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Abstract
Time series missing data is a pervasive problem in many fields, especially in intelligent transportation system, which

hinders the application of timing analysis methods and the fine adjustment of control strategies. The prevalent imputation

approaches reconstruct missing data with a high accuracy by exploiting a precise distribution model. But the multistate

characteristic of time series data and the uncertainty of imputation process increase the difficulty of modeling temporal data

distribution and reduce the imputation performance. In this paper, a novel time series generative adversarial imputation

network (TGAIN) model is proposed to deal with time series data missing problem. The model combines the advantages of

GAN’s data distribution modeling and multiple imputation’s uncertainty handling. Specifically, the TGAIN network is

designed and adversarial trained to learn the multistate distribution of missing time series data. Through the conditional

vector constraint and adversarial imputation process, the latent distribution for each missing position under different states

can be effectively estimated based on implicit relationships with partial observation information. Then the corresponding

multiple imputation strategy is proposed to deal with the uncertainty of imputation process and it can determine the best fill

value from the learned distribution. Furthermore, sufficient experiments have been conducted in two real traffic flow

datasets. The comparative results show the proposed TGAIN not only has better ability on time series data distribution

modeling and imputation uncertainty handling, but also performs more robustly and stability even with the missing rate

increases.
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1 Introduction

Multistate time series data recording time-varying values

of variables not only reflects the mode fluctuation trend of

each variable, but also implies the coupling relationships

among variables. Thus, the analyses of multistate time

series data are important in various actual applications,

especially in intelligent transportation system (ITS). Most

traffic services for smart cities, like traffic signal control

[1], traffic congestion forecasting [2] and incident detection

[3], have been mining the multistate temporal characteristic

of traffic flow for precision management. However, the

unavoidable data missing problem caused by hardware

malfunction, failure of transmission and data corruption

may bring great difficulties to accurate data analysis. The

descent of analysis efficiency, more complicated analysis

procedure and even bias conclusion owing to the differ-

ences between observed and missing data are the typical

serious problems caused by data missing [4, 5]. To avoid

these problems, it is necessary to properly process the

missing values (MVs) in multistate time series data.

Generally, missing values processing methods can be

divided into three categories. The first category is simply to

delete the samples with MVs. However, this case deletion

tends to lose partial useful information and may distort

sample distribution especially in the limited samples or

high missing rate situation [6]. The second category is the
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single imputation which attempts to model the data missing

process by available partial data information, and estimates

a reasonable value by various imputation models. This

method mainly includes regression imputation (K-nearest

neighbor (KNN) [7, 8], local least square (LLS) [9, 10],

nearest neighbor regression (NNR) [11], support vector

machine (SVM) [12, 13]), probabilistic model imputation

(probabilistic principal component analysis (PPCA)

[14, 15], singular value decomposition (SVD) [16, 17]),

matrix completion imputation (low-rank matrix completion

(LRMC) [18, 19] and self-representation (SRSP) [20, 21]).

However, these models share a common problem: They

impute a single value for each missing position and then

treat the imputed data the same as the observed data in

subsequent analysis. In fact, the MVs obey an implicit

distribution determined by available observed information,

rather than a certain value [22]. The single imputation

implicitly assumes that the imputation models and results

are perfect, but fails to account for the uncertainty of

missing data in the imputation process. That can be over-

come by replacing each missing value with several slightly

different imputed values, and this kind of imputation

framework is the third category—multiple imputation

which is the most effective framework for missing data

analysis [23]. The idea of multiple imputation is to model

the missing data distribution through multiple filling MVs

and evaluate all filling values fitness and give the optimal

filling value [24, 25]. However, the performance of mul-

tiple imputation models relies on the correct distribution

assumption of the selected imputation model [24]. So, the

accurate distribution solution is imperative to increase the

availability of multiple imputation.

Usually, as time goes by, time series data tends to

exhibit regularity and randomness, and show different

trends and data distributions under different states and

conditions [3, 5]. Taking the traffic flow data of two

adjacent detecting points in Fig. 1 as an example, there are

significant differences in time series data distribution and

trend of traffic flow parameters in different time periods,

and these differences are still obvious even for adjacent

points at the same periods. This is traffic flow multistate

distribution characteristic, will further increase the diffi-

culty of data distribution solution in the missing data

imputation task. Existing imputation methods adopt fixed

preset statistic distribution or simple solution by superficial

model and they cannot accurately realize the adaptive

modeling of multistate distribution for time series data.

Therefore, it is necessary to explore a more effective dis-

tribution solution model to improve imputation perfor-

mance in time series data missing problem.

Recently, generative adversarial network (GAN) gives

us a better choice in modeling data distribution as a latest

generative model. More specifically, by training with

original data, GAN can capture the distribution of original

data by making the distribution of generated samples

approximate original data distribution [26, 27]. It has been

successfully applied to image completion [28] and sentence

generation [29], but the limitation of directly using com-

mon GAN for MVs imputation is the network requires a

complete dataset for training which is impossible for

incomplete time series dataset. To deal with incomplete

input data in imputation task, J. Yoon et. al. proposed a

novel generative adversarial imputation network (GAIN) to

learn missing part distribution by adversarial learning

between imputation and discrimination [30]. The subse-

quent models [5, 31–33] pay more attention to the multi-

variate characteristic of data by designing a specific

generator like multichannel or feature convolution. But the

multistate distribution characteristic of time series data will

increase the difficulty of distribution learning process, the

existing models lack corresponding targeted structural

design and may decrease the distribution learning perfor-

mance. Meanwhile, GAN obtains input variables by ran-

dom generation and computes the corresponding results,

this generating way brings the variety of generated results

but also increases their uncertainty [26, 30]. For MVs

imputation task, the uncertainty of generated results will

affect the imputation accuracy. Up to now, the effective

solution of multistate distribution of time series data and

the uncertainty handling of imputation process are still

challenging in time series imputation task.

To deal with these problems, a novel imputation net-

work framework combining with the GAN’s modeling data

distribution ability and the uncertainty handling ability of

multiple imputation is proposed in this paper. The impu-

tation framework consists two stages. In the first stage, a

time series generative adversarial imputation network

(TGAIN) is constructed to overcome the hardship of

modeling the multistate distribution for time series missing

values. TGAIN utilizes the conditional information and

sequence generation structure to direct the data imputation

process. Through large sample adversarial training by

incomplete dataset, the well-trained TGAIN model can

learn the distribution of missing data under different states,

the implicit relationships between variables and the tem-

poral information of time series data. In the second stage,

to deal with uncertainty in imputation and determine the

‘best’ filling value, multiple imputation strategy is adopted

in this stage. Multiple-input ‘noise’ of TGAIN’s generator

is utilized to generate multiple filling values which obey

the learned distribution, TGAIN’s discriminator evaluates

the imputation fitness of each of the filling values, and a

max-pooling structure is designed to overall determine the

final best filling value. In experiments, the compared

experiments on two real-world traffic datasets show the

proposed method has better ability in dealing with the
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uncertainty of imputation and the multistate time series

distribution solution. The main contribution of this paper

can be summarized as follows:

1. To deal with the distribution solution for multistate

time series data and the uncertainty of missing values

imputation, a novel TGAIN network imputation frame-

work is constructed combined the generative adversar-

ial network and multiple imputation. It is a new

multiple imputation network for multistate time series

data.

2. To realize the accuracy distribution solution for each

state of time series data, TGAIN network designs the

condition information and sequence generation struc-

ture to direct the generative adversarial imputation

process. The well-trained TGAIN can realize multistate

distribution learning and utilize the latent temporal

information among datasets.

3. To better capture the uncertainty of imputation process,

a multiple imputation strategy based on TGAIN is

designed. Multiple-input ‘noise’ of TGAIN’s generator

is utilized to generate multiple fill values which match

the learned distribution, and by a max-pooling structure

to overall determine the best filling value.

4. The TGAIN imputation model outperforms several

state-of-the-art methods in various missing patterns,

even without complete observations for the model

training. Even in the case of high missing rate, the

imputation performance still remains excellent.

The rest of this paper is organized as follows. In Sect. 2,

we introduce the missing data imputation related works. In

Sect. 3, we present the TGAIN imputation framework and

algorithm process. Experiments and comparison results

with several state-of-the-art imputation methods are shown

in Sect. 4. Section 5 makes a conclusion and discusses the

future work.

2 Related work

Data missing is a common and confusing problem in actual

applications, especially for multistate time series data.

Over the past decades, a number of advanced methods have

been proposed for data imputation and demonstrated sig-

nificantly improved imputation performance by exploiting

the data correlation and the implicit data distribution

[20, 34]. From the perspective of imputation structure, the

imputation methods can be divided into two categories:

single imputation models and multiple imputation models.

2.1 Single imputation models

The single imputation models utilize the data correlation

between observed values and missing values to give a

reasonable value to replace the missing part. This category

also can be roughly divided into following three classes.

2.1.1 Regression-based imputation

This class methods attempt to model the inherent rela-

tionship between MVs and observed values by means of

regression techniques, such as KNN [7, 8], LLS [9, 10],

NNR [11] and SVM [12, 13]. Despite some differences in

terms of specific regression models, these methods share a

Fig. 1 Multistate time series of

traffic sensor data
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common motivation, which is aim to use observed values

to predict the missing partial. For example, KNN-based

imputation method [8] takes advantage of similarity mea-

sure to find several samples from dataset which most

similar to the MVs samples, and MVs can be estimated as

the weighted average of those selected samples. Instead of

weighted average in KNN, LLS [10] imputation describes

the relation between the MVs and observed values by least

square regression, allowing more flexibility than weighted

average. Though these methods utilize the local relation of

data to recover the MVs individually, they all failed to

consider the consistency across the sample space and the

performance impact of multistate distribution. Even worse,

if a whole series of consecutive data is lost, the imputation

performance of these methods will decrease rapidly.

2.1.2 Probability-based imputation

To this kind of methods, the complete data is supposed to

follow a probabilistic distribution with specific form but

the distribution parameters are unknown, e.g., mixed

Gaussian model. Based on the observed partial data, both

the distribution parameters and missing data can be itera-

tively estimated. The Markov chain Monte Carlo (MCMC)

[35] and probabilistic principal component analysis

(PPCA) [14, 15] are the representative methods and have

shown promising results in traffic data imputation. The

major disadvantage of these methods is the imputed per-

formance heavily depends on the prior assumption about

data distribution, which is unknown in practice. Especially,

due to the multistate characteristic of time series data, it

may be improper to postulate a uniformed distribution for

time series in different state.

2.1.3 Matrix completion-based imputation

This class methods organize whole or partial data into a

matrix, and the missing values are recovered based on

specific assumption about data matrix. Low-rank matrix

completion (LRMC) [18, 19] assumes that the whole data

matrix has a global low-rank structure, and MVs can be

recovered through rank minimization on the whole matrix.

Recently, matrix self-representation (SRSp) [20, 21] has

been proposed which assumed each sample can be well

represented by linear combination of other samples.

Despite encouraging results, the assumption of these

methods led to disregard the local relation of data.

Above three kinds of single imputation methods have

their own unique theoretical value, but all single imputa-

tion methods cannot resolve the uncertainty in imputation

process effectively. This problem limits the imputation

effectiveness of the algorithm itself.

2.2 Multiple imputation models

Multiple imputation (MI) is a general framework that

incorporates the uncertainty into the imputation process.

MI is comprised of three stages: imputation stage, in which

there is a need to calculate the dataset statistic parameters

and distribution, and variability is put into the imputed

values to create multiple complete datasets; analysis stage,

in which each of the complete datasets is analyzed using a

complete data technique; and the last stage, in which the

results from the analysis are combined in order to yield a

final result and this stage combines the uncertainty in the

data and the uncertainty due to missing values. The original

multiple imputation [22], Bayesian MI [36] and deep

learning [24] make certain expansion on the multiple

imputation methods, and even some improved algorithms

by single methods also draw on the idea of multiple fillings

[37, 38]. The core problem is how to effectively model the

data distribution of missing data location. Even though

existing methods have been tried by fusing the results of

different algorithms or multiple results of a single algo-

rithm [37, 38], the accurate distribution solution of missing

data based on partial observation information is still a hard

problem, especially for multistate time series data.

In all, the main foundation of missing data imputation

utilizes the latent data correlation and implicit data distri-

bution. But how to model the correct distribution of data

and handle the uncertainty simultaneously are the technical

difficulties in improving the effect of multiple imputation.

3 Method

To deal with the uncertainty of imputation and the multi-

state distribution solution in time series data imputation

task, a novel imputation framework is designed and

described in Fig. 2. From Fig. 2, the framework divides

into two stages: The first stage is the distribution solution

for time series missing data. Inspired by the advantage of

GAN data distribution modeling [26], we proposed a novel

TGAIN architecture to adversarial learning missing data

distribution by incomplete data samples. Considering the

multistate characteristic and utilization of temporal corre-

lation, the conditional vector and seq-to-seq temporal

generator are introduced into the TGAIN to direct the

impute process for the missing values. By large sample

training, the trained TGAIN can learn the data distribution

under different states, the implicit relationships between

observation and the temporal information of data. The

second stage is multiple imputation by TGAIN to deter-

mine the best imputed values. Multiple ‘noises’ are input

into TGAIN’s generator to generate multiple fill values
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which obey the learned distribution, and the discriminator

gives the probability that each imputed value is close to the

original incomplete time series. A max-pooling structure is

designed to select the maximum probability result and

gives the final reasonable fill values for each missing

position.

Formally, given a collection of multivariate time series

data with d dimensions X ¼ ½xt0 ; :::; xti ; :::; xtn�1
� 2 Rd�N ,

where xti 2 Rd denotes the ti th observation of X and x j
ti is

the j th feature of xti .

It is worth noticing that in missing data imputation

problem, the observation time series X is incomplete, let ~X
denotes the uncompleted time series matrix. The mask

matrix M 2 Rd�N is introduced to indicate whether the

values of X exist or not, i.e., if x j
ti exists, M

j
ti ¼ 1; other-

wise, M j
ti ¼ 0. For example:

~X ¼
x1t1 � x1t3 �
� � x2t3 x2t4
x3t1 x3t2 � x3t4

2
4

3
5 M ¼

1 0 1 0

0 0 1 1

1 1 0 1

2
4

3
5

The architecture of TGAIN and multiple imputation

process will be described in detail in the following parts.

3.1 TGAIN architecture

In order to replace missing values in multimodal time

series dataset, a time series generative imputation adver-

sarial network (TGAIN) is constructed to unsupervised

learning the distribution of original time series dataset

under various conditions. In this custom GAN architecture

as shown in Fig. 3, some condition information C corre-

sponds to ~X as the additional input vector to direct the data

imputing process. The generator utilizes a random noisy

matrix and condition vector to generate the fake imputed

values, and the discriminator is trained to distinguish the

fake imputed parts and real observation parts in certain

conditions. With the iteration of adversarial imputation

training, it will achieve a Nash equilibrium between the

imputation ability of the generator and the discernment

ability of the discriminator. Finally, the generator learns a

mapping function GðzÞ that tries to map the random noise

vector z to a realistic time series.

3.1.1 Generator

The generator G takes ~X, M, random matrix Z and condi-

tion vector C as inputs and output is a complete matrix X.

Here, the Z must be independent of all other variables to

avoid being influenced by variable uncertainty. The gen-

erator calculation is expressed as follows:

X ¼ Gð ~X �M þ ð1�MÞ � Z;CÞ ð1Þ

X̂ ¼ M � ~Xþ ð1�MÞ � X ð2Þ

where � denotes element-wise multiplication. It notes that

the directly generated matrix X is completely a fake matrix

whether the component was observed or missing. So X̂ is

the completed imputed data matrix by replacing missing

component * in ~X with the corresponding value of X as

Eq. (2).

Fig. 2 Framework of time series generative adversarial imputation network (TGAIN)
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To effectively utilize the latent data relationships (time

series tendency and the different feature correlation) and

the guidance of conditional information in the matrix

generation process, a novel generator is constructed as

shown in Fig. 4. The TGAIN generator adopts sequence

generation architecture: First, the incomplete time series

matrix is combined with the random matrix by ~X �M þ
ð1�MÞ � Z as the input of generator and extracts spatial

feature between different variables by multilayer fully

connected encoder; then, spatial feature vectors and con-

ditional vector will be fused by concat function to guide

subsequent calculations. The LSTM layer is adopted to

capture and utilize the temporal relation, and the final

feature vectors are input a multilayer fully connected

decoder to generate the imputed matrix in chronological

order.

The whole generation processes not only utilized the

spatial–temporal information of different variables, but

also added the conditional information, which will con-

ducive to the accurate estimation of missing data.

3.1.2 Discriminator

In TGAIN framework, the discriminator D is introduced as

an adversary to train G. Due to the imputation task dif-

ferent, unlike in a standard GAN where the output of

generator is entire real or fake, in this setting the output is

composed of real and fake components. So, the discrimi-

nator of TGAIN attempts to distinguish which components

are real (observed) or fake (imputed), rather than identify

whether an entire vector is real or fake. The results of

discriminator are equivalent to predicting the mask vector

M which is predetermined by the dataset. It notes that the

discrimination process also needs the guidance of corre-

spondent conditional information which could satisfied the

needs of data multistate distribution.

Formally, the discriminator is a function

D : M̂ ¼ DðX̂;CÞ, with the i th component of output M̂

corresponding to the probability that the i th component of

x̂ was observed under condition C.

3.1.3 Conditional vector

Considering the difference on latent relation and distribu-

tion of multimodal time series dataset, the conditional

vector is constructed to direct the missing value imputing

process. It makes the whole network extended as a condi-

tional model because the generator and discriminator are

conditioned on same extra information C. The C could be

any kind of auxiliary information for different kinds of data

imputation task, such as class labels or data from other

modalities. It notes that the condition information C should

be potentially related to the multistate characteristic of time

series data, so that C could direct data generation and

imputation process under different data distribution situa-

tion. Meanwhile, C should be appropriately settings for

different tasks. More conditional information may increase

the complexity of network learning and need more data

under each condition, but less conditional information may

lead to the poorly direct modeling performance.

In the task of traffic flow data imputation, the traffic data

showed obvious different temporal distribution patterns

between workday and non-workday and different time

periods on the same day. So, the week label and time label

Fig. 3 TGAIN network architecture
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are selected as conditional vector in this paper, the specific

partition is determined by real traffic data distribution. In

order to ensure the independence of the labels, the labels

are processed by one-hot encoding [39]; that is, each label

is given an effective encoding bit.

C¼½week lable ; time label� ð3Þ

3.1.4 Objective

In TGAIN network, the discriminator D is trained to

maximize the probability of correctly predicting M, the

generator G is trained to minimize the probability of D to

predict M, so we define the objection function as

VðD;GÞ ¼ EX̂;M;C½MT logDðX̂;CÞ þ ð1�MÞT logð1
� DðX̂;CÞÞ� ð4Þ

where log is element-wise logarithm and dependence on G

is through X̂.

Then, the objective of TGAIN is a minimax game

problem given by

min
G

max
D

VðD;GÞ ð5Þ

Writing M̂ ¼ DðX̂;CÞ, Eqs. (4) and (5) can be rewritten

as:

min
G

max
D

EX̂;M;C MT logðM̂Þ þ ð1�MÞT logð1� M̂Þ
� �

ð6Þ

3.1.5 Loss

TGAIN attempts to model the latent distribution of missing

data by multiple generative adversarial learning processing

rather than just the statistical expectation. So, we solve the

minimax optimization problem of the network in an iter-

ative manner.

We first optimize the discriminator D with a fixed

generator G using mini-batch method in [40]. For each

sample in the mini-batch ð~xðjÞ;mðjÞ; cðjÞÞ, we draw kD
independent random samples zðjÞ. We define the discrim-

inator loss function to train the discriminator as

Fig. 4 Conditional time series generator of TGAIN
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LDð ~X;M;C; ZÞ

¼ min
D

�
XkD
j¼1

mðjÞT logD x̂ðjÞ; cðjÞð Þ þ ð1� mðjÞTÞ
�

log 1� D x̂ðjÞ; cðjÞð Þð Þ�
ð7Þ

Second, we optimize the generator G using the newly

updated discriminator D with mini-batches of size kG. It

notes that G in fact outputs the value for entire data matrix

(including values for the components we observed).

Therefore, in training G, the loss function should ensure

not only the imputed values for missing components

(mj ¼ 0) successfully fool the discriminator, but also the

values outputted by G for observed components (mj ¼ 1)

Table 1 TGAIN network iterative training pseudo-code
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are close to those actually observed. This also assures that

the representations learned in G suitably capture the

information combined in ~X (Just like an auto-encoder).

To achieve this purpose, a two-part loss function is

defined to evaluate the fitness of imputation. The following

paragraphs will describe the discriminative loss and

masked reconstruction loss in details.

3.1.6 Masked reconstruction loss

The masked reconstruction loss makes sure that the gen-

erated samples by G are close enough to the original

incomplete time series ~X in non-missing components. It is

defined by masked squared errors between the original

sample ~X and the generated sample X by Gð ~X; Z;CÞ.
LM ~X;X;M

� �

¼ min
G

�
XkG
i¼1

~xðiÞk �mðiÞ � G ~xðiÞ; zðiÞ; cðiÞð Þ � mðiÞk

ð8Þ

3.1.7 Discriminative loss

The discriminative loss forces the generate sample by G as

real as possible in missing components. It stands for the

generated sample Gð ~X; Z;CÞ’s degree of authenticity. It is

based on the output of the discriminator D in missing

components which represents the confidence level of the

generated sample being real.

LGð ~X;M;C; ZÞ ¼ min
G

�
XkG
i¼1

1� mðiÞð Þ logðmðiÞÞ ð9Þ

LG is smaller when m̂i is closer to 1. It means LG is

smaller when D is less able to identify the imputed values

as being imputed (D falsely categorizes them as observed).

As can be seen from their definitions, LG applies to the

missing components (mi ¼ 0) and LM applies to the

observed components (mi ¼ 1). The generator G is then

trained to minimize the weighted sum of the two losses as

follows:

min
G

XkG
i¼1

LM ~xðiÞ; xðiÞ;mðiÞð Þ þ aLG ~xðiÞ,mðiÞ,cðiÞ,zðiÞð Þ

ð10Þ

where a is a hyper-parameter to balance two parts loss

function and affect the final imputation performance.

Table 1 illustrates the TGAIN network training process

in the first stage of TGAIN imputation framework. Firstly,

we fixed the generator parameters and computer the LD to

direct the discriminator parameters update. Secondly, the

discriminator parameters are fixed and we computer the

mixed loss LMþaLG to direct the generator parameters

update. Two steps will be loop iterated until the network

loss converges. By adversarial learning process between

imputation and discrimination, the imputed false values

will gradually close to the latent ‘real’ values. When the

TGAIN network converges, the distribution of imputed

values by G is consistent with the latent distribution of

missing data. This will be confirmed in the convergence

analysis experiment of TGAIN.

3.2 Multiple imputation by TGAIN

Through TGAIN network training, the generator G can

learn a mapping function GðzÞ ¼ z 7!x that maps the ran-

dom noise vector z to the imputation value satisfied latent

Fig. 5 Schematic diagram of multiple imputation by TGAIN
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distribution. However, this still remains a problem, the

random noise vector is randomly sampled from a latent

space, e.g., Gaussian distribution. It means that the gen-

erated values may change in a range with the changing of

the input random noise z. In other words, the imputed value

generated by single random sample z may has a distance to

the ideal imputed value as shown in Fig. 5a.

Fig. 6 Multiple imputation stage by TGAIN

Table 2 Multiple imputation pseudo-code by TGAIN
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Inspired by the uncertainty solution of multiple impu-

tation [22, 23], a novel multiple imputation by TGAIN is

designed as the second stage of our imputation framework.

This stage function is to find a best vector z from the latent

input space so that the generated sample GðzÞ can be

mostly close to the latent ideal value ~x. To do this, multiple

random samples are input into the well-trained TGAIN’s

generator to generate imputed values, and the well-trained

TGAIN’s discriminator is utilized to measure the degree of

imputation fitness for each generated sample. The maxi-

mum imputation fitness corresponds to the ideal imputed

value. This multiple imputation by TGAIN is shown in

Fig. 5b. Therefore, the multiple imputation network by

TGAIN is designed as the combination of multiple gener-

ate–evaluate pooling as shown in Fig. 6. Here, the max-

pooling structure is used to integrate the evaluation results,

compute the maximum imputation fitness and give the

most reasonable imputed value.

The multiple imputation by TGAIN stage is presented in

Stage 2 as follows (Table 2):

4 Experiments and analysis

4.1 Traffic sensor data and setting

In this study, we evaluate the imputation performance of

proposed TGAIN by two real-world traffic flow dataset.

(a) Traffic section volume data by fixed road sensor in I90,

Seattle, USA. (b) Traffic speed raster data by floating car

GPS in Changchun, China. The testing sites and datasets

were screened out to ensure the experiment data com-

pleteness for evaluate imputation performance conve-

niently and objectively, even though two types of data

often have the problem of missing data in most cases.

4.2 I90 volume database

The data comes from Interstate 90 (I90) interstate high-

ways in Seattle, USA, and collected by Digital Roadway

Interactive Visualization and Evaluation Network (DRI-

VENet), which is an open-access database (http://wsdot.

uwdrive.net). The selected data contains the vehicle vol-

ume counts record by 15 sensors which have the upstream

and downstream correlation relation. The selected sub-area

road sensor is shown in Fig. 7. The time period is January

01, 2015, to December 31, 2015, and holiday data are

excluded for reducing the experiment complex. The sam-

pling interval is 5 min. The traffic data from January 01,

2015, to September 30, 2015 (9 months, 75% of the total

data) are used as training dataset, and the others (25%) are

used as testing dataset. Here, to determine the optimal

parameters for each of the experiment models and make

sure unbiased estimate of the performance, the training

dataset (75% of the total data) are split into training dataset

A (25% of the total data) and training dataset B (50% of the

total data). Training dataset A is used to search and

determine the optimal models’ architecture parameters and

training dataset B is used to training the experiment

models.

In the I90 dataset experiment, the conditional vector of

TGAIN is set as the week label connect the time label, the

time interval is set as 4 h for a better distinguish perfor-

mance which the traffic distribution and tendency have

obviously differences. The time label section is shown in

Fig. 8.

4.2.1 Changchun speed database

This database comes from the GPS equipment installed on

about 15,000 taxis in Changchun, China. The acquisition

time period is April 01, 2018, to May 31, 2018, from 08:00

to 22:00 and exclude holidays for reducing the experiment

Fig. 7 Observation location on I90 interstate highways in Seattle, USA
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complex. The test site located at Weixing road west-to-east

direction in Changchun is shown in Fig. 9. The road net-

work is gridded at about 150 m. We used ARCGIS soft-

ware to filter the dataset and mapped the raw GPS point

data into road segments by map matching algorithm in [41]

and calculated the travel speed of each floating taxi car.

Then the speed value for each road grid was calculated by

average travel speed of floating taxi car within 5 min. The

traffic data from April 01, 2018, to May 16, 2018 (41 days,

75% of the total data) are used as training dataset, and the

others (25%) are used as testing dataset. The training

dataset is also divided into two parts and used in the same

way as I90 database.

The morning and evening traffic congestion is a com-

mon phenomenon in city road network. The traffic speed

data shows obviously multistate characteristic during the

congestion formation, dissipation and free flow state as

shown in Fig. 10. In Changchun dataset experiment, the

Fig. 8 Multistate time series

traffic volume data partition by

time label

Fig. 9 Test site on Weixing Street in Changchun, China

Fig. 10 Multistate time series

traffic speed data partition by

time label
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conditional vector of TGAIN is still set as the week label

connect the time label, but the time label is determined

according to the speed data distribution time changing

trends. The time label section is shown in Fig. 10.

4.3 Missing pattern and evaluation index

To reflect the complex distribution of MVs, the experi-

ments simulate three common MVs pattern. (i) Missing

completely at random (MCAR) where the propensity for a

data point to be missing is completely random, i.e., inde-

pendent of the observed data and the other missing data. In

this pattern, MVs appear as a set of isolated points ran-

domly distributed. (ii) Missing at random (MAR) where the

occurrence of MVs depends on its neighboring MVs. As a

result, this pattern looks like a group of successive MVs.

(iii) A mixture of MCAR and MAR (MIXED), where the

mixing ratio for MCAR and MAR is 0.5, indicating half of

the MVs are from MCAR while the other half are from

MAR. We also define missing ratio d as the ratio of the

number of MVs to the total number of values and change

the value of d from 0.1 to 0.9 with step 0.1 so as to simulate

imputation problem with varying difficulties. In addition,

the missing ratio d of TGAIN’s training stage is set to 0.3

to make sure relatively much information to learn the

multistate distribution, which is a relatively high missing

rate in general. In actual, the training dataset is the real

detection dataset which could mix various missing rate

samples.

To comprehensively evaluate the effectiveness of

TGAIN, we compare it with several state-of-the-art

imputation methods, including mean imputation, KNN [8],

NNR [11], multiple imputation [22], SVD [17], PPCA [15],

LLS [10], LRMC [18], SRSP [20], VIGAN [32], Colla-

GAN [33], GAIN [30] and MISGAN [42]. Among them,

mean imputation is usually regarded as the baseline for

MVs imputation, while the other belongs to different

classes of methods (according to the taxonomy described in

Sect. 2), e.g., regression model, probabilistic model and

matrix completion model. The VIGAN, CollaGAN, GAIN

and MISGAN are the variants of GAN for data imputation.

The experiments are implemented in python 3.6. There are

some parameters need to be set in each method, we first

make the initial settings of model parameters according to

the definition of corresponding algorithms and pervious

research [20, 30, 43], the parameters in each method will

further optimized by particle swarm optimization algorithm

(PSO) [44, 45] to achieve the best imputation performance

for traffic flow data in the experiment.

In experiments, missing scenarios are generated artifi-

cially and then different imputation methods are used to get

a corresponding estimation. In order to quantitatively

measure the recovery performance of imputation methods,

the root mean squared error (RMSE) and mean absolute

percentage error (MAPE), two widely evaluation indexes,

are selected compute the differences between the imputed

values and real values.

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn
i¼1

ximputei � xtruei

� �2
s

ð11Þ

MAPE =
Xn
i¼1

ximputei � xtruei

xtruei

�����

������
100%

n
ð12Þ

where n denotes the number of MVs, xtrue and ximpute
denote the real value, respectively. Considering the ran-

domness when artificially simulating missing entries, the

experiment was repeated five times for each method and

calculate the average imputation error to ensure the

imputation effect and stability.

4.4 Network parameters setting

In TGAIN network input parameters settings, the distri-

bution of noise matrix elements is set as a standard

Gaussian distribution, which ensures the unbiasedness of

the generated input noise z. The conditional vector length

depends on the label setting, the combination of week label

and time label is adopted in the I90 volume database and

Changchun speed database experiments. After One-hot

encoding [39], the week label length is set as 7 (e.g.,

Monday code is [0000001], Sunday code is [1000000]), the

time label division is shown in Figs. 8 and 10, and its

length is set as 6. More importantly, the size of the input

matrix X 2 Rd�N is an extremely important parameter. Due

to the division by conditional labels, the length N of under

different C may be inconsistent, so it depends on the

maximum sample length. If the length of a sample is less

than N, it is filled with 0 elements and the marker matrix

corresponding element is set as 1. The I90 volume database

contains 15 sensors detecting data and time label interval is

set as 4 h, so the input matrix dimension is set as 15*48.

The Changchun speed database contains 18 sections

detecting data and max time label interval is set as 8 h, so

the input matrix dimension is set as 18*96.

The TGAIN network structure have an important influ-

ence on the imputation performance. The generator and

decimator network layer and nodes number are the key

parameters. In the experiment, the particle swarm opti-

mization algorithm [39, 40] is adopted to determine the

optimal network parameters. First, set different network

layers and number of nodes for TGAIN, and calculate the

corresponding imputation error. Then, the layer setting and

node number are set as variables, the minimum imputation

error is set as the optimization goal, and the network

parameters are optimized by using PSO. Figure 11 gives
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the optimal network parameters setting. Besides, the

maximum number of training is set as 20,000, the network

learning rate is set as 0.001, and the activation function and

network optimizer are set as ReLU and Adam.

4.5 Convergence analysis of TGAIN

In the TGAIN, the generative adversarial imputation and

MVs distribution learning process is optimized by iteration

training. Next, we investigate the convergence behavior of

this algorithm under varying missing ratios and different

missing patterns. The visualization of training process on

Fig. 11 TGAIN network parameters setting

Fig. 12 Visualization of TGAIN training process (MCAR, d = 0.5, 04:00–08:00) (The process is training and testing by G)
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I90 dataset in the case of MCAR pattern and d = 0.5 is

shown in Fig. 12 and some convergence curves of

TGAIN’s G and D loss function obtained in the experi-

ments are shown in Fig. 13. As shown in Fig. 12, the third

line is the unbroken traffic flow space–time matrix which

could represent the ideal imputed matrix and the first line is

the randomly generated missing matrix in the case of

MCAR pattern and d = 0.5. The second line is the imputed

matrix by TGAIN. With the increase in the iteration

training, the imputed matrix by TGAIN is more similar and

closer to the unbroken matrix. Meanwhile, the TGAIN

generator and discriminator loss is iteratively convergent

quickly in Fig. 13. It confirms the effectiveness and con-

vergence of MVs distribution learning of TGAIN and the

TGAIN can realize an effective mapping GðzÞ ¼ z 7!x

based on learned distribution.

Fig. 13 TGAIN generator and discriminator loss convergence curve

(MCAR, d = 0.5)

Table 3 Imputation error obtained by different methods under MCAR missing pattern. (I90 dataset)

Method d 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Mean RMSE 66.44 65.30 64.51 64.63 68.27 70.59 74.67 82.05 101.29

MAPE 32.17% 33.60% 34.73% 34.41% 35.25% 37.24% 39.82% 43.63% 48.82%

KNN [8] RMSE 42.03 42.90 43.61 43.08 48.92 49.50 52.66 58.45 59.59

MAPE 18.37% 18.76% 18.98% 18.49% 20.23% 21.48% 23.79% 26.88% 29.02%

NNR [11] RMSE 40.69 41.26 41.89 42.38 44.08 46.28 50.15 55.15 58.12

MAPE 15.85% 16.65% 16.83% 17.21% 18.86% 19.48% 22.52% 25.98% 28.96%

MI [22] RMSE 46.38 42.72 42.42 43.36 45.54 48.85 54.30 64.25 87.57

MAPE 19.08% 17.47% 17.01% 18.61% 18.93% 20.09% 24.34% 34.24% 45.69%

SVD [17] RMSE 39.45 42.37 43.57 45.64 48.68 51.00 52.50 68.76 80.25

MAPE 15.91% 16.76% 17.08% 18.49% 20.23% 21.48% 23.79% 32.88% 42.02%

PPCA [15] RMSE 36.78 38.57 40.33 43.25 46.69 50.25 54.56 62.49 78.65

MAPE 13.87% 15.23% 17.03% 18.56% 20.07% 22.08% 24.78% 30.69% 39.26%

LLS [10] RMSE 38.03 38.57 39.33 40.54 42.87 50.24 59.09 65.80 89.84

MAPE 14.87% 15.65% 16.03% 17.97% 19.21% 21.23% 27.23% 32.34% 42.66%

LRMC [18] RMSE 38.66 39.78 41.57 42.18 46.85 49.79 57.69 70.79 85.59

MAPE 14.24% 15.45% 17.09% 17.17% 19.21% 21.19% 25.23% 34.34% 41.28%

SRSP [20] RMSE 35.25 36.49 38.99 39.65 41.27 46.66 50.49 60.22 72.48

MAPE 13.42% 13.85% 15.08% 15.23% 18.31% 21.18% 24.24% 29.32% 38.45%

VIGAN [32] RMSE 40.57 41.24 43.56 44.22 45.33 48.2 51.61 54.63 58.62

MAPE 16.51% 17.23% 18.52% 18.92% 19.56% 21.35% 23.62% 26.37% 28.64%

CollaGAN [33] RMSE 39.65 40.97 42.69 42.97 44.93 47.63 49.64 52.14 55.62

MAPE 15.62% 16.92% 17.83% 18.32% 19.85% 20.95% 22.61% 25.45% 27.93%

GAIN [30] RMSE 35.21 36.86 38.48 39.27 40.47 43.39 47.16 48.55 52.96

MAPE 12.91% 13.29% 15.39% 15.63% 17.72% 19.06% 20.70% 21.06% 24.50%

MISGAN [42] RMSE 34.92 37.13 37.92 39.33 40.62 42.62 46.27 49.57 50.96

MAPE 12.62% 13.21% 14.23% 15.61% 17.92% 18.67% 19.85% 21.37% 23.96%

TGAIN RMSE 34.03 35.36 35.08 35.49 36.57 38.38 40.96 41.02 42.99

MAPE 12.52% 13.23% 13.01% 13.96% 14.69% 15.73% 17.98% 18.71% 20.33%

The bold is used to highlight the results of the TGAIN
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4.6 Comparison experiments on I90 dataset

Tables 3, 4, 5 list the imputation errors of different algo-

rithms under MCAR, MAR and MIXED missing patterns,

respectively. We can see some interesting points from these

tables. Firstly, MCAR and MAR are the easiest and hardest

situation among three missing patterns, respectively. The

reason is continuous data missing will cause the losing of

more valuable information among the dataset, and increase

the difficulty of accurate imputation. Secondly, the baseline

mean imputation is the worst in terms of imputation

accuracy because it relies on the fixed distribution

assumption while ignoring the difference of multistate

distribution. Thirdly, the imputation error of each method

increases with the missing rate. These imputation methods

could performance well in the low missing rate, because

enough information could provide to direct the model

statistic and calculation. The mean imputation, SVD,

PPCA, LLS, LRMC, SRSP will rapidly degrade when

missing ratio increases, the reason is their models mainly

utilize the data local correlation and less consider the

regularity information contained in historical dataset. The

imputation error of KNN, NNR, VIGAN, CollaGAN,

GAIN, MISGAN and TGAIN have a slowly growth rela-

tively and they essentially utilize the data under same

distribution state. The results also indicate these models

possess better robustness and can satisfied the missing rate

fluctuation in reality. Fourth, the VIGAN, CollaGAN,

Table 4 Imputation error obtained by different methods under MAR missing pattern. (I90 dataset)

Method d 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Mean RMSE 65.09 64.62 65.26 65.38 68.63 70.72 74.68 82.10 100.18

MAPE 32.54% 33.39% 34.26% 34.64% 36.66% 36.98% 37.70% 40.31% 45.30%

KNN [8] RMSE 44.65 46.06 47.11 46.19 49.24 49.62 51.50 54.29 59.79

MAPE 18.73% 19.34% 19.12% 20.66% 23.35% 23.38% 25.86% 27.87% 30.10%

NNR [11] RMSE 41.26 42.24 43.02 44.38 45.72 47.92 50.12 53.61 58.92

MAPE 16.02% 16.92% 17.12% 18.52% 20.23% 22.69% 24.61% 26.43% 28.64%

MI [22] RMSE 43.74 44.02 43.91 44.14 46.77 49.30 54.56 64.87 89.30

MAPE 18.62% 18.42% 18.35% 19.48% 20.24% 22.78% 28.21% 32.69% 41.78%

SVD [17] RMSE 40.24 42.13 44.21 45.26 50.15 55.13 58.99 72.07 89.42

MAPE 15.25% 17.31% 18.13% 19.21% 25.35% 26.45% 27.35% 36.57% 40.65%

PPCA [18] RMSE 41.55 42.54 42.53 45.24 48.36 54.12 60.59 64.48 82.16

MAPE 16.15% 17.08% 17.96% 19.12% 23.24% 25.18% 29.43% 31.35% 39.45%

LLS [10] RMSE 40.02 41.15 43.31 42.50 49.85 58.86 71.48 82.59 91.27

MAPE 15.29% 16.59% 18.08% 17.09% 22.25% 27.26% 35.67% 40.52% 43.77%

LRMC [18] RMSE 40.15 41.27 42.29 44.99 48.24 50.94 57.17 63.15 70.48

MAPE 15.12% 16.06% 17.14% 19.23% 22.15% 23.18% 27.23% 31.35% 36.45%

SRSP [20] RMSE 39.87 40.79 41.58 42.89 45.48 49.58 55.59 59.55 65.29

MAPE 15.45% 15.25% 16.755 18.23% 20.18% 23.12% 25.92% 26.67% 31.32%

VIGAN [32] RMSE 42.64 43.27 43.78 45.23 46.26 48.67 49.86 52.07 53.37

MAPE 16.23% 17.82% 18.07% 19.62% 20.43% 22.62% 23.85% 24.96% 25.13%

CollaGAN [33] RMSE 41.27 42.61 43.63 45.92 46.87 47.69 48.56 51.24 54.13

MAPE 15.96% 17.23% 18.23% 19.06% 19.82% 21.48% 22.65% 25.46% 26.85%

GAIN [30] RMSE 38.36 40.39 40.46 42.39 43.31 45.08 45.20 49.43 50.95

MAPE 14.92% 15.67% 16.43% 16.72% 18.96% 20.35% 20.67% 22.32% 22.62%

MISGAN [42] RMSE 38.97 40.49 41.27 42.97 43.03 44.63 45.36 46.26 48.62

MAPE 14.96% 15.82% 16.37% 17.43% 18.52% 19.67% 20.38% 21.26% 23.04%

TGAIN RMSE 38.53 39.14 38.95 39.53 40.59 40.48 41.09 42.74 44.82

MAPE 14.87% 14.96% 14.11% 15.87% 16.96% 17.01% 18.12% 18.96% 20.13%
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GAIN and MISGAN could have an excellent imputation

performance from various missing situation. They verify

the distribution approach ability of GAN. Among them, the

MISGAN and TGAIN are relatively better, because they

both utilize the hint information to guide the distribution

learning process. In particular, TGAIN achieves best per-

formance in most cases and the comprehensive compar-

isons confirm the handling ability of uncertainty of

imputation and multimodal distribution solution.

To clarify the imputation performance, Fig. 14 shows

some imputation results obtained by different methods in

the case of MCAR pattern and d = 0.3. The imputation

residual obtained by TGAIN is smallest and the imputation

tendency and performance is satisfied.

4.7 Influence of parameters on imputation error

4.7.1 The a of balancing the masked reconstruction
and discriminative loss of TGAIN’s G

According to Eq. (10), the a is an important factor which

balances the generated matrix reconstructed error for

observed portion and imputed error for missing portion.

We change the a in range of {0.1, 0.5, 1, 3, 5, 7, 10, 20}

and record the imputation error under different missing

situation. Some experiment results under MCAR pattern

and different missing rates are shown in Fig. 15. As shown

in Fig. 15, the imputation error decreases and then

increases with increasing a, and a¼ 5 works best. It means

Table 5 Imputation error obtained by different methods under MIXED missing pattern. (I90 dataset)

Method d 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Mean RMSE 64.79 64.75 65.25 66.45 68.07 70.76 74.44 82.07 101.43

MAPE 31.32% 32.99% 33.40% 34.97% 35.36% 35.33% 37.49% 40.85% 48.21%

KNN [8] RMSE 42.20 44.48 46.43 45.70 47.32 48.96 53.55 56.89 59.88

MAPE 18.21% 19.12% 20.65% 20.18% 21.11% 22.15% 26.23% 28.38% 29.40%

NNR [11] RMSE 40.38 41.25 41.68 42.15 43.25 47.95 52.12 53.85 57.32

MAPE 15.93% 16.23% 16.89% 17.62% 18.96% 21.45% 25.63% 26.89% 28.96%

MI [22] RMSE 42.88 42.21 43.35 44.78 44.90 48.89 53.44 63.95 87.48

MAPE 18.39% 18.32% 18.45% 19.36% 19.56% 21.65% 26.79% 29.45% 40.75%

SVD [17] RMSE 41.24 42.36 43.90 46.49 50.15 53.56 57.65 71.85 88.17

MAPE 16.75% 17.24% 17.59% 20.23% 22.48% 25.65% 27.51% 35.98% 42.86%

PPCA [15] RMSE 38.60 40.67 41.53 44.42 47.26 52.16 56.17 63.42 80.65

MAPE 14.12% 15.08% 16.25% 18.96% 18.29% 25.45% 26.35% 30.56% 39.65%

LLS [10] RMSE 40.53 39.71 42.95 44.31 46.73 54.68 60.80 69.89 85.03

MAPE 15.06% 15.12% 17.58% 18.09% 20.16% 24.38% 27.26% 33.57% 41.84%

LRMC [18] RMSE 38.95 40.12 41.23 42.22 45.27 50.17 56.47 68.17 82.16

MAPE 14.57% 15.14% 16.12% 17.96% 19.25% 23.15% 26.35% 33.36% 39.96%

SRSP [20] RMSE 37.55 38.56 40.46 41.15 42.21 48.26 52.22 60.55 68.16

MAPE 14.18% 14.23% 15.42% 16.54% 18.28% 22.45% 24.35% 27.35% 32.45%

VIGAN [32] RMSE 40.89 41.91 42.27 42.95 43.51 47.62 50.12 53.65 55.78

MAPE 16.42% 17.13% 17.82% 18.91% 19.64% 22.49% 23.61% 25.62% 27.39%

CollaGAN [33] RMSE 40.27 41.36 43.29 43.62 44.03 46.33 51.02 53.16 56.14

MAPE 15.81% 16.87% 17.94% 18.53% 19.71% 21.65% 22.68% 24.57% 26.43%

GAIN [30] RMSE 38.43 39.06 40.40 41.54 43.63 45.72 47.72 48.26 49.27

MAPE 14.13% 14.96% 15.74% 16.76% 19.79% 21.12% 21.58% 22.07% 22.91%

MISGAN [42] RMSE 37.86 39.62 40.36 42.27 42.99 44.66 46.91 47.02 48.69

MAPE 13.96% 14.82% 15.27% 17.53% 18.26% 19.57% 20.85% 21.37% 22.86%

TGAIN RMSE 36.40 36.80 38.66 39.04 40.53 41.53 42.69 43.02 44.10

MAPE 13.54% 13.79% 14.85% 15.21% 16.83% 17.91% 18.09% 19.37% 20.91%

The bold is used to highlight the results of the TGAIN
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Fig. 14 Partial imputation results obtained by different methods (4.30 observation spot, MCAR, d = 0.3)
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that TGAIN first make sure the ‘real’ portion of generated

matrix is same as observed portion, and then let the ‘fake’

portion successfully fool the discriminator. When the a is

too large, it will lead to overfitting problem for ‘real’

portion and weak the imputation probability of G. In the

experiment, the a is set as 5.

4.7.2 The imputation number n of multiple imputation
by TGAIN

The imputation number n is the key of TGAIN multiple

imputation. It effects the determination of ‘best’ imputation

value and imputation performance. In the parameter search

phase, we change the number of multiple random matrixes

and try to find the satisfactory result. Some experiment

results under MCAR pattern and different missing rates are

shown in Fig. 16. As shown in Fig. 16, the imputation

performance gets better with the imputation number n

increases. This further verifies the success of MVs distri-

bution learning by TGAIN training stage and the signifi-

cance of dealing with uncertainty by TGAIN multiple

imputation stage. More imputation number need more

compute resources and computation time. The multiple

imputation number needs be comprehensive consideration

between imputation performance and computational effi-

ciency. In the experiment, the imputation number n is set as

30.

4.8 Comparison experiments on changchun
dataset

To further verify the applicability of TGAIN algorithm,

Changchun speed dataset was utilized into the traffic

MVs imputation. Table 6 lists the imputation errors of

different algorithms under MCAR missing patterns. From

these results, the speed MVs imputation task is easier

than volume MVs imputation, because the multistate

characteristic of traffic speed is more obviously and data

fluctuation range is relatively smaller. The results show

that most imputation methods have relatively small

imputation error (RMSE and MAPE) in low missing rate

and the error rapidly degrade with the increase of

missing rate d. Overall, the TGAIN has the minimum

absolute and relative error in most missing condition and

also has a better filling performance stability.

In order to better show the imputation performance

under different traffic distribution state, the evaluation

indexes were calculated, respectively, for each of the

experiment methods according to the partition in Fig. 10.

Figure 17 shows RMSE and MAPE of different methods

under different traffic state during weekday and week-

end. The imputation performance changes along with

traffic state, the speed data under congestion formation

state has sharp decline trend and strong randomness, this

increases MVs imputation difficulty and the imputation

error in this state is the biggest. The error of congestion

dissipation state is relatively small for the data distri-

bution stability and tendency consistency. Due to the

random fluctuation of free flow state, there is no obvious

difference between weekday and weekend. On the whole,

the TGAIN has a superior imputation ability under dif-

ferent data states, and the results confirmed TGAIN’s

Fig. 15 Imputation error in different value of a (MCAR)

Fig. 16 Imputation error in different multiple imputation number
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handling ability of uncertainty of imputation and multi-

modal distribution solution.

5 Conclusion

To deal with the distribution solution for multistate time

series missing data and the uncertainty of imputation pro-

cess, a novel MV imputation framework is proposed based

on generative adversarial network and multiple imputation.

In the first stage, a novel TGAIN is built and it utilizes

adversarial imputation process to suitably capture MVs

latent distribution and information learning for multistate

time series data. The adjustable condition vector and novel

time series generator is constructed to direct the adversarial

learning for each data state. In the second stage, to reduce

the uncertainty of imputation, a new multiple imputation

by TGAIN is adopted to determine the best filling value.

TGAIN network structure is skillfully combined with

multiple imputation process to overcome data distribution

predefined defect. We apply the proposed method to two

real-world traffic sensor datasets and the experiments

results show the TGAIN multiple imputation has superior

robustness and imputation performance, and better ability

Table 6 Imputation error obtained by different methods under MCAR missing pattern. (Changchun dataset)

Method d 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Mean RMSE 10.29 11.56 11.90 12.26 12.87 13.36 14.56 14.22 15.62

MAPE 18.63% 18.95% 18.98% 20.12% 21.85% 22.16% 23.25% 23.14% 25.47%

KNN [8] RMSE 5.35 5.65 5.58 6.15 6.72 8.95 10.08 12.06 14.91

MAPE 7.99% 8.21% 8.35% 8.96% 9.57% 12.27% 15.78% 19.45% 23.16%

NNR [11] RMSE 3.75 3.96 4.21 4.68 5.28 7.05 9.12 11.02 13.25

MAPE 5.26% 5.89% 6.45% 7.12% 8.35% 10.92% 13.78% 17.96% 21.63%

MI [22] RMSE 4.92 5.15 5.65 6.13 6.73 8.94 10.15 11.70 15.70

MAPE 7.45% 7.92% 8.65% 9.15% 9.85% 14.13% 15.92% 18.66% 25.22%

SVD [17] RMSE 4.45 4.79 5.27 5.36 6.16 7.49 8.96 11.89 13.26

MAPE 6.52% 7.18% 7.28% 7.85% 8.75% 11.59% 13.66% 18.66% 21.56%

PPCA [15] RMSE 4.11 4.25 4.64 5.15 5.73 7.78 8.79 10.92 12.27

MAPE 6.12% 6.48% 7.15% 7.85% 8.92% 12.25% 13.96% 17.66% 19.87%

LLS [10] RMSE 3.30 3.61 3.89 4.19 5.75 7.96 9.35 12.23 13.76

MAPE 5.12% 5.34% 5.98% 6.56% 9.09% 12.36% 14.59% 19.66% 22.57%

LRMC [18] RMSE 3.29 3.53 3.89 4.32 5.17 6.39 8.04 10.77 12.38

MAPE 5.01% 5.45% 6.12% 6.84% 8.16% 10.25% 13.26% 17.90% 20.16%

SRSP [20] RMSE 3.10 3.13 3.68 3.95 4.70 5.89 7.15 10.53 12.45

MAPE 4.83% 5.03% 5.68% 6.16% 7.24% 9.36% 11.65% 17.56% 20.45%

VIGAN [32] RMSE 4.33 4.86 4.90 5.07 5.54 5.98 6.92 10.98 11.05

MAPE 6.42% 6.87% 7.06% 7.83% 8.36% 9.21% 10.59% 16.32% 17.96%

CollaGAN [33] RMSE 4.42 4.91 5.01 5.17 5.42 6.24 7.02 11.24 12.02

MAPE 6.82% 7.05% 7.12% 7.69% 8.03% 9.47% 11.26% 16.92% 18.15%

GAIN [30] RMSE 3.13 3.08 3.45 4.09 4.72 5.60 6.22 9.72 11.33

MAPE 4.95% 5.12% 5.87% 6.25% 7.31% 8.92% 10.26% 15.69% 18.36%

MISGAN [42] RMSE 3.03 3.18 4.02 4.78 4.91 5.47 6.34 9.62 10.58

MAPE 4.62% 5.31% 5.96% 6.37% 7.18% 8.82% 10.76% 14.92% 17.69%

TGAIN RMSE 2.99 3.06 3.85 3.66 4.33 5.07 5.77 7.62 8.18

MAPE 4.58% 4.78% 5.12% 5.64% 6.78% 7.89% 8.65% 12.68% 13.63%

The bold is used to highlight the results of the TGAIN
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in dealing with the uncertainty and distribution solution for

time series data imputation than other state-of-the-art

methods.

Furthermore, the proposed TGAIN imputation frame-

work can be used as a general method for multistate time

series MVs imputation in more fields (such as CPS and

Health). The specific functional design of generator and

conditional vector in TGAIN can be adjustable in other

imputation tasks, and this would become a remarkable

extension of TGAIN.
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