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Abstract
This paper proposes a modeling scheme for cyber physical systems operating in non-stationary, small data environments.

Unlike the traditional modeling logic, we introduce the few-shot learning paradigm, the operation of which is based on

quantifying both similarities and dissimilarities. As such, we designed a suitable change detection mechanism able to

reveal previously unknown operational states, which are incorporated in the dictionary online. We elaborate on spectro-

grams extracted from high-resolution ultrasound depth sensor timeseries, while the backbone of the proposed method is a

Siamese Neural Network. The experimental scenario considers data representing liquid containers for fuel/water when the

following five operational states are present: normal, accident, breakdown, sabotage, and cyber-attack. Thorough

experiments were carried out assessing every aspect of the present framework and demonstrating its efficacy even when

very few samples per class are available. In addition, we propose a probabilistic data selection scheme facilitating one-shot

learning. Last but not least, responding to the wide requirement for interpretable AI, we explain the obtained predictions by

examining the layer-wise activation maps.

Keywords Cyber-physical systems � Cybersecurity � Few-shot learning � Deep learning � Online learning �
Fault diagnosis � Cyber-attacks

1 Introduction

The intersection between the scientific fields of artificial

intelligence and more specifically machine learning with

Cyber Physical Systems (CPS) is receiving ever-increasing

attention by the community [1–3]. Given that the cyber

layer has been introduced to a vast gamut of systems,

including critical infrastructures, Internet of Things [4],

etc., manual inspection of the quality of the communicated

information became impossible in practise, thus automa-

tising cybersecurity mechanisms comprises a necessity of

the utmost urgency. Unfortunately, the operation of CPSs

may be negatively affected by a great range of conditions

including but not limited to sensor faults, state drifts,

cyber-attacks [5], environmental changes, time-variances,

etc. At the same time, one has to consider that the large-

scale of CPSs as well as the existence of potential inter-

connections which heavily burden the construction of

analytical models explaining the operation of intercon-

nected CPSs [6, 7]. As such, cybersecurity analysts process

the available to data to create models representing the data-

generating process. In this direction, AI-based tools and

methodologies are able to detect and analyze irregularities

in the acquired data, hence potentially revealing the exis-

tence of system faults, cyber-attacks [8], etc.

The related literature includes a plethora of method-

ologies which basically follow the same principal pipeline

where parameters characteristic of the problem at hand are

extracted and subsequently modeled using generative (e.g.,

hidden Markov models) or discriminative machine learning

models (e.g., support vector machines [9], deep neural
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networks [10, 11], etc.). Several strong assumptions are

made during the specific modeling process:

(a) rich (or at least substantial) data availability with

respect to every considered class,

(b) a-priori knowledge of the class dictionary, and

(c) availability of reliable domain expert knowledge for

feature engineering.

The majority of existing works typically train and evaluate

the designed solutions within a closed-world setting, i.e.,

assuming that train and test data belong to the same dis-

tributions. However, this does not represent well real-world

conditions, where one has to deal with non-stationary and

open environments [12]. At the same time, there could be

biases hidden inside the data making the produced model

favoring certain patterns and/or types of predictions [13].

This work argues that the above-mentioned hypotheses

are quite strong leading to systems which are not directly

applicable to real-world CPSs, where

(a) it is unrealistic to assume complete knowledge of the

class dictionary since new classes of faults, attacks,

etc. may appear at any point in time,

(b) furthermore, we cannot assume availability of an

amount of data adequate to train deep models, or at

least, that is not true for part of the classes, e.g.,

rarely occurring faults, cyber-attacks which can have

catastrophic consequences,

(c) as such, it is strong to assume that domain experts

would know the important characteristics of newly

appearing states in order to engineer descriptive

features.

Keeping the above-mentioned requirements in mind, we

propose to suitably enhance the one-shot learning paradigm

[14, 15] to the present problem, where the main limitation

is the fact that we may observe only a handful of examples

during model training. More specifically, recognition is

carried out via a model learning to assess similarities

between novel data and those available during training. As

such, the proposed paradigm is radically different than the

existing line of thought, where the solutions seek to iden-

tify hyperplanes separating classes (discriminative model-

ing) or building representations estimating class

distributions (generative modeling). To the best of our

knowledge, such a solution has never been explored in the

CPS research domain.

The two main modules of the proposed solution are

change detection, where we discover previously unseen

CPS states and state identification, where the algorithm

identifies the current operational state. The first one detects

a new state in case the observed data are labeled as dis-

similar to every known state, while the second assigns the

state with the highest similarity score to the observed data.

Without loss of generality, we operate on a dataset of

limited dimensions [16] including data of a CPS consisting

of liquid containers for fuel or water, along with its auto-

mated control and data acquisition infrastructure. We

elaborate on high-resolution ultrasound depth sensor data,

which is representative of the differences existing between

normal and anomalous data. Toward eliminating the need

for domain expert knowledge we propose a standardize

feature set, i.e., spectrograms characterizing the available

operational states. Subsequently, we train a Siamese Neural

Network (SNN) on learning relationships between spec-

trograms coming from same or different CPS states. We

thoroughly assess the performance of the proposed system

using appropriate figures of merit in (a) identifying CPS

operational states, (b) detecting new ones, (c) incorporate

them in the class dictionary, (d) operate in non-stationary

environments. Toward relaxing further data quantity

requirements, we designed a data selection mechanism

estimating the distributions of the available samples using

Gaussian Mixture models. By considering intra- and inter-

class Kullback-Leibler-based distances, the proposed

algorithm identifies a unique sample to represent an oper-

ational state, which is used to learn the SNN in one-shot

mode. Finally, we provide an interpretation of the obtained

results, which is a demand of the utmost importance for

developed AI-based tools and methodologies [17], via

analyzing the activation maps.

In the following, we (a) formalize the problem, (b) de-

lineate the proposed solution, (c) describe the experimental

protocol along with a detailed analysis of the obtained

results, (d) draw conclusions and briefly discuss potential

extensions.

2 Problem formulation

We assume availability of data characterizing operational

states of cyber-physical systems, i.e., a labeled training set

TS. These states form a dictionary D ¼ fS1; S2; . . .; Sn; g,
where Si denotes the i-th state and n the number of known

states during training. They follow a consistent, yet

unknown probability density function Pi; 1\i\n [18]. On

the contrary, no assumption is made regarding the com-

position of D, i.e., it may encompass nominal conditions,

component faults, cyber-attacks, drifts, etc. Aiming at

representing real-world conditions, we drastically restrict

the number of available samples per state [16]. On top of

that, the cardinality of D is known only up to a certain

extent, i.e., previously unseen operational states may

appear at any point in time. The overall goal is to identify

the operational state, promptly detect changes in compo-

sition and/or size of D as well as incorporate such changes

online.
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3 Few-shot learning for identification
of operational states

The proposed solution encompasses a support set of labeled

examples representing the known operational states deno-

ted as S and an SNN learning similar and dissimilar rela-

tionships of the classes in TS. The overall block diagram is

depicted in Fig. 1 where we observe that the system

receives two inputs (spectrograms of operational states)

and processes them using a symmetrical network archi-

tecture ending at a common point where a prediction is

made based on the maximum similarity/dissimilarity score.

The design of the proposed solution is described in the

next subsections as follows:

(a) SNN design, architecture and learning,

(b) feature extraction process, and

(c) operational state identification and change detection

algorithm.

3.1 Siamese neural networks

The SNN is composed of a twin network each on pro-

cessing a different input, while their outputs are connected

and terminate to a common point [19] (see Fig. 1). In the

ending point, the SNN calculates the distance between the

two output representations as they produced by each net-

work using predetermined distance metric. At first, spec-

trograms representing operational states of the considered

CPS are extracted and fed to each network. As we see in

Fig. 1, each network processes the input spectrogram

interdependently from the other without any type of con-

nection. However, they attempt to satisfy the same opti-

mization function and as such, the learned weights are

linked and produce representations which are closely-lo-

cated representations in the feature space. On top of that,

the specific SNN architecture encodes a learning process

rendering it exchangeable, i.e., if the networks/inputs were

to be reversed (top/bottom), the output distance metric

would lead to the same value. It should be noted that the

proposed SNN incorporates binary cross-entropy loss fol-

lowed by a sigmoid activation during distance assessment.

Having designed the twin architecture, the next step is

focused on forming the structure of each network. Lately,

Convolutional Neural Networks (CNNs) have provided

excellent performance in audio signal processing systems

including a great variety of tasks such as environmental

sound recognition [20], music information retrieval [21].

Hence, we decided to populate each SNN with a series of

convolutional layers, the number of which is determined

during the model optimization phase.

Interestingly, CNNs consist of a series of stacked layers,

where convolutions are succeeded by max-pooling opera-

tions. Such processing emphasizes localized patterns in the

2D plane, while each hidden unit accesses only a limited

part of the input, the so-called receptive field. Thus the

network is able to encode specific spectrogram regions,

which may be distinctive and assist in assessing similarities

and dissimilaties existing between the pair of inputs.

Interestingly, dimensionality of the learned weights is

suitably controlled by max-pooling layers which robustify

the network to translational shifts [20], i.e., structural

deviations in the input data are compensated by the

included max-pooling operations.

Moreover, we employed rectified linear units (ReLU),

i.e., the activation function is f ðxÞ ¼ maxð0; xÞ. The

specific choice is motivated by their superiority over tra-

ditional units, e.g., logistic sigmoid and hyperbolic tangent

Fig. 1 The pipeline of the proposed one-shot learning scheme using Siamese neural networks. Each input is passed though a series of

convolutional, ReLU and max-pooling layers completed by a common end based on binary cross-entropy loss
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as gradient propagation does not suffer from saturations

effects, they are biologically possible and sparse activation

organization [20]. Regardless of their simplicity, neural

networks with such activation functions demonstrate sub-

stantial discriminatory properties.

3.2 SNN architecture and learning

Following the optimization process, as shown in Fig. 1,

each SNN twin is composed of three convolutional layers,

where the initial two are followed by ReLU and max-

pooling ones. The concluding layer is a fully-connected

one which flattens the so-far result and include the final

input representation. The proposed SNN is completed by a

distance operation, namely binary cross-entropy loss,

which is succeeded by a fully-connected layer and a sig-

moid function assessing similarity between input pair.

Going into the parameterization of the presented neural

architecture, the convolutional filters have a stride equal to

1 and kernels as shown in Fig. 1, while max-pooling layers

have 2� 2 kernels with stride ¼ 2. The employed learning

process targets the minimization of binary cross-entropy

loss among network’s prediction and ground truth using the

standard version of backpropagation algorithm. Minibatch

size is chosen according to the TS size at a learning rate of

6e�5. Weight initialization is carried out via narrow nor-

mal distributions with zero-mean and 0.01 standard devi-

ation. Last but not least, the maximum number of permitted

iterations is 2000.

3.3 Feature extraction

We elaborate on ultrasound depth sensor data, which are

characterized by high resolution and as such, highlighting

the discrepancies between normal and anomalous data.

Aiming at eliminating the feature engineering process, we

divide the signal into frames of 128 samples ovelapping by

100 samples using a Hamming window and compute the

spectrogram with an FFT size equal to 128. Spectrograms

associated with the five operational states considered in this

work are illustrated in Fig. 2. We observe that lower fre-

quency parts are associated with higher energy values for

every operational state. However, the frequency content

exhibits differences across states and as such, it could be

informative for classification purposes. More specifically,

we observe that accidents exhibit high energy content in a

discrete but homogeneous way across frequency bands. At

the same time, the energy of breakdowns in higher bands is

not as siginifcant similar to the cyber attack state which

demonstrates such behavior in shorter time intervals.

Normal state starts with low energy content for the

majority of frequency bands, while sabotage is the most

distinctive state as it is characterized by high energy across

both frequency and time dimensions.

3.4 Identification of operational state
and change detection

The proposed SNN, illustrated in Fig. 1 learns to identify

similar and dissimilar pairs of input spectrograms. Keeping

in mind the requirements outlined in Sect. 1, we developed

a straightforward extension suitable for change detection.

After contrasting the unknown input with every class

existing in set S and dictionary D, a change is flagged in

case the novel spectrogram is recognized as dissimilar to

every available class. Thus, we form an additional class

and appropriately augment S and D using the specific

spectrogram. Interestingly, SNN can successfully address

classification tasks in poor data environments [22].

Fig. 2 Spectrograms representing the considered operational states, i.e., accident, breakdown, cyber attack, normal, and sabotage
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On the opposite case, when the unknown example is

predicted as similar to one or more classes, the one with the

highest similarity is selected. The proposed operational

state prediction algorithm, illustrated in Alg. 1, necessitates

as inputs

• the test data t to be used for feature extraction,

• the trained SNN N , and

• the dictionary D, where each class is represented by

extracted spectrograms of the support set hSi¼d
i¼1i.

Subsequently, it extracts the spectrogram s of the unknown

example t using the same process outlined in Sect. 3.3

(Alg. 1, line 2) and initializes similarity vector V (Alg. 1,

line 3). Afterward, it queries N using the existing pair

combinations which outputs the corresponding similarity

scores and updates V (Alg. 1, line 4-8). The support set, i.e.,

the known samples are the ones populating TS and the final

score is normalized by the number of available samples per

class. The last step of the algorithm assigns to t the label of

the class maximizing the similarity score in V (Alg. 1, line

9). Importantly, such an Algorithm comprises a common

framework able to process data which may belong to any

operational state including both cyber attacks and faulty

states.

3.5 Probabilistic data selection for one-shot
learning

To further minimize the required data quantity, we

designed a scheme for selecting solely one sample to rep-

resent each class, thus realizing one-shot learning [23].

Keeping in mind that the proposed methodology learns to

assess similarities and dissimilarities, each class is

represented by the sample which satisfies a twofold crite-

rion, i.e.,

• minimizing the sum of distances to intra-class samples,

and

• maximizing the sum of distances to inter-class samples.

To this end, we defined a suitable distance metric. Starting

from the extracted spectrograms, Gaussian Mixture models

(GMM) are used to estimate their distributions. As such,

we move from the feature space to the probabilistic plane

which may provide improved generalization of the repre-

sented classes over novel samples.

Let Gs characterized by set of vectors fls; rsg denote the
GMM approximating the distribution of the spectrogram

representing the operational state s. In order to position the

available data samples expressed in GMMs in the proba-

bilistic plane, we suitably adapted the Kullback-Leibler

Divergence (KLD). The KLD between two n-dimensional

probability distributions S and N is defined as [24]:

KLðSkNÞ ¼
Z
Rn

pðX; SÞlog pðX; SÞ
pðX;NÞ dx ð1Þ

Even though KLD is able to quantify the distance existing

between two probability distributions, in its current form, it

cannot be considered as a distance metric since it does not

satisfy the property of symmetry [25]. Thus, we employed

its symmetric form given by the following formula

KLdðSkNÞ ¼ DðSkNÞ þ DðNkSÞ: ð2Þ

Moreover, when S and N are in the form of GMMs, KLd
becomes
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KLdðSkNÞ ¼
Z
Rn

SðxÞlog NðxÞ
SðxÞ dx: ð3Þ

To the best of our knowledge, a closed-form solution for

Eq. 3 does not exist, hence we rely on the empirical mean,

i.e.,

KLdðSkNÞ �
1

m

Xm
i¼1

log
NðxiÞ
SðxiÞ

ð4Þ

under the assumption that the number of Monte Carlo

draws m is sufficiently large. It should be noted that during

our experiments we set m ¼ 5000.

Based on the distance metric defined in Eq. 4, we cal-

culate the intraclass sum of distances and the correspond-

ing interclass sum for every available sample i 2 S as

follows:

Dr
i ¼

Xj¼bSe

j2S;i 6¼j;j¼1

KLdðGikGjÞ ð5Þ

Da
i ¼

Xi¼bTSe

j62S;j¼1

KLdðGikGjÞ ð6Þ

Finally, for each operational state, we choose the samples

minimizing the quantity Dr �Da to learn the SNN in one-

shot mode. The same samples populate the support set as

well. The proposed probabilistic data section scheme is

illustrated in Fig. 3.

4 Experimental set-up and results

This section describes the experimental set-up and analyzes

the obtained results. It is organized as follows: (a) (b) em-

ployed dataset, (c) suitably-formed figures of merit,

(d) contrasted method, (e) obtained results, and (f) inter-

pretation of SNN’s decision making process. It should be

noted that we addressed both the binary (normal vs.

abnormal) as well as the full-range five class classification

problem.

4.1 Dataset

The employed dataset was designed for studying anomalies

and malicious acts in CPSs [16]. It represents the operation

of liquid containers for fuel/water, along with its automated

control and data acquisition infrastructure. Conveniently,

the dataset is publicly available for research purposes

facilitating reproducibility and comparison between dif-

ferent solutions. The included temporal series are repre-

sentative of five operational scenarios, i.e., normal,

accident, breakdown, sabotage, and cyber-attack corre-

sponding to 15 different real situations. There are 2-6

examples per class which fits well the problem specifica-

tions analyzed in Sects. 1 and 2. We elaborate on high-

resolution ultrasound depth sensor data, which is repre-

sentative of the differences existing among the various

operational states. These are divided into frames of 128

samples overlapping 100, while the FFT size was 128. The

interested reader is referred to [16] for more information.

The specific dataset fits well the aim of this research as it

satisfies the small data requirement, while including a wide

range of abnormal operational states which are typically

treated independently in the related literature [26].

4.2 Figures of merit and contrasted approach

In thoroughly assessing the capabilities of the designed

systems we employed standardized figures of merit facili-

tating comparability with some target approaches. Inter-

estingly, within the few-shot learning paradigm we can

derive confusion matrices evaluating similarities and dis-

similarities. To this end, the following matrix was defined:

Ms ¼
s11 s12

s21 s22

� �
; ð7Þ

where

• sxx (in %) denotes the number of times that spectro-

grams fed in the x input of SNN were identified as

similar to spectrograms coming from the same class,

Fig. 3 Probabilistic data selection for one-shot learning
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• sxy (in %) denotes the number of times that spectro-

grams fed in the x input of SNN were identified as

dissimilar to spectrograms coming from the same class,

Evidently, the objective is to maximize the values in the

diagonal. A matrix assessing the dissimilarities Md can be

defined in an analogous way where we aim at minimizing

its diagonal. It should be mentioned that the sum of simi-

larity and dissimilarity matrices characterizing the accu-

racy of a given method is 100%, i.e., Ms þMd ¼ 100 for

every element [27].

The proposed method is compared to the k-NN algo-

rithm as, to the best of our knowledge, is the only alter-

native method able to operate under such restrictive

assumptions.

4.3 Results

The performance of the proposed solution was evaluated

extensively from different points of view. At first, we

tested the behavior when knowledge regarding composition

and size of D is unknown, i.e., a limited number of states is

known during training. We considered the following pairs

of known-unknown classes fð2; 3Þ; ð3; 2Þ; ð4; 1Þ; ð5; 0Þg
while they were chosen randomly. It should be noted that

the minimum number of classes allowing learning similar

and dissimilar relationships is two, which comprises the

minimum amount of classes that is assumed to be known

during training. Such an assumption is not restrictive for

the majority of CPS applications where typically data

representing more than two classes are available. The

experiment corresponding to each class setting was iterated

100 times and the results were averaged. Fig. 4 illustrates

the mean and standard deviation of the obtained recogni-

tion rates. During this process, model optimization and

learning were carried out using half of the available data-

set, while testing on the rest. It should be noted that similar

and dissimilar input pairs were produced randomly.

We observe that the recognition rates reached by the

proposed system range from 65.1% in the (2,3) setting to

77.6% in the (5,0) setting. On top of that, standard devia-

tion decreases as data representing more classes become

available, i.e., from 8.5% to 5.1%. As expected, the per-

formance of the proposed system improves as the amount

of classes existing in TS increases. Interestingly, the SNN

is not only able to operate in a small data environment but

the achieved rates are promising. We infer that trans-

forming the classification problem to a similarity one is

particularly relevant in identifying every operation state,

i.e., normal, accident, breakdown, sabotage, and cyber-at-

tack. Even when only two classes are included in TS, the

achieved recognition rate is significantly higher than

chance (20%). As expected, the rate increases as more data

become available since it contributes toward similarity and

dissimilarity learning. Importantly, when every class is

considered to be a-priori known, the performance is more

than satisfactory given the low amount of available data. In

the specific (5,0) scenario, euclidean distance-based k-NN

provided a recognition rate of 54.7% underlining the

superiority of the proposed relationship-based system. In

fact, the proposed Siamese network is able to significantly

outperform the k-NN based solution in every considered

class setting. Unfortunately, comparing other machine

learning-based solutions, support vector machines, artificial

neural networks, hidden Markov models, etc. is not feasible

due to their tendency to overfit when so few data are

available during training [28].

The confusion matrix Ms obtained in the (5,0) setting is

presented in Table 1. We can see that the state recognized

with the highest rate is the cyber-attack (91.4%), while the

Fig. 4 Recognition rates achieved by the proposed SNN while

varying the number of known classes during the model learning

process

Table 1 Ms (in %) achieved by SNN trained and optimized on 50%

of samples per class and tested on the remaining ones in the (5,0)

class setting (maximum rates are emboldened). Average recognition

accuracy is 77.6%

Input 1 Input 2

Accident Breakdown Attack Normal Sabotage

Accident 88.1 1.7 - 6.8 3.4

Breakdown – 52.4 19.6 – 28

Attack – 8.6 91.4 – –

Normal 3.5 7 – 86 3.5

Sabotage 14.8 3.7 – 11.1 70.4
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one with the lowest is breakdown (52.4%). Such a behavior

is directly related with the intra-class similarity and inter-

class dissimilarity characterizing the specific classes.

Cyber-attacks tend to exhibit quite different spectral pat-

terns with respect to the rest of the classes. Breakdown

class exhibits similarities with cyber-attacks and sabotage,

thus the great amount of misclassifications. Importantly,

miclassifications with the normal operational state are

limited, hence the proposed solution may serve anomaly

detection tasks as explained next. Table 2 evaluates rela-

tionship learning in the (5,0) scenario. There, we see that

the SNN learns the similar relationships (86.2%) better

than the dissimilar ones (69.7%) with an average recog-

nition rate equal to 78%. As such, the identification capa-

bilities exhibited so far are based more on the learned intra-

class similarities.

In the next phase, we evaluated a simplified version of

the present problem which may consist the first line of

defense in monitoring CPSs. We experimented with the

two-class problem, i.e., normal vs. abnormal operational

states, where abnormal includes accident, breakdown,

sabotage, and cyber-attack. The obtained similarity matrix

Ms is presented in Table 3. As expected, we see that the

recognition rates increase substantially reaching 96.2% for

similar and 92.8% for dissimilar relationships. We argue

that the present learning framework can address the sim-

plified problem quite efficiently. That is confirmed by the

results included in the confusion matrix presented in

Table 4 where the average recognition rate for normal and

abnormal states is 95.6%. On the contrary, the k-NN based

solution reached 64.7%.

4.4 Evaluation of the system learnt with one
sample

In this section, we report the results obtained after the

application of the data selection algorithm outlined in Sect.

3.5. During the parameterization phase, we experimented

various number of Gaussian components to estimate the

distribution of each available sample. The explored number

of Gaussian components comes from the following set:

f2; 4; 8; 16g while, during cluster initialization, the maxi-

mum permitted number of k-means iterations was set to 50.

Thus, the system was trained on one sample per class

and evaluated on the rest of the dataset. The support

set also includes one sample per class. The obtained

accuracy on the full-range 5 class problem was equal to

55.9%, while the rate on the 2-class problem was 78.2%.

The specific scheme outperformed random data selection,

which provided 37.6% and 54.9%, respectively. Interest-

ingly is slightly outperformed the k-NN based solution as

well. That said, the achieved rates are significantly lower

than the corresponding ones exploiting more training data

as presented above. It comes out that the SNN trained on

one sample per class is not able to generalize well over the

test dataset meaning that information included in greater

amount of data is required to address the task at hand.

4.5 Activation maps

This experimental phase examines the way SNN processes

the spectrograms by means of the considered convolutional

layers emphasizing on the regions employed to assess

similar/dissimilar relationships. To this end, we visualized

the parts of the spectrogram which activated the network

layers as the input advances through them triggering the

included algebraic operations.

Such activations maps representing the relevant regions

of samples belonging to every considered class are

demonstrated in Fig. 5. The maps show the evolution of the

activations as the spectrogram propagates through every

convolutional layer.

Table 2 Similarities-dissimilarities confusion matrix (%) in the (5,0)

setting obtained with SNN trained on 50% of the available data. The

average recognition rate is 78%

Presented Predicted

Similar Dissimilar

Similar 86.2 13.8

Dissimilar 30.3 69.7

The maximum rates are emboldened

Table 3 Similarities-dissimilarities confusion matrix (%) in the two-

class setting obtained with SNN trained on 50% of the available data.

The average recognition rate is 94.5%

Presented Predicted

Similar Dissimilar

Similar 96.2 3.8

Dissimilar 7.2 92.8

The maximum rates are emboldened

Table 4 Ms (in %) achieved by SNN in the 2-class scenario. Average

recognition accuracy is 95.6%

Presented Predicted

Normal Abnormal

Normal 94.5 5.5

Abnormal 3.3 96.6
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Each convolutional layer simplifies the representation

extracted from the previous one, while localizing charac-

teristic spectrogram regions useful for assessing similar/

dissimilar relationships. It is evident that not every part of

the spectrogram is equally distinctive for every state. We

observe that SNN assigns different levels of significance on

the spectrogram content based on the operational state

undergoing processing. More precisely,

• normal state: most of the emphasis is placed on the

lower frequencies, followed in time by low-significance

content,

• accident state: it is identified by very low frequency and

narrow content, while the higher frequencies are

considered only partially,

• breakdown state: it is recognized by early and mostly

high frequency content,

• cyber-attack state: continuous high-frequency content

plays the most important role as regards to this state,

and

• sabotage state: processing here is based on the use of a

wide part of the spectrum confirming the high intra-

class diversity.

A thorough analysis of the SNN’s operation explaining its

final prediction may provide a meaningful interpretation,

which constitutes a strong requirement towards robust,

verifiable and trustworthy machine learning based solutions

and a wider acceptance of such solutions [17, 29, 30].

5 Conclusion and future work

This work presented a novel solution for the automatic

identification of CPS operational states relaxing a series of

strong assumptions made in the related literature. We

considered data representing the operation of liquid con-

tainers for fuel/water, along with its automated control and

data acquisition infrastructure. Interestingly, the proposed

solution is able to operate in non-stationary environments

where state dictionary D is only partially known. To this

end, the system relies on a suitably-designed change-de-

tection mechanism able to reveal new classes and incor-

porate them in D. At the same time, the solution operates

efficiently in a small data environment since unbiased data

characterizing the entire range of classes representing the

task at hand is quite limited. The few-shot learning based

solution was contrasted with k-NN, confirming its superi-

ority. Finally, SNN’s predictions are interpretable by

examining the activation maps of the convolutional layers,

which are perceptible by humans. Importantly, we outlined

the design of mechanism based on probabilistic distances

facilitating one-shot learning. We argue that a significant

part contributing to the success of this solution is its ability

to simultaneously consider both similarities and dissimi-

larities to known operational states.

Few-shot learning not only offers superior to the k-NN

performance but, at the same time, we obtain an actual

model learning similar and dissimilar relationships existing

in the training data. In addition, the extracted interpreta-

tions of the decisions made by the systems in terms of

feature space importance (see sec. 4.5) provide interesting

insights as to which feature parts are relevant to uniquely

characterize each operational state.

The recently presented report by the Capgemini group in

[31] highlights the popularity of AI-based tools in Cyber-

security as threats overwhelm cyber analysts who fail to

keep pace with the ever-increasing types of attacks. Thus,

urgent requirements for such tools and methodologies

include the use of small data, consider non-stationary

environments, end-to-end approaches where the need for

domain expert knowledge is minimized, and inter-

pretable predictions. The proposed few-shot learning sys-

tem responds to every requirement since (a) it requires a

restricted amount of training data, (b) it is able to incor-

porate non-stationarities on-the-fly, (c) it does not require a

significant level of domain expertise, (d) explains the

predictions regarding operational states, and (e) it is flex-

ible and can adapt to other Cybersecurity tasks of similar

requirements with minor modifications.

Our future works include:

(a) adaptation of the few-shot learning paradigm to

different problems of similar requirements,

(b) experimenting and formulating sufficient conditions

as regards to dataset composition and quantity in

order to boost the achieved performance,

normal

conv.1 conv.2 conv.3

accident

breakdown

cyber-attack

sabotage

input

Fig. 5 Activation maps obtained from every convolutional layer when

the trained SNN processes samples coming from every operational

state
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(c) extend the present framework towards considering

data belonging to diverse modalities which may

provide improved performance [32],

(d) addition of auditability, i.e., the operator should be

able to ‘‘open’’ and check the internal state of the

deployed system at any point in time and, especially

when a prediction is carried out.
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