not important (0.20, 0.90)

Slight important (0.40, 0.60)

Moderately important (0.65, 0.50)

Important (0.80, 0.45)

Very important (0.90, 0.20)

Table 4 q-ROF opinion matrix
Linguistic scale q-ROFSs

No difference (0.90, 0.20)

Slight difference (0.80, 0.45)

Difference (0.65, 0.50)

Big difference (0.40, 0.60)

Huge difference (0.20, 0.90)
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using individual q-ROFDOSM based on the assigned

value. Although the group decision-making context dis-

cusses value in accordance with the variation resulting

from many decision-makers’ different ranks, their deci-

sions are aggregated into a unified rank. The highest GDM

score result indicates the best alternative, and the lowest

score indicates the worst.

3 Results and discussion

3.1 Criteria weighting results

This section presents the criteria weighting results based on

the q-ROFWZIC steps. After the steps are completed,

distribution criteria are weighted according to the three

experts’ preferences without any inconsistency. Different

weighting parameters will be considered (i.e., q = 1, 3, 5,

7, 10) in accordance with q-ROFS. The final weights of all

the criteria are presented in Table 5.

In accordance with the fourth step of the q-ROFS

membership function to convert crisp values to equivalent

fuzzy numbers, fuzzification was achieved for the signifi-

cance of all the seven selected criteria. The ratio value of

criteria is calculated using Eqs. (3), (4) and (5). Then, the

mean of the experts’ preference for each criterion is cal-

culated. Equations (7) and (8) are used to determine the

final weight for each criterion. Across all the q parameters,

TAH value (C7) consistently had the highest weight with

(0.183790932, 0.183, 0.230, 0.276, 0.335) for (q = 1, 3, 5,

7, 10), respectively. PSD (C3) had the lowest weight with

(0.114, 0.097, 0.061, 0.038, 0.017) for (q = 1, 3, 5, 7, 10),

respectively, indicating the least importance. These

weights along with the others are considered in q-ROF-

DOSM for the computation of ranking results for hospital

selection.

3.2 Ranking results

After the weighting of each criterion, the ranking of hos-

pitals was accomplished using q-ROFDOSM based on the

individual and GDM contexts. The fuzzy opinion matrices

were created for each DM to determine the ideal solution

reflecting the hospital ranking. Then, q-ROFWA was

applied on the resulting fuzzy opinion matrices for all q

values of 1, 3, 5, 7 and 10 to compute the individual

ranking score based on each expert (E), as shown in

Table 6.

Table 6 shows that the best hospital rank in q1 was (H-4)

based on first and third experts and was third rank based on

the second expert. This noticeable difference is shown in

all other q values amongst the experts. The consensus of

group decision-makers aggregates to compute the final

ranking of GDM, as shown in Table 7.

According to Table 7, q-ROFDOSM ranking results are

discussed for GDM context according to the q values of 3,

5, 7 and 10. For q = 1, the best ranking was attributed to

(H-4) with a score value (0.322). The same hospital also

ranked first in different q settings, including q = 7 and

q = 10 with the score values (0.203 and 0.145), respec-

tively. For the two remaining q values (3 and 5), the best

hospital selection was attributed to (H-5) with score values

of (0.367 and 0.280), respectively. For the worst hospital

selection, most q values, including, 1, 3, 5 and 7, indicated

that H-7 was the worst with different score values: q = 1

with (- 0.287), q = 3 with (- 0.231), q = 5 with

(- 0.124) and q = 7 with (- 0.062). Only q = 10 indicated

a different worst hospital selection for (H-3) with a score

value of (- 0.028) score value. It is noticeable from the

GDM that different q values presented different ranking

results.

In Table 8, the variance percentage was calculated for

each alternative (Hospital) rank across all q values. The

average of the variance value over all hospitals was

64.16% (Table 8). This finding clearly indicates how the q

value affected the rank for the GDM q-ROFDOSM. This

ranking is the final one, and its evaluation is discussed in

the following section.

4 Evaluation

Three evaluation methods are used in the process, includ-

ing systematic ranking evaluation and sensitivity analysis.

These evaluation approaches are used in many MCDM

context cases [71] to ensure the validity of the ranking

based on the GDM context.

Table 5 Criteria weighting

results
Criteria PSR (C1) PST (C2) PSD (C3) POS (C4) SA (C5) PM (C6) TAH value (C7)

q = 1 0.169 0.128 0.114 0.114 0.146 0.142 0.183

q = 3 0.177 0.118 0.097 0.097 0.168 0.157 0.183

q = 5 0.214 0.084 0.061 0.062 0.185 0.160 0.230

q = 7 0.245 0.055 0.038 0.039 0.190 0.154 0.276

q = 10 0.283 0.0272 0.017 0.0186 0.180 0.136 0.335
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4.1 Systematic ranking

The original data of all hospitals in the decision matrix are

ordered based on their rank value and then divided based

on four hospitals per group to compute the mean value for

each group per q. In q1 for example, the three groups are as

follows: (Group 1: H4, H5, H2 and H1), (Group 2: H8, H6,

H9 and H11) and (Group 3: H12, H3, H10 and H9). The

results of the systematic ranking based on the scenarios of

three groups in Table 9 are as follows.

Table 9 clearly shows that each group’s mean value is

smaller or equal to that of the following group. When these

results are accomplished across all the q values, the validity

of the ranking is confirmed. Thus, the main concept of the

systematic ranking is also confirmed. In our case study, our

ranking is valid based on the results.

4.2 Sensitivity analysis

Another evaluation method is adopted by integrating sen-

sitivity analysis. As a proof of concept, sensitivity analysis

was carried out to measure the weight changes and their

effect on the ranking of q1 only over nine scenarios using

Eq. (13) [72]. The relative change for each criterion over

the most important one (TAH) with respect to the q1 value

was computed by using the elasticity coefficient (ac), as
shown in Table 10.

wc ¼ 1� wsð Þ 	 wo
c=W

0
c

� �

¼ wo
c � Dxac; ð13Þ

For a q value,

• ws is the higher significant contribution.

• wo
c represents the original weight values computed

using q-ROFWZIC.

• W0
c is the total of original weights for the changing

criteria weight values.

Table 7 Final ranking GDM

Alternatives q = 1 q = 3 q = 5 q = 7 q = 10

Score Rank Score Rank Score Rank Score Rank Score Rank

H-1 0.289 4 0.343 3 0.270 2 0.20199 2 0.135 2

H-2 0.289 3 0.329 4 0.221 4 0.135167 4 0.062 5

H-3 - 0.138 10 - 0.094 10 - 0.066 10 - 0.04657 11 - 0.028 12

H-4 0.322 1 0.354 2 0.268 3 0.203987 1 0.145 1

H-5 0.292 2 0.367 1 0.280 1 0.19567 3 0.108 3

H-6 0.025 6 0.062 6 0.050 6 0.030261 6 0.011727 6

H-7 - 0.287 12 - 0.231 12 - 0.124 12 - 0.06225 12 - 0.021 11

H-8 0.029 5 0.053 7 0.040 7 0.022654 7 0.007 7

H-9 - 0.037 7 0.029 8 0.030912 8 0.018212 8 0.006 8

H-10 - 0.209 11 - 0.163 11 - 0.077 11 - 0.0328 10 - 0.008 10

H-11 - 0.038 8 0.080 5 0.125 5 0.112968 5 0.075 4

H-12 - 0.049 9 - 0.007 9 0.005 9 0.005 9 0.001 9

Table 8 Variance percentage based on q values

Hospital q = 1 q = 3 q = 5 q = 7 q = 10 VPQP

Rank Rank Rank Rank Rank

H-1 4 3 2 2 2 80

H-2 3 4 4 4 5 50

H-3 10 10 10 11 12 80

H-4 1 2 3 1 1 80

H-5 2 1 1 3 3 100

H-6 6 6 6 6 6 0

H-7 12 12 12 12 11 20

H-8 5 7 7 7 7 80

H-9 7 8 8 8 8 20

H-10 11 11 11 10 10 30

H-11 8 5 5 5 4 230

H-12 9 9 9 9 9 0

VPQP: Variance percentage per hospital over q values

Table 9 Systematic ranking

Group # q1 q3 q5 q7 q10
Mean Value

Group 1 2.619 2.619 2.619 2.619 2.928

Group 2 3.559 3.559 3.559 3.559 3.25

Group 3 3.880 3.880 3.880 3.880 3.880
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• Dx is the range of change applied on the seven criteria

weight values, which represents the limit values of the

most significant criterion in this study (TAH) as

follows:

• For q = 1, �0:183�Dx� 0:817

• For q = 3, �0:183�Dx� 0:817

• For q = 5, �0:230�Dx� 0:77

• For q = 7, �0:276�Dx� 0:724

• For q = 10, �0:335�Dx� 0:665

All q values across the criteria presented slight changes

in their weights according to Eq. (13). Table 10 clearly

shows that for all ac with respect to the q values, TAH (C7)

received the highest weight in comparison with PSD (C3),

which received the lowest weight. The interval range of Dx
for q values was used in generating nine new weighting

values for each criterion. That range was split into nine

equal relative values according to the number of scenarios.

Given that all the criteria are presented with the same level

of importance across all q values, only q1 as a proof of

concept for sensitivity analysis results is discussed in

Table 11.

Weights generated were used to assess the sensitivity of

hospital ranking for MCD patients across nine scenarios.

The first-ranked alternative (H-4) maintained its highest

ranking with FWZIC in seven (n = 7) scenarios. The next

alternative was (H-11), which maintained its ranking of

eighth across five scenarios. Alternative (H-8) maintained

the fifth rank consistently with FWZIC in four (n = 4)

scenarios, and alternatives (H-7) and (H-10) only main-

tained three ranking scenarios. Alternative (H-3) main-

tained two ranking scenarios. The final maintained

alternatives were (H-2), (H-6) and (H-12) which main-

tained their ranking in only one scenario. The worst

alternatives were (H-1) and (H-5), which did not maintain

their ranking with FWZIC in any scenario. Finally,

Spearman’s rank correlation coefficient was used to sta-

tistically assess the relationship between the results of the

nine scenarios [30]. Generally, high correlation was

observed with a value of 1 for S4 and between 0.94 and

0.96 for scenarios S3, S5 and S6. S2 presented a 0.88

correlation value, followed by S7 with 0.89. S1. S8

presented the same correlation value of 0.76. S9 presented

the lowest correlation value of 0.52.

4.3 Comparison analysis

To accentuate the present main contribution of this study,

this section discusses comparisons of the proposed

q-ROFDOSM and q-ROFWZIC with different MCDM

methods. As mentioned earlier, the Q-rung orthopair fuzzy

sets (q-ROFS) [66] proved its efficiency in comparison

with other fuzzy environments in handling the vagueness

and providing better representation to the membership

degree in comparison with IFSs and PFSs. Theoretically, in

MCDM, the proposed methods show superior performance

and effectively handle the limitation of the other MCDM

methods either in the weight approach or ranking approach.

For instance, the q-ROFDOSM in comparison with TOP-

SIS and VIKOR could successfully overcome the limita-

tion of the most common challenges found in the MCDM

human approaches apart from the missing information and

immeasurable criteria issues; it could also solve the

ambiguous and vagueness issue [64, 65]. Although the

q-ROFDOSM computed the weight implicitly, the pro-

posed methodology used the integration formulation with

Table 10 Elasticity coefficient

(ac) for changing weights
T value Criteria C1 C2 C3 C4 C5 C6 C7

q = 1 ac 0.207 0.157 0.140 0.140 0.179 0.174 0.225

q = 3 ac 0.217 0.144 0.118 0.119 0.206 0.193 0.224

q = 5 ac 0.278 0.110 0.080 0.081 0.240 0.208 0.299

q = 7 ac 0.339 0.077 0.052 0.054 0.263 0.213 0.382

q = 10 ac 0.427 0.040 0.026 0.028 0.272 0.204 0.504

Table 11 Sensitivity analysis scenarios

Rec q-ROFWZIC S1 S2 S3 S4 S5 S6 S7 S8 S9

H-1 4 2 3 3 3 3 3 3 5 5

H-2 3 3 2 2 2 2 2 2 4 4

H-3 10 9 10 10 12 12 12 12 12 12

H-4 1 4 4 1 1 1 1 1 1 1

H-5 2 1 1 4 4 4 4 6 7 7

H-6 6 5 5 6 7 7 7 8 8 8

H-7 12 12 12 12 11 10 10 10 9 9

H-8 5 7 6 5 5 5 5 4 2 2

H-9 7 10 9 7 6 6 6 5 3 3

H-10 11 11 11 11 9 9 8 7 6 6

H-11 8 8 8 8 8 8 9 9 10 10

H-12 9 6 7 9 10 11 11 11 11 11
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q-ROFWZIC to compute the criteria in a precise way due

to the fuzzy environment and with zero inconsistency. In

comparison with the most common weighting methods of

AHP and BWM, the approach of the most recent extension

of FWZIC succeeded in addressing the issue of uncertainty

as a consequence of feedback of experts’ subjectivity. In

addition to reducing the number of comparison eight pair

or reference comparison to zero, the inconsistency, which

is main issue of weighting methods, was resolved [73, 74].

5 Conclusion

This study aimed to address the issue of hospital selection

based on IoT wearable body medical sensors in health care

services for patients with MCD. Various issues were con-

sidered in the process, as follows: (1) multiple evaluation

criteria, (2) criteria importance and (3) data variation. A

literature review presented various MCDM methods, each

of which had its own shortcomings. Recent prominent and

capable MCDM methods known as FDOSM and FWZIC

were most suited for the case study in this research. The

two integrated methods were presented based on a Q-rung

orthopair fuzzy environment to address the uncertainty that

resulted from DM in health care services and during ser-

vice interruptions in our case study. The main contribution

of this work was the use of both techniques for criterion

weighting and hospital ranking. Thus, an integrated deci-

sion-making framework for hospital selection based on IoT

wearable body medical sensors for remote MCD patients

over a telemedicine environment was created. The frame-

work’s robustness was confirmed using systematic ranking

assessment methods and sensitivity analysis.

However, this study has two main limitations that might

be addressed in the future. The first limitation is the use of

static selection procedure for outdoor patients without

considering the dynamic nature associated with having

multiple indoor MCD patients who might arrive first. For

example, when a remote outdoor patient requests service,

the service might be occupied by another indoor patient.

This issue can be targeted in future research, in which the

dynamically changing environment and the continuous

synchronisation between indoor and outdoor patients and

the health care centre can be considered. The second lim-

itation is our reliance on only risk-level patients with MCD

for hospital selection. This limitation can be addressed by

considering different risk levels (i.e., urgent and sick)

separately and in combination with the current risk level

used in this study.
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