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Abstract
Complex question answering (CQA) is widely used in real-world tasks such as search engines and intelligent customer

service. With the development of large-scale knowledge bases, CQA over knowledge bases has attracted considerable

attention in recent years. However, there are many types of complex questions, and few works deeply focus on the

performance analysis of models for different types of questions. Another major challenge is the lack of complete super-

vised labels due to the expense of manual labelling, decreasing model interpretability and increasing the difficulty of model

training. In this paper, we constructed a dataset, named CoSuQue, which includes multiple types of complex questions and

complete supervised labels that are easily obtained. Our work provides an in-depth analysis of the model’s ability to answer

different types of questions, contributing a comprehensive evaluation of the performance of CQA models. Based on the

ability of the model to handle different types of questions, the model structure can be improved in a more targeted manner.

The different types of complex questions and the complete supervised labels allow the inference process of the model to be

investigated. Furthermore, we propose a novel training method that leverages the proposed dataset to improve the per-

formance of the model on other publicly available datasets. Experiments on the Complex WebQuestions and WebQues-

tionsSP datasets demonstrate the effectiveness of our approach on the CQA task.

Keywords Complex question answering � Knowledge bases � Complete supervised labels � Multiple question types

1 Introduction

Natural language question answering is a critical artificial

intelligence task that has attracted substantial attention in

recent years. Question answering systems use two kinds of

sources to determine an answer: unstructured text corpora

[1–5] and knowledge bases [6–10]. Knowledge base

question answering (KBQA) aims to determine the answer

to a natural language question based on the facts available

in a knowledge base(KB), such as Dbpedia [11], YAGO

[12], and Freebase [13].

Because knowledge bases are large (for example,

although Freebase is no longer updated, its scale is still on

the order of hundreds of GB, and real-time access during

model training is not feasible), traditional KBQA approa-

ches usually adopt the following architecture: (1) named

entity recognition, in which topic entities in complex

questions are identified; (2) entity linking, in which the

topic entity in the question is linked to a knowledge base;

(3) question-specific subgraph retrieval, in which a

subgraph corresponding to the question is constructed; and
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(4) entity scoring, in which the subgraph entities are

scored and sorted. In recent years, with the development of

knowledge graph embedding and representation learning,

the performance of information retrieval-based (IR-based)

models, which encode input questions via a question rep-

resentation module and output reasoning instructions, has

improved considerably. However, the performance of these

IR-based models is hindered by two major challenges.

Challenge 1. A lack of supervised labels during each

reasoning step. In contrast to simple questions [14],

answering complex questions requires the aggregation of

more information and the use of multiple-reasoning steps

(such as comparison, aggregation, and sorting); as a result,

complex question answering is also known as multi-hop

question answering. It is well known that obtaining the

subquestions of complex questions or the subanswers of the

results during each reasoning step is costly when a large

amount of training data is required. Min et al. [15] manu-

ally labelled 400 examples with complete supervised labels

to training their model. In addition to manual data anno-

tation, deep reinforcement learning [16–18] is often used to

address this problem when intermediate supervised data are

not available. These deep reinforcement learning methods

alleviate the delayed and sparse reward problem caused by

weak supervision by designing new reward functions. He

et al. [19] utilized the correspondence between the state

information acquired from forwards and backwards rea-

soning processes to alleviate the problem of weak super-

vision. However, for some complex questions, the

intermediate distributions of forwards and backwards rea-

soning differ.

Challenge 2. Uninterpretable reasoning. Compared with

semantic parsing-based (SP-based) methods [20–22],

which translate natural language questions into logical

form expressions that can be executed directly on knowl-

edge graphs, the working mechanisms of IR-based methods

are less interpretable. One of the core components of IR-

based models is a black-box style instruction module

[19, 23, 24], which uses neural networks to parse complex

questions and generate a sequence of reasoning instruc-

tions. While neural networks are powerful, the black-box

style of the component results in a less interpretable infer-

ence process. Obviously, it is difficult to incorporate user

interactions for further improvement. In addition, there are

no datasets that include multiple types of complex ques-

tions, and each question type is clearly identified to analyse

the strengths and weaknesses of the model.

Figure 1 shows part of the Freebase knowledge base.

Two entities (dots) are connected by a relationship (line)

representing a set of facts to form a triple, such as hUnited
States, currency, dollari. The triple can be framed as a

simple question:’What is the currency of the United

States?’. More complex questions can be constructed with

different combinations of entities and relationships, and

intermediate answers are readily available.

In this paper, to address the above challenges, we take

advantage of the structured knowledge base to construct a

dataset, CoSuQue, that contains multiple types of complex

questions and includes all intermediate supervised labels in

the inference process. We construct 9 types of questions

with different combinations of logical operations to eval-

uate IR-based models. The impact of complete supervised

labels on the training process and the performance of

models in answering different questions are analysed in

detail, and these experimental results contribute to explain

the inference process of models. To take full advantage of

the intermediate supervised labels in the CoSuQue dataset,

we pretrained two models on the CoSuQue dataset and

saved their parameters; then, we trained and tested these

models on two public datasets, Complex WebQuestions

(CWQ) [25] and WebQuestionsSP (WebQSP) [26]. The

experimental results show that the convergence speed of

the two models is significantly faster and the performance

is also improved.

The contributions of this paper can be summarised as

follows:

1. We propose a new dataset construction approach that

includes steps such as query graph construction and

natural language generation. The proposed approach is

low cost and highly feasible. We construct a complex

question answering dataset, CoSuQue, with strongly

supervised labels that includes multiple types of

complex questions and intermediate answers for each

reasoning step.

2. An in-depth analysis of two typical IR-based models is

performed on the proposed dataset. We analyse the

impact of strongly supervised labels on model training

in the context of different types of complex questions,

as well as the preference of the two models for

different types of complex questions. For most com-

plex question answering systems, testing the ability of

the system to answer different types of questions

separately may help researchers to improve the model

structure in a more targeted manner.

3. We propose a novel training method that uses our

constructed dataset to improve model performance on

other publicly available datasets. We pretrain IR-based

models on the CoSuQue dataset, allowing the model to

benefit from the complete supervised labels. Then, we

test the model on two public complex question

answering datasets, Complex WebQuestions and

WebQuestionsSP. The results show that the conver-

gence speed and accuracy of the model on the two
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public datasets improve after the model is pretrained on

the CoSuQue dataset.

Our code and interactive demo are publicly available at

https://github.com/NLPercx/CoSuQue.

2 Related work

Neural approaches for KBQA. In this paper, we focus on

complex question answering over knowledge bases. In

addition to traditional methods, such as defining templates

and rules, KBQA solutions can be divided into two main

branches: SP-based methods and IR-based methods [27].

SP-based methods analyse natural language questions and

generate logical query graphs corresponding to the ques-

tions (such as SPARQL and SQL). The generated query is

executed over the given knowledge base to finally arrive at

the answer. Lan et al. [28] consider two types of complex

questions (with constraints and with multiple relation

hops.) at the same time. The constraints were added during

query generation to reduce the search space of the query

graph. By designing different tasks (Split, TextSpanPre-

diction, HeadwordIdentification, and AttachmentRela-

tionClassification) for query graph construction [29], the

prior knowledge of BERT [30] can be used to improve the

semantic parsing accuracy. However, the query graph

generated by the model does not match the structure of the

corresponding question, which increases the noise. To

solve this problem, Chen et al. [21] employed abstract

query graph (AQG) to describe the query structure. Das

et al. [31] proposed a case-based reasoning model, which

maintains a memory module that stores questions that have

been answered correctly and a reasoning module that

generates logical forms by retrieving relevant cases from

memory. The IR-based methods uses named entity tools to

extract topic entities in the question and retrieve question-

specific graphs from a set of knowledge graphs based on

the topic entity. Finally, ranking algorithms are applied to

select entities from the top position. To address issues with

error cascades caused by the pipeline architecture, Zhang

et al. [32] proposed an end-to-end variational learning

algorithm that simultaneously handled uncertain topic

entities and multi-hop reasoning. Yan et al. [33] identified

all the paths in the subgraph that connected the topic entity

to the candidate entity ei, constructed the textual form of

each path by replacing nodes with entity names and edges

with relational names, and concatenated the question and

path as an input sample for BERT. Finally, a score si was

calculated for each candidate entity that indicated whether

ei is the answer entity. This approach solves the problem

that the model only grasps the topological structure of the

knowledge graph while ignoring the textual information.

The lack of supervised data for answers at each rea-

soning step remains a major challenge. He et al. [19]

proposed a teacher-student structure that explores in both

directions, allowing the two reasoning processes to syn-

chronize with each other at intermediate steps. Qiu et al.

[17] adopted a stepwise reasoning method based on rein-

forcement learning and proposed a potential-based reward

shaping strategy to accelerate the convergence of the

training algorithm.

Knowledge graph embeddings. Some researchers have

built deep architectures to embed knowledge bases and

represent entities and relations as low dimensional vectors

in a continuous vector space, such as TransE [34], TransH

Fig. 1 Part of the knowledge

facts in Freebase. The black

dots represent entities, and the

lines represent relationships

between entities
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[35], TransR [36], TransD [37], LineaRE [38], and PairRE

[39]. Saxena et al. [40] first used knowledge base embed-

dings for KBQA. They employed the pretrained model

Roberta to encode complex questions as a relation vector

eq. This relation vector forms a triple with the head entity

eh and tail entity et, and the ComplEx score [41] was used

to identify the answer entity. Reasoning plays a major role

in question answering tasks. Ren et al. [42] proposed the

Query2Box embedding-based framework, which regards

first-order logical queries as geometric operations, and the

resulting entity embedding is more suitable for question

answering reasoning tasks. The NewLook method pro-

posed by Liu et al. [43] used a nonlinear neural network to

learn the projection operation. The cone embedding

approach [44] represented entities and queries as Cartesian

products of two-dimensional cones, instead of representing

entities as points and questions as boxes, as performed in in

Query2box.

3 Task definition

In this section, we first define knowledge bases and com-

plex questions; then, we discuss the goal of the knowledge

base question answering task. Table 1 shows the main

notations used throughout this paper.

Definition 1 (Knowledge Base/Graph) A knowledge base

G consists of an entity set E, a relation set R, and a set of

knowledge facts K in the form of triples, denoted as

G ¼ f\h; r; t [ 2 Kkh; t 2 E; r 2 Rg. The head entity, h,

denotes the source entity. r represents the relation, and t is

the target entity, which is also called the tail entity. A triple

\h; r; t [ denotes that a relationship r exists between the

head entity h and tail entity t and that this relationship is

directional. Consider an example in which entity h is

described as character James Bond, and entity t is the actor

Ian Fleming. Then, a fact in the knowledge graph can be

defined as \James Bond, fictional_universe.fictional_uni-

verse.created_by, Ian Fleming[, where the corresponding

r is fictional_universe.fictional_universe.created_by.

Definition 2 (Complex Question) Questions that require

multi-hop reasoning are called complex questions. Com-

plex questions are more suitable for practical application

scenarios than simple questions. For example, answering

the question ‘‘Which movie was produced by Neil Moritz

and starred Tupac Shakur?’’ requires that the model per-

form two-hop reasoning.

Given a question Q ¼ fq1; q2; q3:::qng consisting of n

words, the task is defined as determining the answer to the

given question using the facts K stored in the knowledge

base G. Specifically, the goal of the knowledge base

question answering task is to identify the answer entities in

a knowledge base. In this paper, we focus on complex

question answering, and there are often multiple triples

between the answer entity and the topic entity in the

knowledge base; thus, a question answering model should

be able to learn multi-hop reasoning from question-answer

pairs.

4 Proposed approach

In this section, we first introduce the definition and con-

struction methods of the query graph in Sect. 4.1, which

can be regarded as the skeleton of the complex question.

Sect. 4.2 describes how to generate the corresponding

natural language questions based on the query graph. In

Sect. 4.3, we introduce two models: GraftNet, a classical

IR-based model, and NSM, the model that achieved the

best performance on the CWQ dataset. The NSM and

GraftNet models are pretrained on our constructed dataset

in Sect. 4.4.

4.1 Query graph construction

Constructing question answering datasets from unstruc-

tured textual data (such as Wikipedia) is expensive, espe-

cially when the complex question answering dataset

requires multi-hop supervised data labelling. In contrast to

unstructured data, knowledge bases contain structured data

that is composed of a series of triples. Therefore, it is easy

to obtain query graphs of different topological structures

composed of multiple logical operations from the knowl-

edge base.

Table 1 The important symbols and their definitions

Q The questions that need to be answered

G The knowledge base

Gq The question-specific subgraph

E Entity set

R Relation set

K Knowledge facts

h Head entity

r Relation

t Tail entity

c Chain logical operation

i Interaction logical operation

en Entity

en
r Answer entity set

NrðeÞ The neighbourhood entities of e
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Complex questions include two common types of logi-

cal operations,chain and interaction, which are defined

below.

• Chain: Consider an entity e 2 E, and a set of relations r

2 R. We can obtain a set er , where

er ¼ e0 2 Ehe; r; e0i 2 K.

• Interaction: Consider an entity e1 2 E, an entity e2 2 E,

and a set of relations r 2 R. We can obtain two sets: e1r =

{e0 2 E, he1, r, e0i 2 K} and e2r = {e00 2 E, he2, r, e00i 2
K} by performing chain logical operation. The interac-

tion operator obtains e1r \ e2r .

We perform different permutations and combinations of

the above two logical operations to construct 9 types of

query graphs {1c, 2c, 3c, 2i, 2i2, 1c2i, 2c2i, 2i1c and 2i2c}.

These 9 query graphs correspond to 9 different types of

natural language questions.

As shown in Fig. 2, the light blue circles represent the

topic entities extracted from the question, and the blue and

green circles represent the intermediate entities, which are

also known as subanswers to the question. The yellow

circle represents the answer entity. We refer to the topic

entity as the head entity and perform a one-step chain

logical operation to obtain eanswer1c
. The one-step chain

logical operation 1c can be defined with the following

formula:

1c ¼ feanswer1c
2 E;\head; r; eanswer1c

[ 2 Kg ð1Þ

On the basis of eanswer1c
, another chain logical operation is

performed, which is called a two-step chain operation. The

answer to 1c is the head entity of the second chain logical

operation. 2c represents the two-step chain operation, and

eanswer2c
is the target entity. The two-step chain logical

operation can be defined with the following formula:

Fig. 2 Query graph
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2c ¼ feanswer2c
2 E;\head; r; eanswer1c

[ ;

\eanswer1c
; r; eanswer2c

[ 2 Kg
ð2Þ

Moreover, 3c is obtained by adding a chain operation on

the basis of 2c, and the answer to 2c is the head entity of

the third chain operation. eanswer3c
is the target entity of 3c.

The three-step chain logical operation can be defined with

the following formula:

3c ¼ feanswer3c
2 E;\head; r; eanswer1c

[ ;

\eanswer1c
; r; eanswer2c

[ 2 K;

\eanswer2c
; r; eanswer3c

[ 2 Kg

ð3Þ

2i represents the one-step interaction logical operation,

which selects two head entities to perform chain logical

operations, yielding two entity sets, e1r and e2r . The inter-

section of the two sets is used to obtain the final answer,

namely eanswer2i
= e1r \ e2r . The one-step interaction logical

operation 2i can be defined with the following formula:

2i ¼ feanswer2i
2 E;\head1; r; e1r [ ;

\head2; r; e2r [ 2 K; e1r \ e2rg
ð4Þ

2i2 represents the two-step interaction logical operation,

which uses the answer to 2i as a head entity and performs a

one-step interaction operation with the other head entity

head3 to determine the target entities eanswer
2i2
. The two-

step interaction logical operation 2i2 can be defined with

the following formula:

2i2 ¼ feanswer
2i2

2 E;\head1; r; e1r [ ;

\head2; r; e2r [ ;\eanswer2i
; r; e3r [ ;

\head3; r; e4r [ 2 K; e3r \ e4rg

ð5Þ

Increasing the semantic complexity of natural language

questions is more suitable for practical application sce-

narios. We combine the two logical operations, chain and

interaction, to construct more types of complex questions.

The type of complex question in which there is a one-step

interaction operation after the one-step chain operation is

denoted as 1c2i. After the chain operation is performed on

the first head entity head1, the obtained subanswer is used

as one of the head entities in the next interaction operation.

1c2i can be calculated as follows:

1c2i ¼ feanswer1c2i
2 E;\head1; r; eanswer1c

[ ;

\eanswer1c
; r; e1r [ ;\head2; r; e2r [ 2 K; e1r \ e2rg

ð6Þ

Similarly, the type of complex question in which a two-

step chain operation is followed by a one-step interaction

operation is denoted as 2c2i. The intermediate answers in

this reasoning process include eanswer1c
and eanswer2c

. eanswer2c

and head2 are the head entities of the interaction logical

operation. 2c2i can be calculated as follows:

2c2i ¼ feanswer2c2i
2 E;\head1; r; eanswer1c

[ ;

\eanswer1c
; r; eanswer2c

[ ;\eanswer2c
; r; e1r [ ;

\head2; r; e2r [ 2 K; e1r \ e2rg

ð7Þ

Next, we reverse the order of the two types of logical

operations; that is, the one-step interaction operation is first

performed on two head entities to obtain eanswer2i
, and then,

the one-step chain operation is performed on the obtained

subanswer. This type of complex question is denoted as

2i1c. 2i1c can be calculated as follows:

2i1c ¼ feanswer2i1c
2 E;\head1; r; e1r [ ;\head2; r; e2r [ ;

\eanswer2i
; r; eanswer2i1c

[ 2 Kg
ð8Þ

Similarly, the intermediate answer entity of 2i goes through

two-step chain operations to obtain a query graph of type

2i2c. Type 2i2c includes two intermediate answers, eanswer2i

and eanswer2i1c
, and can be calculated as follows:

2i2c ¼ eanswer2i2c
2 E;\head1; r; e1r [ ;\head2; r; e2r [

�
;

\eanswer2i
; r; eanswer2i1c

[ ;\eanswer2i1c
; r; eanswer2i2c

[ 2 Kg
ð9Þ

This query graph construction method has several advan-

tages. First, the process of constructing data is efficient and

has a low cost. Second, the intermediate answer (fully

supervised data) of the complex reasoning process is easy

to obtain and has a high accuracy rate. More importantly,

the intermediate supervised data in the reasoning process

are crucial for training the model, especially for complex

reasoning tasks.

4.2 Natural language question construction

The inputs to the complex question answering over

knowledge bases model are natural language questions.

After the various query graphs are constructed, the query

graphs must be converted into the corresponding natural

language questions.

For each question, we constructed a series of compo-

nents, denoted as ‘A’, ‘B’, ‘R’, ‘C’ and the head entity. ’A’

represents interrogative words, such as what, which, who

and where. We use the Stanford CoreNLP1 grammar tool to

perform named entity recognition on the final answers to

the complex questions. If the answer is a person’s name,

‘A’ chooses the word Who. If the answer is the name of an

institution, a city, or a country, ‘A’ chooses among the

words where, what organization and which country. ‘B’

1 https://stanfordnlp.github.io/CoreNLP/.
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represents linking verbs and depends on the number of final

answer entities. If the number of answer entities is greater

than one, ‘B’ selects a plural form, such as are or were. ‘R’

represents the relation set {r1,r2....rn} connected to the

head entity in the query graph. If rn contains prepositions

such as {by, for, in, on, of, with}, the preposition of is not

added between the relation and the head entity. The head

entity is as defined in Sect. 4.1 ‘C’ is a set of pronouns or

phrases that connect the answers of the interaction opera-

tions, such as that, the people who, the cities that, the

organization that and in the month when. The specific form

of ‘‘C’’ depends on the type of the answer of the interaction

logical operation. For example, in the question corre-

sponding to 2i1c in Table 2, the answer of 2i is a person’s

name, then ‘‘C’’ selects the phrase ‘‘the people who’’.

Specific templates are shown in Table 2.

4.3 Model and loss function

We chose two mainstream models, the GraftNet model [24]

and the NSM model [19], to analyse and improve through

the dataset constructed in this paper. The structure of the

model and our improved loss function are described below.

4.3.1 GraftNet

GraftNet is a conventional model for the KBQA task that

combines a knowledge base with additional text to build

hierarchical graphs and perform multi-hop reasoning. In

this paper, we focus on the case in which the model uses

only the knowledge graph for question answering, with the

goal of predicting whether an entity v in the knowledge

base is the answer to question Q.

Figure 3 shows the architecture of the GraftNet model.

Each word in the natural language question Q ¼
fq1; q2; q3:::qng is converted to a Glove word embedding

representation and encoded by a bidirectional long short-

term memory (LSTM) network to obtain a set of hidden

states{hj}
n
j¼1. The final state in the output of the LSTM is

considered to be the initial representation of the question,

h
ð0Þ
q . The question initial representation is computed as:

hð0Þ
q ¼ LSTM q1; q2; :::qnð Þjnj ð10Þ

The GraftNet model updates node representations through

message propagation and aggregation among entities in the

knowledge graph, and the entity nodes are updated with a

single-layer feedforward network (FFN) over the concate-

nation of three states:

hðlÞ
v ¼ FFN hðl�1Þ

v ; hðl�1Þ
q ;

X

r

X

v02NrðvÞ
av0

r urðh
ðl�1Þ
v0 Þ

2

4

3

5

0

@

1

A

ð11Þ

where [;] represents vector concatenation across rows, and

h
ðl�1Þ
v is the representation of entity v in the previous layer.

h
ðl�1Þ
q corresponds to the question representation in the

ðl � 1Þ-th layer, which can be calculated as follows:

Table 2 Rules for generating natural language questions from query graphs

Question

type

Example template Example question

1 chain A?B?R?{head}? What is the currency of the United States?

2 chain A?B?R1?R2?{head}? What is the colour of currency of the United States?

3 chain A?B?R1?R2?R3?{head}? What is the French of the colour of currency of the United States?

2i

interaction

(1)A?B?R1?{head1}?’and’ ?R2?{head2}?

(2)A?B?R?{head1}? ’and’?{head2}?

(1) Which country is participating countries of 2010 Winter Olympics and

claimed of Gasherbrum IV? (2) What is the profession of Blu Mankuma and

Luther Ingram?

2i2

interaction

A?B?R1?{head1} ?’and’?R2?C?(R3?

{head2}?’and’?R4?{head3})?

What are the subjects of Etter Rubicon and events of the country that the

geographic scope of Cuban Workers’ Solidarity and contained by Cayo

Megano?

1c2i A?B?R1?{head1}

?’and’?R2?R3?{head2}?

What are the affected areas of Hurricane Isabel and states provinces within of

country of film Roller Boogie?

2c2i A?B?R1?{head1}

?’and’?R2?R3?R4?{head2}?

What is the country that nationality of Burnet R. Maybank and administrative

parent of states provinces within of nationality of Hamilton Jordan?

2i1c A?B?R1?C?R2?{head1}

?’and’?R3?{head2}?

What are the professions of people who are associated authors of Feminist

science fiction and associated authors of Science Fiction?

2i2c A?B?R1?R2?C?R3? {head1}?’and’?R4?

{head2}?

What were reviewed of the music of that film of Jordan Cronenweth and the

film of Stuart Baird?
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hðl�1Þ
q ¼ FFN

X

vq2Sq

hðl�1Þ
vq

0

@

1

A ð12Þ

where Sq denotes the seed entities mentioned in the ques-

tion. The third term in Eq. 11 aggregates the states from the

entity neighbours of the current node. NrðvÞ represents the
entity neighbourhood, denoting the neighbours of v along

edges of type r. av0
r is the attention weight of the question

h
ðl�1Þ
q and the set of relations connected to entity v, which

can be computed as:

av0

r ¼ softmax xT
r hðl�1Þ

q

� �
ð13Þ

ur corresponds to relation specific transformations, and the

update along a relation can be computed as:

ur h
ðl�1Þ
v0

� �
¼ pr

ðl�1Þ
v0 FFN xr; h

ðl�1Þ
v0

� �
ð14Þ

’PageRank’ scores [45] pr
ðlÞ
v which calculates the total

weight of paths between a seed entity and the current node,

as follows:

prð0Þv ¼
1

jSqj
if v 2 Sq

0 o:w:

8
<

:
ð15Þ

prðlÞv ¼ ð1� kÞPrðl�1Þ
v þ k

X

v02NrðvÞ
av0

r pr
ðl�1Þ
v0 ð16Þ

The final representations h
ðLÞ
v are used for binary classifi-

cation to select the answers, as follows:

Pvðv 2 fagqkGq;QÞ ¼ r WT hðLÞ
v þ b

� �
ð17Þ

where r is the sigmoid function. The training process uses

the binary cross-entropy loss over these probabilities.

Lv ¼ �ðy � logPv þ ð1� yÞ � logð1� PvÞÞ ð18Þ

where y is the ground truth label, which indicates whether v

is the answer entity of the question. Our constructed dataset

uses supervised labels in the intermediate inference steps,

and the loss function of the GraftNet model trained with

strongly supervised data is defined as follows:

LGraftNet
s ¼

XL

l¼1

� yl � logPl þ ð1� ylÞ � logð1� PlÞ
� �

ð19Þ

where L is the number of layers in the model, corre-

sponding to the maximum path length that information

should be propagated in the graph.

4.3.2 NSM

The NSM model is the current best performing model on

the CWQ dataset, which consists of two parts, an instruc-

tion component and a reasoning component. The output of

the instruction module is used as the input to the reasoning

module, which updates the entity representation in the

subgraph and sorts the entities to determine the answer to

the question.

The instruction component is used to analyse complex

questions and generate a series of instruction vectors. As

shown in Fig. 4, the input of the instruction component

consists of a query embedding and an instruction vector

Fig. 3 Architecture of the GraftNet model
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obtained from the previous reasoning step. The question

encoded by the bidirectional LSTM, a set of hidden states

{hj}
n
j¼1 is obtained, and the last hidden state is considered

to be the question representation. The formula is as

follows:

iðkÞ ¼
Xl

j¼1

aðkÞj hj ð20Þ

aðkÞj ¼ softmaxj WaðqðkÞ � hjÞ þ ba

� �
ð21Þ

qðkÞ ¼ W ðkÞ iðk�1Þ; q
h i

þ bðkÞ ð22Þ

where Wa 2 Rd�2d, W ðkÞ 2 Rd�d, ba 2 Rd and bðkÞ are

parameters to learn.

The instruction component is used to generate a series of

instructions, and the reasoning component updates the

representations of entity nodes in the subgraph according to

these instructions. The initial entity embeddings are

obtained as follows:

eð0Þ ¼ r
X

\e;r;e0 [2NrðeÞ
r � WT

0

@

1

A ð23Þ

where WT 2 Rdr�dr are the parameters to learn, and NrðeÞ
means entity neighbourhood, denoting the neighbours of e.

The output of the reasoning component is calculated as

follows:

m
ðkÞ
\e;r;e0 [ ¼ r iðkÞ � WRr

� �
ð24Þ

eeðkÞ ¼
X

\e;r;e0 [2Ne

P
ðk�1Þ
e0 � m

ðkÞ
\e;r;e0 [ ð25Þ

eðkÞ ¼ FFN eðk�1Þ; eeðkÞ
h i� �

ð26Þ

PðkÞ ¼ softmax E kð ÞT

w
� �

ð27Þ

where WR 2 Rde�de are the parameters to learn, FFNð�Þ is a
feedforward layer and E kð ÞT

is a matrix in which each

column vector is the embedding of an entity at the k-th

step. The Kullback–Leibler divergence [46] measures the

difference between two distributions. The loss on one

instance is defined as follows:

L ¼ DKL P0;Pð Þ ð28Þ

where P denotes the final entity distribution for the forward

reasoning process, and P0 denotes the ground truth entity

distribution. The loss function of the NSM model trained

with strongly supervised data is defined as follows:

LNSM
s ¼

XN

k¼1

DKL P0k;Pk
� �

ð29Þ

where N indicates that each instance requires N reasoning

steps. Pk denotes the entity distribution of the reasoning

process at the kth-step, and P0k denotes the ground truth

entity distribution at the kth-step.

Fig. 4 Architecture of the NSM

model
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4.4 Model pretraining

We pretrain the KBQA models on the constructed dataset

CoSuQue with strongly supervised labels, so that the model

can take advantage of the complete supervised labels to

accurately parse the complex semantics of the questions

and reason on the question-specific subgraphs.

Since the CoSuQue dataset includes a variety of ques-

tions with varying degrees of semantic difficulty, we

extract an equal amount of data from each type of question

to form a new subset, referred to as ’All type’ dataset. The

parameters of the model are saved to a.ckpt file after the

GraftNet model and the NSM model converge on the All

type dataset. For the public datasets, we load the saved

model parameters before training, and test the model per-

formance after training.

5 Experiments

In this section, we utilize the CoSuQue dataset to evaluate

the impact of strongly supervised labels on the training

process and analyse the preference of IR-based models for

different types of questions. We pretrain the GraftNet and

NSM models on the CoSuQue dataset, obtaining the

GraftNetCoSuQue and NSMCoSuQue model, which are then

evaluated on the CWQ and WebQSP datasets.

5.1 Dataset construction and implementation
details

According to in Sects. 4.1 and 4.2, a variety of complex

questions and their corresponding answers can be obtained.

Following the traditional architecture of the KBQA model,

we retrieve the corresponding subgraphs (multiple triples)

from the knowledge base (Freebase)2according to the topic

entities in the question.

As shown in Figs. 5 and 6, we calculate the statistics of

each type of dataset, including the average answer cover-

age and the average number of triples in the subgraph. The

average number of triples indicates the average number of

triples \h; r; t[ contained in the subgraphs of 30,000

questions. The answer coverage represents the percentage

of subgraphs that contain answers to the questions.

To demonstrate the effectiveness of the proposed

method, the hyperparameter settings of the two models are

consistent with those of Sun et al. [24] and He et al. [19].

GraftNet. The number of layers is set to 3 (L = 3), the

batch size is set to 10, and the learning rate is set to 0.001.

The embedding size of both question words is set to d =

100, and the hidden dimensions of the relations and entities

in the knowledge base are set to dr = 100 and de = 50.

NSM. The number of reasoning steps is set to 4 (n = 4), the

batch size is set to 40, and the learning rate is set to

0.00005. The embedding size of both question words is set

to d = 300, and the hidden dimensions of the relations and

entities in the knowledge base are set to dr = 100 and de =

50.

We optimize the two models with the Adam optimizer,

and the number of training epochs set to 100.

5.2 Datasets

CoSuQue The CoSuQue dataset contains ten subdatasets,

including nine types of question subdatasets and one sub-

dataset composed of multiple types of questions mixed in

the same proportion, which are denoted as

f1c; 2c; 3c; 2i; 2i2; 1c2i; 2c2i; 2i1c;2i2c; and Alltypeg. Each
subdatasets includes 30,000 questions and is divided into a

training set, a validation set and a test set according to a

weight ratio of 8:1:1.

WebQuestionsSP (WebQSP) The WebQSP dataset is one

of the commonly used datasets for CQA tasks. This dataset

includes 4737 natural language questions that can be

answered using the Freebase knowledge base.

Complex WebQuestions 1.1 (CWQ) The CWQ dataset

contains 34,689 questions that can be answered using the

Freebase knowledge base. This dataset was generated from

the WebQuestionsSP dataset by extending the question

entities or adding constraints to the answers; thus, the

CWQ dataset has a significantly higher proportion of

complex questions with multi-hop relations and constraint

operations.2 The Knowledge base can be downloaded from https://developers.

google.com/freebase/.

Fig. 5 Answer coverage
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5.3 Baselines

We consider the following methods in our performance

comparison.

KV-Mem [47] model maintains a memory table for

retrieval, that stores KB facts as key-value pairs, with the

head entity and relation stored in the key slot and the tail

entity stored in the value slot.

PullNet [48] builds on GraftNet and pays more attention to

utilizing an iterative process to construct question-specific

subgraphs.

QGG [28] is an improved staged query graph generation

method that constrains the search space by incorporating

constraints into the query graph early and using beam

search.

NSMn [19] is a series of ablation models with a teacher-

student architecture proposed by He et al. NSMþf and

NSMþb indicate that the model only uses forwards or

backwards reasoning, respectively. NSMþp and NSMþh

indicate that the model uses parallel or hybrid reasoning,

respectively. NSMþn;�c indicates that the model removes

the correspondence loss.

SGREADER [49] uses two sources of information, text

and a knowledge base, and employs graph attention to

achieve effective reasoning.

EmbedKGQA [40] employs Roberta to encodes complex

questions as relation vectors eq and uses the ComplEx

score to determine the answer entity.

Tree2Seq [22] adopts an encoder-decoder framework that

encodes the order of the entities and relationships into its

representation. The decoder decodes the candidate query

into the given question, and the decoding probability is

used to select the best query.

BERT [33] encodes questions and paths by using the

representations of special characters [CLS] for classifica-

tion. BERTn are loaded with BERT model parameters that

are pretrained on other binary classification tasks before

training.

KRN [50] interactively calculates the similarity between

question and relation representations through a Siamese

network and outputs the highest-scoring path to query the

answers in the knowledge base.

SF-ANN [51] uses a novel attention mechanism to capture

intrinsic dependencies between questions and candidate

answers by deeply coupling the complex interactive

information between them.

5.4 Main results

Following the standard assessment metrics for question

answering over knowledge bases tasks, we evaluate the

accuracy of the approaches by using the F1 and Hits@1

(H1) metrics. Specifically, Hits@1 indicates whether the

answer with the highest score is the correct answer. If the

top answer predicted by the model is the correct answer,

Hits@1 = 1; otherwise, Hits@1 = 0.

Tables 3 and 4 report the evaluation results of the NSM

and GraftNet models on the CoSuQue dataset. Table3

shows the results of the models on different types of

complex questions involving only a single type of logical

operation. When the models are trained with only the last

supervised labels, the resulting models are abbreviated as

GraftNetweakly and NSMweakly. Table 4 shows the results of

the models on complex questions that combine different

types of logical operations. When the two models consider

questions that require only one type of logical operation,

the questions that require interaction operations are often

more difficult than those that require chain operations. The

experimental results show that the structures of the two

models may need to be improved for the interaction

operations. In the majority of cases, the performance of the

model gradually decreases as the semantic difficulty of the

complex question increases. Among the three types of

datasets 1c, 2c, and 3c, the model exhibits the worst per-

formance on the 3c dataset. The results in Tables 3 and 4

show that, in most types, the models trained with complete

supervised labels outperformed the models trained with

only the last supervised labels.

Table 5 reports the performance of different methods on

the CWQ and WebQSP datasets. GraftNetþPE represents a

model that used the embeddings of the entities and rela-

tions in the knowledge base that were pretrained by two

methods. In this paper, we mainly compare GraftNetCoSuQue
and GraftNet, NSMCoSuQue and NSM. The GraftNetCoSuQue

Fig. 6 Average number of triples
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model pretrained with CoSuQue outperforms GraftNet on

all metrics on the CWQ and WebQSP datasets. The

NSMCoSuQue model pretrained with CoSuQue achieves

better results than the above methods in terms of the

Hits@1 metric on the CWQ dataset, which represents the

best ability of the model to predict the best answer. The

Hits@1 value of the NSMCoSuQue model on the WebQSP

dataset is higher than that of the NSM model 6.8 trained for

100 epochs, and that of the NSM model 4.9 trained for 200

epochs.

The model inference performance with incomplete

knowledge graphs is also important, and we conduct

experiments using the sparse WebQSP dataset constructed

by Sun et al. [24], which was constructed by downsampling

the number of KB facts to 10%, 30%, and 50% of the

original data. The experimental results are shown in

Table 6 demonstrating that the performance of the

GraftNetCoSuQue model on knowledge graphs with different

degrees of sparseness is better than that of the GraftNet

model. The above experimental results demonstrate the

effectiveness of our proposed method.

5.5 Analysis and visualization

In this section, we conduct a series of visual analysis on the

training processes of the GraftNet and NSM models under

different supervised labels to address different types of

questions, then analyse the model inference process

accordingly.

Table 3 Performance

comparison of models on

different types of complex

questions involving one type of

logical operation

Model 1c 2c 3c 2i 2i2

F1 H1 F1 H1 F1 H1 F1 H1 F1 H1

NSM 97.56 97.75 86.65 88.61 64.27 69.97 80.22 84.61 82.45 82.98

NSMweakly 96.78 96.37 85.66 87.62 63.05 68.18 82.28 85.31 80.12 81.66

GraftNet 96.03 96.87 79.96 83.99 49.93 60.13 65.16 77.10 88.16 89.29

GraftNetweakly 95.34 96.72 79.26 83.61 45.91 56.62 76.56 81.81 86.05 87.36

Bold values indicated by best results

Table 4 Performance

comparison of models on

different types of complex

questions combining different

types of logical operations

Model 1c2i 2c2iasis[ 2i1c 2i2c Alltype

F1 H1 F1 H1 F1 H1 F1 H1 F1 H1

NSM 78.66 81.42 73.69 74.80 63.38 68.34 63.40 72.04 68.29 75.32

NSMweakly 81.91 84.22 71.81 74.50 54.46 58.32 60.57 70.82 65.57 73.45

GraftNet 82.10 83.66 78.76 81.90 71.29 78.67 50.31 63.03 48.45 55.76

GraftNetweakly 82.62 85.15 81.43 82.13 70.35 76.82 49.01 59.31 41.76 48.66

Bold values indicated by best results

Table 5 Experimental results obtained on the WebQSP and CWQ

datasets

WebQSP CWQ

F1 H1 F1 H1

KV-Mem 38.6 46.7 – 21.1

GraftNetþPE 62.4 66.7 – 32.8

PullNet – 68.1 – 45.9

QGG 72.2 71.9 40.4 44.1

NSMþf 64.7 70.7 41.5 47.2

NSMþb 65.4 71.1 42.7 47.1

NSMþp;�c 66.5 72.5 42.7 47.7

NSMþh;�c 66.9 73.0 42.1 47.5

NSMþp 66.2 73.9 44.0 48.3

NSMþh 67.4 74.3 44.0 48.8

SGREADER 58.0 66.5 – –

EmbedKGQA – 66.6 – –

BERT 63.4 71.2 – –

BERTrr 61.8 71.7 – –

BERTre;rm;rr 62.5 72.3 – –

Tree2Seq – 63.9 – –

KRN – 64.9 – -

SF-ANN 59.2 58.1 - –

GraftNet 45.5 55.5 31.0 33.9

NSM 61.6 66.8 42.4 47.6

NSM (epoch=200) 62.8 68.7 – –

GraftNetCoSuQue 53.3 60.5 33.6 39.0

NSMCoSuQue 65.0 73.6 43.0 49.1

NSMCoSuQue (epoch=200) 65.1 73.4 – –

Bold values indicated by best results
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5.5.1 Preference for different types of questions

We visualize the training process of the model for different

types of question data. In Fig. 7, the x-axis of each sub-

graph is the number of epochs, and the y-axis is the Hits@1

value of the model on the validation set.

As shown in Fig. 7a, the NSM model converges the

fastest on the 1c dataset and has the best performance. The

difficulty of the questions in the 3c dataset relative to 2c

dataset is significantly greater than that of 2c relative to 1c.

This result demonstrates that for chain-type questions, the

semantic difficulty does not increase linearly with the

number of reasoning steps.

Table 6 Performance

comparison with incomplete

KBs of the WebQSP dataset

10%KB 30%KB 50%KB 100%KB

F1 H1 F1 H1 F1 H1 F1 H1

GraftNet 3.97 13.02 10.14 24.66 21.99 37.09 45.52 55.51

GraftNetCoSuQue 4.45 15.83 14.00 27.63 25.05 40.36 53.29 60.52

Bold values indicated by best results

Fig. 7 The training process of the NSM model on different types of question datasets
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5.5.2 Impact of strongly supervised labels

To explore the impact of intermediate supervised labels on

model training, we visualized the training process for each

type of question with and without intermediate supervised

labels. The model shown in Figs. 8 and 9 that was trained

with only the last supervised labels is denoted as the

‘Typeweakly’.

As shown in Figs. 8a and 9a, for the simplest chain

questions, such as those in 1c, the training process is more

stable when each reasoning step is supervised. Except for

2i and 1c2i, the models using intermediate supervised

labels outperformed the models using only the last rea-

soning step supervised labels on other types of datasets.

Comparing the training process in Figs. 8 and 9, the fig-

ures demonstrate that when dealing with a certain type of

questions, strongly supervised labels are more helpful for

improving the performance of the NSM model, while

improvement in the GraftNet model is relatively smaller.

This result may have occurred because the GraftNet model

contains a mechanism that continuously updates the ques-

tion representations during the reasoning steps, while the

N-step instructions in the NSM model are generated before

reasoning.

When GraftNet deal with certain types of question, its

performance is better than that of NSM on some types of

questions, and when dealing with data mixed with multiple

types of questions, the performance of GraftNet is signifi-

cantly lower than that of NSM. The GraftNet model may

not be as good at learning knowledge from various types of

questions, as confirmed by Fig. 10a and b. The strongly

supervised labels have a greater impact on GraftNet with

Fig. 8 The impact of different supervised labels on NSM model training
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the All type subdataset than the other subdatasets, while

this effect is not as obvious with the NSM model. This

finding may be due to the fact that the NSM model is more

capable of gradually learning knowledge through different

types of questions than the GraftNet model. The All type

dataset contains 9 types of questions in equal proportions,

and for questions containing the same type of logical

operations, a question with fewer reasoning steps can be

regarded as an intermediate reasoning process of a question

requiring more reasoning steps. For example, 1c can be

regarded as an intermediate reasoning process of 2c, and 1c

and 2c can be regarded as intermediate reasoning processes

of 3c.

5.5.3 Model comparison on the public dataset

Figure 11a and b shows the training processes of the two

models on the CWQ and WebQSP datasets. The

NSMCoSuQue and GraftNetCoSuQue models converged sig-

nificantly faster than the NSM and GraftNet models. As

shown in Fig. 11a, the pretrained model significantly out-

performs the model that was not pretrained on CoSuQue.

After epoch 2, the Hits@1 value of the NSMCoSuQue reaches

40.81, while the Hits@1 value of the NSM model is 26.91

in the same training epoch.

Figure 12 shows the training process of the NSM model

on the WebQSP dataset with a maximum of 200 epochs.

When the maximum number of epochs is 100, the

NSMCoSuQue model performs better than the NSM model on

both the validation and test sets. When the maximum

number of epochs is 200, the NSMCoSuQue model performs

Fig. 9 The impact of different supervised labels on GraftNet model training
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comparably to the NSM model on the validation set.

However, on the test set, the Hits@1 value of the

NSMCoSuQue model is still higher than that of the NSM

model. Thus, the experimental results show that the model

pretrained on the CoSuQue dataset may be more

generalizable.

5.5.4 Case study

The experimental results show that the strongly supervised

labels of the CoSuQue dataset can accelerate the model

convergence and improve the performance, and the per-

formance of the model on the public dataset is also

improved after the model is pretrained on the CoSuQue

dataset. We present a case study to illustrate how the

CoSuQue dataset helps models.

We select examples from the CoSuQue dataset to

analyse the contribution of strongly supervised labels.

Figure 13 shows the different parts of the question that the

NSM model focuses on at each reasoning step, with darker

squares indicating that the model focuses more on the

corresponding word. From the perspective of human rea-

soning, a model should focus first on the ‘‘nationality of

Albert Einstein’’ part of the question and then on the ‘‘what

are time zones of’’ part when answering the complex

question ‘‘what are time zones of nationality of Albert

Fig. 10 The training processes of the NSM and GraftNet models

Fig. 11 The training process of the two models on public datasets
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Einstein?’’. As shown in Fig. 13a, the NSMweakly model

focuses on the same part in the first two steps of reasoning

and gradually shifts its attention to the other part in the last

two steps of reasoning. Only one keyword, ‘‘of’’, received

high attention in the last reasoning step. As shown in

Fig. 13b, the NSM model under the strong supervision

condition focuses on different parts of the question in the

first and second reasoning step and quickly focuses on the

two keywords ‘‘of’’.

To verify the effectiveness of the method of pretraining

the model through the CoSuQue dataset, we selected two

examples from the CWQ dataset to compare the differ-

ences between the NSM model and the NSMCosuQue model.

Figure 14a shows the chain type of questions in the CWQ

dataset. It can be found that the NSM model without pre-

trained focuses only on the same part of the question in the

four reasoning steps, while the NSMCosuQue (shown in

Fig. 14b) model focuses on the other part of the question in

the second reasoning step. The reasoning process of the

intersection type question is different from that of the chain

type question, and models should address every constraint

of the question in the whole reasoning process. The

example in Fig. 15 is the intersection type question in the

CWQ dataset. As shown in Fig. 15a, the NSM model

without pretrained focuses only on one question constraint,

while the NSMCosuQue model (shown in Fig. 15b) focuses

on every constraint in a balanced way.

5.5.5 Explanation of the model reasoning process

We conducted an in-depth analysis of the NSM and

GraftNet models through the CoSuQue dataset and

explained the reasoning processes of the two models by

analysing the experimental results, which can be summa-

rized in the following three aspects.

Comparing the model performance when handling 1c,

2c and 3c types of questions, it can be found that when the

number of steps required for complex question reasoning

increases, the difficulty of the model in answering ques-

tions does not increase linearly. The experimental results of

models dealing with questions involving chain logic

operations or interaction logic operations prove that ques-

tions that require interaction operations are typically more

difficult than questions that require only chain operations.

Fig. 12 Comparison of model performance on WebQSP dataset

(epoch=200)

(a) NSMweakly (b) NSM

Fig. 13 A case from the

CoSuQue dataset
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When the GraftNet model is dealing with a single type

of complex question, the use of strongly supervised labels

improves the performance of the model; however, the

model improvement is less than the improvement of the

NSM model with strongly supervised labels, which proves

that the algorithm that updates complex question

(a) NSM (b) NSMCosuQue

Fig. 14 A case (chain type

question) from the CWQ dataset

(a) NSM (b) NSMCosuQue

Fig. 15 A case (intersection
type question) from the CWQ

dataset
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representations in a step-by-step manner is beneficial for

weakly supervised training. Thus, the question represen-

tation stepwise update algorithm should be considered

when designing models in future work.

In the model training process, each reasoning step has a

corresponding supervised label, improving the model’s

inference ability for most types of complex questions. To a

certain extent, it is proven that the reasoning process of

these models is similar to that of humans.

6 Conclusion and future work

In this paper, we propose a new dataset construction

approach and a complex question answering dataset that

contains complete supervised labels, and the question types

are clearly divided. The proposed method is low-cost,

efficient and accurate. In summary, (1) the constructed data

could be used to evaluate the performance and preferences

of deep learning models at a fine-grained level, which

could be helpful for improving models in a more targeted

manner. (2) Intermediate supervised labels in datasets

could improve the robustness of model training and the

model performance on most types of question datasets. (3)

Models pretrained on the CoSuQue dataset perform better

on other datasets.

In future work, we plan to study the following direc-

tions: (1) add more types of logic operations, such as

negation logic operations, when constructing query graphs

to enrich the types of complex questions in the dataset; (2)

use deep learning models to transform query graphs into

natural language questions to make the question expression

more fluent; (3) transform the generated question and query

graph into a vector space and explore using the query graph

to guide model reasoning.
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