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Abstract
The least squares support vector machine (LS-SVM) is an effective method to deal with classification and regression

problems and has been widely studied and applied in the fields of machine learning and pattern recognition. The learning

algorithms of the LS-SVM are usually conjugate gradient (CG) and sequential minimal optimization (SMO) algorithms.

Based on this, we propose a conjugate functional gain SMO algorithm and theoretically prove its asymptotic convergence.

This algorithm combines the conjugate direction method and the functional gain SMO algorithm with second-order

information, which increases the functional gain of the plain SMO algorithm. In addition, we also provide a generalized

SMO-type algorithm framework with a simple iterative format and easy implementation for other LS-SVM training

algorithms. The numerical results show that the execution time of this algorithm is significantly shorter than that of the

other plain SMO-type algorithms and CG-type algorithms.

Keywords LS-SVM model � Sequential minimal optimization � Conjugate direction � Functional gain

1 Introduction

Support vector machines (abbreviated as SVMs) are an

important class of methods to solve classification [1] and

regression problems [2]. When it solves linear inseparable

and nonlinear regression problems, it usually uses kernel

tricks to map data from a low-dimensional input space to a

high-dimensional space. SVMs have always had a place in

the field of pattern recognition with their elegant mathe-

matical optimization theory and excellent data prediction

ability. After continuous research, the theory and applica-

tion of SVMs have been well developed [3]. One of the

most successful variants is the least squares support vector

machine (abbreviated as LS-SVM). This model is also a

powerful tool for handling classification and regression

problems in machine learning.

The LS-SVM was first proposed by Suykens et al. [4].

Its primal problem is a convex optimization problem with a

linear equality constraint. To make the training of the LS-

SVM more efficient, researchers have proposed fast train-

ing algorithms. Jiao et al. [5] used an approximate algo-

rithm to quickly train the LS-SVM and improve its

sparsity. Yang et al. [6] proposed to use a pruning algo-

rithm to effectively solve the optimization problem of the

LS-SVM. Li et al. [7] proposed a fast iterative single-data

method for training unconstrained LS-SVM. Xia [8] used

QR factorization to train sparse LS-SVM. Chua [9] pro-

posed a computationally efficient method for solving large-

scale LS-SVM classifiers based on the Sherman–Morrison–

Woodbury (abbreviated as SMW) matrix. However, the

algorithm has high requirements on the kernel mapping,

and the concrete form of kernel mapping must be given.

Suykens et al. [10] used the conjugate gradient (abbrevi-

ated as CG) method to solve the Karush–Kuhn–Tucker

(abbreviated as KKT) equations of the LS-SVM. However,

in their method, the CG algorithm needs to be used twice.

Hence, Chu et al. [11] proposed an improved CG
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(abbreviated as ICG) method to solve the KKT equations.

This method only needs to use the CG method once and

reduces the order of the KKT equations. Li et al. [12]

transformed the equality constraint problem in the LS-

SVM into an unconstrained optimization problem and

proposed to use recursive formula and CG method to

quickly train the LS-SVM. In general, for large-scale

datasets, it is more efficient to use the sequential minimal

optimization (abbreviated as SMO) algorithm to solve the

LS-SVM [12].

The SMO algorithm was proposed by Platt [13] and

used to train the standard SVMs. This method takes the

decomposition algorithm to the extreme, and only two

variables are selected for iteration at a time. For each

subproblem, the SMO algorithm can obtain the analytical

solution, avoiding the complex matrix computations of

quadratic programming numerical algorithm. The SMO

algorithm is not only effective for classification problems

but also efficient for regression problems [2]. Keerthi et al.

[14] first proposed a SMO algorithm for solving the LS-

SVM. This algorithm also uses maximal violating pair

(abbreviated as MVP) to select the working set and is also

called the first-order SMO. In SVMs, the second-order

SMO is more efficient than the first-order SMO [15].

Hence, Lopez et al. [16] introduced the second-order SMO

into the LS-SVM to improve the training speed. Shao et al.

[17] ignored the bias term of the LS-SVM and proposed a

single-direction SMO algorithm (abbreviated as SD-SMO).

Without considering the bias term, the efficiency of the

SD-SMO is higher than that of the first-order SMO. Bo

et al. [18] proposed the functional gain SMO algorithm

(abbreviated as FGSMO) and verified its efficiency with

numerical experiments. And FGSMO can degenerate into

the second-order SMO. In general, parallel computing [19]

and distributed algorithms can also improve the learning

efficiency of the model, for instance, parallel SMO [20–25]

and ADMM algorithms [26, 27], etc. However, they mostly

divide the dataset and assign them to different processors.

Alternatively, the SMO algorithm can also be regarded

as a special kind of projected gradient [28]. Naturally,

some gradient acceleration tricks can also be applied to

SMO-type algorithms. For instance, Lopez et al. [29]

combined momentum and SMO algorithm to propose a

momentum-accelerated SMO algorithm (abbreviated as

MLS-SMO). Torres-Barrán et al. [30] used the Nestrove

acceleration strategy on the SMO algorithm, reducing the

number of iterations of the SMO algorithm. However,

among the optimization algorithms, the conjugate direction

method is also an important class of unconstrained opti-

mization algorithms. It not only speeds up the convergence

speed of the gradient descent algorithm, but also avoids a

large number of numerical computation of Newton’s

method. It is a relatively practical and effective optimiza-

tion algorithm between gradient descent and Newton’s

method. Hence, we will develop a new conjugate variant

SMO (abbreviated as CSMO) algorithm for LS-SVM.

Although the CSMO was originally used to train SVMs

[28], from the mathematical model of LS-SVM and SVMs,

LS-SVM is more suitable. Because the new CSMO algo-

rithm for LS-SVM will not be affected by the box con-

straints, and there is no need to set a restart step, the

iterative format will be simpler. In addition, the algorithm

usually has a larger functional gain than the plain SMO-

type algorithms and can converge to the optimal solution of

the specified accuracy at a faster speed. Especially when

the penalty parameter is large, the efficiency of the new

CSMO of LS-SVM will be significantly higher than other

plain SMO-type algorithms. Hence, we call it the conjugate

functional gain SMO algorithm (abbreviated as CFGSMO)

The rest of this work is organized as follows. In Sect. 2,

we will briefly introduce the LS-SVM. The solution algo-

rithms for LS-SVM are summarized in Sect. 3. The

CFGSMO algorithm is proposed in Sect. 4. The conver-

gence analysis of the CFGSMO is discussed in Sect. 5. The

numerical experiments are shown in Sect. 6. The last sec-

tion is the summary of the work. Table 1 is the notation

table.

2 Preliminaries of the LS-SVM model

The mathematical theory of LS-SVM and its connection

with the system of linear equations will be briefly intro-

duced in this section.

Consider a given sample training set T ¼ xi; yið Þf gni¼1,

where xi 2 Rp is the i-th pattern input vector, and n is the

number of samples. In the binary classification problem,

category label yi 2 �1; 1f g. At this time, the LS-SVM

needs to solve a quadratic programming problem with

linear equality constraints, that is

min
x;b;n

Pðx; b; nÞ ¼ 1

2
xTxþ c

2

Xn

i¼1

n2i

s:t: xT/ðxiÞ þ b ¼ yi � ni; 8i;
ð1Þ

where the / : X!H is a kernel mapping from the input

space XðX � RpÞ to the high-dimensional feature space H.

The purpose of introducing the kernel mapping / is to

transform the nonlinear problem in the input space into the

linear problem in the high-dimensional space. x is the

weight parameter, b is the bias term, c is the penalty

parameter, and ni is the error variable. When yi 2 R, LS-

6096 Neural Computing and Applications (2023) 35:6095–6113

123



SVM is used to deal with the regression problems. The

Lagrangian function of problem (1) is

Lðx; b; n; aÞ ¼ 1

2
xTxþ c

2

Xn

i¼1

n2i

�
Xn

i¼1

aiðxT/ðxiÞ þ bþ ni � yiÞ;
ð2Þ

where a 2 Rn is the Lagrangian multiplier. According to

the KKT condition of problem (1), we can get

rxLðx; b; n; aÞ ¼ 0¼)x ¼
Xn

i¼1

ai/ðxiÞ

rbLðx; b; n; aÞ ¼ 0¼)
Xn

i¼1

ai ¼ 0

rniLðx; b; n; aÞ ¼ 0¼)ai ¼ cni; i ¼ 1; 2; . . .; n

raiLðx; b; n; aÞ ¼ 0¼)xT/ðxiÞ þ bþ ni � yi ¼ 0; i ¼ 1; 2; . . .; n:

ð3Þ

After eliminating the weight variable x and the error

variable ni, (3) can be further expressed as the linear

equation system

0 yT

y K þ c�1I

 !
b

a

 !
¼

0

1

 !
; ð4Þ

where ½K�ij ¼ kðxi; xjÞ ¼ /ðxiÞ;/ðxjÞ
� �

is the Gram

matrix, kðxi; xjÞ is the kernel function that satisfies the

Mercer condition, y ¼ y1; y2; . . .; ynð ÞT , and

1n�1 ¼ 1; 1; . . .; 1ð ÞT . The matrix K þ c�1I is a symmetric

positive definite matrix, since matrix K 2 Rn�n is a positive

semi-definite matrix and c is always positive, the diagonal

of c�1I is positive.

If A is the coefficient matrix of (4), then the matrix

A 2 Rðnþ1Þ�ðnþ1Þ. When the sample T ¼ ðxi; yiÞf gni¼1 is

large, the dimension of the matrix A is large and storage is

difficult. At this time, it is not particularly easy to solve the

linear equation system (4). Moreover, the complexity of

computing the inverse matrix A is as high as Oðn3Þ. Hence,
we need to combine the feature of the LS-SVM to find

some more efficient methods to solve the large-scale linear

system (4) or optimization problem (1).

3 Related works of the LS-SVM solution

This section will briefly introduce several mainstream

algorithms for the fast training of the LS-SVM.

3.1 Conjugate gradient

The conjugate gradient (CG) is an important method for

solving large-scale linear equations. But this method

requires the coefficient matrix to be symmetric and positive

definite. However, the matrix A in (4) is a non-positive

matrix. Hence, the CG method cannot be used directly to

solve the problem. Based on this, Suykens et al. [10] pre-

sented a linear system with the same solution as the linear

system (4), that is

yTK�1y 0

0 K

 !
b

aþ K�1yb

 !
¼

yTK�11

1

 !
; ð5Þ

where K :¼ K þ c�1IðK ¼ KT�0Þ. Hence, solving the

linear equations (4) is transformed into the solving linear

equations (5). This method makes full of use of the prop-

erties of the symmetric matrix A. The detailed steps for

training LS-SVM using the CG method are summarized in

Algorithm 1.

Table 1 Notation table
Notation Instruction Notation Instruction

x Weight vector n Error variable

c Penalty parameter / Kernel mapping

b Bias a; m Lagrangian multiplier

GðaÞ The gradient of DðaÞ K; eK Kernel matrix

I Identity matrix n Sample size

X;H Space q Step length

� Tolerance parameter s Conjugate direction

h Search direction of the SMO T Dataset

xi Input pattern vector yi Category label

i; jð Þ Working set r Kernel width
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Note that, the method of Suykens [10] needs to use the

twice CG to solve the linear equations (5), which increase

the amount of arithmetic. Chu [11] proposed a novel

computation method based on the characteristics of the

block matrix K þ c�1I ¼ Q q
qT Qnn

� �
: Here,

Q 2 Rðn�1Þ�ðn�1Þ, Qnn 2 R and q 2 Rn�1. This method not

only reduces the order of the linear equations (4) but also

calls the CG once. This greatly reduces the amount of

arithmetic. Specifically, the CG is first used to solve

the linear system

eQea ¼ ey � yn1n�1: ð6Þ

Then, the optimal solution is obtained according to the

a� ¼ ea�
�1Tn�1ea

�

� �
and b� ¼ yn þ Qnnð1Tn�1ea

�Þ � qTea�,

where eQ ¼ Q� 1n�1q
T � q1Tn�1 þ Qnn1n�11

T
n�1 and

ey ¼ y1; y2; � � � ; yn�1ð ÞT . The detailed steps for training the

LS-SVM using improved CG (ICG) method are summa-

rized in Algorithm 2

3.2 First-order SMO

The CG method starts from the primal problem to obtain

the optimal solution of problem (1). However, solving the

dual problem of (1) can also get the optimal solution

according to the duality theory. The sequential minimal

optimization (SMO) is an algorithm designed for the dual

problem of (1). To satisfy the constraints of the dual

problem, the SMO algorithm only selects two variables for

optimization during each iteration. Compared with CG,

SMO is simpler to implement and can deal with large-scale

datasets. In some cases, the performance of SMO may be

better than CG.

According to the Wolf duality theory, the dual problem

of (1) is

min
a

DðaÞ ¼ 1

2

Xn

i¼1

Xn

j¼1

aiaj½eK �ij �
Xn

i¼1

aiyi

s:t:
Xn

i¼1

ai ¼ 0;

ð7Þ

where ½eK �ij ¼ ½K�ij þ dij=c ¼ k xi; xj
� �

þ dij=c and dij ¼ 1 if

i ¼ j and 0 otherwise. Obviously, dual problem (7) is a

simple convex optimization problem with a equality con-

straint. The Lagrangian function of (7) is

LDða; mÞ ¼
1

2

Xn

i¼1

Xn

j¼1

aiaj½eK �ij �
Xn

i¼1

aiyi þ m
Xn

i¼1

ai; ð8Þ

where m is Lagrangian multiplier. It follows from the KKT

condition of (7) that

$aiLDða; mÞ ¼ $aiDðaÞ þ m ¼ 0; 8i; ð9Þ

where $aiDðaÞ ¼
Pn

j¼1 aj½eK �ij � yi ¼ Gi að Þ; 8i. Note that,

when max
i
ðGi að ÞÞ ¼ min

i
ðGi að ÞÞ holds and

Pn
i¼1 ai ¼ 0,

then a is the optimal solution of the dual problem (7). In

actual computation, the strict KKT conditions are generally

not used, but a small positive number � is set in advance so

that

Algorithm 1 CG for solving LS-SVM [10]
Input: training data T , stopping criterion ε;
Output: dual variable α∗, bias term b∗;
1: Compute the matrix Λ according to the kernel matrix K;
2: Solve the linear equations Λη = y and Λϑ = 1 using the CG method;
3: Get the variable μ according to μ = yT η;
4: Compute bias term b∗ = ηT 1/μ and dual variable α∗ = ϑ − b∗η;

Algorithm 2 ICG for solving LS-SVM [11]
Input: training data T , stopping criterion ε;
Output: dual variable α∗, bias term b∗;
1: Compute the matrix Q̃;
2: Solve the linear equations (6) using the CG method;
3: Compute dual variable; α∗ =

(
α̃∗

−1T
n−1α̃∗

)
;

4: Compute the bias term b∗ = yn + Qnn(1T
n−1α

∗) − qT α∗;
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max
i

Gi að Þð Þ �min
i

Gi að Þð Þ
� 	

	 � ð10Þ

is established. This method has also been adopted by the

LIBSVM [31] and SVM Light [32]. Let ðaki ; akj Þ be the

variable pair selected in the k-th iteration. Since the

equation constraint
Pn

i¼1 ai ¼ 0 must be satisfied, the

update of ðaki ; akj Þ needs to satisfy

akþ1
i (¼ aki þ Dak

akþ1
j (¼ akj � Dak

akþ1
‘ (¼ ak‘ ; 8‘ 6¼ i; j:

ð11Þ

Dak is the amount of variation for aki and akj . If the func-

tional gain is denoted by fG Dak
� �

, we have

fG Dak
� �

¼D ak
� �

�D akþ1
� �

¼ 1

2
akÞ
� T eKak � yTak � 1

2
akþ1Þ
� T eKakþ1 þ yTakþ1

¼� 1

2

�Dak

Dak

� �T eK
h i

ii

eK
h i

ij

eK
h i

ji

eK
h i

jj

0
B@

1
CA

�Dak

Dak

� �

þ
Gi a

k
� �

Gj a
k

� �
 !T

�Dak

Dak

� �
: ð12Þ

fG is the quadratic function of Dak. Let f 0GðDakÞ ¼ 0, then

we have

Dak ¼
Gj a

k
� �

� Gi a
k

� �

eK
h i

ii
þ eK
h i

jj
� eK
h i

ij
� eK
h i

ji

: ð13Þ

Substituting Dak into (12) yields the functional gain

fG Dak
� �

¼
Gj a

k
� �

� Gi a
k

� �� �2

2 eK
h i

ii
þ eK
h i

jj
� eK
h i

ij
� eK
h i

ji

� � : ð14Þ

Obviously, working set (i, j) needs to be selected to max-

imize fG Dak
� �

, namely

ði; jÞ ¼ argmin
m;‘

Gl a
k

� �
� Gm ak

� �� �2

2 eK
h i

mm
þ eK
h i

ll
� eK
h i

ml
� eK
h i

lm


 �

8
<

:

9
=

;

ð15Þ

In the first-order SMO algorithm, Keerthi [14] neglected

the denominator of fG Dak
� �

and only consider the numer-

ator to reach the maximum, namely

ði; jÞ ¼ argmin
m;‘

Gm ak
� �

� G‘ ak
� �� �2n o

: ð16Þ

Obviously, the selecting method of working set (i, j) is

equivalent to

i ¼ argmin
‘

G‘ ak
� �

; j ¼ argmax
m

Gm ak
� �

: ð17Þ

At this time, working set (i, j) is also called the MVP. The

first-order SMO proposed by Keerthi [14] uses the dual gap

as the stopping condition. However, we uniformly use (10)

as the stopping condition. The detailed computation pro-

cess of the first-order SMO is summarized in Algorithm 3.

Here, G ak
� �

¼ G1 ak
� �

;G2 ak
� �

; � � � ;Gn ak
� �� �T

denotes the

gradient of D að Þ at the k-th iteration.

3.3 Second-order SMO

In LIBSVM [31], the SVMs model is trained using the

second-order version of the SMO algorithm. Generally, the

efficiency of the second-order SMO algorithm is higher

than that of the first-order SMO algorithm [15]. Hence,

López [16] extended the second-order SMO algorithm of

the SVMs to the LS-SVM to improve the training effi-

ciency of the LS-SVM.

Since the first-order SMO algorithm ignores the

denominator of fG Dak
� �

, the working set (i, j) selected with

Algorithm 3 First order SMO [14]
Input: training data T , stopping criterion ε;
Output: dual variable α∗;
1: initialize α0 = 0, G α0

)
= −y and k = 0;

2: while Stop condition (10) not met do
3: Select the working (i, j) according to (17);
4: Compute Δαk with (13);
5: Updata dual variable αk+1 with (11);
6: Updata gradient G αk

)
;

7: let k ← k + 1 and go back to step 2;
8: end while
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the MVP may not maximize fG Dak
� �

. Based on this, the

second-order SMO algorithm of LS-SVM takes the

denominator of fG Dak
� �

into consideration when selecting

the working set (i, j). However, note that, in order to find

the optimal working set (i, j), it is necessary to traverse

(15) to find the working set (i, j) corresponding to the

maximum value, and the complexity is Oðn2Þ. When the

sample size n is large, this is unacceptable. Fan [15] and

López [16] used a compromise method. This method first

uses the first-order SMO to find the coordinate i and then

traverses (15) to find the coordinate j corresponding to the

maximum value, namely

i ¼ argmin
‘

G‘ ak
� �

;

j ¼ argmax
‘ 6¼i

G‘ ak
� �

� Gi a
k

� �� �2

2 eK
h i

ii
þ eK
h i

‘‘
� eK
h i

i‘
� eK
h i

‘i


 �

8
><

>:

9
>=

>;
:

ð18Þ

Although the second-order SMO algorithm increases some

kernel operations, the functional gain of the dual function

is greater than that of the first-order SMO algorithm in each

iteration. Fan [15] and López’s [16] numerical experiments

have shown that the efficiency of the second-order SMO is

generally higher than that of the first-order SMO. But when

the penalty parameter c 
 0, the kernel parameter r 
 0

and r � 0 of the RBF, the second-order SMO is almost

equivalent to the first-order SMO [16]. Replacing the

working set selection method of step 3 in Algorithm 3 with

(18) is the computation process of the second-order SMO

algorithm.

3.4 Functional gain SMO

The coordinate index corresponding to the minimum value

of the gradient G að Þ is the selected i in the second-order

SMO algorithm. There may be a problem with this selec-

tion method, namely, Gi að Þ may not be the most obvious

gradient component that violates the KKT condition,

namely, there may be a î that makes j Gi að Þj 	 Gî að Þ.
Hence, Bo [18] used functional gain to select the working

set (i, j). Specifically, the selection of index i is the coor-

dinate index corresponding to the maximum value of

jG að Þj, and the selection method of index j is consistent

with the second-order SMO, namely

i ¼ argmax
‘

G‘ ak
� ��� ��;

j ¼ argmax
‘ 6¼i

G‘ ak
� �

� Gi a
k

� �� �2

2 eK
h i

ii
þ eK
h i

‘‘
� eK
h i

i‘
� eK
h i

‘i


 �

8
><

>:

9
>=

>;
:

ð19Þ

This selection method was called FGWSS (functional gain

working selection strategy). Obviously, the method of

selecting the working set (i, j) by the second-order SMO is

only a special case of the FGWSS method. Because i ¼
argmin‘ G‘ ak

� �� �
or i ¼ argmin‘ �G‘ ak

� �� �
¼ argmax‘

G‘ ak
� �� �

. In the case of the same gradient G að Þ, using the

working set (i, j) selected by FGWSS can always ensure

that the variation in the dual function is greater than or

equal to the MVP method. However, second-order SMO

may not have this property. The computation process of the

functional gain SMO algorithm is not significantly differ-

ent from that of the second-order SMO algorithm. It only

needs to replace the working set selection method in

Algorithm 3 with (19), and the rest of the computation

steps are exactly the same.

4 The proposed conjugate functional gain
SMO

The only difference between the three SMO algorithms

described above is the way in which the working set is

selected. The unified iteration format of the SMO algorithm

is akþ1 ¼ ak þ qkh
k
ij, where h

k
ij ¼ eki � ekj is the direction of

the k-th iteration of the SMO algorithm, qk is the step

length parameter, and (i, j) is the working set. Next, we

will use a conjugate direction sk to replace the direction hkij.

Consider iterative format

akþ1 ¼ ak þ qksk

sk ¼ hkij þ rksk�1;
ð20Þ

where the direction hkij is determined by FGWSS, and rk is

the conjugate parameter. Because akþ1 must satisfy the

equality constraint, namely

Xn

i¼1

akþ1
i ¼

Xn

i¼1

aki þ qk
Xn

i¼1

sik ¼
Xn

i¼1

aki þ qkrk
Xn

i¼1

sik�1 ¼ 0:

ð21Þ

Hence, if
Pn

i¼1 s
i
k�1 ¼ 0 holds, then (21) naturally holds.

By the line search criterion, let u qkð Þ ¼ D ak þ qksk
� �

,

then according to u0 qkð Þ ¼ qks
T
k
eKsk þ sTkG ak

� �
¼ 0, we

can obtain the optimal step length parameter

q�k ¼ �
sTkG ak

� �

sTk
eKsk

¼
� hkij þ rksk�1


 �T
G ak
� �

sTk
eKsk

¼
�G ak
� �T

hkij � rks
T
k�1G ak

� �

sTk
eKsk

ð22Þ

Note that, sTkG akþ1
� �

¼ 0. Hence, (22) can be further

simplified as q�k ¼ �G ak
� �T

hkij= sTk
eK sk. Since the inner

product of the direction sk and the gradient G ak
� �

satisfies
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sTkG ak
� �

¼ G ak
� �T

hkij\0, the direction sk is a descent

direction. At this time, the functional gain is

fG Dak
� �

¼D ak
� �

�D akþ1
� �

¼� 1

2
q2sTk eKsk � qsTk eKak � y


 �
:

ð23Þ

Substitute q�k ¼ �G ak
� �T

hkij=s
T
k
eKsk and sTk�1G ak

� �
¼ 0

into (23) to get

fG Dak
� �

¼ D ak
� �

�D akþ1
� �

¼ 1

2

G ak
� �T

hkij


 �2

sTk
eKsk

; ð24Þ

where

wðrÞ ¼ sTk
eKsk ¼ hkij þ rsk�1


 �T eK hkij þ rsk�1


 �
:

Because there is a parameter r in the denominator wðrÞ,
fG Dak
� �

can be further maximized. Let

w0ðrÞ ¼ 2 sTk
eKhkij þ rsk�1

eK sk�1


 �
¼ 0, we have

r�¼ �
sTk�1

eKhkij

sTk�1
eKsk�1

: ð25Þ

Notice that substituting (25) into (20) yields

sTk�1
eKsk�1 ¼sTk�1

eKhkij þ rks
T
k�1
eKsk�1

¼sTk�1
eKhkij �

sTk�1
eKhkij

sTk�1
eKsk�1

sTk�1
eKsk�1 ¼ 0:

ð26Þ

Because eK is symmetric and positive definite, sk is conjugate

with sk�1. The above computation process is the conjugate

functional gain SMO (CFGSMO) algorithm of LS-SVM.

Algorithm 4 is the CFGSMO, and Fig. 1 shows its flowchart.

CFGSMO is an extension of the conjugate SMO

(CSMO) [28] for solving SVMs. The dual problem of

SVMs has a box constraint 0	 ai 	C; 8i, which indicates

that the dual decision variable a is confined within an

interval. Whether it is the plain SMO or the CSMO, when a

exceeds the box constraint, it is necessary to strictly limit a

within the interval determined by the box constraint

Fig. 1 The flowchart of CFGSMO for solving LS-SVM

Algorithm 4 Conjugate functional gain SMO
Input: training data T , stopping criterion ε;
Output: dual variable α∗;
1: initialize α0 = 0, G α0

)
= 0, s0 = t0 = 0, τ0 = 1 and k = 0;

2: while Stop condition (10) not met do
3: k ← k + 1;
4: Select working set (ik, jk) according to (19);
5: Compute the kernel matrix elements ˜[K]:,ik and ˜[K]:,jk ;
6: rk ← tk−1

ik
− tk−1

jk

)
/τk−1;

7: sk ← hk + rksk−1;
8: tk ← ˜[K]:,jk − ˜[K]:,ik + rktk−1;
9: τk ← tkjk − tkik ;

10: Compute ρk ← Gik αk
) − Gjk αk

))
/τk;

11: Updata dual variable αk ← αk−1 + ρksk;
12: Updata gradient G αk

) ← G αk−1
)

+ ρktk;
13: end while
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through the clipping operation. Not only that, when a are

clipped, the CSMO also needs to restart the entire algo-

rithm with the plain SMO. However, the dual problem of

LS-SVM does not contain box constraints. This means that

the CFGSMO is not affected by the boundary caused by the

box constraint, so it does not need to clip the dual decision

variables a, and it does not have the restart step of the

CSMO. Hence, the CFGSMO algorithm will be simpler.

5 Convergence

The first-order SMO, second-order SMO, and FGSMO

algorithms are proven to converge. Naturally, whether the

CFGSMO algorithm used to train the LS-SVM converges

to an optimal solution or not should also be discussed.

Hence, this section briefly discusses the convergence of

CFGSMO algorithm.

5.1 Asymptotic

Next, we will illustrate this problem through several lem-

mas and a theorem. Lemma 5.1 is only an extension of the

conclusion in [28].

Lemma 5.1 In the process of using the CFGSMO algo-

rithm to train the LS-SVM model, the functional gain

fGðDaÞCF of the CFGSMO is always greater than the

functional gain fGðDaÞF of the FGSMO algorithm.

Proof Suppose that in the k-th iteration, the working set

selected by the FGSMO algorithm is (i, j), so aki ; a
k
j


 �
is

the variable selected in the k-th iteration. At this time, the

functional gain is

fG Dað ÞF¼
Gj ak
� �

� Gi a
k

� �� �2

2 eK
h i

ii
þ eK
h i

jj
� eK
h i

ij
� eK
h i

ji

� � ¼ 1

2

G ak
� �T

hkij


 �2

hkij


 �T eKhkij

;

ð27Þ

where hkij is a descent direction of FGSMO algorithm in the

k-th iteration. And because of

sTk
eKsk ¼ hkij


 �T eKhkij �
sTk�1

eKhkij


 �2

sTk�1
eKsk�1

¼ hkij









2

eK 1�
sTk�1

eKhkij


 �2

hkij









2

eK sk�1k k2eK

0

B@

1

CA;

ð28Þ

where hkij









2

eK¼ hkij


 �T eKhkij. From (23), the functional gain

of the CFGSMO algorithm can be further expressed as

fG Dak
� �

CF
¼ 1

2

G ak
� �T

hkij


 �2

sTk
eKsk

¼ 1

2

G ak
� �T

hkij


 �2

hkij









2

eK 1� sT
k�1
eKhkij

� �2

hkijk k2

eK sk�1k k2eK

 ! :

ð29Þ

Since sTk�1
eKhkij 	 hkij








eK sk�1k keK holds, we can therefore

obtain fGðDaÞF 	 fGðDaÞCF . h

Lemma 5.2 For the CFGSMO algorithm, when k� 1, the

functional gain of any two adjacent iterations of the dual

function satisfies

fGðDakÞCF �
ak � akþ1


 

2

2c
: ð30Þ

Proof Suppose that the working set selected by the MVP

is (i, j), and the working set selected by the FGWSS is

ðiF ; jFÞ. By the Lemma 5.1, it follows that

fG Dað ÞF¼
Gj a

k
� �

� Gi a
k

� �� �2
2 eK
h i

ii
þ eK
h i

jj
� eK
h i

ij
� eK
h i

ji

� �
¼ 1

2

G ak
� �T

hkij


 �2

hkij


 �T eKh
k

ij

	
GjF ak
� �

� GiF ak
� �� �2

2 eK
h i

iF iF
þ eK
h i

jF jF
� eK
h i

iF jF
� eK
h i

jF iF

� �

¼ 1

2

G ak
� �T

hkiFjF


 �2

hkiF jF


 �T eKh
k

iFjF

	 1

2

G ak
� �T

hkiFjF


 �2

sTk
eKsk

¼ fG ak
� �

CF
:

ð31Þ
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As fGðDakÞF �
akþ1�akk k2

2c holds, we can therefore obtain

fGðDakÞCF ¼ 1

2

G ak
� �T

hkiF ;jF


 �2

sTk
eKsk

�
akþ1 � ak


 

2

2c
: ð32Þ

h

Lemma 5.3 The dual function DðaÞ has a lower bound

�2
P

y2i =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kminðeKÞ

q
, where kminðeKÞ[ 0 denotes the

smallest eigenvalue of the matrix eK .

Proof Obviously, the dual function satisfies inequality

D að Þ ¼ 1

2

Xn

i¼1

Xn

j¼1

aiaj eK
h i

ij
�
Xn

i¼1

aiyi � �
Xn

i¼1

aiyi: ð33Þ

By the Cauchy inequality, we can get

Xn

i¼1

yiai 	
ffiffiffiffiffiffiffiffiffiffiffiffi
Xn

i¼1

y2i

s ffiffiffiffiffiffiffiffiffiffiffiffiffi
Xn

i¼1

a2i

s
: ð34Þ

Because kminðeKÞaTa	 aT eKa holds, so we have
ffiffiffiffiffiffiffiffiffiffiffiffiP

i a
2
i

p
¼

ffiffiffiffiffiffiffiffi
aTa

p
	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aT eKa=kminðeKÞ

q
and

P
i aiyi 	

ffiffiffiffiffiffiffiffiffiffiffiffiP
i y

2
i

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aT eKa=kminðeKÞ

q
. Note that, 0 is a fea-

sible solution of dual problem (7), it follows that

1

2
aT eKa	

X

i

aiyi 	
ffiffiffiffiffiffiffiffiffiffiffiffiX

i

y2i

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aT eKa=kminðeKÞ

q
: ð35Þ

According to (35),
ffiffiffiffiffiffiffiffiffiffiffiffi
aT eKa

p
	 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
i y

2
i =kminðeKÞ

q
can be

derived. Hence,
P

i aiyi 	 2
P

i y
2
i =kminðeKÞ. To sum up,

DðaÞ� � 2
P

i y
2
i =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kminðeKÞ

q
is true, as desired. h

Theorem 5.1 The sequence ak
� �

generated by the

CFGSMO algorithm converges to the global optimal

solution a� of the dual problem (7).

Proof It is known from Lemma 5.2 that the dual function

DðaÞ is strictly decreasing in the whole iteration process,

because the change GðaÞThiF jF 6¼ 0. According to the

Lemma 5.3, fGðDakÞCF converges to 0. It follows that the

sequence akþ1 � ak
� �

also converges to 0. Because the

matrix eK is a symmetric positive definite matrix, the dual

function DðaÞ is strictly convex, there is a unique global

optimal solution a�, and ak
� �

� at j D atð Þ	D a0ð Þ
� �

is a

compact set. Hence, ak
� �

has a subsequence aks
� �

with â

as the limit point. Note that, dual variable a 2 Rn. So there

are at most n2 options for working set ðiF ; jFÞ. Hence, there
must be an infinite number of times a working set is

selected. Without loss of generality, suppose the working

set is ðiF ; jFÞ. Consider the limit

GiF âð Þ � GjF âð Þ ¼ lim
ks!1

GiF aks
� �

� GjF aks
� �� �

¼ lim
ks!1

A ksð Þ þ B ksð Þ þ C ksð Þð Þ;
ð36Þ

where A ksð Þ ¼ GiF aks
� �

� GiF aksþ1
� �

, B ksð Þ ¼ GiF aksþ1
� �

� GjF aksþ1
� �

and C ksð Þ ¼ GjF aksþ1
� �

� GjF aks
� �

. Because

akþ1 � ak
� �

converges to 0, both AðksÞ and CðksÞ converge
to 0 when ks? 1. Obviously, BðksÞ ¼ 0 always holds. It

follows that GiF âð Þ � GjF âð Þ ¼ 0. Recalling the selection

method of working set ðiF; jFÞ, we consider another limit

Gi âð Þ � Gj âð Þ
� �2¼ lim

ks!1
Gi a

ks
� �

� Gj a
ks

� �� �� �2

; 8i; j:

ð37Þ

Furthermore, by the conclusion of Lemma 5.1 and the

proof process of Lemma 5.2, we have

Gi âð Þ � Gj âð Þ
� �2 ¼ lim

ks!1
Gi a

ks
� �

� Gj a
ks

� �� �� �2

	
hTij
eKhij

sTk
eKsk

lim
ks!1

GiF aks
� �

� GjF aks
� �� �� �2

¼
hTij
eKhij

sTk
eKsk

GiF âð Þ � GjF âð Þ
� �2¼ 0; 8i; j:

ð38Þ

According to (38), we can obtain the Gi âð Þ ¼ Gj âð Þ; 8i 6¼ j.

This implies that the KKT condition holds and the limit

point â is a global optimal solution of DðaÞ. Since the dual
function DðaÞ is strictly convex, there is a unique global

optimal solution. It follows that â ¼ a�. h

6 Numerical experiment

The main content of this section is to test the performance

of the proposed CFGSMO algorithm. Algorithms used for

comparison include first-order SMO (abbreviated as

SMO1), second-order SMO (abbreviated as SMO2),

FGSMO, CG, and ICG. The kernel function is RBF (Radial

basis function), namely k xi; xj
� �

¼ � xi � xj


 

2

2
=2r2


 �
,

where r is the kernel width. To compare the efficiency of

the algorithms as much as possible, the kernel width r is

not set to an optimal value, but to a set of grid values.

Specifically, the value of the kernel width r is

2i �5; � � � � 1; 0; 1; � � � 5ð Þ, a total of 11 different kernel

widths. The stopping condition � is uniformly set to 0.001

[18], and the penalty coefficient c is 2i i ¼ �1; 0; 1; :::12ð Þ,
respectively. All algorithms are implemented using

MATLAB R2020a and executed on a personal computer

Neural Computing and Applications (2023) 35:6095–6113 6103

123



with 64 G memory, Inter Rð Þ Xeon Rð Þ W-2123 3.6GHz

processor and operating system Ubuntu 20.04.

6.1 Benchmarking datasets

Twenty regression benchmark datasets and twenty classi-

fication benchmark datasets in Table 2 are used to test the

efficiency of these six algorithms. Among them, except the

regression datasets ailerons, cal_housing, bank32, kin8nm,

cpu_act, puma32H, puma8NH, delta_ailerons and pol are

from LIACC,1 the rest of the datasets are taken from the

LIBSVM Data.2

For the regression datasets in Table 2, all are normalized

to interval �1; 1½ �. The benchmark datasets a4a, a5a, a6a

and a7a, as well as w2a, w3a, w4a and w7a are also used to

observe the variation in the number of iterations with the

benchmark datasets size.

6.2 Execution time comparison

Next, we will compare the execution time of the SMO1,

SMO2, FGSMO, CG, ICG and CFGSMO on regression

and classification datasets. Tables 3, 4, 5 and 6 record the

total execution time of the six algorithms under 11 different

kernel widths r. Table 3 is the execution time comparison

of regression datasets ailerons, cal_housing, cart_delve

and pol. Tables 4, 5 and 6 show the execution time com-

parison for the binary datasets a4a, a5a, a6a, a7a, a8a,

a9a, w1a, w2a, w3a, w4a, w7a and svmguide1.

For the regression datasets ailerons, cal_housing,

cart_delve and pol, the total execution time of CG and ICG

methods is significantly more than that of SMO-type

algorithms. In particular, the CG method is significantly

less efficient than other algorithms. Although the efficiency

of the CG-type method is higher than that of SMO1 when

the penalty coefficient c is large, it is still lower than other

SMO-type algorithms. From the total execution time in

Table 3, it can be seen that the larger the scale of the

datasets, the lower the efficiency of the CG-type method

and the higher the efficiency of the SMO-type algorithms.

Hence, using the SMO-type algorithms to train the LS-

SVM is more efficient than the CG-type method when

dealing with large-scale datasets. The SMO-type algo-

rithms are more suitable for the LS-SVM learning task of

large-scale datasets. In addition, there are also obvious

differences between SMO-type algorithms. Note that, when

the penalty coefficient c is small, the total execution time of

SMO1 is significantly less than other SMO-type algo-

rithms. However, when the penalty coefficient c is gradu-

ally increased, the total execution time of SMO1 is

gradually more than other SMO-type algorithms. This

shows that the SMO1 is not efficient in the face of a large

penalty coefficient c. At the same time, the efficiency of the

SMO2 is gradually improved. However, when the penalty

coefficient c increases to a certain extent, the execution

time of SMO2 is gradually longer than that of the

CFGSMO. This shows that the CFGSMO is significantly

more efficient than other SMO algorithms when faced with

a larger penalty coefficient c. Moreover, in other cases, the

total execution time of CFGSMO is not significantly dif-

ferent from other SMO-type algorithms.

For the 12 binary classification datasets a4a, a5a, a6a,

a7a, a8a, a9a, w1a, w2a, w3a, w4a, w7a and svmguide1 in

Table 2, their kernel matrices are usually sparse. We know

that SMO-type algorithms are very efficient when dealing

with sparse matrices. Hence, when dealing with classifi-

cation tasks, the learning efficiency of the LS-SVM model

Table 2 Basic information about the datasets

Regression Regression Classification Classification

Dataset Size Dim Dataset Size Dim Dataset Size Dim Dataset Size Dim

mg 1385 7 housing 506 14 a1a 1605 123 w2a 3470 300

mpg 392 8 puma8NH 8192 9 a2a 2265 123 w3a 4912 300

pol 15,000 50 ailerons 7154 42 a3a 3185 123 w4a 7366 300

pyrim 74 28 bodyfat 252 15 a4a 4781 123 w7a 24,692 300

bank32 8192 34 cpusmall 8192 13 a5a 6414 123 heart 270 13

kin8nm 8192 9 space_ga 3107 7 a6a 11220 123 australian 690 14

cadata 17,887 9 triazines 186 61 a7a 16100 123 svmguide1 3089 4

cpu_act 8192 23 eunite2001 336 17 a8a 22696 123 svmguide3 1243 21

abalone 4177 9 cal_housing 20640 10 a9a 32561 123 fourclass 862 2

puma32H 8192 33 delta_ailerons 7129 6 w1a 2477 300 breast_cancer 683 10

1 https://www.dcc.fc.up.pt/*ltorgo/Regression/DataSets.html.
2 https://www.csie.ntu.edu.tw/*cjlin/libsvmtools/datasets/.
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using the SMO-type algorithms is usually higher than that

of the CG-type algorithms. The total execution times in

Tables 4– 6 confirm this conclusion. As with the regression

datasets, when the penalty coefficient c is small, the total

execution time of the SMO1 is slightly less than that of the

SMO2, FGSMO and CFGSMO and significantly less than

that of the CG and ICG algorithms. Therefore, when c is

small, it is efficient to use SMO1 to solve the LS-SVM. But

when c is large, the first-order SMO is no longer suit-

able for training the LS-SVM. At this time, the efficiency

of the SMO algorithm using the second-order information

is significantly higher than that of the first-order SMO.

Although the SMO2, FGSMO and CFGSMO algorithms all

use second-order information, from the numerical results in

Tables 4–6, the CFGSMO algorithm is obviously more

suitable for the case where the penalty coefficient c is large.
Hence, when the penalty coefficient c is large, using the

CFGSMO algorithm to train the LS-SVM will be faster and

more efficient. Similarly, when dealing with large-scale

binary datasets, SMO-type algorithms also have advan-

tages over CG-type algorithms. This shows that SMO-type

algorithms are usually more efficient than CG-type algo-

rithms for both classification and regression tasks. In

addition, in the SMO-type algorithms, the CFGSMO

algorithm will have more competitive advantages.

6.3 Comparison of iterative processes

Lemma 5.1 points out that the functional gain of each

iteration of the CFGSMO is greater than that of the

Table 3 The total execution time of the SMO1, SMO2, FGSMO, CG, ICG and CFGSMO algorithms on the regression benchmark datasets

ailerons, cal_housing, cadata and pol (Units: seconds). Boldface is used to highlight the shortest time, similarly hereinafter

ailerons cal_housing

log2c SMO1 SMO2 FGSMO CG ICG CFGSMO SMO1 SMO2 FGSMO CG ICG CFGSMO

- 1 5.26 11.45 12.64 35.84 37.51 17.27 13.54 27.69 30.69 100.22 94.12 42.34

0 6.27 12.41 13.56 48.09 44.17 18.22 16.96 28.62 31.50 130.76 112.17 43.14

1 8.22 14.20 15.65 63.10 52.37 19.99 23.73 30.89 33.83 173.60 137.16 45.26

2 11.81 17.74 19.28 84.87 64.93 23.27 36.56 34.79 38.26 230.39 173.50 49.42

3 18.17 22.84 25.06 112.54 81.29 28.77 61.32 41.85 46.39 311.15 224.46 56.29

4 30.68 31.46 34.67 152.12 103.34 37.98 110.98 55.11 60.26 419.19 291.71 69.77

5 53.58 45.72 50.22 208.49 137.98 52.22 207.55 79.42 87.67 579.65 391.74 94.04

6 96.04 69.39 76.66 284.61 186.14 75.97 396.71 124.83 136.93 796.75 536.63 137.14

7 173.43 109.72 121.12 401.90 257.51 114.61 779.53 211.50 231.94 1091.08 739.38 217.93

8 315.71 178.78 197.39 562.20 362.14 178.63 1525.40 371.43 407.74 1543.86 1034.72 362.78

9 580.29 297.74 328.53 785.93 515.90 285.66 2976.40 668.82 731.13 2174.78 1465.88 632.45

10 1061.32 501.39 552.14 1107.23 727.08 466.19 5821.66 1221.41 1345.80 3050.19 2076.08 1127.69

11 1938.31 851.41 943.71 1591.40 1033.15 773.63 11422.21 2251.12 2469.47 4289.49 2982.97 2049.17

12 3551.46 1466.08 1619.64 2233.46 1470.27 1294.09 2,2350.54 4149.63 4557.02 6149.46 4257.50 3753.15

cadata pol

- 1 10.85 22.43 24.59 66.97 67.74 34.41 7.88 16.98 18.75 53.40 51.51 26.15

0 13.40 22.73 24.94 86.87 78.88 34.82 9.16 17.75 19.37 70.21 61.52 26.68

1 17.81 24.01 26.48 113.15 97.70 36.12 11.81 18.97 20.90 92.04 75.09 27.87

2 26.36 26.33 28.87 150.60 119.53 38.18 17.16 21.59 23.60 123.09 93.02 30.41

3 43.63 30.15 32.98 199.23 149.90 42.38 27.22 26.55 29.04 167.30 119.55 34.90

4 78.03 37.87 41.58 268.99 197.51 50.26 45.63 35.70 39.22 229.93 158.44 42.86

5 146.52 52.03 56.35 363.72 264.36 63.79 81.44 51.61 56.68 315.91 212.96 57.18

6 284.63 76.72 83.86 502.04 350.87 87.82 149.56 80.13 87.85 436.41 295.01 81.93

7 556.95 125.24 138.89 683.06 485.04 133.32 281.70 129.44 140.58 612.26 414.12 124.37

8 1098.88 219.77 239.74 953.58 684.58 216.67 526.39 213.70 233.17 863.17 583.13 198.54

9 2158.33 396.83 438.23 1320.89 971.32 378.14 984.82 362.37 394.76 1222.95 823.54 328.43

10 4279.72 729.77 804.46 1878.30 1340.62 675.33 1853.03 624.76 683.70 1691.76 1171.89 553.22

11 8406.90 1370.17 1506.00 2644.40 1967.38 1236.31 3471.34 1084.68 1186.06 2439.46 1680.71 955.79

12 16550.26 2599.86 2860.40 3721.15 2773.77 2345.83 6467.86 1895.67 2076.84 3475.46 2451.36 1666.51
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FGSMO. Naturally, it is also larger than other SMO-type

algorithms. Because the functional gain of the SMO2 is

greater than that of the SMO1. And SMO2 is a special case

of FGSMO, which naturally satisfies the case of Lemma

5.1. Figures 2 and 3 show the iterative process of regres-

sion dataset pol and classification dataset w1a under dif-

ferent kernel width r, respectively. Notice that, the results

in Figs. 2 and 3 are only the results of the first 2000 iter-

ations. The ‘‘Dual’’ in Figs. 2 and 3 denotes the function

value of the dual objective function (7). It can be clearly

seen from Figs. 2 and 3 that the convergence speed of the

CFGSMO algorithm is significantly faster than that of the

other three SMO algorithms. Second only to the CFGSMO

are SMO2 and FGSMO, and the slowest convergence

speed is SMO1. No matter in the regression dataset pol or

the classification dataset w1a, the functional gain of the

CFGSMO algorithm is significantly more than that of other

SMO-type algorithms. However, with the continuous

increase in the kernel width r, the gap between the four

SMO algorithms is gradually narrowed, because in the

process of gradually reducing the r, the SMO2 will grad-

ually degenerate into the form of the SMO1.

Figure 4 compares the average number of iterations for

the four SMO-type algorithms with different training set

sizes and different kernel width r. Hence, according to the

basic information of the datasets in Table 2, we selected

two groups datasets. The first group is a4a, a5a, a6a and

a7a, and the second group is w1a, w2a, w3a, w4a and w7a.

Note that, the sample sizes of both datasets do not grow

strictly linearly.

Table 4 The total execution time of the SMO1, SMO2, FGSMO, CG, ICG and CFGSMO algorithms on the classification benchmark datasets

a4a, a5a,a6a, and a7a (Units: seconds)

a4a a5a

log2c SMO1 SMO2 FGSMO CG ICG CFGSMO SMO1 SMO2 FGSMO CG ICG CFGSMO

- 1 1.35 3.04 3.27 2.27 3.83 3.96 2.23 5.02 5.35 4.61 6.76 6.74

0 1.55 3.10 3.33 2.97 4.10 4.07 2.47 5.09 5.42 5.88 7.55 6.69

1 1.83 3.47 3.62 4.05 4.73 4.32 2.95 5.64 5.99 7.41 8.72 7.26

2 2.32 3.89 4.11 5.20 5.49 4.68 3.91 6.58 6.82 9.75 10.03 7.97

3 3.28 4.61 4.83 6.51 6.50 5.35 5.27 7.55 7.99 12.24 11.96 9.14

4 4.76 5.70 6.04 8.71 8.13 6.26 7.87 9.30 10.00 15.97 14.80 10.91

5 7.27 7.34 7.82 10.91 9.71 7.74 12.32 12.00 12.91 21.13 18.36 13.22

6 11.19 9.74 10.33 14.31 11.99 9.86 19.80 16.06 17.30 27.58 23.74 16.97

7 18.08 13.36 14.03 17.95 15.11 12.97 32.20 22.26 23.98 36.20 29.92 22.13

8 29.83 18.58 19.70 22.87 19.41 17.25 53.46 31.49 33.68 46.51 38.19 30.12

9 49.32 26.12 27.93 30.54 24.84 23.32 91.59 45.08 48.05 59.46 49.12 40.64

10 84.81 36.66 38.44 39.37 31.79 30.92 158.57 64.60 69.02 77.68 64.03 55.73

11 148.33 50.99 54.34 49.64 41.55 41.48 280.72 92.03 98.26 100.10 84.53 75.88

12 264.05 70.46 74.60 65.61 56.22 55.37 509.87 129.81 138.95 127.42 108.70 103.26

a6a a7a

- 1 5.95 13.95 15.41 17.18 22.35 21.21 10.79 24.86 26.82 40.37 48.10 37.55

0 6.49 14.20 15.69 22.52 25.70 21.58 12.41 26.55 28.50 53.40 56.29 39.50

1 8.03 15.99 17.59 29.22 29.82 23.11 15.50 29.60 31.78 69.99 66.98 42.21

2 10.58 17.64 19.65 38.25 35.47 25.16 20.58 31.93 35.06 91.26 81.52 45.26

3 14.84 20.65 22.96 49.34 43.79 28.34 30.02 38.89 42.48 118.24 100.59 52.59

4 22.58 25.53 28.42 64.57 55.23 33.58 46.11 48.63 53.22 155.59 128.67 63.65

5 36.17 33.15 36.69 85.15 69.88 41.51 74.51 63.77 69.87 203.81 164.61 79.09

6 60.22 45.11 50.18 113.74 89.69 53.45 124.80 87.64 95.90 266.64 216.13 102.31

7 99.81 63.29 70.43 147.27 117.79 71.12 212.29 123.92 136.35 358.97 288.55 138.18

8 169.27 91.96 102.07 193.30 156.50 97.78 365.05 181.89 198.88 470.46 376.72 191.11

9 293.33 134.98 149.96 251.99 204.49 136.29 639.01 270.10 297.45 635.89 516.79 268.39

10 522.70 199.64 221.72 338.35 276.13 191.56 1150.24 406.70 444.41 831.40 683.26 383.34

11 946.96 294.62 329.04 437.25 367.85 269.41 2121.40 609.36 666.82 1087.84 885.29 547.41

12 1733.70 431.43 480.78 574.46 477.75 376.20 3903.18 912.49 1008.44 1425.06 1184.29 787.72

Boldface is used to highlight the shortest time
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From the results shown in Fig. 4, we can know that with

the gradual increase in the training datasets size, the

average number of iterations of the four SMO-type algo-

rithms increases approximately linearly. Among them, the

growth rate of SMO1 is the fastest, and the growth rate of

CFGSMO algorithm is the slowest. This is because, in each

iteration, the functional gain of the CFGSMO algorithm is

greater than that of the other three SMO-type algorithms.

6.4 Comparison of accuracy

In this section, we will test the accuracy of CFGSMO.

Similarly, the choice of kernel function is still RBF. The

range of c is 2�5; 2�3; � � � ; 29; 211, and the range of kernel

width r is 2�11; 2�9; � � � ; 21; 23. The evaluation criterion for
classification is

Acc ¼ Number of correctly predicted labels

total testing labels
� 100%:

ð39Þ

The mean squared error (MSE) is used to evaluate the

performance of the regression, that is

MSE ¼ 1

n

Xn

i¼1

yi � ŷið Þ2; ð40Þ

where ŷi denotes the predicted target value. Tables 7 and 8

are the result of fivefold cross-validation.

Table 5 The total execution time of the SMO1, SMO2, FGSMO, CG, ICG and CFGSMO algorithms on the classification benchmark datasets

a8a, a9a, svmguide1, and w1a (Units: seconds)

a8a a9a

log2c SMO1 SMO2 FGSMO CG ICG CFGSMO SMO1 SMO2 FGSMO CG ICG CFGSMO

- 1 20.22 46.76 50.65 88.30 100.81 69.49 38.01 88.80 95.03 211.55 218.88 130.23

0 22.91 49.55 53.20 118.40 118.86 71.93 43.70 95.86 100.71 280.98 265.10 136.22

1 28.80 54.44 59.11 154.99 142.43 78.30 55.82 106.28 110.71 373.10 318.59 146.31

2 38.91 61.40 67.04 203.13 178.41 86.11 76.39 119.75 126.58 485.14 395.66 165.18

3 57.28 71.83 78.89 264.64 222.84 97.89 113.75 142.35 151.78 641.72 503.40 188.21

4 89.12 88.10 96.77 352.53 277.50 114.82 180.77 177.47 189.59 858.86 653.03 227.39

5 146.37 115.45 126.21 462.84 366.80 144.07 301.92 233.98 248.54 1137.99 857.76 281.77

6 246.92 159.84 175.22 614.29 485.42 189.28 517.83 325.96 344.53 1512.93 1141.98 369.77

7 426.78 230.66 253.43 820.70 641.57 259.48 896.59 474.15 501.49 2013.71 1548.24 508.64

8 734.96 341.06 374.07 1073.52 857.24 358.55 1600.47 722.14 755.49 2733.10 2118.99 721.00

9 1309.10 513.50 564.49 1425.43 1135.50 515.29 2883.69 1105.86 1153.90 3706.57 2839.44 1040.62

10 2391.88 781.33 854.28 1914.71 1569.48 738.75 5329.66 1705.49 1775.86 4898.03 3764.89 1528.19

11 4412.57 1189.24 1308.61 2510.24 2068.94 1083.15 9955.06 2581.12 2719.47 6371.45 5119.19 2210.63

12 8249.48 1808.33 1985.43 3265.98 2699.80 1576.62 18716.80 3994.65 4194.80 8575.02 6931.60 3273.39

svmguide1 w1a

- 1 0.93 1.82 1.84 0.53 1.43 2.20 0.40 0.77 0.79 0.58 0.99 0.93

0 0.90 1.79 1.87 0.68 1.52 2.27 0.43 0.75 0.76 0.75 1.08 0.88

1 0.92 1.91 1.92 0.86 1.61 2.36 0.46 0.76 0.77 0.88 1.18 0.91

2 0.96 1.87 1.97 1.12 1.66 2.33 0.51 0.78 0.80 1.13 1.33 0.93

3 1.19 1.94 2.04 1.29 1.86 2.46 0.69 0.87 0.88 1.43 1.49 0.98

4 1.26 2.05 2.14 1.67 2.22 2.56 0.85 0.91 0.97 1.68 1.69 1.04

5 1.62 2.18 2.28 2.03 2.29 2.69 0.85 1.03 1.06 2.05 1.92 1.14

6 1.85 2.32 2.46 2.95 2.79 2.70 1.16 1.16 1.18 2.57 2.32 1.24

7 2.22 2.56 2.68 3.34 3.42 2.88 2.74 1.32 1.37 3.16 2.69 1.37

8 2.67 2.86 3.00 4.30 3.97 3.13 3.98 1.57 1.59 3.82 3.26 1.57

9 3.49 3.27 3.46 5.89 4.54 3.41 3.23 1.80 1.87 5.08 4.16 1.75

10 4.60 3.79 4.02 7.13 5.70 3.80 8.95 2.10 2.16 6.07 5.00 1.97

11 6.12 4.47 4.71 9.02 6.88 4.17 5.63 2.46 2.52 7.78 6.18 2.16

12 8.01 5.24 5.55 11.30 8.45 4.77 23.59 2.88 2.93 9.14 7.48 2.50

Boldface is used to highlight the shortest time
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The results in Tables 7 and 8 show that the cross-vali-

dation accuracy of SMO1, SMO2, FGSMO and CFGSMO

is not much different. Although the accuracy of CFGSMO

is sometimes lower than one of SMO1, SMO2 and

FGSMO, it is not the worst one. In Table 8, CFGSMO has

the smallest MSE on the bodyfat, delta_ailerons, mpg,

puma8NH, pyrim and triazines datasets, and the accuracy is

not bad on other datasets. In terms of the hyper-parameters,

the results of c� and r� selection for four SMO algorithms

are mostly the same, especially for the regression datasets.

Overall, the accuracy of CFGSMO is not much worse than

SMO1, SMO2 and FGSMO.

6.5 Short summary and discussion

At the k�th iteration, SMO1 and SMO2 need 2n flops

(floating point operations) to update the working set, and

the update of gradient G að Þ requires n flops, which requires

about 3n iteration costs. Different from the SMO1 and

SMO2, FGSMO needs to compute the absolute value of

gradient G að Þ when updating the working set. If

na 0	 na 	 nð Þ is used to represent the number of elements

less than 0 in the gradient G að Þ, the FGSMO update

working set requires 2nþ na flops, and the update of the

gradient G að Þ requires n flops. In total, about 3nþ na flops

are required. For CFGSMO, updating the working set

requires 2nþ na flops, and updating the gradient G að Þ

Table 6 The total execution time of the SMO1, SMO2, FGSMO, CG, ICG and CFGSMO algorithms on the classification benchmark datasets

w2a, w3a, w4a, and w7a (Units: seconds)

w2a w3a

log2c SMO1 SMO2 FGSMO CG ICG CFGSMO SMO1 SMO2 FGSMO CG ICG CFGSMO

- 1 0.80 1.57 1.65 1.30 1.92 2.08 1.29 2.97 3.14 2.92 3.94 3.84

0 0.86 1.60 1.69 1.69 2.18 2.00 1.48 3.09 3.20 3.47 4.26 3.89

1 0.95 1.69 1.72 2.07 2.34 2.04 1.64 3.11 3.28 4.32 4.98 3.97

2 1.02 1.81 1.80 2.66 2.70 2.13 1.85 3.25 3.42 5.58 5.64 4.16

3 1.36 1.86 1.95 3.22 3.13 2.23 2.36 3.53 3.75 6.85 6.88 4.41

4 1.65 2.18 2.20 4.04 3.71 2.50 2.70 3.91 4.14 8.68 8.17 4.81

5 1.79 2.32 2.40 5.15 4.42 2.63 3.30 4.36 4.64 10.86 9.63 5.28

6 3.09 2.60 2.76 6.35 5.41 2.92 5.00 5.08 5.36 14.38 11.76 5.92

7 6.34 3.02 3.14 7.83 6.49 3.32 10.77 6.02 6.18 17.41 14.58 6.64

8 7.49 3.60 3.73 9.63 8.23 3.74 15.53 7.11 7.51 22.78 17.55 7.67

9 12.74 4.23 4.45 13.03 10.51 4.27 16.87 8.66 9.06 28.73 23.35 8.77

10 20.46 5.09 5.32 15.26 13.03 4.87 36.84 10.42 10.94 36.92 29.81 10.14

11 18.22 6.00 6.31 20.21 16.05 5.54 36.65 12.51 13.10 46.39 37.52 11.75

12 16.42 7.07 7.42 24.17 19.56 6.38 40.48 15.03 15.74 56.64 48.12 13.69

w4a w7a

- 1 2.37 5.65 5.82 6.87 9.14 7.44 20.32 48.08 52.07 118.33 127.15 72.10

0 2.55 5.67 6.00 8.51 10.16 7.70 21.86 48.05 51.44 153.37 147.72 71.13

1 2.82 5.89 6.24 10.90 11.96 7.92 24.80 50.39 54.35 201.08 178.55 74.13

2 3.42 5.94 6.36 13.70 13.65 8.00 28.75 54.38 59.29 263.19 218.80 79.97

3 4.17 6.39 6.82 17.54 16.48 8.49 36.44 59.47 64.52 340.39 272.35 85.97

4 5.36 7.07 7.49 22.28 20.04 9.09 43.59 67.20 72.69 444.21 339.26 94.52

5 5.81 8.09 8.54 29.25 25.38 10.17 56.10 77.75 84.84 574.94 439.50 105.82

6 9.13 9.59 10.08 36.56 29.88 11.35 100.52 93.64 101.51 758.17 574.96 121.70

7 14.31 11.52 12.13 47.16 38.63 13.27 147.37 116.73 126.99 978.69 733.77 144.97

8 19.79 14.16 14.82 61.10 47.60 15.14 181.07 148.33 162.89 1293.99 985.21 175.18

9 22.09 17.57 18.10 77.30 60.28 17.86 245.04 190.92 209.30 1694.07 1310.89 210.94

10 49.05 21.83 22.77 100.38 78.82 21.25 387.07 252.60 274.72 2250.34 1746.16 260.26

11 46.71 27.06 28.53 127.03 99.51 25.42 516.75 331.51 357.90 2968.53 2363.92 326.27

12 93.26 33.37 34.89 161.41 128.57 29.83 798.13 432.46 464.82 3801.45 3080.61 409.29

Boldface is used to highlight the shortest time
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requires n flops. If ns and nt are used to represent the

number of nonzero elements in the vectors s and t,

respectively, then the update of the vectors s and a requires

2ns flops, and the update of the vector t requires nt flops.

Since the number of nonzero elements in the vector s is

much less than n, nt 
 n. Hence, the cost of each iteration

of CFGSMO is about 3nþ na þ 2ns þ nt 
 4nþ na. Note

that, 4n	 4nþ na 	 5n. Compared with SMO1, SMO2 and
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Fig. 4 Variation in the number

of iterations with training set

size

Table 7 Cross-validation results for hyper-parameters. c� and r� (log2-scale) denote the optimal hyper-parameters, and Acc� denotes the best

accuracy for cross-validation (classification)

Datasets SMO1 SMO2 FGSMO CFGSMO

c� r� Acc� (%) c� r� Acc� (%) c� r� Acc� (%) c� r� Acc� (%)

a1a 5 3 82.368 7 3 82.928 7 3 82.741 7 3 82.492

a2a 5 1 81.413 5 1 82.252 5 1 81.634 5 1 82.119

a3a 7 3 82.983 7 3 83.579 5 1 83.234 5 1 83.862

a4a 5 1 84.124 5 1 83.686 5 1 83.874 5 1 82.744

a5a 5 1 83.942 5 1 84.004 5 1 84.050 5 1 83.645

australian 1 - 1 86.667 1 - 1 86.377 1 3 85.797 1 - 1 87.246

breast_cancer 11 - 5 97.656 9 - 7 97.369 9 - 7 97.363 11 - 5 97.514

fourclass - 5 3 98.726 - 5 3 98.956 - 5 3 98.839 - 5 3 98.957

heart 1 1 84.074 3 - 1 85.185 5 1 84.444 7 1 84.074

w1a 5 - 1 97.618 5 - 1 97.577 5 - 1 97.336 5 - 1 97.496

w2a 7 - 1 97.349 7 - 1 97.262 7 - 1 97.205 7 - 1 97.205

w3a 5 - 1 97.252 5 - 1 97.252 5 - 1 97.272 5 - 1 97.252

w4a 5 - 1 97.122 5 - 1 97.095 5 - 1 97.108 5 - 1 97.095

svmguide1 - 3 1 94.982 - 3 1 94.723 - 3 1 94.756 - 3 1 94.755

svmguide3 1 3 83.265 1 3 83.669 1 3 83.912 1 3 83.269
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FGSMO, the cost of each iteration of CFGSMO increases

about 25% to 40% of the computation. This shows that the

advantages of CFGSMO are only evident when the total

number of iterations of CFGSMO is less than 60% to 75%

of the other three SMO algorithms.

From the numerical results in Table 3 to Table 6, it can

be seen that the SMO-type algorithm with second-order

information is more suitable for training the LS-SVM

model than the CG-type method. As the penalty parameter

increases gradually, the efficiency of SMO2, FGSMO and

CFGSMO gradually increases, while the efficiency of

SMO1 and CG-type algorithms gradually decreases. Note

that, equation (14) can be further rewritten as

fG Dak
� �

¼
Gj a

k
� �

� Gi a
k

� �� �2

2 2
c þ jði; jÞ

 � ; ð41Þ

where jði; jÞ ¼ ½K�ii þ ½K�jj � ½K�ij � ½K�ji. The SMO1

algorithm ignores the influence of jði; jÞ on fG Dak
� �

. When

c is small, jði; jÞ has less influence on fG Dak
� �

, and jði; jÞ
can be ignored at this time. When c is large, if jði; jÞ is

ignored, fG Dak
� �

will be severely affected. Hence, the

SMO1 algorithm is effective when c is small and gradually

becomes less efficient when c becomes large. However, the

FGSMO and SMO2 algorithms consider the influence of

jði; jÞ on fG Dak
� �

. When c gradually becomes smaller,

FGSMO and SMO2 are gradually equivalent to SMO1, but

FGSMO and SMO2 increase some kernel evaluation, so

the computational efficiency is slightly lower than that of

SMO1. When c is large, fG Dak
� �

is greatly affected by

jði; jÞ. At this time, the functional gain fG Dak
� �

of FGSMO

and SMO2 far exceeds that of SMO1.

For the CFGSMO, when c is small, the efficiency of this

algorithm will be slightly lower than other SMO algo-

rithms, but for larger c, the efficiency of CFGSMO algo-

rithm is the highest. This may be because CFGSMO uses

the descent direction of FGSMO to construct a feasible

conjugate descent direction in the iterative process and

retains the algorithm characteristics of FGSMO under

different parameters c. But CFGSMO increases the func-

tional gain of FGSMO. Therefore, in the face of larger c,
the efficiency of CFGSMO is higher than that of FGSMO

and SMO2. This indicates that the execution time of the

program will be drastically reduced if CFGSMO is used for

a wide range of cross-validation.

7 Conclusion

This work proposes a fast training algorithm for LS-SVM,

namely the conjugate functional gain SMO algorithm, and

theoretically proves its asymptotic convergence. This

algorithm is based on the conjugate direction method and

the SMO-type algorithm, which is a combination of these

two algorithms. Theoretically, at each iteration, the func-

tional gain of this algorithm is greater than or equal to that

of the SMO1, SMO2 and FGSMO algorithms.

From the numerical results, the CFGSMO algorithm is

indeed more efficient, especially when c is large. The larger
c, the more obvious the advantage of CFGSMO. When c is

Table 8 Cross-validation results

for hyper-parameters. c� and r�

(log2-scale) denote the optimal

hyper-parameters, and MSE�

denotes the minimum MSE for

cross-validation (regression)

Datasets SMO1 SMO2 FGSMO CFGSMO

c� r� MSE� c� r� MSE� c� r� MSE� c� r� MSE�

abalone - 5 3 0.263 - 5 3 0.266 - 5 3 0.263 - 5 3 0.266

ailerons 9 3 0.138 9 3 0.137 9 3 0.132 9 3 0.135

bank32 5 1 0.043 5 1 0.056 5 1 0.044 5 1 0.046

bodyfat 1 1 0.013 1 3 0.009 1 3 0.010 1 3 0.008

cpu_act 1 - 3 0.010 1 - 3 0.010 1 - 3 0.010 1 - 3 0.010

cpusmall 1 - 1 0.008 1 - 1 0.007 1 - 1 0.010 1 - 1 0.009

delta_ailerons 1 - 1 0.007 - 1 - 3 0.007 1 - 1 0.007 1 - 1 0.006

eunite2001 1 - 1 0.034 1 - 1 0.034 1 - 1 0.033 1 - 1 0.033

housing 1 3 0.024 1 3 0.025 1 3 0.025 1 3 0.028

kin8nm 1 1 0.023 1 1 0.023 1 1 0.022 1 1 0.022

mg - 3 - 1 0.125 - 3 - 1 0.127 - 3 - 1 0.125 - 3 - 1 0.126

mpg 3 - 1 0.038 3 - 1 0.038 3 - 1 0.039 3 - 1 0.038

puma32H 3 3 0.077 1 3 0.078 3 3 0.082 3 3 0.080

puma8NH 1 1 0.081 1 1 0.084 1 1 0.083 1 1 0.081

pyrim 3 3 0.054 3 3 0.065 3 3 0.057 3 3 0.049

space_ga - 1 3 1.020 - 1 3 1.025 - 1 3 1.027 - 1 3 1.033

triazines 5 3 0.245 5 3 0.224 5 3 0.235 5 3 0.213
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small, the efficiency of CFGSMO is slightly lower than that

of other SMO algorithms. It may be because the cost of

each iteration of CFGSMO is higher than that of other

SMO algorithms. In contrast, the efficiency of SMO1 is

highest when c is small, and the smaller c is the higher the
efficiency of SMO1. SMO2 and FGSMO are suitable for

moderately sized c (no more than about 1000). In addition,

on large-scale datasets, the efficiency of SMO-type algo-

rithms is significantly higher than that of CG-type, espe-

cially CFGSMO. For small- and medium-sized datasets,

the efficiency of CG and SMO is not much different. Since

CG needs to manipulate the entire kernel matrix every

iteration, SMO only needs to manipulate two columns of

the kernel matrix. Therefore, SMO-type algorithms may be

more efficient than CG-type when training large-scale LS-

SVM. In terms of hyper-parameter selection, the optimal

hyper-parameters determined by cross-validation of the

four SMO algorithms are consistent in most cases, and the

performances (Acc and MSE) are not much different.

Since the dual problem of LS-SVM does not contain the

box constraint 0	 ai 	C; 8i. Therefore, CFGSMO does

not have a clipping and restart step like CSMO. In com-

parison, the iterative format of CFGSMO will be simpler

and easier to implement and will not suffer from the effects

of the bounds of inequalities.

Reviewing the computation flow of CFGSMO, it can be

seen that the working set selection strategy of CFGSMO is

not strictly limited to FGWSS. This suggests that the effi-

ciency of CFGSMO may be further improved if other more

efficient working set selection strategies are used instead of

FGWSS. In addition, CFGSMO increases the computa-

tional cost by about 1/4–2/5 compared with plain SMO-

type algorithms. Therefore, how to reduce the computa-

tional cost of CFGSMO on the premise of ensuring the

efficiency of CFGSMO is also one of the work that needs

to be further studied in the future. Besides, extending the

conjugate SMO to other support vector machine models is

also the next work to be considered.
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