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Abstract
Latent fingerprint segmentation is a complex process of separating relevant areas called fingerprints from an irrelevant

background in the latent fingerprint image which is of poor quality. A breakthrough in the field can be used to segment

fingerprints accurately from the background by using optimal resources. Processing of unwanted background of the entire

image can lead to false and missed detection of fingerprints. An early fingerprint distinction technique based on colour and

saliency masks is proposed to detect potentially relevant areas out of the entire image area for further processing, using a

non-learning approach. Later, the patches of early detected fingermarks are fed to a stacked convolutional autoencoder for

separating imposters of fingerprint(s) region from relevant fingerprint(s) regions, using a deep learning approach. The

inspiration to use the convolutional neural network in this hybrid approach is to effectively capture feature distinction from

potential features similar to that of object detection and classification. The inspiration to use autoencoder in a stack is to

provide better feature engineering for CNN. The use of the pre-trained convolutional neural network with a stack of

autoencoders for image classification and segmentation produces better results than a naive convolutional neural network.

The experiments are conducted on the IIIT-D database. The efficiency and effectiveness of the model over good quality

images is evaluated by experimenting over different patch sizes, with and without the use of dropout in CNN, with and

without use of Autoencoder with CNN. The early detection of contours along with patch-based classification-cum-

segmentation using SCAE on good quality images produces 98.45% segmentation accuracy.
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1 Introduction

Fingerprint matching has provided a measure of verifica-

tion and authentication for centuries. The practice started

with document authentication first in China and is still in

practice worldwide. The identification and verification of

fingerprints are established on the fact that these are unique

for an individual [15]. The ridge and pore patterns can be

transferred to surfaces. The contact residue in the form of

oils, skin, moisture, etc., can be transformed on surfaces of

various kinds. The captured data is stored for an indefinite

time as an image form. This facilitates manual annotation-
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based fingerprint matching or automated fingerprint

matching against fingerprints in the archives. The repre-

sentation is captured via ink methods or on optical scan-

ners, etc. The process of evaluating the match observes

multitudes of applications. The state-of-the-art applications

include biometric fingerprint spoofing [45], fingerprint-

based forensic document identification [66], gender iden-

tification based on fingerprint information [25] and gender,

height and position identification based on fingerprint

information [22], identification of fingerprint information

alteration [51], etc.

Fingerprints are used for a person’s identification. Per-

sonal identification based on computer-based biometric

authentication has opened a wide area of research and

development related to fingerprint processing [21]. The

need for lesser human expert intervention and ‘‘lights-out’’

automation is the urge of the time. It is only fair to establish

the fact that fingerprint processing and verification are used

as a biometric modality for accurate and good-quality

results. For that reason, the quality of fingerprints captured

significantly impacts the outcome [43]. The fingerprint

captured using offline or online live scanning methods can

be used in government ID proofs, passports, border cross-

ing patrol, banking, etc., followed by well-established

protocols that ensure resulting captured fingerprints are of

good quality for future use in fingerprint verification [60].

In the scenario where crime is involved, the matching of

latent fingerprints (latents, poor-quality prints, not visible

to the naked eye), requires a good match score with data-

base prints[4]. If the quality of stored data is good, the

outcome is reliable; otherwise, poor matching can impact

the quality of forensics in a bad light. The poor quality of

images captured has overlapping of foreground relevant

ridge pattern and noisy irrelevant background, making the

process of segmentation and detection (subsequently for

matching) a difficult task.

Fingerprint identification, a task required to match a

suspect with the fingerprints stored in the police database,

has received mass attention in research and Automated

Fingerprint Identification Service (AFIS) [46] has received

overwhelming accuracy rate in the recent decade. The

nature of fingerprints found on crime scenes is latent. The

process needs to be accurately performed by improving

tasks involved in processing if captured fingerprints are of

poor quality. The latent fingerprint segmentation lies

around image segmentation [9, 36, 39] and image classi-

fication [55, 62].

1.1 Latent fingerprint segmentation

Accuracy of segmentation is essential as it affects the

reliable extraction of minutiae in the following processing

steps. The prominent issue with the latent fingerprint image

(LFI) is the capturing of the image with probe correctly

from the crime scene under the challenges of the presence

of structured noise, poor-quality ridge structure, varieties

of lighting, and poor visibility adding to poor visual sal-

iency, etc. [32]. Figure 1 demonstrates the causes of poor-

quality images of latent fingerprint databases. Here, the

images highlighted are extracted from the IIIT-D latent

database.

With huge amount of databases with law enforcement

agencies, the scrutiny of data for suspect identification is

becoming a large-scale research industry. With such a high

level of the task, it is sane to use a fully automated latent

fingerprint segmentation and detection system as part of the

identification system. As a step in that direction, the pro-

posed work introduces Stacked Convolutional Auto-

Encoder (SCAE)-based efficient model to separate latent

fingerprints from background complexities. The database

used in the process is IIIT-D CLF [53]. The state-of-the-art

literature has seen supervised as well as unsupervised

techniques with pre-feature and post-feature extraction

tasks involved to achieve maximum accuracy with an

overall efficient model. A few use patch size as a stan-

dardised parameter as a pre-feature extraction task,

whereas a few have used full image-based classification

and segmentation techniques. Patch-based technique

ignores the neighbourhood relationships and is subject to

experimentation when patch size is to be decided.

In addition to that, full image-based techniques have

established a ground of discussion that patch-based

Fig. 1 Sample images from IIIT-D database displaying various causes of the poor quality of the images
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techniques consume more time to process each patch into

the model and due to its rigid patch policy, are unaware of

what is being processed, consequently, do not process

multiple instances efficiently. On the other hand side, full-

image-based segmentation techniques do not guarantee the

extraction of useful features without pre-processing of

images and mostly lead to a relatively larger amount of

resource utilization.

The challenges addressed in the proposed work and the

contributions of the paper are:

(1) The understanding and comparison of state-of-the-art

latent fingerprint image (LFI) segmentation

techniques.

(2) The detection-cum-segmentation of LFI using Stack

of Convolutional Autoencoder. The detection is

performed by generating contours based on colour

and saliency masks, thereby reducing the amount of

irrelevant information for wholesome processing and

detection of single, multiple and partial fingerprints.

The classification-cum-segmentation is provided by

feeding these CoIs to SCAE.

(3) Parameter stabilization and improvements in CNN

architecture using dropout (absent vs present with

values 0.25 and 0.1), with Autoencoder and Without

Autoencoder in stack and repeatability of results

using cross-validation.

(4) The evaluation of results of SCAE and CNN using

performance metrics Segmentation Accuracy (SA),

Missed Detection Rate (MDR) and False Detection

Rate (FDR) [49].

Further, the paper is structured as follows: Sect. 2 high-

lights the literature review. Section 3 elaborates proposed

work. Section 4 elaborates the experimental results and

analysis along with the comparative evaluation of the

proposed work with state-of-the-art published work. The

final section, sect. 5.

2 Related work

The latest trend in fingerprint biometric identification has

taken a major leap globally as well as in the Indian market.

The fingerprint market provides an open field for research

to improve security and authentication-based applications.

The fingerprint market is divided into two types based on

the type of fingerprints, i.e. Patent or Latent. From histo-

rians to astrologers, from biometrics security systems to

criminal investigators, the vast majority of the market

applications perform scientific and systematic study and

experimentation on fingerprints. The identification of

sculptures in the temples and monuments, and reading

one’s future are major contributions of early applications of

fingerprint analysis. The modern era uses this biometric

with or without other biometric models for access provid-

ing to secure systems for instance our offices, fingerprinted

authenticated biometric payment cards, banking systems

for avoiding online fraud and efficient audit trails, identi-

fication of unknown deceased or disaster victim, identifi-

cation of cold case unidentified postmortem fingerprint

cases, identifying and matching fingerprints from crime

scenes, use of fingerprint probabilities in courtroom

[10, 14, 26].

Despite the advantages, biometric systems raise several

issues and social dilemmas. Biometrics is unique, but it is

not a secret once fed to systems online. This cannot be

cancelled; hence, it always exists. This promotes cross-

matching by anyone without the owner’s consent; hence,

anyone can track individuals without their consent and the

privacy and security of biometrics-based data are ques-

tionable[15]. Nonetheless, the applications are based on the

quality [27] of the fingerprint captured. Based on capture

type, fingerprints are classified into four categories (a) in-

dented or moulded fingerprints, (b) patent fingerprints,

(c) live-scan fingerprints, (d) latent fingerprints [11, 35].

A latent fingerprint is a category found as unintentional

fingerprint on surfaces not visible to the naked eye. These

are found on contaminated hard, curved, etc., surfaces.

These can be captured using alternate light sources such as

UV sensors, special powders, chemical reagents, etc. With

the advancement of technology, harder challenges are

advancing in the identification of fingerprints in this

uncontrolled scan such as latent fingerprints. The desired

requirement of researching enhancing algorithms for latent

fingerprint forensics leads to the in-depth analysis of pro-

cesses of the concerned forensics and improves the

outcome.

Crime scene investigation captures the live scene fin-

gerprint images and processes these images to match with

the fingerprints available in the database for criminal or

victim identification. The entire process may not be

effectively attempted manually. The matching [46] a) is

prone to human error, and b) time-consuming due to the

exemplar database. However, AFIS is a solution. Active

research is invited in the context. To move to build such as

system, the requirement is to understand the underlying

tasks required to produce the outcome and later understand

the challenges or scope to improve the design, conse-

quently putting a proposal in the perspective.

2.1 Latent fingerprint segmentation challenges

Latent fingerprints, based on the amount of noise, are

classified as good, bad and ugly with (a) single and noisy

fingerprints, (b) multiple and clean fingerprints, (c) no

fingerprints and (d) single and clean fingerprints with the
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partial presence of fingerprints, respectively, in Fig. 2.

Segmentation is the process applied to extract ridge-like

structures out of the noisy background. Level 1, level 2 and

level 3 along with other extended features [1] are extracted,

and the outcome is the unique feature map for identifica-

tion. This map, if extracted with a lesser error rate than

manual effort, would match the candidate in the available

database with administration agencies for crime analysis.

In general, manual experts annotate the fingermarks based

on the feature map extracted. An Integrated Automated

Fingerprint Identification System (IAFIS) [35] matches the

annotated LFI with the background database of ten prints

and finds top k probable matches which involves human

intervention. The ultimate goal is to develop a fully auto-

mated system that is intended to reduce the difficulties of

time consumption, automation of feature extraction and

quality of fingerprint segmented for feature map extraction.

The challenges in latent fingerprint segmentation are

majorly due to the quality of the image. The image is noisy;

hence, the presence of structured noise, unstructured noise,

smudging of the print, incomplete or partial print, and

overlapping [54] of the prints may occur. The other issues

may include ageing of the prints, defect in the lifting device

or mechanism, etc. The challenges are addressed by vari-

ous authors and multiple algorithms are designed to over-

come or suppress the problems arising due to various

challenges and enhance performance ultimately.

2.2 Colour-based segmentation

A common influencing factor on fingerprint segmentation

from LFI is background interference. Diverse background

information is irrelevant to the matching system and hence

can be segmented out [11]. Therefore, more robust features

can be designed to extract discriminating visual represen-

tation. The discriminating behaviour to make the system

look at the relevant area of information is called saliency

detection. The saliency in the image can be captured with

low-level features for instance colour [38] or ridge texture,

orientation or higher-level features learned via deep

learning techniques [13]. Considering a similar principle in

LFIs, colour maps can help in the early distinction of the

salient region of interest from the irrelevant background.

Salience region detection using salience masks is a

popular area of research lately [50]. Saliency map detection

is used in applications such as person re-identification [69],

computer games , object enhancement [38]. LFIs usually

contain multiple instances of fingerprints, thus shifting

attention to more than one fingerprint could not be put at

risk. Saliency detection using colour information is another

popular research area, [33] used as a patch-based approach

with deep belief networks with sliding windows and colour

matching to classify pedestrian patches. Saliency-based

reliable patch identification is performed on colour-based

outcome classified patches in the first stage. Other methods

such as Visual Attention Retargeting [38] proposed optimal

colour management of the foreground. The gap was to

reproduce the original colour post-saliency detection. The

proposed solution is inspired by the study of these men-

tioned approaching, thereby suggesting colour-based sal-

iency detection to classify foreground and reserve original

colour.

Deep Learning is termed as mapping of input to output

based on how the model maps it and how well it learns to

map without any interference. The advancement of deep

learning and its variants such as autoencoder [3, 23] per-

forms better using colour-based information and saliency

detection [2] in terms of reducing MDR and FDR [12].

Hence, deep learning-based relevant feature learning is

aligned along with colour-based visual distinction for bet-

ter LFI segmentation and detection. With the applications

of deep learning in consideration to improve performance

in the field of latent fingerprint segmentation, the proposed

solution is an SCAE to classify and segment patches of

CoIs extracted using two mask techniques on LFI.

Fig. 2 Sample images from IIIT-D database divided into different categories, a single and noisy fingerprint image, b multiple and clean

fingerprints image, c no fingerprints, only noise, d single and clean fingerprint image
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2.3 Latent fingerprint segmentation approaches

Table 1 summarises the identified detection and segmen-

tation techniques for latent fingerprint segmentation. Pixel-

wise features alone are better with rolled prints in com-

parison with latent fingerprints. The comparison is based

on non-learning and non-learning systems.

Cao and Jain [7] used coarse and fine structure ridge

dictionary learning for sparse representation of the ridge

structures. Unlike previous methods to find features from

the input image, the learning system was used to learn

patch classification based on the learned ridge. Based on

the learning system classification, the local feature

approach obtained better accuracy. The performance was

measured using NIST SD 27 and WVU databases [53], and

experimental results observed segmentation accuracy of

61.24% and 70.16%, respectively. The approach was

lacking flexibility in terms of the quality of images as it

relies on learned dictionary quality and convex hull to get a

smooth mask. The application of the approach can be

generalized more likely in image representation and less

likely in fingerprint segmentation of latent fingerprints.

Sankaran et al. [47] used a set of features, prominently

salient features [32, 61, 69]. The features were extracted

based on saliency, image intensity, gradient, ridge and

quality of the image from local patches. The method used a

supervised learning technique along with feature selection.

Improved RELIEF algorithm is used for feature selection.

Experiments were performed on all features and optimally

selected features and salient features. The proposed method

used Random Decision Forest (RDF)[44] as a classifier for

labelled features. The database used was NIST SD 27 and

IIIT-D CLF. The performance metrics were segmentation

accuracy, foreground accuracy and background accuracy,

Rank-50 accuracy of 83% and 93.23%, respectively, on

NIST SD and IIIT-D CLF. The process includes addressing

the issue of feature selection and identifying the best set of

features. Since images are used to divide the image into

patches, not all patches are substantial; hence, the accuracy

is impacted due to the use of irrelevant and relevant

information both for classification with the major class as

noise in some images.

The pre-deep network era in latent fingerprint segmen-

tation focused on local feature-based non-learning tech-

niques for segmentation or learning techniques-based pixel

classification-cum-segmentation. The common features

used for segmentation of latent prints are ridge orientation

or frequency from an image or learned dictionary or Image

mean, variance and in some cases gradient-based features,

saliency-based features, image quality-based features, etc.,

of an image or block/patch of image fed to the supervised

classifiers such as RDF, SVM, AdaBoost [68], etc., to

predict the class labels. The CNNs [16, 32, 69] in the lit-

erature are used for various tasks including object detec-

tion, segmentation and object labelling, etc. The success

behind DCNNs [9, 30, 63, 67] is the reason for researchers

Table 1 State-of-the-art review of existing techniques of latent fingerprint forensics

Year References Method Dataset System

type

Image

handling

Performance Review

2015 [7] Coarse and fine

structure ridge

dictionary

learning.

1. NIST SD 27

2. WVU

Learning-

based

Full

image

Accuracy 1. Local ridge or valley structure does

not optimize the task. 2. Poor

performance with noisy data.

2017 [47] Salient feature

extraction and

random forest

classifier based

classification.

1.NIST SD 27

2.IIIT-D CLF

Supervised

Learning

Local

Patches

Accuracy,

BSA,

FSA, SA

1. Reason to choose a patch size was

missing. 2. Choice of classifier not

justified. 3. The generic approach of

feature selection for different

databases to extract optimal features is

missing.

2017 [18] Deep learning using

RBM based patch

classification

1.NIST SD 27

2.IIIT-D CLF

Deep-

Learning

Local

Patches

Accuracy,

MDR and

FDR

1.Classifier stability dependency. 2.The

reason to choose a patch size was

missing.3. The reason to choose DNN

with RBM was missing.

2018 [42] Non-patch, FCN and

object detection

based fusion

1.NIST SD 27

2. WVU

Deep-

Learning

Full

image

Accuracy,

MDR,

FDR and

IoU

1. Lower accuracy with full image-

based segmentation over the need of

patch-based approach is not

addressed.

2019 [28] Patch-based

segmentation using

CNN

1. NIST SD 27

2. WVU 3.

IIIT-D (good

images only)

Deep-

Learning

Local

Patches

Accuracy,

MDR and

FDR

1. The reason to choose patch size,

classifier, the architecture of classifier

is missing.
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to explore deeper into feature engineering. Deep neural

networks are used for various applications [23, 63]. In the

present application area, DNN is recommended for latent

fingerprint feature extraction and classification of patches

into binary classes.

Deep neural network such as RNN is preferred in sequential

data in comparison with hierarchical data since the ability to

define boundaries is weak in such data. Up-to-date deep

architectures used specifically for segmentation [48, 58] per-

form learning of mapping low-resolution image representation

to pixel-level prediction. The basic hierarchy is to input images

to the input layer, followed by training using an encoder. Later,

the decoder may be used to represent feature extraction,

learning and selection to achieve classification and feedback for

cost adjustment. Multiple authors used reinforcement schemes

for classification. A learning method such as RBM is used to

learn features from training data. In comparison with RNN,

RBM performs better feature extraction from training data.

Although RBM can be trained with generative learning, hence

boosting unlabeled data sample feature learning easier, the

feature selection is not optimal. Ezeobiejesi and Bhanu [18]

divides the image into patches and feeded the patches into an

RBM-based learning model. Once the feature extraction,

learning and selection are performed,RBMwasfine-tunedwith

a single-layer perceptron.

The performance was measured using MDR and FDR. The

RBM-based classification system provided 1.25% MDR and

0.04% FDR on NIST SD 27 along with 1.35% MDR and

0.54% FDR on the IIIT D CLF database. The value was

reported for WVU as well which is almost similar and 0.6%

FDR along with 1.6% MDR. No segmentation accuracy was

specifically mentioned for individual databases. Also, the use

of RBM over available resources is missing.

The deep neural networks are dependent and sensitive to

the number of training iterations used. The entire dataset is

fed to the model. Based on the train-to-test ratio, the

training data is randomly chosen and fed to the network.

The amount of information in latent images is imbalanced.

If the data of the entire image is fed to the model, maybe as

patches or full image the accuracy may reduce due to noise.

The time taken to process an entire noisy image or patches

of the same image is huge in large volume datasets.

Nguyen et al. [42] used a new approach of using the entire

image instead of merely patches to explore ROI by

directing attention to important regions of the image. The

mechanism also used a voting-based choice of relevant

regions out of all ROIs. Later the technique combines an

FCN and object detection approaches to segment the voted

regions based on a learning mechanism to detect better

regions of the entire image. The FCN addresses issues of

patch-size dependency and problems that accompany it.

Overall the approach was too complex, cumbersome to

understand, and very difficult to implement.

Faster RCNN was used to fetch feature maps which con-

sequently provide ROIs out of the entire image. Later these

ROIs pass through FCM to find out visual salient region

based on voting. The results were fused and the final seg-

mented region and related probabilities are produced. The

result were measured using MDR, FDR and IU. The MDR of

2.57% and FDR of 16.36% were obtained on NIST SD27.

The higher values were justified due to the use of a full image.

Another confirmation is obtained using WVU as MDR and

FDR obtained over WVU was 13.15% and 5.3%, respec-

tively. Another popular approach was proposed by Kahn and

Wani [28] where again the patch-based technique is followed

and CNN was used as a classifier. The approach was simple

to understand and architecture performed classification on

IIIT-D CLF and obtained an MDR and FDR of 10.5% and

4.5%, respectively. The lacking point was the use of archi-

tecture without justifying the architectural stability, depth and

patch size.

Murshed et al. [41] used mask-RCNN architecture to

segment fingerprint slaps of adults and juvenile. The

authors created a database and segmented manually

labelled exemplar images of left and right hands. The

object identification was performed using CNN as a

backbone, and the region proposed network was used for

proposing the candidate object bounding box where a

candidate is a fingermark here. The ground truth box was

compared against the observed bounding box created by

the mask-RCNN. The distance between the four boundaries

of the boxes was the measure of the error. The performance

is evaluated in terms of mean absolute error (MAE) and

compared to NFSEG and proposed CFSEG for both cate-

gories of adults and children and fingerprint segmented

with CFSEG performs better. A true positive rate of 0.9986

is observed for CFSEG at 0.1% FPR. The algorithm is

performed with manually annotated class labels and is

rotation-dependent. Although it does not directly address

latent fingerprint segmentation, the technique of object

detection with a bounding box was a potential candidate in

latent fingerprint segmentation using architecture as CNN

as the backbone to further improve error rate with auto-

mated class labelling network-cum-mechanism.

2.4 Gap analysis

The gaps are analysed out of the already published work. It

is observed that the work before [47] lacks exploited set of

features and resources such as supervised techniques and

deep network; hence, full image-based segmentation was

lacking better accuracy rates. Later, techniques using deep

architectures and generic hand-holding are about archi-

tectural stability, use of patches over entire images vs

region of interest identification or bounding box identifi-

cation. Apart from the techniques, common performance
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metrics are identified. The techniques quite vigorously now

use deep architectures to approach effective feature engi-

neering. Also, each idea of patch-based [17] or full-image

segmentation [42] has its pros. The need for multiple fin-

gerprint segmentation, effective feature selection and

hyperparameter stabilization has led to the proposed work.

The proposed work uses full images from the IIIT-D latent

fingerprints database to detect colour-based salient and

prominent regions [2, 40]. The use of colour-based segmen-

tation techniques with deep networks is effectively seen as

producing good results. The correlation between colour and

saliency as a joint framework of context-based saliency tar-

geting [61] and de-emphasis of the distracting region of the

image regions can be explored which can help generalize the

process of coloured image database captured in any light

conditions. Further, the salient regions of interest are divided

into patches, influenced by the advantages of patch-based

techniques. The patches are fed to the SCAE for patch-based

classification, thereby segmentation of latent fingerprints. The

procedure adopted has not been explored with the given

database and methodology in the past.

2.5 Convolutional neural network

Convolutional neural networks (CNN) are neural networks

inspired by reduced connectivity among neurons in-be-

tween layers to add benefits to an artificial network’s

training. CNN’s achieve this reduced connectivity with the

convolutional layer, max-pooling layer and classification

layer. These layers alternate and stack up to form a fully

connected CNN.

Deep neural network (DNN) shows a success rate in

various machine learning tasks such as person identifica-

tion, visual recognition, speech recognition. CNN has been

so far a successful model of DNN that is used to classify

the images. The improvements in CNN over deep learning

techniques such as batch normalization [29, 64], LeakyR-

eLU [34], regularisation [59] outperform previous machine

learning techniques in computer vision-based applications.

With this inspiration, Nguyen et al. [42] used CNN for

orientation field estimation in latent fingerprints. A classi-

fication problem was proposed based on the latent finger-

print orientation field using a CNN-based approach to

estimate the orientation. Khan and Wani [28] used a con-

ventional patch-based approach with CNN-based classifi-

cation-cum-segmentation approach for latent fingerprint

segmentation. The proposed algorithm also fine-tunes CNN

with various improvements and augments it with an

autoencoder, where an autoencoder is used to extract, learn

and represent features efficiently and CNN acts as the

classifier for classifying and hence segmenting the image

patches into the foreground or background data.

CNN is a deep learning algorithm that can take input as an

image and assign ranks to different objects in the image area.

The ranks are learnable weights and biases which enables

CNN to differentiate objects. The pre-processing in CNN,

unlike other supervised classifiers, is much lower. Also,

unlike multiple primitive methods where filters are hand-

crafted with training, CNN learns these filters which gives an

advantage of human independent or no-subjective thinking in

the model. The connectivity of perceptron in the CNN model

resembles human brain connectivity of neurons.

A CNN uses relevant filters to capture the spatial and

temporal dependencies in an image. The re-usability of the

weights and reduction in the number of learnable param-

eters involves enabling the architecture to perform a better

fitting to the image dataset. CNN enables ease of pro-

cessing the high-resolution image data without compen-

sating for feature quality required for accurate prediction.

So, the ultimate goal is to design an architecture not only

good at feature learning but also scalable to large-scale

data sets. A CNN, the foundation of most computer vision

technologies, unlike traditional multi-layer perceptron

designs, uses two operations called convolution and pool-

ing. These operations help reduce images into essential

features, eventually, classifying images into fixed labels.

2.5.1 Convolutional layer

The element involved in carrying out the convolutional

operation in the first area of the convolutional layer is

called the filter or kernel say k. The size can be any, usually

taken as 3x3or5x5or11x11 but should be less than the size

of the image. The filter hovers on the image of the same

size at a time. The shifts or hovering count depends on

stride length. The hovering or shift enables multiplication

of matrix operation between K-sized filter and the same

size ith portion of the image. The filter to the next portion

with a stride value till it parses the image width-wise. It

starts again from the left beginning of the image and parses

with the same operation and width. In the case of the image

with channel = 3, the same action happens with the same

size kernels on each colour matrix. The results are summed

with the bias to give a one-depth channel outcome. This

way the convolutional operation extracts high-level fea-

tures. This can be achieved by a combination of multiple

convolutional layers with the computational complexity

trade-off of the architecture.

Conventionally, the initial layer extracts low-level fea-

tures such as colour, gradient information ridge. The added

layers enable further learning and help to learn high-level

features. With increasing layers, better distinguishable

features are learned by the network and a better under-

standing of the image is formed.
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2.5.2 Improvement in nonlinearity using LeakyReLU

The additional operation with every convolutional opera-

tion is adding nonlinearity to the operation. This is per-

formed by ReLU [59]. ReLU stands for Rectified Linear

Unit, hence clear from the name, adds nonlinearity, when

applied per pixel, replaces negative pixel values to zero in

the feature map as mentioned in eq (1). The reason is to

make linear convolutional operations to learn real-world

resembling, nonlinearity in the data. The disadvantage is by

converting the values to zero without understanding the

need of it; it might result in a dead end. This makes a

model a lot sparser, but there are cases where this is a lost

cause. The data without normalization or standardisation of

hyperparameters, when fed to a network, impact the weight

change during the initial phases of the training. Some

weights might become too negative and the importance is

lost in zero conversion of ReLU. This makes neurons

inactive hence the dead network. The solution is found in

LeakyReLU as shown in Fig. 3. In comparison with other

existing solutions, the simplicity of the LeakyReLU blends

the cause of use with the network. Equation (1) elaborates

the use of alpha, as the leverage given over zero replace-

ment to include a portion of the weight in the decision

making. So, now instead of replacing values with zero, it

replaces pixel values as follows:

f ðxÞ ¼
a � x if x\0; a ¼ 0:25;

x if x� 0:

�
ð1Þ

2.5.3 Pooling layer

This layer is spatial pooling which reduces the dimen-

sionality of the feature maps, reduces the count of features

and retains only the most informative features. This can be

performed using operations such as Max, Sum. The

famously used Max pooling is defined by taking spatial

neighbourhoods of a certain size say yXy and taking the

max value only from that size of the rectified feature map,

thus reducing y2 to just 1 value. Now instead of max, the

Average value can be taken, called average pooling, etc.

This reduces the dimensionality of the feature map. To

reduce it further, the stride values can be increased. If the

channel is more than 1, the operation is applied separately

on all feature maps generated due to different convolu-

tional layers of channels.

2.5.4 Fully connected (FC) layer-classification layer

The nonlinear combinations of the high-level features are

learned by adding an FC layer to the network. These high-

level features are the outcome of the Conv-pooling layer.

The multi-level representation of the image is now flat-

tened into a column vector. This flattened outcome is fed a

feed-forward network, and back-propagation is applied to

every iteration of the training. These iterations or epochs

enable the model in distinguishing important and non-im-

portant features in the image, and the learning is used to

classify the objects using the Soft-Max classification

technique.

2.6 Autoencoders

An autoencoder (AE) is a simple architecture neural net-

work family. These architectures are trained to set target

values equal to input values. [63]. The hidden layer

between the input layer and output layer compresses the

original data. The reconstruction of data can be provided

using compressed representation to regain the original data.

The hidden layer data represent the compressed data in a

latent space with latent variables. Later the latents are used

to reconstruct the original data. The relation between the

data is explored while extracting features which can be

later used in reconstructing the original form.

Fig. 3 ReLU vs LeakyReLU

function
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To achieve the reconstruction, the autoencoder is divi-

ded into two segments, Encoder and Decoder [5, 23, 37]

such that

w : X ! Y ; q : Y ! X0

w; q ¼ argmin w;qkX0 � ðqowÞXk2
ð2Þ

Encoder function, w maps the original input X to the latent

space at the bottle neck, Y. The decoder function, q maps

the latent Y to the reconstructing data X0 as shown in eq (2).
The latent construction using encoder can be represented

using neural network function constructing latent, such that

eq (3) represents Y, with weights W and bias b, as:

y ¼ rðWxþ bÞ ð3Þ

Similarly, the decoder reconstructs the original data from

the latent space as shown in eq (4):

x0 ¼ rðW 0yþ b0Þ ð4Þ

Hence the loss function C(x,x’) is represented using eq (5):

Cðx; x0Þ ¼ kx� x0k2

¼ kx� ðrðW 0yþ b0ÞÞk2

¼ kx� ðrðW 0ðrðWxþ bÞÞ þ b0ÞÞk2
ð5Þ

The basic requirement is reconstructing the similar, not the

same outcome, to learn and difference generating features,

hence prioritising the information. Meanwhile, the loss is

minimised. The model, thus, is effective in feature selec-

tion and dimensionality reduction. While the output usually

is of the same dimensionality as the input, an autoencoder’s

hidden layers are of different dimensions. The encoder

maps the input to a new representation called the bottle-

neck. The decoder, on the contrary, maps the bottleneck

representation back to output dimensionality as a sample

architecture shown in Fig. 4.

As observed in the background of latent fingerprint seg-

mentation, Ezeobiejesi and Bhani [18] used RBM and Khan

and Wani [28] used CNN for the classification task of the

segmentation procedure. Now RBM compresses the input

data to ‘‘fit’’ into a smaller representation and attempts to

reconstruct it back. This training is attempted to minimize an

error and to find the most efficient compact representation for

input data. The stochastic approach uses several steps of

Gibbs sampling using joint probability. CNN on the other

hand, instead of adjusting the global weight matrix, impresses

on finding locally connected neurons. The kernels used to

learn features are learned along with the network. The func-

tion is ultimately the same as compressed representation. The

task of classification is specific, where features are learned

which are spatially closely interrelated.

RBM translates m-dimensional data into the n-dimen-

sional vector using dimensionality reduction property with

keeping dominant features as an outcome along with noise

reduction. The nonlinearity of dimensionality reduction

helps in learning complex relations. But the model is not

specific to the classification task but is capable of

pretraining.

Now same procedure can be performed by a more

suitable model, i.e., Autoencoder. The same features as that

of RBM are available with auto-encoder, learning with an

encoder and reconstruction with a decoder. These capa-

bilities make auto-encoder a model for pre-training as well.

The reason it is preferred over RBM is that, RBM is

designed to find the joint probabilities of data, difficult to

train and understand, whereas Autoencoder is easy to

understand, easy to implement and easy to train to learn a

more compact representation of the input data, help in

extracting multiple layers of useful information.

The Autoencoders acts as noise suppressants; hence,

stacked convolutional autoencoder (SCAE) can work even

better for latent fingerprints. The amount of noise in the

LFIs is significant due to the source of images. Hence, a

model which can provide; a) ease of training, b) noise

suppression and c) dimensionality reduction along with the

advantages of CNN as a classifier, is proposed here.

Fig. 4 Structure of an Autoencoder with encoder and decoder functionality
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2.7 Stacked convolutional autoencoders

Where CNN is trained end-to-end to learn filters and

combine features to classify their input, CAE helps in

learning useful features by extracting filters, thus reducing

reconstruction error and computational time.

Several AEs can be stacked to form a deeply layered

structure. Each layer receives input from the latent repre-

sentation of the previous layer. A greedy layer-wise

unsupervised pre-training can be performed. Later, weights

can be fine-tuned using back-propagation, or top-level

activation can be used as feature vectors for some classi-

fiers. With this fashion, an SCAE is used to pre-train a

CNN with an identical encoder and the feature vector is

forwarded to CNN for classifying foreground from back-

ground [3, 31, 37].

2.8 Hyperparameter tuning

As elaborated in Table 2, the curve of performance moves

from underfitting to generalized state to overfitting as the

parameters of the model update with increasing training

time and iterations.

As the network is trained iteratively, the weightage of

the already powerful connection relatively increases in

comparison with poor connections. Hence, only a fraction

of these connections is trained adequately. Dropout learns

fractions of weights to resolve the problem of making

strong connections stronger and vice-versa [59]. For the

measurement of repeatability [57] of the model and to be

able to reproduce the results, cross-validation [56] is per-

formed. The algorithm proposed, is tested on the dataset to

find the limitation to find the limit to train the model and to

tune and standardize the parameters. In other words, to

ensure the successful outcome of the model every time the

training and the parameters are fine tuned. This

improvement is performed with CNN FC layers to

stronghold the classifier.

3 Proposed method

Colour-Maps are used to early distinguish salient contours

of interest (CoIs)out of the entire image. The detection of

the salient region not only reduces irrelevant background,

saving resource utilization, but the fact is, the salient region

detected based on color, helps to generalize the salient

region is detected based on colour helps generalize the

process for coloured images captured in normal light. The

Colour mask and saliency map based on colour adjustment

are fused to extract multiple CoIs within the same image.

These CoIs can be a) single fingerprint, b) imposter back-

ground noise identified as fingerprint or c) partial print.

Unlike the voting mechanism, the merging of maps pro-

vides a proportional chance to all significant fingermarks,

small or large-sized, thereby addressing multiple finger-

marks The equal size patches of the CoIs are provided as

input to SCAE. The outcome is the class probabilities for

foreground and background.

The proposed stack-based classification system addres-

ses the efficiency and effectiveness of the system as

follows:

(1) Deciding optimal patch size for better catering of

features,

(2) Using saliency and colour-based information,

(3) Using the stack of classifiers in comparison with the

single classifier, for the next step intelligent opti-

mization of the segmentation-detection system.

The features are the representation of the LFI. The higher

the complexity of the image w.r.t signal to noise ratio

(SNR) [34], the higher the complexity of the feature

Table 2 Hyperparameter tuning with over-fitting, under-fitting and cross-validation

Over-fitting Under-fitting Cross-validation

The model that has been trained so

much so that noise is learned as data.

Model is under-trained. Performed on a dataset to find the limit to train the

model, and to tune and standardize the

parameters.

The model performing highly

accurately might perform poorly in

training data.

The model performs poorly on both training and

testing data.

Measuring repeatability of the model.

The problem of overlearning can be

solved by regularization.

The problem of underfitting can be solved by

giving proper time and attention to training the

model.

The solution is a K-fold cross-validation algorithm.

Dropout learns a fraction of total

weights in the network in each

training iteration.

Usually for a small dataset, K=3, 5 can be chosen,

whereas, for a large dataset, K=10 is the

suitable choice.
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computation. The increased mathematical computation

increases the cost of the analytical cost of the overall

algorithm. Well, with this awareness the information cap-

tured in the latent images is a) good with high SNR, b) poor

and c) ugly with critically low SNR.

Due to the poor-quality ridge and/ or valley patterns, the

accuracy of the segmentation task is hampered. The attri-

butes required to distinguish noisy data from required rel-

evant data are also critical computations. Hence, the

attributes or features to be extracted must be sufficient in

the count. The global and local features are handcrafted to

cater for the need of the nature of the data in the images.

The features are representations of the source. If the higher

the complexity of the source, the lower the correlation

factor of features. The choice of the classifier is, conse-

quently dependent on the quantity and quality of the fea-

tures computed. With the limitation of small sample size

leading to higher intra-class variance and binary nature of

the classification, a stack-based classifier is expected to

perform better than traditional classifiers due to its

advantages of better prediction and a more stable model.

The proposed method addresses all such challenges and

proposes the following points:

(1) The early distinction of CoIs using saliency and

colour-oriented masks, to reduce irrelevant back-

ground area for segmentation, thereby increasing

model prediction accuracy and reducing the amount

of erroneous information for further processing.

(2) Contour-based CoIs generation subsequently detects

and segments multiple instances of the fingerprints.

(3) Stable patch size for an adequate amount of infor-

mation for feature extraction from the patch being

processed, resulting in increased accuracy.

(4) Parameter standardization for effective and efficient

automatic identification of fingermarks.

(5) Establishing repeatability and reproducibility of the

model developed using cross-validation.

The proposed model is designed based on the outcome

of the previous models taken in the order as follows:

(1) Patch-based system: This pre-feature extraction task

is found to be effective in the domain of resource

utilization. It has been observed that close relation of

pixels with neighbours can find better features.

Therefore, a patch-based system can be effective in

this application domain.

(2) Hybrid System: Image is resized to 512 X 512 size.

The entire image has two elements, irrelevant

background and relevant foreground. The supervised

technique used so far suggested the high MDR and

FDR of the best of the classifiers due to the presence

of irrelevant data. Instead of dividing the entire

image into patches, if an entire image system can be

initially used to early distinct CoIs which are

potential fingermarks, MDR and FDR can be further

reduced. Further to that, these CoIs can be divided

into patches for further process.

(3) Stack of classifier: The suggested approach used

provides the evidence to support the use of a stack of

classifiers for the classification of patches. The

labelled data when used come with the burden of

identifying results before testing. As per the nature of

the application, the noisy patches can result in

erroneous labelling. Therefore, it is only advanta-

geous to use deep neural networks to self-train the

data and fine-tune the model classifier with a small

amount of data while the testing phase.

3.1 Hybrid approach algorithm

The proposed method performs the segmentation of latent

fingerprints using the IIIT-D latent images database by

introducing an early distinction technique using entire

image information followed by a patch-based classification

and segmentation technique using SCAE. As shown in

Fig. 2, the images are categorised into two categories of

fingermark instances and the quality of the image based on

the amount of noise in it.

The task is divided into two parts. The first part is contour

extraction based on colour and salient region masks which

acts as initial CoIs. However, colour-based alone segmented

CoIs will not guarantee generic segregation of CoIs as fin-

germarks. Consequently, the second subsequent aim is to feed

patches of these CoIs to a staked CAE to classify these pat-

ches into fingermark or background of the image for better

SA and effectiveness of the system.

3.1.1 Contours of interest extraction

Due to the diversity in the type of LFIs, the masks required

to segment the ridge patterns from the image are different

as well. The common element in all images is the colour-

based identification of the object. The fingermark is sig-

nificantly dark in colour w.r.t. its nearest surrounding

background. The colour map addresses the need for seg-

menting the ridge pattern darker in this database. As shown

in Fig. 5, the integration of the colour map with and

without the salient mask and convex hull fitting produces

the CoIs.

With LFIs, the colour of the image is confined to a

colour range. To segment a fingerprint from an LFI, let the

input image is I is used to produce an image with CoIs, say

Ic. Before starting image enhancement, a check on B, G, R

range of I is placed. Upon experimentation, it is optimally
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found that if G component of the colour of I ranges

between (?/- 4) of B as well as R component of I, then I is

a small histogram image Hs else a large histogram image

Hl as shown in eq (6).

I ¼
Hs if G 2 fB� 4;Bþ 4g& G 2 fR� 4;Rþ 4g;
Hl; otherwise:

�

ð6Þ

A transformation function is required to change or stretch

the range of input pixels to the entire full range of the

image. This is called Histogram equalization. Histogram

equalization performs global equalization and hence can

lead to loss of information due to over brightness. This

method divides the image into small windows and per-

forms global equalization on these windows. In the case of

the noisy window, the contrast limiting threshold is applied

by clipping the pixels of the window above this threshold

as they are probable results of noise enhancement.

Limit contrast enhancement-based adaptive histogram

equalization (CLAHE)-based image enhancement helps in

discrimination of nearest background neighbour of finger-

print, thus allowing the colour range to discard background

colour and retain fingerprint colour intact for segmentation.

This effective enhancement technique is applied in many

areas in recent years [19, 52]. This technique is not

explored in collaboration with full image-based latent fin-

gerprint segmentation. Histogram equalisation performs

better when the image intensity range is confined in a

smaller region, for instance, Fig. 2(a) and 2(d), whereas the

same shall not be effective alone in Fig. 2(b) and 2(c).

The colour-based contour model produces the output as

a result of integrated two masks. The masks are

differentiated based on the colour range of the input image.

Two masks, Mask1 and Mask2, are applied on I. The

Mask1 is applied on the image with Hs and Mask2 with Hl.

As shown in Fig. 6 which describes Proposed algorithm of

latent fingerprint(s) segmentation, contours out of Mask1

and Mask2 applied on I are combined to find CoIs.

Mask1 is the combination of a colour map and a salience

map. The order of the pre-processing is dependent on a

range of LFIs, and the subsequent masks are impacted by

the amount of enhancement provided in the image. When

the histogram of the image is broad, CLAHE is applied

with cliplimit ¼ 0:2 i.e. if the histogram is above 20 %

contrast limit, the pixels of the window are clipped.

CLAHE applied image is passed through colour-based

thresholding. Later, that mask obtained is passed through a

salience map. This feature provides a mean score of a pixel

that is prominent in the neighbourhood. Saliency residuals

are computed and mapped back to salient locations in the

corresponding spatial domain. Consequently, a binary map

using threshold selection is used to calculate thresh count

which is used to extract salient regions from an image.

More the salience mean, better are the chances of ridge

area surrounded by structurally disturbed background [6].

These saliency-based closed regions called convex hulls

are clustered. These convex hulls are classified as CoIs or

irrelevant hulls.

Mask2 is purely colour-based thresholding but only on

images with large area histograms, so CLAHE application

is absent. The output mask from the colour map has now a

small region of the histogram. Now due to this confined

histogram, histogram equalization along with morpholog-

ical operation CLOSE is performed to get rid of small noisy

Fig. 5 Pictorial representation of proposed latent fingerprint(s) segmentation
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colour detected unwanted regions resulting in enhanced

LFI. The final classification of hulls out of contours, into

fingerprint and non-fingerprint, is performed using SCAE.

The contour is a curve drawn by joining continuous

points along the boundary with the same colour or inten-

sity. Since the out-of mask is a binary image, the contour

generation is easy and effective. In LFI, the contours are

labelled as ridge patterns and non-ridge patterns based on a

feature vector computed from the detected contours. The

convex hull is drawn on the contours. Given all points in

the Euclidean space of the given contour, the convex hull is

the smallest possible convex set that contains all these

points. Figure 5 shows the contour and the corresponding

convex hull around the ridge pattern in the output image of

masks.

3.1.2 Feature extraction

The contours are extracted using colour information. The

features of the contours along with ridge information help

in removing irrelevant contours and passing on relevant

contours. Let the image I c has ith contour c i and corre-

sponding hull as h i. The thresholding is applied on

extracted following features from contours and/or convex

hulls in I c:

(1) Solidity: The relative amount of area used by the

convex hull in comparison with contour area. The

solidity is defined as in eq (7), if Dci is Contour area
of ith contour and Dhi is Hull area of ith hull

corresponding to ci :

Fig. 6 Proposed algorithm of latent fingerprint(s) segmentation
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Solidity ¼ Dci
Dhi

ð7Þ

If the solidity is high, it suggests the presence of an

elliptical shape convex object such as a fingerprint. If

the solidity is low, it suggests a noisy, irregular-

shaped, background patch [65]. As shown in Fig. 7,

with convex hull no.2, even if ridge orientation and

energy are not effective, solidity can identify the

relevant area. Also, convex hull no.5 shows lower

solidity from 1, lesser relevant that convex hull

becomes, therefore labelled as irrelevant.

(2) Extent: The type of shape in the bounding rectangle

of the contour. The extent is given as in eq (8), when

w and h are dimensions of the bounding rectangle of

ci contour:

Extent ¼ Dci

ðw � hÞ ð8Þ

The lesser the extent, the probability of a noisy,

irregular, background patch is higher. The higher the

value of extent means the contour has a more regular,

ridge patch. Figure 5 contours show the cases where

the extent of contour no. 181 is low and therefore is

considered irrelevant and contour no.4 is high hence

relevant, respectively.

93) Contour Parameter: The perimeter of a contour

defines its arc length. Lesser values perimeter

contours are either overlapped on already existing

contours due to another mask or are obtained

contours with the irrelevant background. So, to

avoid background or no boundary overlapped con-

tours, higher values are preferred for ridge value

presence. The parameter is given in eq (9).

Parameter ¼ ArcLengthðciÞ ð9Þ

As shown in Fig. 8, the contour parameter of con-

tour no. 181, with overlapping boundaries, is lesser

than contour no.4 and hence is labelled irrelevant.

(4) Ridge value texture: This is the measure of the local

homogeneity. The measured value determines the

relation with the presence of the ridge field. The

lesser the homogeneity, the more ridge field presence

[8]. Let p is the normalised grey-level co-occurrence

matrix [20], if Gmax, is the maximum possible

quantized value by [20] in grey-level co-occurrence

matrix, then eq (10) gives invert difference homo-

geneity or ridge value texture as :

RidgeTexture ¼
XGmax

i¼1

XGmax

j¼1

1

ð1þ ði� jÞ2Þ
� pi;j ð10Þ

(5) Ridge value Energy: This is the measure of unifor-

mity and organised structure in the image. The lesser

the value, the lesser the uniformity and more chances

of the presence of ridge or contour. [20]. The ridge

value energy is given in eq (11):

RidgeEnergy ¼
XGmax

i¼1

XGmax

j¼1

ðpi;jÞ2 ð11Þ

.

The biggest contribution or advantage of CoIs extraction is

to avoid time consumption on an irrelevant portion of the

image where the data are not available, whereas now rel-

atively lesser time to learn via a deep network which was

otherwise a time-consuming task.

3.1.3 Stacked convolutional autoencoder network
for segmentation

The resultant CoIs from the first phase are now prepared

and fed to SCAE. The contoured image is divided into

patches. Apart from being a popular size, patch size 28x28

experiments with size 56X56.

Hence, when patches are fed to SCAE, to classify the

greyscale patches into fingerprint or non-fingerprint area,

the dimensions of the matrix are of size 28x28. Now,

Conv2d used takes input as the 2d structure of the input

Fig. 7 Effect of solidity

Fig. 8 Effect of perimeter
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image, batch size and channel value of the input image;

hence, the input is the form of

[BatchSize, ImageWidth, ImageHeight, ChannelInforma-

tion]. Since it is a greyscale patch, therefore channel

information is set to 1. The batch size is 64; hence, the

input is ultimately, [64, 28, 28, 1]. When the database is

processed, to train the model which can generalize better,

partition the database into a training and validation set,

here, the partition is the 8 : 2 ratio of the database. This

step helps in reducing overfitting. Figure 9 elaborates the

proposed structure of SCAE for classification and perfor-

mance evaluation.

SCAE comprises encoder and decoder functions. The

encoder has four convolutional blocks; each block has a

convolutional layer and a batch normalization layer. Two

Max pooling layers were added after the second and third

blocks. The first block contains 32 filters of size (3, 3),

followed by the max-pooling layer. The second block

contains 64 filters followed by the max-pooling layer. The

third block contains 128, and the fourth contains 256 filters

of each size (3, 3). These layers are not followed with

down-sampling of max-pooling. The decoder has three

convolutional blocks; each block has a convolutional layer

and a batch normalization layer. Up-sampling is carried out

after the second and third layers. The architecture is chosen

after trails of different set-ups of layers. The first block

contains 128 filters of size (3, 3). The second block is

similar except it contains 64 filters. This is followed by the

up-sampling layer. The third block contains 32 filters fol-

lowed by another up-sampling layer, and final block con-

tains only 1 filter of size (3, 3). This is a reconstruction of

the input back having only a single channel.

The max-pooling layer will downsample the input by

two times every time included in layers, while the

upsampling layer will upsample the input by two times

each time it is used. The model is compiled using optimizer

RMSProp. The training and validation loss plotted using

the fit() function shows sync and is decreasing, hence

showing good generalisation capability. The weights of the

autoencoder trained in the previous step are loaded but only

in the encoder part of the model. The encoder architecture

is the same as used in the AE phase. Along with this phase,

the fully connected layers are stacked with an encoder.

Now, the model is trained with various epochs such as

50,100 and 400, batch size 64, in the absence and presence

of dropout. The performance metrics of SA, MDR and

FDR are measured while predicting labels.

Fig. 9 Proposed structure of SCAE for classification and segmentation process: a stack of CAE used CNN initialization, b classification using

pre-trained CNN
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The outcome is the classification of patches into fin-

germark or non-fingermark patches. The performance is

measured with performance metrics MDR, FDR and SA

with K-fold cross-validation to introduce repeatability and

reproducibility of the model. The efficiency of the algo-

rithm is observed using the performance metrics, whereas

effectiveness is observed using reduction in the processing

area, uðAIÞ for optimized segmentation. The experimen-

tation is performed with improvements in CNN, optimal

patch size and regularization parameters. The comparison

of pre-trained CNN and naive CNN with the same archi-

tecture is performed as well. In addition to it, the outcome

is compared with other proposed approaches.

4 Experimentation and result analysis

4.1 Experimental setup

The experiments are performed using an open-source and

available IIIT-D CLF database published by Indraprastha

Institute of Information Technology, Delhi (IIIT-D). There

are 150 classes of latent fingerprints with categories mixed

with single, partial and multiple fingerprints along with

clear and noisy fingerprints.

The original images are large. These are resized to 512

9 512. The masks are applied to images; features are

extracted from masked images. Compartmentalization of

images is done into single and multiple fingermark count

presence in images. The resultant early detected contours

are input images with the presence of convex hull as seg-

ment boundary on latent fingermark(s) as per categories,

respectively.

Further, all the extracted contours are divided into

equal-size patches of size 28 9 28. The total patches

formed are further divided into 8 : 2 training and testing

samples ratio, respectively. The ratio is experimented with

and provides better results than 6 : 4 ratio. Also, due to the

nature of the latent images, the images with SNR below 2.5

are ignored. The presence of such images may result in

higher MDR and FDR, affecting the effectiveness and

thereby efficiency of the model.

4.2 Performance metrics

The performance metrics help in validating the quality of

the results. The metrics of any technique must be relevant

to the measuring feature. The proposed system uses the

following performance metrics used from the literature on

latent fingerprint segmentation:

(1) Segmentation Accuracy (SA in %): It is a measure of

the classifier to correctly predicted outcomes. In this

case, it correctly predicted fingerprint patch count.

The all correct fingerprint and background patch

predicted count FBP, w.r.t total predicted patches

TP, made, correct or incorrect. Let there are n

patches to be predicted, such that pi is ith class

probability, and pi;j is the predicted probability of

class i predicted as class j, then SA is given in eq (12)

as:

SA ¼ FBP

TP

¼ pi þ pj
pi þ pj þ pi;j þ pj;i

ð12Þ

(2) Missed fingerprint detection rate (MDR in %): This

is the average percentage measure of foreground

pixels misclassified as background noise. As shown

in eq (13), MDR is the count of patches predicted

background w.r.t to total foreground predictions. If

total Missed Foreground Patches (MFP) i.e. fore-

ground patch considered background, w.r.t Total

Foreground Predicted patches (TFP), correct or

incorrect.

MDR ¼ MFP

TFP

¼ pi;j
pi þ pi;j

ð13Þ

(3) False fingerprint detection rate (FDR in %): This is

the measure of background noise misclassified as

foreground pixels. As shown in eq (14), FDR is

calculated as the ratio of the Falsely Foreground

Patch predicted (FFP) score out to the Total

Correctly Patch (TCP) predicted score.

FDR ¼ FFP

TCP

¼ pj;i
pi þ pj;i

ð14Þ

where j is class 0, or background region and i is class

1, or fingerprint region.

4.3 Latent fingerprint segmentation results

The entire process is shown in Fig. 5 using a suitable ex-

ample. The results are divided into the following

categories:

(1) Algorithm outcome: The outcome of the algorithm

with each phase is discussed, and the impact of

different phases on sample images is displayed.

(2) Effectiveness and efficiency of the model: The

model’s performance as per different patch sizes is

measured and discussed along with the benefits of
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the use of improvements such as the dropout layer in

CNN. The performance outcome is measured using

performance metrics SA, MDR and FDR using

different epochs and dropout parameters.

(3) Repeatability and reproducibility of the model: The

use of cross-validation for SCAE is obtained to

verify the behaviour of the model over multiple

folds.

(4) Comparative evaluation: Comparison of perfor-

mance of SCAE using pre-trained CNN is performed

with alternative CNN. Also, a comparison of

performance with existing techniques is performed.

4.3.1 Algorithm outcome

The outcome of the algorithm is produced in two cate-

gories. The first outcome category shows a sample of

overall outcome images. This combination consists of

sample outcomes with single, multiple and partial finger-

prints. Figure 10 shows a sample of successful cases.

Figure 10a describes a clean image with structured noise

and a small scale of the histogram, thereby producing a

salient structure as a ridge pattern convex hull as shown.

Figure 10b shows a case along with the additional effect of

light, making it difficult to set a range of colourmap.

Colourmap is adjusted based on the light, luminous and

brightness of the image.

Figure 10c and d includes a clean and noisy image with

a major single fingerprint and a small partial existing fin-

gerprint with a small histogram, respectively, and Fig. 10e

and Fig. 10f with a large histogram range. When the col-

ourmap range is not appropriately falling in close range,

light-coloured fingerprints become difficult to segment.

With the help of the clip limit of CLAHE, light-coloured

fingermarks can be optimally enhanced to fall in the range

of colourmap. The same can be observed in Fig. 10g and

Fig. 10h.

Figure 11 shows the bad output as (a) false detection

due to the effect of light along with a single fingerprint hit,

(b) misdetection due to the light-coloured range for col-

ourmap, (c) large-sized convex hull due to the blended

nearest background, (d) misclassification due to noise in

the image with no result for segmentation.

The second is the category where intermediate results of

different phases are shown in Figs.12a–e. Figure 12a is the

sample image 1 which passes through mask1 Fig. 12b and

mask 2 which produces the outcome Fig. 12c. Similarly,

Fig. 13a is the sample image 2 which passes through

mask1 Fig. 13b and mask 2 which produces the outcome

Fig. 13c. The integration of both masks outcomes in the set

of contours on the original image. Set of thresholding is

applied on features of contours mentioned in sec:3.1.2. The

thresholding reduces the count of contours to only potential

candidates of fingerprints as shown in Fig. 12d and

Fig. 13d. Finally, Fig. 12e and Fig. 13e are the outcome of

classification-cum-segmentation using SCAE for a good

sample and poor sample, respectively.

4.3.2 Effectiveness and efficiency of the model

The SCAE has been experimented on MIRC machine with

specifications: 2 Intel Xeon processors, 256GB RAM and

32GB Tesla v100 for 27 minutes.

The efficiency of the work is measured in terms of the

accuracy of the results. The accurate results are accompa-

nied by erroneous results as well. For measuring the effi-

ciency, the results are checked for a) accurate results using

SA, b) false segmentation rate and c) missed segmentation

rate measures. The proposed system produces improved

segmentation and reduced FDR and MDR in comparison

with state-of-the-art deep learning-based published results

by [28] and [18], hence, the proposed system is efficient in

Fig. 10 Good segmentation with single and multiple fingerprint presence
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Fig. 11 Poor segmentation with single and multiple fingerprint presence

Fig. 12 Sample image 1 from IIIT-D CLF showcasing successful outcome of application of mask in producing contoured images and final

outcome of SCAE
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performance. The results are observed with experiments

involving a) different patch sizes and b) use of regular-

ization i.e. dropout layer during classification. Here the

patch size considered is 28X28 and 56X56.

In the discussion about Performance with different

patch sizes, post-contour detection, each contour is divided

into equal-sized patches and fed to SCAE. Upon experi-

mentation, a layered structure of SCAE is finalised and fed

with patches of sizes 28X28 and 56X56. Table 3 elaborates

on the performance outcome using each patch size. If C

represents the Conv2D layer, U represents the up-sampling

layer and P represents the Max-pooling layer, then using x

in xC, xU and xP reflecting the number of Conv2D layers

and number of max-pooling layers in the sequence of

architectural layers, the architecture is represented as

SCAE_19: 2C-P-2C-P-4C (encoder) and 4C-U-2C-U-C

(decoder), where 19 is the count of layers in the architec-

ture AE. The CNN classifier is pre-trained with AE.

Different networks can experiment in future work. Hence,

the architecture, patch size combinations used are

[SCAE 19,28] and [SCAE 19,56]. The SA (in %) obtained

using [SCAE 19,28] is 96.62 and [SCAE 19,56] is 92 with

epochs =50.

The decision making is performed not solely on SA

obtained but the class distribution as well. The reason to

choose another stable parameter is due to the inclination of

change of SA with an optimal set of epochs. The trade-off

between SA and MDR-FDR is disturbing in the 28 vs 56

scheme. Hence class-distribution post-classification is

considered, and clearly, 28 patch size provides a more

stable distribution than patch size 56. The uneven distri-

bution depicts that there exists imbalanced samples to learn

from; hence, the model is biased toward training, thereby,

to testing. The imbalance of slight nature is shown with

patch 28 and severe with patch size 56. Hence, it is an

optimal decision to choose patch size 28 with image size

512 X 512. If the original image experiments, in future, the

patch size can experiment for a better balance of class

distribution.

In the discussion about, Performance evaluation with

drop-out layer, Table 4 summarizes the impact of the

absence or presence of dropout in the architecture using

noisy data for training and classification. Here, the patch

size used on SCAE_19 is 28, with the train-to-test ratio as

8:2. The comparison of results is also performed using

Fig. 13 Sample image 2 from IIIT-D CLF showcasing failed outcome of application of mask in producing contoured images and final outcome of

SCAE

Table 3 Performance evaluation of different patch sizes

Patch size Class distribution SA MDR FDR

class 1 class 0 % % %

28 11338 7288 98.16 2 2

56 55 6730 92 0.05 0.04
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CNN alone. The architecture is the same as SCAE_19

except the decoder(AE) is removed. Now CNN is not pre-

trained. The SA along with MDR and FDR is compared on

a)epochs= 50, b) without dropout, c) with dropout= 0.25

and 0.1. Figure 14 is the graphical representation of the

results.

Table 5 shows an SA of 97.49% in absence of dropout.

The SA is improved using SCAE with dropout 0.25 to

98.16% and 98.21% using dropout 0.1. The same measure

using CNN is lesser than SCAE in absence of dropout, but

CNN responds better when dropout is used. The SA is

98.4% and 98.55% using dropout 0.25 and 0.1, respec-

tively. The improved result can be observed in MDR and

FDR. Certainly, the use of dropout improves the MDR

from 10% to 2% and FDR from 12% to 2%. The

improvement is observed better using CNN where MDR is

Fig. 14 Performance evaluation

of SCAE using epochs =

50,100,400 in absence vs

presence of dropout

Table 5 Performance comparison of SCAE and CNN, in absence, presence of dropout(0.25) and dropout(0.1)

Regularization Without dropout With dropout (0.25) With dropout(0.1)

Technique SCAE CNN SCAE CNN SCAE CNN

Performance metrics (in %) (Epochs (50)) SA 97.49 97.31 98.16 98.4 98.21 98.55

MDR 10 10 2 1 2 1

FDR 12 3 2 1 2 1

Fig. 15 Performance evaluation comparison of SCAE and CNN with epochs = 50, dropout = NA, 0.1, 0.25

Table 4 Performance of SCAE

using 50,100 and 400 epochs in

absence vs presence of dropout

Regularization Without dropout With dropout

Epochs 50 100 400 50 100 400

Performance metrics (in %) SA 97.49 95.79 97.65 98.16 98.61 98.45

MDR 10 3 2.3 2 3 1

FDR 12 3.8 2.6 2 3 1
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1% after 50 epochs in presence of dropout. The results are

visually displayed in Fig. 15. The training accuracy and

loss graphs are compared for CNN and SCAE. Figure 16 is

the comparison of the graphical outcome of training

accuracy and loss with epoch 50, and dropout NA, 0.25 and

0.1, respectively, whereas Fig. 17 is the comparison of the

graphical outcome of training accuracy and loss with epoch

50, and dropout NA, 0.25 and 0.1, respectively. The graphs

in Fig. 17 show better stability.

Fig. 16 Training and validation accuracy and loss graph of CNN at epochs =50 such that a accuracy graph,dropout=NA, b accuracy graph,

dropout=0.25, c accuracy graph, dropout=0.1, d loss graph, dropout=NA, e loss graph, dropout=0.1, f loss graph, dropout=0.25
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The impact of epochs on SCAE is observed in the form

of segmentation SA using epochs = 50,100,1000 and

dropout 0.25. The SA is improved from epoch 50 to 100.

But the results are better at epoch count 100 in comparison

with 1000. This establishes the fact that epoch count upper

limit is necessary. Over-learning will not produce better

results.

On comparing SCAE response of segmentation SA,

MDR and FDR over different epochs = 50, 100 and 400, it

is observed in Table 4 that the results are certainly better in

Fig. 17 Training and validation accuracy and loss graph of SCAE at epochs = 50 such that a accuracy graph,dropout = NA, b accuracy graph,

dropout = 0.1, c accuracy graph, dropout = 0.25, d loss graph, dropout = NA, e loss graph, dropout = 0.1, f loss graph, dropout = 0.25
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presence of dropout. But the new observation is that SCAE

attains comparative results to CNN with a better epoch

count of 400 and dropout of 0.1. The SA, MDR and FDR at

400 epochs are 98.45%, 1% and 1%, respectively.

There is a significant change with controlled learning of

parameters due to dropout. Hence, in conclusion, the

controlled passage of information to the classifier produces

better SA and reduced MDR and FDR.

4.3.3 Repeatability and reproducibility of the model

The model shows a pattern of reduced MDR and FDR

using CNN or SCAE. The model when observed over

different epochs, shows fluctuating behaviour. The use of

K-fold cross-validation helps in deciding the parameters

with the stable model. Table 6 is the outcome of SA using

10-fold cross-validation. Table 6 shows the comparison of

SCAE performance with epoch count 50 in the absence vs

presence of dropout values 0.25 and 0.1 and shows a decent

jump in SA from the absence of dropout to the presence of

dropout with a significant standard deviation of 3.04 in

absence of dropout to 0.62(min) in presence of 0.25

dropout. The overall table shows a reading of 88% SA at

k=10 with SCAE, with no dropout. Such a behaviour can

be expected out of the models and hence in a large amount

of data along with noisy data, k=10 is suitable.

Table 6 also displays the comparison of the model

performance of SCAE and CNN. SCAE over epoch count

50,100 and 1000 in presence of dropout (0.25) is compared.

The comparison can show that the 1000 epoch count shows

a poor start and high standard deviation, whereas epoch

100 shows a stable and repeatable SA count. Figure 18 is

the graphical view of the comparison.

Table 6 and Fig. 18 also show the comparison of SCAE

with CNN cross-validation behaviour with epoch 50. As

stable as SCAE, CNN shows stable results but lesser SA

than SCAE 100 epoch count and a comparable standard

deviation. This can be seen in future experiments on how a

naive CNN will behave in comparison with pre-trained

CNN in SCAE with comparable stable epochs.

Now, although SA is best attained at epoch 100 SCAE, a

better MDR and FDR are obtained with epochs 400. The

results are better than CNN at epoch 50. The outcome with

SCAE is comparable with CNN with higher epochs due to

pre-training provided. The outcome is obtained by SCAE

with SA 98.45% and MDR and FDR of 1% each with

dropout 0.25, but the final results are better with CNN

alone even at epochs 50, dropout 0.1 with SA 98.55%,

MDR and FDR of 1% each. The value for real-valued data

such as image patches, the value inclination should be

close to ideal 0.5; hence, the choice of dropout 0.25 is

considered with SCAE producing SA 98.45%.

4.3.4 Comparative evaluation

The comparison of the performance outcome of past pub-

lished techniques using learning and non-learning-based

systems is shown in Table 7. The table also contains the

outcome of the proposed work in comparison. The per-

formance is better than previously published work with

Table 6 Segmentation accuracy comparison using CNN (epoch = 50, dropout = 0.25) and SCAE (epoch = 50,100,1000, dropout = NA, 0.1 and

0.25)

SA (in %) Patch_Size= 28, K=10, Test_size = 20%

Technique SCAE CNN

Epochs 50 100 1000 50

Fold Number Without

Dropout

With Dropout

(0.1)

With Dropout

(0.25)

With Dropout

(0.25)

With Dropout

(0.25)

With Dropout

(0.25)

1 98.2175 98.6041 96.3814 98.1262 90.2018 97.7611

2 97.4605 95.3505 98.4914 98.8457 98.6738 98.4484

3 98.7329 98.5289 97.9759 98.1209 98.6094 98.5933

4 98.7973 98.7651 98.502 98.8027 98.577 98.7598

5 98.7598 98.2336 98.49135 98.6685 98.4752 98.749

6 98.6738 98.5504 98.137 98.5665 98.3732 98.6685

7 98.7222 98.6846 98.2336 98.8349 98.4537 98.2361

8 98.4645 98.2497 98.3625 98.7061 98.4162 98.2235

9 98.6577 98.647 98.5987 98.7114 98.4376 98.2738

10 88.4569 98.5128 98.4591 98.7383 98.3839 98.6953

Average (%) 97.49 98.21 98.16 98.61 97.66 98.4

Std Dev (?/-

)

3.04 0.97 0.62 0.2564 2.49 0.28
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IIIT-D CLF data with images SNR of more than 2.5. The

following points enlightens the improvements in compar-

ison to existing state-of-the-art techniques:

(1) Reduced processing area of the image for the deep

learning-based outcome, in the form of extracted

contour regions.

(2) Detection of multiple instances due to contour

extraction in the first stage of the hybrid proposed

system.

(3) Better performance as a hybrid learning-based sys-

tem with a stable patch size of 28x28, effective

feature engineering using SCAE and reduced over-

fitting with dropout.

Table 7 shows the comparison of the performance of the

proposed work and other popular and published segmen-

tation and detection techniques using deep neural networks

and experimentation performed on the IIIT-D database.

Figure 19 shows a graphical representation of the perfor-

mance metrics of Table 7. The comparison shows the

improved SA of the proposed work due to the use of the

hybrid approach.

Fig. 18 Graphical representation of segmentation accuracy comparison using CNN (epoch = 50, dropout = 0.25) and SCAE (epoch =

50,100,1000, dropout = NA, 0.1 and 0.25)

Fig. 19 Graphical representation of comparative analysis of proposed

work with recently published work using deep neural networks

experimented on IIIT-D CLF database

Table 7 Comparative analysis of proposed work with recently published work using deep neural networks experimented on IIIT-D CLF database

References Approach SA (in %) MDR (in %) FDR (in %)

[18] Fractal Dimensions Weighted extreme learning machine (deep neural network) 90.07 10.07 6.38

[28] Patch-oriented classification using CNN 94.44 10.5 4.7

Proposed Hybrid approach 98.45 1 1
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4.4 Recommendations and discussions

The proposed method and empirical evaluation suggest that

the system is over efficient and effective. SCAE suggests

the following findings and recommendations:

(1) Images below SNR 2.5 are discarded to avoid

a)extracting imposter contours and b)learning noise

more than the actual signal.

(2) Simple and effective SCAE feature learning

mechanism.

(3) Hybrid early detection-cum-classification using stack

method for better training.

(4) Dropout as regularization technique to avoid

overfitting.

Future investigations considering the results obtained, the

following points are suggested:

(1) Different databases such as NIST SD, WVU can be

used in experiments for the combination of training

and testing. A large amount of data with different

noise levels can train the model better and make it a

generic solution.

(2) Different masks can be used to include images below

SNR 2.5. Apart from colour information, other

features such as gradient information, ridge infor-

mation can be used to differentiate fingerprint from

the background.

(3) Different model architecture can be experimented

with using different counts of layers. Different

optimizers such as SGD can produce stable results

along with different activation functions.

(4) Dropout vs batch normalization as regularization

techniques can experiment.

(5) Forced overfitting validation to check if overfitting is

occurring in a large volume of such noisy data and to

what extent. As here, 1000 count of the epoch was

identified as the extended limit, and hence, overfit-

ting control measures are applied.

(6) Segmentation on a generalized quality of image

irrespective of noise level and noise type, colourmap

range for small and large histogram range of the

images, a different voting mechanism for early

detection of CoIs since saliency detection works

better with non-overlapping salient regions. The

same application can work better with additional

feature sets and feature reduction techniques.

Thereby, the segmentation can be improved along

with handling technique and performance trade-off.

5 Conclusion

Fingerprint segmentation is required to separate the rele-

vant information from irrelevant information of the image

to improve the accuracy of the proceeding steps of fin-

gerprint matching. The major goal of segmentation is to

extract the relevant ridge areas of the image accurately; the

major challenge of the latent fingerprint is the noisy

background overlapping with ridges. This paper has pre-

sented and investigated the dual approach of latent fin-

gerprint segmentation. We applied an early distinction of

potentially relevant areas of the latent fingerprint image

using masks based on the colour and saliency feature of the

image. These relevant areas or CoIs can be multiple in a

single with single, multiple, partial fingerprints or regions

similar to fingerprints called as falsely detected regions, or

none if there are no fingerprints in the image. Hence, the

irrelevant images are not processed and relevant images are

processed only in compartmentalised regions. Where the

process guarantees noise reduction, better segmentation is

proposed by the application of deep learning to the col-

lection of these CoIs. For that purpose, the classification of

equal-sized patches of these CoIs is fed to SCAE. The

patches of these CoIs are fed to an SCAE for classification

into relevant fingermark or imposter background noise with

salient importance in the image. The use of early distinc-

tion along with the patch-based technique substantially

reduced the misclassification rate and false classification

rate. The stack of CAE, an unsupervised method for feature

extraction, is used to pre-train CNN. Pre-trained CNN-

based classification outperforms the published results of

CNN-based classification. Our model was tested on the

IIIT-D database, and it outperformed recently published

methods in terms of segmentation accuracy, detection rates

and execution times. In future work, we can train the model

with a database with more images and train on bad to ugly

images and fine-tune the model with different CNN layers

to achieve a trade-off between accuracy and MDR and

FDR with increasing noisy images in experimentation.
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40. Mújica-Vargas D, Kinani JMV, de Rubio J, J. (2020) Color-based

image segmentation by means of a robust intuitionistic fuzzy

C-means algorithm. Int J Fuzzy Syst 22(3):901–916

41. Murshed MGS, Kline R, Bahmani K, Hussain F, Schuckers S

(2021) Deep slap fingerprint segmentation for juveniles and

adults. In arXiv [cs.CV]. http://arxiv.org/abs/2110.04067

42. Nguyen D-L, Cao K, Jain AK (2018) Automatic latent fingerprint

segmentation. In: 2018 IEEE 9th international conference on

biometrics theory, applications and systems (BTAS). IEEE

43. Prasad V, Prasad L, Lukose S, Agarwal P (2021) Latent finger-

print development by using silver nanoparticles and silver nitrate-

A comparative study. J Forensic Sci 66(3):1065–1074

44. Prost J, Cihak-Bayr U, Neacşu IA, Grundtner R, Pirker F, Vor-

laufer G (2021) Semi-supervised classification of the state of

operation in self-lubricating journal bearings using a random

forest classifier. Lubricants (Basel, Switzerland) 9(5):50

45. SaguyM, Almog J, Cohn D, Champod C (2021) Proactive forensic

science in biometrics: novel materials for fingerprint spoofing.

J Forensic Sci. https://doi.org/10.1111/1556-4029.14908

46. Sankaran A, Vatsa M, Singh R (2014) Latent fingerprint match-

ing: a survey. IEEE Access: Pract Innov Open Solut 2:982–1004

47. Sankaran A, Jain A, Vashisth T, Vatsa M, Singh R (2017)

Adaptive latent fingerprint segmentation using feature selection

and random decision forest classification. Int J Inf Fusion 34:1–15

48. Schmidhuber J (2015) Deep learning in neural networks: an

overview. Neural Netw Off J Int Neural Netw Soc 61:85–117

49. Shenoy ES, Rosenthal ES, Shao Y-P, Biswal S, Ghanta M, Ryan

EE, Suslak D et al (2018) Real-time, automated detection of

ventilator-associated events: avoiding missed detections, mis-

classifications, and false detections due to human error. Infect

Control Hosp Epidemiol Off J Soc Hosp Epidemiol Am

39(07):826–833

50. Shi J, Yan Q, Xu L, Jia J (2016) Hierarchical image saliency

detection on extended CSSD. IEEE Trans Pattern Anal Mach

Intell 38(4):717–729

51. Singh SP, Ayub S, Saini JP (2021) Analysis and comparison of

normal and altered fingerprint using artificial neural networks. Int

J Knowl Based Intell Eng Syst 25(2):243–249

52. Sonali S, Sahu AK, Singh S.P. Ghrera, Elhoseny M (2019) An

approach for De-noising and contrast enhancement of retinal

fundus image using CLAHE. Opt Laser Technol 110:87–98
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