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Abstract
Machine learning algorithms spend a lot of time processing data because they are not fast enough to commit huge data sets.

Instance selection algorithms especially aim to tackle this trouble. However, even instance selection algorithms can suffer

from it. We propose a new unsupervised instance selection algorithm based on conjectural hyper-rectangles. In this study,

the proposed algorithm is compared with one conventional and four state-of-the-art instance selection algorithms by using

fifty-five data sets from different domains. The experimental results demonstrate the supremacy of the proposed algorithm

in terms of classification accuracy, reduction rate, and running time. The time and space complexities of the proposed

algorithm are log-linear and linear, respectively. Furthermore, the proposed algorithm can obtain better results with an

accuracy-reduction trade-off without decreasing reduction rates extremely. The source code of the proposed algorithm and

the data sets are available at https://github.com/fatihaydin1/NIS for computational reproducibility.
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1 Introduction

Machine Learning is a study field, which aims to bring in

learning talent for automata to discover patterns in real-

world problems. Two of the machine learning types are

supervised and unsupervised learning, which are com-

monly used in lots of problems. Given a training set

T ¼ x1; y1ð Þ; . . .; xm; ymð Þf g 2 Rm�d, which contains m

instances and is described by d features and c classes, from

input points X ¼ xif gmi¼1) xi ¼ x
1ð Þ
i ; x

2ð Þ
i ; . . .; x

dð Þ
i

� �
2

Rd; i ¼ 1; . . .; m and labels yj 2 Y ; j ¼ 1; . . .; c. A

supervised learning algorithm seeks a function h : X ! Y

that is an element of the hypothesis space H. As for

unsupervised learning, let D be an unknown distribution

function. Accordingly, unsupervised learning aims to learn

X�D concerning h 2 H. While applying supervised and

unsupervised learning tasks, batch learning is preferred in

the industry because it is faster and easier to implement in

comparison to online learning, which takes a real-time

stream of data. Further, both learning types suffer from big

data. Huge datasets are widespread in lots of areas,

including data mining, text categorization, financial fore-

casting, multimedia databases, genome sequences, and

meteorological, financial, industrial, and science reposito-

ries. Undoubtedly, the amount of data is quickly growing in

all domains. Hence, constructing a model would be more

costly and requires more clusters. Furthermore, outliers and

noises participated in the data set while collecting more

data tend to impact the performance more. To address these

troubles, data reduction methods are often employed. Thus,

outliers and noises are discarded, and the data set is refined.

Data reduction could be conducted by feature selection or

instance selection algorithms, or both. Some strategies used

in feature selection are low variance filers, principal com-

ponent analysis, high correlation filters, forward feature

construction, and backward feature elimination methods

[1]. In this paper, we handle instance selection for data

reduction in supervised and unsupervised learning prob-

lems. In this regard, the objective in instance selection is to

find an optimal subset of the input set, i.e., S � X. In this

respect, the use of the instance selection (i.e., prototype

selection) algorithms would be effective in building models

rapidly.

Instance selection is a process to discard noisy or

redundant data [2]. In other words, the objective of the
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instance selection algorithms is to remove useless data

from the training set. In consequence, the classification

accuracies of the selected subset and original data set are

either close to or the almost same as each other. Instance

selection would be useful for decreasing the training and

test time for lazy learners (e.g., k-Nearest Neighbors

[KNN]) and high computational costly algorithms such as

Support Vector Machine (SVM) and Neural Networks. In

addition, instance reduction algorithms are presented to

tackle problems in the fields such as time series, class-

imbalanced data sets, distributed learning, noise sensitive-

ness, monotonic data sets, and lazy learners. In the litera-

ture, the approaches used in developing instance selection

algorithms are the nearest neighbor, evolutionary compu-

tation, meta-learning, artificial immune model, divide-and-

conquer strategy, Bayesian approach, cluster-based

approach, hashing approach, geometry-based approach,

instance ranking approach, density-based approach, the

edge detection approach in image processing, metaheuristic

algorithms, swarm intelligence algorithms, and graph-

based approach. There are a few common properties in

instance selection algorithms: Evaluation of search, type of

selection, and direction of search [2–4]. Besides, there are

four criteria to contrast instance selection algorithms:

Storage requirement, noise resistance, classification accu-

racy, and running time [3].

All these approaches have a variety of advantages and

disadvantages. Besides, we think that instance selection

methods would persist to be incomplete due to the accu-

racy-reduction dilemma and no single approach can over-

whelm the other approaches over all the data sets. In other

words, there exist data sets where each method is suc-

cessful and unsuccessful because of their assumptions and

characteristics. Despite this, we can compare instance

selection algorithms in terms of criteria such as reduction

rate, classification accuracy, and running time. In this

paper, we try to focus on a faster instance selection and a

simple accuracy rate-reduction ratio trade-off by using a

single parameter. This is because instance selection algo-

rithms suffer from big data just like classification, regres-

sion, and clustering algorithms, as well. Moreover,

adjusting the accuracy rate—reduction ratio trade-off is a

serious problem in instance selection algorithms that have

lots of meta parameters and this situation complicates the

management of the process. To efficiently implement and

deploy instance selection algorithms in terms of software/

hardware, it is a significant matter that the algorithm is also

comprehensible and easily applicable. In this study, as

devising an algorithm corresponding to the aforementioned

criteria, conjectural hyper-rectangles are employed.

Hyperrectangle, whose edges are all mutually perpendic-

ular in Euclidean n-space En is the generalization of a

rectangle to higher dimensions. We call defining the

pseudo-hyper-rectangles the conjectural hyper-rectangles

instead of real hyper-rectangles to contain points in En.

Hyper-rectangles are used in performing various tasks in

the machine learning area (e.g., classification, clustering,

instance selection, etc.). Coming up with a solution to a

problem by creating hyper-rectangles in En is more effi-

cient than using other geometric structures and easier than

forming them. Therefore, using those is preferable to oth-

ers. But it takes a long time on data sets with huge volumes

to calculate the proper positions of real hyper-rectangles.

Particularly, we remind that hyper-rectangles can intersect

with each other. In this case, many unnecessary hyper-

rectangles have been created. In this respect, we have

preferred to exploit conjectural hyper-rectangles both not

to describe unnecessary hyper-rectangles and to speed up

the algorithm by not creating real hyper-rectangles. Lastly,

we develop an instance selection algorithm to use in both

supervised and unsupervised learning problems.

In this paper, we propose a fast unsupervised instance

selection algorithm based on conjectural hyper-rectangles.

The time complexity of our proposed method is log-linear.

Besides, the proposed algorithm has obtained remarkable

results on the data sets used in the experiments. The main

contributions of the proposed method are as follows:

• The proposed unsupervised algorithm is straightforward

and rapidly processes huge data sets.

• The accuracy-reduction trade-off can be easily adjusted

by the scaling rate parameter, which is a single

parameter of the proposed algorithm.

The rest of the paper is arranged in the following. In

Sect. 2, we introduce our algorithm. Section 3 presents a

literature review. In Sect. 4, we introduce the experimental

setup. In Sect. 5, we share results and discussion in detail.

Lastly, we finalize in Sect. 6.

2 Background

Moving backward in time, it is seen that one of the first

algorithms that have been developed to reduce the data set

is Condensed Nearest Neighbor (CNN) [5]. CNN is an

iterative algorithm and starts with an empty subset. In the

next step, CNN randomly picks up an instance from the

training data and adds it to the subset if it is misclassified

when using the subset as training data. The stop criterion is

that there remain no more prototypes. CNN does not

guarantee finding the optimum subset. Further, it generates

different subsets on every run due to random instance

selection [6]. The Reduced Nearest Neighbor (RNN) has

been introduced as a modification to CNN to obtain more

minimal subsets [7]. Ullmann developed an algorithm that

obtains smoother boundaries by improving CNN and RNN
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[8]. Selective Nearest Neighbor (SNN) has been presented

as an extension of CNN. SNN guarantees that the nearest

neighbor of each instance of the original data set is a

member of the subset and a minimal subset. But SNN is a

difficult and complex algorithm to implement [9]. Tomek

proposed two methods to improve CNN and claimed that

the methods ensure a minimal subset and a boundary close

to the decision boundary [10]. Gowda and Krishna pro-

posed a method to improve CNN. The proposed method

precludes the holding of inner instances in the condensed

set, trying to add near instances to the decision boundary

[11]. IB2 and IB3 methods have been introduced to discard

fluctuated instances from the training set [12]. Fast Con-

densed Nearest Neighbor Family (FCNN) contains a set of

algorithms that run on big data fast. The time complexity of

the algorithms is quadratic in the worst case [13]. One of

the first methods that focus to remove noisy instances is

Edited Nearest Neighbor (ENN). ENN aims to discard

noisy instances in a training set [14]. The Edition Method

Based on Local Sets (ELS) has been proposed as a new

parameter-free algorithm based on local sets with natural

neighbors to obtain more acceptable boundaries and to

filter noisy instances efficiently [15].

The algorithms in the literature are categorized into

several approaches in terms of the applied techniques:

various hybrid methods that combine condensing and

editing approaches have been proposed [16–18]. As for

ensemble approaches, a variety of ensemble IS methods are

proposed [6, 19, 20]. In respect of the use of evolutionary

approaches, many methods have been proposed [21–23].

For the use of the computational methods, the MapReduce

solution for Prototype Reduction (MRPR) has been intro-

duced as a new instance selection algorithm to accelerate

the classification stage and decrease the storage needs and

the noise sensitiveness of the nearest neighbor rule [24]. In

the matter of hashing, some approaches have been pro-

posed [25–27]. To speed up SVM, Shell Extraction (SE)

has been proposed [28] and in addition, two instance

selection methods, based on a nature-inspired metaheuristic

algorithm and a normal individual-based swarm intelli-

gence algorithm, have been proposed [29]. Relating to

scoring the instances, the instance selection algorithms

based on the ranking approach have been proposed

[30, 31]. Concerning the solution approaches to different

data set types (e.g., class-imbalanced data sets), a variety of

methods have been proposed [32, 33]. Finally, the point of

geometrical approaches, many methods have been pro-

posed [34–38].

Judging the works accomplished recently, it is seen that

serious efforts are made to solve important problems. The

major hardships in GA-based instance selections are high

computational complexity and decreasing performance

with the dataset size growth. To tackle the related problems

in a three-step strategy, fuzzy clustering decomposition

based on a genetic algorithm has been proposed for

regression problems [39]. A generic cluster-oriented

instance selection algorithm that conducts an unsupervised

K-Means Clustering algorithm on the training set and with

a given selection rate and chooses instances from the

centers and the boundaries of the clusters has been pro-

posed for classification problems [1]. Intrusion detection

data sets are represented by huge data, which affects the

learning of the classifier. Hence, there exists a requirement

to decrease the size of the data sets. Therefore, a new fast

instance selection method is proposed to provide better

efficiency during the training stage, without greatly

impacting the effectiveness of the intrusion detection

scheme [40]. The preservation rough set model based on

rough sets has been proposed, which deals with the

instance selection problem to enhance lazy learners in

hybrid and incomplete data sets [41]. A method that is

inspired by the cross-validation and divide-and-conquer

strategies and uses genetic algorithms and an open-source

framework to choose an optimum instance subset from

huge data has been proposed, which relies on combined

information entropy [42].

3 The proposed algorithm

The proposed algorithm discards instances by exploiting

hyper-rectangles. Essentially, since detecting directly

hyper-rectangles can slow down the running time of the

instance selection process, we do not try to find hyper-

rectangles directly for solving the trouble. Instead, we

utilize the concept of data scaling in Statistics. Thus, we

can avoid the cost of calculating the positions of real hyper-

rectangles and indirectly form hyper-rectangles. We call

hyper-rectangles created by adopting this approach con-

jectural hyper-rectangles. Figure 1 shows the positions of

the conjectural hyper-rectangles on the original seeds data

set. Accordingly, thirty conjectural hyper-rectangles have

been constituted by the proposed method on the original

data set. These hyper-rectangles are rectangles in two-di-

mensional space. Accordingly, the proposed method ran-

domly keeps only a single instance in each rectangular

region and disposes of the rest of the instances from their

own rectangular region. For high dimensional space, these

rectangular regions are hyper-rectangular, and the approach

of the proposed method is the same way for hyper-rect-

angular regions, as well. The proposed method relies on

data scaling in Statistics to calculate conjectural hyper-

rectangles. In this respect, the proposed method assumes

that data is normally distributed. Considering one-dimen-

sional space, when we scale a number of data by their

standard deviation and then, when we round the scaled
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values by a certain rule some values would be in the same

range. These ranges are regarded as the unevenly spaced

points of a number line in one-dimensional space. For two-

dimensional space, each number line corresponds to an axis

such as the x-axis and y-axis, and these axes constitute a

cartesian plane. As a result of intersections of points on

each axis, a grid emerges, which is composed of rectangles.

For high-dimensional spaces, there exists a hyper-grid,

which consists of hyper-rectangles. In a data space, data

takes a place in these hyper-rectangles, and the goal of the

proposed method is to retain only the first data point in

these hyper-rectangles and discard the rest of the data

points in each hyper-rectangle. The proposed method is

simply constructed in this way.

Given a training set T ¼ x1; y1ð Þ; . . .; xm; ymð Þf g
2 Rm�d , which contains m instances and is described by d

features and c classes, from training points X ¼ xif gmi¼1)
xi ¼ x

1ð Þ
i ; x

2ð Þ
i ; . . .; x

dð Þ
i

� �
2 Rd; i ¼ 1; . . .; m and labels

yj 2 Y ; j ¼ 1; . . .; c. The range of a data x
kð Þ
i in any

dimension, k ¼ 1; . . .; d, is calculated as in Eq. (1). Thus,

we calculate in which range the data within each dimension

(or feature) is. In other words, we scale all values. Even-

tually, the real positions of the conjectural hyper-rectangles

are implicitly determined through pos kð Þ ¼ x0rx kð Þ þ
min x kð Þ� �

from Eq. (1). This is useful to view where the

locations of the conjectural hyper-rectangles are on the

original data set.

x0 ¼
x

kð Þ
i �min x kð Þ� �

rx kð Þ

" #
ð1Þ

The proposed method assumes that data is normally

distributed. In this regard, as values in Normal Distribution

move away with a certain deviation from the mean, the

probabilities that they are within the related range also

change. Hence, all the hyper-rectangles are not the same

size. Accordingly, the maximum and minimum values of x0

in Eq. (1) are six and zero, respectively, according to the

three-sigma rule of thumb, for example. In this case, each

data cell can take seven possible values. In other words, it

has seven possible states. But we note that data distribution

can be heavy-tailed or light-tailed relative to a normal

distribution or not symmetric. We add a scaling rate a to

Eq. (1) as shown in Eq. (2) to adjust the size of hyper-

rectangles. As the value of the scaling rate decreases, the

size of the hyper-rectangles increases, and accordingly the

number of hyper-rectangles decreases, and vice versa.

Further, the default value of the scaling rate is 1.

x0 ¼ a
x

kð Þ
i �min x kð Þ� �

rx kð Þ

 !" #
ð2Þ

The proposed algorithm runs depending on the scaling

rate to reduce instances. We call the proposed instance

reduction algorithm the Nimble Instance Selection (NIS)

and describe it in Algorithm 1.

Fig. 1 The positions of the

conjectural hyper-rectangles on

the original seeds data set
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Now, we calculate the time and space complexities of

the algorithm. NIS measures the rounded distance of the

instances from the minimum value in terms of the standard

deviation and accordingly removes some repetitive

instances. The upper bound time and space complexities of

scoring the instances are O 2mdð Þ and O mdð Þ, respec-

tively. The upper bound time and space complexities of

searching unique instances are O md log2 md þ mdð Þ and

O mdð Þ, respectively. In consequence, the total time com-

plexity is O md log2 mdð Þ and the total space complexity is

O mdð Þ.
Now let us find out the equation that gives the average

number of reduced instances by making various assump-

tions. To facilitate calculations, we assume that all the

dimensions have the same characteristics. The probability

of successful events in a sample of size n that are selected

with replacement from a data set of m instances is shown in

Eq. (3).

b n; m; pð Þ ¼ m
n

� �
pnq m�nð Þ ð3Þ

where p is success probability and q is failure probability.

The success probability depends on the range between data

(i.e., vr� �vrð Þ ¼ 2vr; v 2 R for standard normal dis-

tribution) and the number of dimensions. But we note that

data distribution can be skew and kurtic relative to a nor-

mal distribution. Let U : X ! 0; � � � ; uf g; u 2 Z be a

discrete random variable with the range values from

Eq. (2) and let N be the number of total possible outcomes

in U. Accordingly, the success probability is shown in

Eq. (4).

p ¼ 1

N

� �d

ð4Þ

Considering all possible cases of the same instances, we

calculate the expected value of the number of selected

instances (i.e., the number of reduced instances) by using

Eq. (5).

E Z½ � ¼
Xm
n¼0

m
n

� �
pnq m�nð Þn ð5Þ

where, Z : X ! 1; � � � ;mf g is a discrete random variable

with the number of the reduced instances and the symbol n

refers to the number of the reduced instances. Accordingly,

let us calculate the expected value of the number of

selected instances by using Lemma 1.

Lemma 1 Let p; q 2 R� 0 ¼ x 2 Rj x� 0f g and m; n 2
Z� 0 ¼ x 2 Zj x� 0f g such that

mp pþ qð Þm�1¼
Xm

n¼0

m
n

� �
pnq m�nð Þn

.

Since E Z½ � ¼
Pm

n¼0

m
n

� �
pnq m�nð Þn from Eq. (5),

Xm
n¼0

m!

n! m� nð Þ! nð Þpnq m�nð Þ ð6Þ

Since the n variable appears both in the numerator and

in the denominator, the n variables cancel each other out.

The m and p constants can be written separately from the

general expression. Thus, let us rewrite Eq. (6) as in

Eq. (7).

Xm
n¼0

mð Þ m� 1ð Þ!
n� 1ð Þ! m� nð Þ! p

n�1ð Þq m�nð Þ pð Þ ð7Þ

Due to the Constant Multiple Rule of the summation, the

m and p constants can be written outside the summation.

Then, the upper and lower limits of the summation are

properly shifted in accordance with the new expression.

Accordingly, let us rearrange Eq. (7) as below.

mp
Xm�1

n¼1

m� 1

n� 1

� �
p n�1ð Þq m�nð Þ ð8Þ

Eventually, by involving the binomial theorem

pþ qð Þm¼
Pm

n¼0

m
n

� �
pnq m�nð Þ, we arrive at

mp pþ qð Þm�1¼
Xm
n¼0

m
n

� �
pnq m�nð Þn ð9Þ
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We substitute Eq. (4) in Eq. (9) and since pþ q ¼ 1, we

reach the expected value of the number of reduced

instances in Eq. (10).

E Z½ � ¼ m
1

N

� �d

ð10Þ

From Eq. (10), it is concluded that large deviations and

high dimensions negatively affect the expected value of the

number of reduced instances. As a result, the most

important factor affecting the performance of the proposed

algorithm is the number of dimensions if there are no noisy

data in a data set. Furthermore, since the proposed method

discards at least one instance, it must satisfy m
Nd � 1 con-

dition. In other words, m�Nd condition must be satisfied.

In d[m or m\Nd cases, the reduction rate can be

increased by adjusting the scaling rate. We note that m and

d are constants and a is a variable.

Figure 2 shows the instances and reduction rates r after

the reduction process on the seeds data set in terms of the

scaling rate a. As can be seen from the results, as the

scaling rate increases the reduction rate decreases. The

default value of the scaling rate is set as 1.

4 Experimental setup

In this section, we explain the experimental setup, includ-

ing experimental data sets, instance selection algorithms

used in the experiments, evaluation metrics, and

implementations.

4.1 Data sets

We compare NIS with the state-of-the-art instance selec-

tion algorithms to measure its efficiency by using fifty-five

data sets from the UCI database,1 MATLAB sample data

sets,2 and the OpenML datasets.3 The descriptive infor-

mation belonging to those data sets is shown in Table 1.

4.2 Instance selection algorithms

We compare the proposed algorithm with the state-of-the-

art instance selection algorithms. The algorithms used in

the experiments are shown in Table 2. All methods are

Fig. 2 The illustration of the remaining instances and reduction rates r on the seeds data set, according to the scaling rate a

1 http://archive.ics.uci.edu/ml.
2 https://www.mathworks.com/help/stats/sample-data-sets.html.
3 https://www.openml.org/s/88/data.

5340 Neural Computing and Applications (2023) 35:5335–5349

123

http://archive.ics.uci.edu/ml
https://www.mathworks.com/help/stats/sample-data-sets.html
https://www.openml.org/s/88/data


Table 1 The characteristics of the data sets used in experiments

# Data set Instances Features Classes Imbalance ratio

1 Arrhythmia 452 279 13 122.50

2 Auditrisk 776 26 2 1.54

3 Avila 20,867 10 12 857.20

4 Banknote authentication 1372 4 2 1.27

5 Blood transfusion 748 4 2 3.20

6 Boston housing2 506 18 92 30.00

7 Breast cancer 699 9 2 1.90

8 Breast tissue 106 9 6 1.57

9 Cardiotocography3 2126 21 3 9.40

10 Cardiotocography10 2126 21 10 10.92

11 Climate model 540 18 2 10.73

12 Connectionist bench 208 60 2 1.14

13 Diabetic retinopathy 1151 19 2 1.13

14 DNA 3186 180 3 2.16

15 Ecoli 336 7 8 71.50

16 EEG_eyestate 14,980 14 2 1.23

17 Electricity 45,312 8 2 1.36

18 FisherIris 150 4 3 1.00

19 FrogsMFCCs_families 7195 22 4 65.00

20 FrogsMFCCs_genus 7195 22 8 61.03

21 FrogsMFCCs_record ID 7195 22 60 458.00

22 FrogsMFCCs_species 7195 22 10 51.15

23 Glass 214 9 6 8.44

24 Haberman 306 3 2 2.78

25 HTRU2 17,898 8 2 9.92

26 Human activity 24,075 60 5 2.34

27 Ionosphere 351 34 2 1.78

28 Leaf 340 14 30 2.00

29 Letter recognition 20,000 16 26 1.11

30 Libras movement 360 90 15 1.00

31 LSVT voice Rehabilitation 126 310 2 2.00

32 Madelon 2000 500 2 1.00

33 MAGIC gamma Telescope 19,020 10 2 1.84

34 MEU_mobile KSD 2856 71 56 1.00

35 Mozilla4 15,545 5 2 2.04

36 Nomao 34,465 118 2 2.50

37 Optical recognition 3823 64 10 1.03

38 Ovariancancer 216 4000 2 1.27

39 Page blocks 5473 10 5 175.46

40 Parkinson speech 1040 26 2 1.00

41 Poker hand 1,025,010 10 10 64,212.75

42 QSAR biodegradation 1055 41 2 1.96

43 Satellite 6435 36 6 2.44

44 Seeds 210 7 3 1.00

45 Shuttle 58,000 9 7 4558.60

46 Vehicle 846 18 4 1.10

47 Vertebral column 310 6 2 2.10

48 Vowel 990 10 11 1.00
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supervised and filtering-based instance selection algo-

rithms. Besides, we run them by the default values of them

in all the experiments.

4.3 Parameter setting and implementations

In this study, the baseline method means that the 1NN

algorithm applies to the whole data set. Besides, we apply

tenfold cross-validation to all the experiments and repeat

each experiment ten times to generate the training sets with

different fold combinations. The experiments have been

performed in the MATLAB R2021a on an i5-8265U CPU

at 1.6 GHz with 8 GB of RAM on Windows 11 Pro (64-

bit). Besides, we use the default parameter values of NIS

unless otherwise stated.

4.4 Evaluation criteria

We compare instance selection algorithms by using three

criteria: reduction rate, classification accuracy, and running

time. The lower the reduction rate, the higher the storage

requirement. Furthermore, as the reduction rate increases,

less decrease in classification rate is the desired situation.

Finally, the algorithms are expected to process large data

sets quickly. As a result, the above-mentioned criteria

should be included in an algorithm.

5 Results and discussion

In this section, we conduct experiments related to the

comparison of the instance selection algorithms. Figure 3

shows the results of the experiments done over the data sets

in terms of classification accuracy, running time, and

reduction rate. According to the results, after the instance

reduction process, the highest average classification accu-

racy belongs to NIStuned with 81.99%. The average scale

rate of NIStuned is 1.48 and the scale rate has been only

changed for 15 out of 55 data sets. The average accuracy

rate of 1NN (i.e., the baseline) on original data sets is

82.33%. The average accuracy rate of NIS on the data sets

is 80.24% as the scaling rate is 1. The average accuracy

rates of BPLSH, DR.LSH, LSH-IS-S, LSH-IS-F and Wil-

son’s ENN are 81.19%, 81.45%, 81.44%, 81.69%, and

80.89%, respectively. NIS is faster than the other instance

selection algorithms. Adjusting the scaling parameter of

NIS does not significantly change its running time. Wil-

son’s ENN method is the slowest instance selection algo-

rithm because it considers the neighborhoods between data

points. The average running times of NIS, NIStuned,

BPLSH, DR.LSH, LSH-IS-S, LSH-IS-F, and Wilson’s

ENN are 0.03, 0.03, 342.17, 134.63, 2.30, 0.67, and

1450.50 s, respectively. The reduction rate of NIS is larger

than the other instance selection methods. The average

reduction rates of NIS, NIStuned, BPLSH, DR.LSH, LSH-

IS-S, LSH-IS-F, and Wilson’s ENN are 35.50%, 30.46%,

21.59%, 14.89%, 15.10%, 15.10%, and 17.65%, respec-

tively. The selection of the fit scaling rate induces high

classification accuracy and reduction rate. As a result,

although NIS does not use class information it can rapidly

deliver high accuracy rates and reduction rates over many

data sets. Overall, the results show the reduction rate

decreases as the classification accuracy of the algorithms

increases. Besides, better results can be obtained by

adjusting the parameter values of the algorithms. The

important point is a trade-off between accuracy, reduction,

and speed-up. NIS promises to be a faster algorithm and to

reduce more instances than others for any data set. Fur-

thermore, the results show that the classification accuracy

can be improved more and more by changing the scaling

rate parameter.

The proposed method (with default scaling parameter)

cannot reduce instances on 8 out of 55 data sets. The mean

range of the dimensions on the arrhythmia data set is 11.12

and the number of dimensions is 279. Accordingly, let us

substitute these values in m 1
N

� �d¼ 452 1
11

� �279	 0. But to

overcome this problem, the scaling rate parameter can be

adjusted. For instance, the accuracy and reduction rates are

56.64% and 3.76%, respectively for a ¼ 0:07. The scaling

rate parameter changes the range, i.e., N. Thus, the mean

Table 1 (continued)

# Data set Instances Features Classes Imbalance ratio

49 WFR navigation 3 5456 2 4 6.72

50 WFR navigation 4 5456 4 4 6.72

51 WFR navigation 24 5456 24 4 6.72

52 Wine quality-red 1599 11 6 68.10

53 Wine quality-white 4898 11 7 439.60

54 Yeast 1484 8 10 92.60

55 Zoo 101 16 7 10.25
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range is 0.73 for a ¼ 0:07. As a result, tuning the scaling

rate is the key to dealing with high dimensionality and

large range. Besides, the mean running time of the pro-

posed method is very close to 0. While the proposed

method satisfies low running time, it also acquires high

reduction rates. The summarized information about whe-

ther there is statistical importance between the results is

shown in Table 3. According to Kruskal–Wallis test results,

Fig. 3 The comparative results

of the algorithms in terms of

accuracy rate, running time, and

reduction rate

Table 2 The state-of-the-art

instance selection algorithms

used in the experiments

Algorithm Technique Parameter

BPLSHa [27] Condensation M = 30, L = 10, W = 1

DR.LSHb [26] Hybrid M = 25, L = 10, W = 1, ST = 9

LSH-IS-Sc [25] Hybrid L = 0, Y = 10, O = 4, W = 1, S = 1

LSH-IS-Fc [25] Hybrid L = 0, Y = 10, O = 4, W = 1, S = 1

Wilson’s ENNd [14] Edit k = 3

ahttps://github.com/mohaslani/BPLSH
bhttps://github.com/mohaslani/DR.LSH
chttps://github.com/alvarag/LSH-IS
dhttps://github.com/LucyKuncheva/Instance_selection
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no accuracy rates have mean ranks significantly different

from each other. According to Friedman’s test, there is a

significant difference between accuracy rates. The accuracy

rate of the baseline is significantly different than NIS,

BPLSH, and Wilson’s ENN. But there is not a significant

difference between the baseline, NIStuned, DR.LSH, LSH-

IS-S, and LSH-IS-F. Besides, according to both tests, there

exist significant differences in terms of running time and

reduction rate.

Table 4 shows the performance results of the instance

selection methods on the Poker Hand data set in terms of

accuracy rate, reduction rate, and running time. The Poker

Hand data set has 1025010 instances and 10 features. From

the results, the accuracy rates of all the instance selection

methods are almost the same as the baseline. The accuracy

rate difference between NIS and LSH-IS-S is 1.22%. This

difference can be decreased by tuning the scaling rate

parameter of NIS. NIS has the highest reduction rate of

43.09%. DR.LSH, LSH-IS-S, and LSH-IS-F deliver the

lowest reduction rate by 0.22%. Besides, NIS has the

lowest running time of 1.17 s. Wilson’s ENN is the slowest

method by 78123.37 s. Amongst methods based on hash-

ing, LSH-IS is faster in terms of running time. As a result,

the other methods get worse in terms of running time as the

size of data sets increases. Consequently, NIS can yield

good performance in terms of accuracy rate-reduction rate

dilemma and running time on a large data set.

Table 5 shows the comparative results of the instance

selection methods on some data sets in terms of accuracy

rate, reduction rate, and running time. The scaling rate of

NIS is 1 in 4 out of 10 data sets. The mean of the tuned

scaling rate is 2.1. We have adjusted the scaling rate in one

decimal digit precision. Accordingly, we point out that one

does not spend a lot of time searching for a suitable scaling

rate. From the results, Wilson’s ENN has the highest

accuracy rate in 4 out of 10 data sets. Besides, Wilson’s

ENN ranks first in terms of average accuracy rate as NIS

ranks second. But we underline that the classification

accuracy performances of the methods are almost the same.

NIS yields the highest reduction rate in 6 out of 10 data

sets. DR.LSH ranks second after NIS in terms of the

number of the highest reduction rates. Moreover, BPLSH

ranks second in terms of average reduction rate and NIS

ranks first in terms of average reduction rate. Furthermore,

NIS is superior to the other methods in terms of running

time since it delivers the least running time on all the data

sets. LSH-IS-S and LSH-IS-F are the second fastest

instance selection algorithms next to NIS in terms of speed

Table 3 The mean rank results of the Kruskal–Wallis test and Friedman’s test (Small values of q weaken the validity of the null hypothesis,

which means it is not significantly different between results)

Experiment Kruskal–Wallis test Friedman’s test

Accuracy rate Running time Reduction rate Accuracy rate Running time Reduction rate

1NN 229.91 – – 5.75 – –

NIS 207.85 82.71 241.62 3.64 1.52 5.47

NIStuned 222.61 84.97 233.96 4.30 1.61 5.00

BPLSH 218.79 283.35 214.53 4.14 6.00 4.45

DR.LSH 221.01 258.65 149.93 5.17 5.07 2.77

LSH-IS-S 221.49 176.44 149.14 4.39 3.79 2.93

LSH-IS-F 224.16 166.84 149.14 4.98 3.26 2.93

Wilson’s ENN 218.17 298.05 212.69 3.64 6.75 4.45

q 0.9958 1.53e-43 1.61e-08 5.37e-06 5.23e-62 1.40e-18

Table 4 The performance

results of the instance selection

methods on the Poker Hand data

set in terms of accuracy rate,

reduction rate, running time

Algorithm Performance criteria

Accuracy rate (%) Reduction rate (%) Running time (second)

1NN 59.88 – –

NIS 58.52 43.09 1.17

BPLSH 59.32 1.03 18,594.97

DR.LSH 59.73 0.22 7335.61

LSH-IS-S 59.76 0.22 119.35

LSH-IS-F 59.75 0.22 29.99

Wilson’s ENN 53.54 38.52 78,123.37

Best results are highlighted in boldface
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comparison. Additionally, as NIS ranks first in terms of

average running time, LSH-IS-S and LSH-IS-F rank sec-

ond. Wilson’s ENN is the slowest instance selection

algorithm. Briefly, NIS rapidly processes all the data sets.

According to the characteristics of data sets, as the number

of instances increases, the running time of Wilson’s ENN

increases excessively. BPLSH and DR.LSH are affected by

this situation, as well. NIS, LSH-IS-S, and LSH-IS-F are

much less affected by these circumstances. BPLSH and

DR.LSH are much more affected negatively by the number

of dimensions compared to the number of instances.

Wilson’s ENN is much more impacted unfavorably com-

pared to other algorithms by both the number of dimen-

sions and the number of instances. Further, BPLSH is more

influenced by the number of classes in comparison to the

other algorithms excluding Wilson’s ENN.

Figure 4 shows the accuracy and reduction rates

obtained over the ten data sets according to the change in

the scaling rate of NIS. The scaling rate has been picked in

the range of 0.1 to 5 in increments of 0.1. According to the

result, a high accuracy rate is obtained on the Nomao,

HTRU2, and Human activity data sets when the scaling

Table 5 The comparative results of the instance selection methods on some data sets in terms of accuracy rate, reduction rate, and running time

(the data sets are denoted by their number)

Criteria Data set Algorithm

NIStuned BPLSH [27] DR.LSH [26] LSH-IS-S [25] LSH-IS-F [25] Wilson’s ENN [14]

Accuracy rate (%) #3 78.43 79.27 76.32 79.00 79.64 77.21

#16 96.12 97.77 64.64 97.96 97.92 97.29

#17 78.04 74.10 79.17 66.76 66.70 80.13

#25 95.20 75.42 96.07 96.20 96.26 97.25

#26 98.09 98.09 98.08 98.09 98.04 97.79

#29 95.87 95.85 95.90 92.45 95.83 94.84

#33 77.08 75.52 78.35 78.33 78.32 81.01

#35 91.06 85.66 91.26 92.22 92.36 92.95

#36 95.43 95.37 95.45 95.37 95.33 95.24

#44 98.23 99.48 99.11 99.83 99.83 99.81

Avg 90.36 87.65 87.44 89.62 90.02 91.35

Reduction rate (%) #3 18.90 5.72 37.92 0.42 0.42 20.25

#16 40.49 5.89 98.96 0.00 0.00 2.20

#17 60.91 42.61 9.75 81.78 81.78 18.75

#25 91.53 87.04 20.62 0.00 0.00 2.83

#26 19.17 17.66 14.02 14.09 14.09 2.17

#29 23.62 15.07 6.66 6.66 6.66 4.26

#33 54.38 28.79 0.68 0.60 0.60 19.76

#35 54.35 62.12 35.78 0.00 0.00 7.49

#36 19.83 13.21 7.57 13.67 13.67 4.43

#44 99.01 59.71 97.99 0.00 0.00 0.17

Avg 48.22 33.78 33.00 11.72 11.72 8.23

Running time (second) #3 0.02 36.71 2.72 0.43 0.30 47.21

#16 0.01 21.46 0.35 0.25 0.21 29.43

#17 0.01 61.74 17.74 0.25 0.22 175.34

#25 0.01 10.60 5.09 0.28 0.23 38.78

#26 0.05 10.39 5.40 0.51 0.56 156.68

#29 0.02 9.14 1.97 0.31 0.29 66.87

#33 0.01 14.39 5.74 0.29 0.25 44.97

#35 0.01 7.31 2.99 0.32 0.50 19.27

#36 0.20 22.26 14.29 1.27 1.23 550.92

#44 0.03 7.90 1.62 1.24 1.34 426.71

Avg 0.04 20.19 5.79 0.52 0.51 155.62

Best results are highlighted in boldface
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rate is 0.1. In other words, a high accuracy rate can be

achieved at high reduction rates, as well. Besides, the

scaling rate parameter does not affect the running time of

the proposed algorithm. The number of instances or

dimensions of a data set merely influences the running time

of the proposed algorithm. Accordingly, both high accu-

racy and high reduction rates can be delivered by the fit

scaling rate. Further, it is not generally needed to search for

large scaling rates to get a trade-off between the accuracy

rate-reduction rate. Considering the experimental results,

the optimal scaling rate for data sets can be looked for in

the range of 0 to 5 (zero is not included). Besides, an

appropriate trade-off between accuracy rate-reduction rate

can be mostly obtained when the scaling rate value is in the

range of 0 to 2 in general (zero is not included). Finally,

these results show that high accuracy rates cannot be also

obtained at the same time on data sets when high reduction

rates are reached on data sets. Therefore, either one of the

Fig. 4 The accuracy and reduction rates obtained over the ten data sets according to the change in the scaling rate of NIS
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accuracy or reduction rates should be sacrificed, or a

common balance point should be probed for both, as well.

In consequence, the proposed method may rapidly cope

with big data in comparison with other methods. Further-

more, the proposed algorithm yields larger reduction rates

on average. Besides, higher classification accuracies can be

obtained with an accuracy rate—reduction rate trade-off

without decreasing reduction rates too much. In addition,

the idea of scaling rate is the key to overcoming large data

sets. Additionally, NIS affords the best time for all data sets

from different domains and characteristics. To put short it,

the advantages of NIS are as follows:

• Data sets with huge volumes can be processed very fast.

• It can conduct both supervised and unsupervised

learning tasks.

• It can easily manage accuracy rate—reduction rate

trade-off through a single parameter.

• Simultaneously, it can provide both high accuracy and

high reduction rates on the data sets.

• NIS can also deliver successful results on the imbal-

anced data sets.

• Better outcomes on high-dimensional data sets can be

obtained by adjusting the scaling rate parameter.

The disadvantages of NIS are as follows:

• Since it selects the first one of the instances in a

hyperrectangle without any criterion, the accuracy rate

and reduction rate can be affected by this preference.

• Someone spends some time finding an exact scaling rate

value for the data set.

6 Conclusion

In this study, we propose a new unsupervised instance

selection algorithm called NIS. We have measured the

success of NIS by using fifty-five data sets from different

domains and compared NIS with one conventional and four

state-of-the-art instance selection algorithms in recent lit-

erature. NIS yields a more desired classification accuracy-

reduction rate trade-off compared to the other algorithms.

The accuracy and reduction rates of NIS are 80.24% and

35.50%, respectively. The closest contestant of NIS is

LSH-IS-F in terms of the accuracy-reduction trade-off.

Accordingly, the accuracy and reduction rates of LSH-IS-F

are 81.69% and 15.10%, respectively. Additionally, when

we roughly adjust the scaling rate of NIS, we obtain the

accuracy and reduction rates of NIStuned as 81.99% and

30.46%, respectively. In this case, the average scaling rate

of NIS is 1.48. But the optimum scaling rate for data sets

can be searched in the range of 0 to 5 (Zero is not inclu-

ded), according to the experimental results. NIStuned is

superior to the other methods on 7 out of 55 data sets. The

number of the data sets on which BPLSH, DR.LSH, LSH-

IS-S, LSH-IS-F, and Wilson’s ENN are superior to their

own contestants is 8, 8, 8, 12, and 16, respectively.

Moreover, the number of the data sets on which NIStuned,

BPLSH, DR.LSH, LSH-IS-S, LSH-IS-F, and Wilson’s

ENN are best in their own contestants in terms of the

reduction rates, is 20, 3, 3, 9, 9, and 21, respectively. The

running time of NIS is quite low and can rapidly overcome

huge data sets. The average, maximum, and minimum

running times of NIS are 0.0332, 1.1673, and 0.0003,

respectively. The closest contestant of NIS is LSH-IS-F in

terms of running time. The average, maximum, and mini-

mum running times of LSH-IS-F are 0.6663, 29.9893, and

0.0007, respectively. NIS and NIStuned are faster than the

other methods on all the data sets. Although NIS is an

unsupervised algorithm it can rapidly yield high accuracy

rates and reduction rates over many data sets. In general,

the reduction rate decreases while the accuracy rate of the

methods increases. The key ability of the algorithms is that

they can achieve a fit trade-off between accuracy rate,

reduction rate, and speed-up. NIS ensures to be a faster

algorithm and reduces more instances than other methods

by allowing to achieve high accuracy rates for data sets.

The future study may be the development of a supervised

version of the proposed method. Thus, the accuracy rates of

the algorithm on data sets can be improved more by

keeping reduction rates and detecting instances from the

different classes located in the same area of the space.

Data availability This study uses existing data, which is openly

available at locations cited in the footnotes.

Declarations

Conflict of interests The authors have declared that no competing

interests.

References

1. Saha S, Sarker PS, Al SA et al (2022) Cluster-oriented instance

selection for classification problems. Inf Sci (Ny) 602:143–158.

https://doi.org/10.1016/j.ins.2022.04.036
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