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Abstract
Disturbance-observer-based adaptive neural control approach is proposed for nonlinear systems. Considering the effect

caused by long input delay and dead-zone, a novel auxiliary system has been introduced to degrade the design difficult.

Based on the auxiliary system, a novel disturbance observer is developed to estimate the unknown time-varying external

disturbance and the approximation error. What is more, the priori knowledge on the boundary of the disturbance and

approximation error is not required for the disturbance observer. The ‘‘explosion of complexity’’ problem has been

overcome by using dynamic surface control (DSC) scheme. By combing DSC scheme with backstepping technique, an

adaptive neural dynamic surface controller is correctly devised to improve the disturbance rejection performance of the

closed-loop system. Finally, the simulations of two examples show the superiority of the proposed scheme.
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1 Introduction

Over the past years, many meaningful results have been

proposed for nonlinear systems control in [1–3]. However,

most of these results are obtained on the premise that the

uncertain nonlinearity in system are known or bounded by

known nonlinear functions. It should be pointed out that

this assumption is not applicable to practical applications,

because it is difficult to get the accurate system model or

the information of the nonlinear term in practice. To

overcome this drawback, the neural networks (NNS) and

fuzzy logic systems (FLS) are introduced to construct the

adaptive controller by combing the adaptive backstepping

method in [4–10]. However, in the process of backstepping

design, the ‘‘explosion of complexity’’ increases sharply

with repeating differentiation of the virtual controller in the

aforementioned results. Thus, the DSC scheme was pro-

posed in [11] and many meaningful research results have

been developed for strict-feedback nonlinear systems in

[12–17]. However, some common phenomena such as

external disturbance [18, 19], time delay [20, 21] and non-

smooth nonlinearity [22, 23] bring great challenges to the

controller design of strict-feedback nonlinear systems.

In general, many actual systems often suffer from dif-

ferent external disturbances. These disturbances are usually

time-varying and unknown. As a result, it is difficult to

obtain their accurate information, and the difficulty of

system control increases sharply. The disturbance can

break the control performance of the closed-loop system

and even lead to disastrous results. Thus it is necessary to

consider the external disturbance rejection performance of

the closed-loop system. The authors in [24] first proposed

the disturbance-observer-based control (DOBC) strategy.

Unlike the general adaptive control approach, the distur-

bance observer (DO) can estimate the external disturbance

and provide valuable information for control law design.

Consequently, the robustness of the closed-loop system is

improved effectively by using DOBC strategy. Inspired by

the idea of DOBC, [25–27] proposed adaptive sliding ter-

minal control scheme for strict-feedback nonlinear sys-

tems. Furthermore, considering mismatched disturbances,

[28–30] proposed the disturbance rejection scheme for
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nonlinear systems. Recently, based on DOBC [31–33]

proposed adaptive neural/fuzzy control for strict-feedback

nonlinear systems, respectively. It should be noted that the

imperfections are unavoidable in the practical production

processes [34]. For instance, the authors in [35] proposed a

control scheme for imperfect electromechanical round

system. Furthermore, an optimal control approach for

imperfect electronic circuits system was considered in [36].

Although the real devices still operate well in regimes far

from ideality, the usual control approaches may useless. In

addition, the dead-zone problem has not been considered in

the aforementioned results. In contrast to time-varying

external disturbance, the input dead-zone is a typical non-

smooth nonlinearity problem, which often occurs in many

physical components of control systems [37]. However, the

control forces provided by the actuators are limited in

practice. Thus, the output provided by the disturbance

observer cannot be effective utilized by the control signal

when the input dead-zone appears. As a result, the closed-

loop systems will be unstable or even disastrous if the input

dead-zone is ignored. Recently, in order to solve the

problem of dead-zone in nonlinear systems, many mean-

ingful results have been developed by the researchers in

[38–41]. Although the input dead-zone problem has been

widely studied by the researchers, these issues rarely con-

sidered in the DOBC scheme. In addition, the control

schemes proposed in the aforementioned results cannot be

extended to strict-feedback nonlinear systems with

unknown time-varying external disturbance and input

dead-zone.

On the other hand, as a kind of time delay, input delay is

a common and inevitable phenomenon in practical control

systems [42–44]. When input delay occurs, the perfor-

mance of the closed-loop system will be damaged or even

be disastrous if the control signal cannot feedback the

information provided by the observer in time. However, the

traditional state delay control methods proposed in [45–47]

cannot be directly used to solve input delay. For nonlinear

systems with input delay, the authors in [48] extended the

predictor-based control approach to tackle input delay.

However, for the predictor-based control method, the state

of system is difficult to predict. In recent years, based on

FLS and the idea of Pade approximation, [49] considered

input delay and output constraint for strict-feedback non-

linear systems. Furthermore, considering strict-feedback

nonlinear with state constrained and input delay, [50]

proposed an adaptive tracking control approach by comb-

ing Pade approximation and NNS with adaptive back-

stepping technique. Later, the authors in [51, 52] developed

a compensation mechanism or combing compensation

mechanism with Pade approximation to degrade the effect

of the input delay. Nevertheless, the Pade approximation

approach is invalid for long input delay. In addition, most

of existing results are invalid for strict-feedback nonlinear

systems with time-varying external disturbance, input

delay and dead-zone, simultaneously. Recently, [53] con-

sidered the input saturation, input delay and external dis-

turbance for state constrained strict-feedback nonlinear

systems. Unfortunately, if the long input delay or the dead-

zone problem occurs the proposed method in [53] is

invalid. Since input dead-zone and input delay are common

phenomena in practical systems, the disturbance rejection

ability is more in line with the robust performance

requirements of the closed-loop system, it is a significant

issue to consider strict-feedback nonlinear systems with

time-varying external disturbance, input dead-zone and

input delay. However, the aforementioned results cannot be

directly generalized to this issue, which prompted us to

carry out our research.

The aforementioned observation motivates us to discuss

disturbance-observer-based adaptive neural dynamic sur-

face control for strict-feedback nonlinear systems with

time-varying external disturbance, input dead-zone and

input delay. The main work of this paper is listed as

follows:

(1) Taking into account the effect caused by long input

delay and dead-zone, a novel auxiliary system is

introduced for the first time to degrade the design

difficulty in each step. Compared with [49–53] the

proposed method can tackle the long input delay.

(2) DSC is introduced to tackle the ‘‘explosion of

complexity’’ problem in each backstepping step,

which can reduce the burden of computation. The

radial basis function neural networks are introduced

to approximate the unknown nonlinear functions.

(3) Based on the proposed auxiliary system, a novel

adaptive disturbance observer is introduced for the

first time to estimate the unknown time-varying

external disturbance and approximation error in each

backstepping step. Unlike the usual disturbance

observer, the boundary information of the time-

varying external disturbance or approximate error is

not required for the disturbance observer design.

Compared with [28–33], the proposed method which

not only estimates the unknown time-varying exter-

nal disturbance and the approximation error caused

by the NNS, but also eliminates the effect caused by

input delay and dead zone. Furthermore, the closed-

loop systems show better robust performance.

The reminder of this paper is organized as follows: Sec-

tion 2 presents the problem and the preliminary results.

Section 3 discusses the design process of the controller and

the stability analysis. The simulation examples are con-

sidered in Sect. 4. Finally, a brief conclusion is given in

Sect. 5.
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2 Preliminary

2.1 Problem formulation

Consider the strict-feedback nonlinear system as

_xiðtÞ ¼ fið�xiðtÞÞ þ xiþ1ðtÞ þ diðtÞ; 1� i� n � 1

_xnðtÞ ¼ fnð�xnðtÞÞ þ Dðvðt � sÞÞ þ dnðtÞ
yðtÞ ¼ x1ðtÞ

8
><

>:
ð1Þ

where the state variable �xiðtÞ ¼ ½x1ðtÞ;
x2ðtÞ; � � � ; xiðtÞ�T 2 Ri; i ¼ 1; 2; � � � ; n, Dðvðt � sÞÞ 2 R

denotes the control input with input dead-zone and delay,

where s represents the known constant or time-varying

input delay, the system output yðtÞ 2 R. For 1� i� n , fið�Þ
is unknown smooth nonlinear function, diðtÞ represents the
unknown and time-varying external disturbance.

According to [38], D(v(t)) is defined as

DðvðtÞÞ ¼
mrðvðtÞ � brÞ; vðtÞ� br

0 ; bl\vðtÞ\br

mlðvðtÞ � blÞ; vðtÞ� bl

8
><

>:
ð2Þ

where vðtÞ 2 R denotes the input to the dead-zone, and D(.)

denotes the output to the dead-zone.

Assumption 1 [38]: The dead-zone slopes mr ¼ ml ¼ m.

Assumption 2 [38]: The parameters m, br and bl in (2) are

bounded, i.e., mmin\m\mmax , brmin
\br\brmax

and

blmin
\bl\blmax

with mmin, mmax, brmin
, brmax

, blmin
and blmax

being known constants.

Assumption 3 [38]: The signs for m, br and bl are known,

i.e., m[ 0, br [ 0, bl\0.

Then, we redefine (2) as

DðvðtÞÞ ¼ mvðtÞ þ dðvðtÞÞ ð3Þ

where

dðvðtÞÞ ¼
�mbr; vðtÞ� br

�mvðtÞ; bl\vðtÞ\br

�mbl; vðtÞ� bl

8
><

>:
ð4Þ

Based on Assumptions 1 and 2, the term d(v(t)) is bounded,

i.e., jdðvðtÞÞj � d�, with d� ¼ maxfmbr;�mblg.

Remark 1 In practice, many systems can be described or

transform as the system (1), such as liquid level control

system [53], power systems [54], maglev suspension sys-

tems [55, 56], and so on.

Remark 2 Compared with the works in [28–33] which

only considered external disturbance, the effect of input

dead-zone and input delay was unconsidered. Compared

with the works in [49–53] which only focus on strict-

feedback nonlinear systems with input delay, however, the

effect of input dead-zone and the disturbance rejection

ability of the closed-loop system are ignored. In addition,

the developed method in [49–53] cannot work in long input

delay.

The main idea of this research is to establish a unified

framework of disturbance-observer-based adaptive neural

dynamic surface control scheme for strict-feedback non-

linear systems with time-varying external disturbance,

input dead-zone and input delay. Furthermore, the pro-

posed controller can show effective tracking performance

for the reference signal ydðtÞ and the closed-loop system

shows better disturbance rejection performance.

Assumption 4 For 1 � i� n, the unknown time-varying

external disturbances diðtÞ and its derivative _diðtÞ satisfy

jdiðtÞj � �diU and j _diðtÞj � �diD, where �diU and �diD are

unknown positive constants.

Assumption 5 [57]: The reference trajectory ydðtÞ and its

time derivatives €ydðtÞ are bounded, i.e.,

H0 :¼ fðyd; _yd; €ydÞ : ðydÞ2 þ ð _ydÞ2 þ ð€ydÞ2 �B0g, where B0

is a positive constant.

2.2 Neural networks

In the process of controller design, the NNS are used to

approximate the unknown nonlinear function

f Zð Þ : Rn ! R. Assume that l represents the number of

nodes in NNS, then f Zð Þ can be modeled by

fnn Zð Þ ¼ WTUðZÞ ð5Þ

For Eq. (5), Z represents the input vector and Z 2 Xz � Rq.

W 2 Rl represents the weight vector and

W ¼ w1;w2; :::;wl½ �T . UðZÞ ¼ s1ðZÞ; s2ðZÞ; :::; slðZÞ½ �T2 Rl

is the basis function vector with siðZÞ ði ¼ 1; 2; � � � ; lÞ
being the Gaussian-like function, i.e.,

siðZÞ ¼ exp �ðZ � viÞTðZ � viÞ
g2

" #

ð6Þ

where g represents the width of the Gaussian function, and

vi ¼ vi1; vi2; :::; viq

� �T
denotes the center of the receptive

domain.

For f Zð Þ defined on a compact set XZ , according to

literature [7], there exists a suitable W�TUðZÞ which

satisfies

f Zð Þ ¼ W�TUðZÞ þ dðZÞ; 8z 2 XZ ð7Þ

with
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W� ¼ arg min
W2Rl

sup
Z2XZ

jf Zð Þ � WTUðZÞj
( )

ð8Þ

being the ideal weight vector and jdðZÞj\e ðe[ 0Þ being
the approximation error.

3 Control design

In this section, we first introduce a novel compensation

mechanism. Then, based on the compensation mechanism,

we will focus on the system (1) to design the disturbance-

observer-based adaptive tracking controller by using the

idea of backstepping technique and the DSC technique.

3.1 Compensation design

Firstly, we present the following auxiliary system to

compensate the effect caused by input delay and dead-zone

_l1 ¼ l2 � h1l1
_li ¼ liþ1 � hili � gi�1li�1; i ¼ 2; 3; � � � ; n � 1

_ln ¼ �hnln � gn�1ln�1 þ Dðvðt � sÞÞ � DðvðtÞÞ

8
><

>:
ð9Þ

where h1 � j1�g1j
2

[ 0 , hi � j1�gijþj1�gi�1j
2

[ 0 , i ¼
2; 3; � � � ; n � 1 and hn � j1�gn�1j

2
� 1[ 0.

Remark 3 It should be noted that, if input delay s ¼ 0,

then liði ¼ 1; 2; � � � ; nÞ in (9) are zero when lið0Þ ¼ 0 .

Next, the following change of coordinate is employed in

the process of backstepping designing

z1 ¼ x1 � yd � l1
zi ¼ xi � xi � li; i ¼ 2; 3; � � � ; n

ð10Þ

where xi is the first-order filter output signal, which is

defined as

ni _xi þ xi ¼ ai�1;xið0Þ ¼ ai�1ð0Þ ð11Þ

with ni being design parameter and ai being the first-

order filter input signals. The filter errors are given by

ei ¼ xi � ai�1 i ¼ 2; 3; � � � ; n ð12Þ

Remark 4 In (10), the change of coordinate is a compen-

sation mechanism, when the system has input delay the

auxiliary signal li will be utilized to compensate the effect

caused by time delay at the last step.

3.2 Controller design

According to the previous compensation design, the

specific design steps of the controller are described as

follows.

Step 1: Based on (1) and (9), the time derivative of z1
can be obtained that

_z1 ¼ _x1 � _l1 � _yd

¼ f1ð�xÞ þ x2 þ d1 � l2 þ h1l1 � _yd

ð13Þ

Let x2 be a desired virtual input, then we design the desired

feedback signal a�
1
as

a�1 ¼ �k1z1 � f1ð�xÞ � d1 � h1l1 þ _yd ð14Þ

Based on the idea of approximation by NNS, for given

e1 [ 0, a suitable neural network W�T
1 U1ðZ1Þ can be

selected to approximate the function f1ð�xÞ, which satisfies

that

f1ð�xÞ ¼ W�T
1 U1ðZ1Þ þ d1ðZ1Þ; jd1ðZ1Þj � e1 ð15Þ

where Z1 ¼ ½x1�T and d1ðZ1Þ denote the input vector and

the approximation error, respectively.

Then (14) can be rewritten as

a�1 ¼ �k1z1 � W�T
1 U1ðZ1Þ � D1 � h1l1 þ _yd ð16Þ

where D1 ¼ d1ðZ1Þ þ d1 � e1 þ d1U ¼ �D1. In addition,

based on Assumption 4 and the idea of NNS approxima-

tion, _D1 is bounded, i.e., j _D1j � ��D1 .

Owing to W�
1 and D1 are unknown, thus Ŵ1 and D̂1 are

used to estimate W�
1 and D1, respectively. Then we design

the virtual control law and the adaptive law as

a1 ¼ �k1z1 � Ŵ
T

1U1ðZ1Þ � D̂1 � h1l1 þ _yd
ð17Þ

_̂W1 ¼ K1z1U1ðZ1Þ � r1Ŵ1 ð18Þ

where K1 ¼ KT
1 [ 0 and r1 [ 0 are the design parameters.

To deal with the problem of ‘‘explosion of complexity’’

caused by repeatedly differentiating a1, let a1 pass through
a given low-pass filter x2, which defined in (11) with the

filter time design parameter n2 and the filter error e2
defined in (12). Then one can get

_x2 ¼
�e2
n2

ð19Þ

and

_e2 ¼ _x2 � _a1 ¼
�e2
n2

� _a1 ¼
�e2
n2

þ M2ð�Þ ð20Þ
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where M2ð�Þ is a continuous function, and M2ðz1; z2; e2;

Ŵ1; yd; _yd; €yd; D̂1; l1Þ ¼ �ðoa1
ox1

_x1 þ oa1
oz1

_z1 þ oa1
oŴ1

_̂W1þ
oa1
oyd

_yd þ oa1
oD̂1

_̂D1 þ oa1
ol1

_l1Þ. Furthermore, for any given B0 and

#, the sets H0 :¼ fðyd; _yd; €ydÞ : ðydÞ2 þ ð _ydÞ
2 þ ð€ydÞ

2 �B0g
is compact in R3, and H2 :¼
f
P2

j¼1 z2j þ ~W
T

1K
�1 ~W1 þ e22 � 2#g is compact in RN1þ3

with N1 being the dimension of ~W
T

1 . According [57], M2

has a maximum value B2.

Based on (10), (12) and (17), we can have

_z1 ¼ W�T
1 U1ðZ1Þ þ z2 þ a1 þ e2 þ D1 þ h1l1 � _yd

¼ �k1z1 þ ~W
T

1U1ðZ1Þ þ ~D1 þ z2 þ e2
ð21Þ

where ~W1 ¼ W�
1 � Ŵ1 and ~D1 ¼ D1 � D̂1 represent the

estimation errors for W�
1 and D1, respectively.

Furthermore, in order to estimate D1, an auxiliary

variable c1 is introduced to design a DO, i.e.,

c1 ¼ z1 � o1 ð22Þ

with o1 being an intermedial variable defined as

_o1 ¼ p1c1 þ x2 � _yd � l2 þ h1l1 ð23Þ

where p1 [ 0 is a designed parameter.

According (21), (22) and (23), differentiating c1, then

_c1 ¼ _z1 � _o1 ¼ W�T
1 U1ðZ1Þ þ D1 � p1c1 ð24Þ

Defining the DO as

D̂1 ¼ l1ðc1 � u1Þ ð25Þ

with l1 [ 0 being a design parameter, u1 being an inter-

medial variable defined as

_u1 ¼ �p1c1 þ D̂1 ð26Þ

Based on (24) and (26), differentiating D̂1, then

_̂D1 ¼ l1W�T
1 U1ðZ1Þ þ l1 ~D1 ð27Þ

Furthermore, one can get

_~D1 ¼ _D1 � l1W
�T
1 U1ðZ1Þ � l1 ~D1 ð28Þ

From (24), (28) and (20), according to Young’s inequality

and Assumption 4, one can get the following inequalities

(29), (30) and (31) .

c1 _c1 ¼ c1W
�T
1 U1ðZ1Þ þ c1D1 � p1c

2
1

� r1/
2
1c

2
1 þ

1

r1
jjW�T

1 jj2 þ 1

2
c21 þ

1

2
D2

1 � p1c
2
1

� � ðp1 � r1/
2
1 �

1

2
Þc21 þ

1

r1
jjW�T

1 jj2 þ 1

2
�D
2
1

ð29Þ

~D1
_~D1 ¼ ~D1

_D1 � l1 ~D1W
�T
1 U1ðZ1Þ � l1 ~D1

~D1

� 1

2
~D
2

1 þ
1

2
_D2
1 þ r1/

2
1
~D
2

1 þ
l21
r1
jjW�T

1 jj2 � l1 ~D
2

1

� � ð� 1

2
� r1/

2
1 þ l1Þ ~D

2

1 þ
1

2
��D
2
1 þ

l21
r1
jjW�T

1 jj2

ð30Þ

where jU1ðZ1Þj �/1, r1 [ 0 is a design parameter.

e2 _e2 ¼ e2ð
�e2
n2

Þ þ e2M2ðz1; z2; e2; Ŵ1; yd; _yd; €yd; D̂1; l1Þ

� � 1

n2
e2
2
þ 1

2
e2
2
þ 1

2
B2

2

ð31Þ

Now, the Lyapunov function is taken as

V1 ¼
1

2
z21 þ

1

2
~W

T

1K
�1
1

~W1 þ
1

2
c21 þ

1

2
~D
2

1 þ
1

2
e22 ð32Þ

It should be noted that the factor 1
2
is employed in the

Lyapunov function V1, which is often employed in the

backstepping design process. The main reason is that the

Lyapunov function takes the form of square, thus the

employed factor 1
2
is convenient for us to carry out the

theoretical derivation in the process of backstepping design

and stability analysis. In other words, the factor 1
2
can be

chosen the other positive constant, which might cause

inconvenience to the design process.

Differentiating V1, then

_V1 ¼ z1ð�k1z1 þ ~W
T

1U1ðZ1Þ þ ~D1 þ z2 þ e2Þ � ~W
T

1K
�1
1

_̂W1

þ c1 _c1 þ ~D1
_~D1 þ e2 _e2

¼ �k1z21 þ z1z2 þ z1e2 þ z1 ~D1 þ r1 ~W
T

1
Ŵ1 þ c1 _c1

þ ~D1
_~D1 þ e2 _e2

ð33Þ

Substituting (29), (30) and (31) into (33), and using the

complete squares formula, then
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_V1 � � k1z21 þ z1z2 þ
1

2
z21 þ

1

2
e22 þ

1

2
z21 þ

1

2
~D
2

1

� r1 ~W
T

1
Ŵ1 þ c1 _c1 þ ~D1

_~D1 þ e2 _e2

� � ðk1 � 1Þz21 � ðp1 � r1/
2
1 �

1

2
Þc21

� ð�1� r1/
2
1 þ l1Þ ~D

2

1

� ð 1
n2

� 1Þe2
2

þ z1z2 þ r1 ~W
T

1
Ŵ1 þ

l21 þ 1

r1
jjW�T

1 jj2

þ 1

2
�D
2
1 þ

1

2
��D
2
1 þ

1

2
B2

2

ð34Þ

Step i (2� i� n � 1): Based on (1) and (9), differentiating

zi ¼ xi � xi � li, then

_zi ¼ fið�xÞ þ xiþ1 þ di � _xi � liþ1 þ hili þ gi�1li�1

ð35Þ

Let xiþ1 be a desired virtual input, we define the desired

feedback signal a�
i
as

a�i ¼ �zi�1 � kizi � fið�xÞ � di � hili � gi�1li�1 þ _xi

ð36Þ

As the first step, based on the idea of approximation, the

nonlinear function fið�xÞ can be approximated by

W�T
i UiðZiÞ, which yields

fið�xÞ ¼ W�T
i UiðZiÞ þ diðZiÞ; jdiðZiÞj � ei ð37Þ

where diðZiÞ and Zi ¼ ½x1; x2; � � � ; xi�T denote the approxi-

mation error and input vector, respectively.

Substituting (37) into (36), then a�i can be rewritten as

a�i ¼ �zi�1 � kizi � W�T
i UiðZiÞ � Di � hili � gi�1li�1 þ _xi

ð38Þ

where Di ¼ diðZiÞ þ di � ei þ diU ¼ �Di. Based on

Assumption 4 and the idea of NNS approximation, _Di is

bounded, i.e., j _Dij � ��Di .

Because W�
i and Di are unknown, thus we use Ŵi and D̂i

to estimate W�
i and Di, respectively. Then, we design the

virtual control law and the adaptive law as

ai ¼ �zi�1 � kizi � Ŵ
T

i UiðZiÞ � D̂i � hili � gi�1li�1 þ _xi

ð39Þ
_̂Wi ¼ KiziUiðZiÞ � riŴ i ð40Þ

with Ki ¼ KT
i [ 0 and ri [ 0 being the design parameters.

To deal with the ‘‘explosion of complexity’’ problem

caused by repeatedly differentiating ai, let ai pass through

the low-pass filter xiþ1 defined in (11) with the filter time

design parameter niþ1 and the filter error eiþ1 defined in

(12). Thus, one can have

_xiþ1 ¼
�eiþ1

niþ1
ð41Þ

and

_eiþ1 ¼ _xiþ1 � _ai ¼
�eiþ1

niþ1

� _ai ¼
�eiþ1

niþ1

þ Miþ1ð�Þ ð42Þ

where Miþ1ð�Þ is a continuous function, and Miþ1ð�Þ ¼
Miþ1ðz1; � � � ; ziþ1; e2; � � � ; eiþ1; Ŵ1; � � � ; Ŵi; yd; _yd;

€yd; D̂1; � � � ; D̂i; l1; � � � ; liÞ¼ � ðoai

oxi
_xiþ oai

ozi
_zi þ oai

oŴi

_̂Wiþ
oai

oyd
_yd þ oai

oD̂i

_̂Di þ oai

oli
_liÞ. For any given B0 and #, the sets

H0 :¼ fðyd; _yd; €ydÞ : ðydÞ2 þ ð _ydÞ2 þ ð€ydÞ2 �B0g is com-

pact in R3 and Hi :¼ f
Pi

j¼1 z2j þ ~W
T

1K
�1 ~W1 þ e2iþ1 � 2#g

is in R
Pi

j¼1
Niþ2i�1

with Ni being the dimension of ~W
T

i .

According [57], Miþ1 has a maximum value Biþ1.

With the aid of xiþ1 ¼ ziþ1 þ ai þ eiþ1 þ liþ1 and based

on (39), then (35) can be rewritten as

_zi ¼ �zi�1 � kizi þ ~W
T

i UiðZiÞ þ ~Di þ ziþ1 þ eiþ1 ð43Þ

where ~Wi ¼ W�
i � Ŵi and ~Di ¼ D�

i � D̂i represent the

estimation errors for W�
i and Di, respectively.

In what follows, to estimate Di, an auxiliary variable ci

is introduced to design a DO, i.e.,

ci ¼ zi � oi ð44Þ

with oi being an intermedial variable defined as

_oi ¼ pici þ xiþ1 � _xi � liþ1 þ hili þ gi�1li�1 ð45Þ

where pi [ 0 is a designed parameter.

Based on (43), (44) and (45), differentiating ci, then

_ci ¼ W�T
i UiðZiÞ þ Di � pici ð46Þ

Let the DO be designed as

D̂i ¼ liðci � uiÞ ð47Þ

with li [ 0 being a design parameter, ui being an inter-

medial variable defined as

_ui ¼ �pici þ D̂i ð48Þ

According (46) and (48), differentiating D̂i, then

_̂Di ¼ liW
�T
i UiðZiÞ þ li

~Di ð49Þ

Furthermore, one can get

_~Di ¼ _Di � liW
�T
i UiðZiÞ � li

~Di ð50Þ

Based on (46), (50) and (42), according to Young’s
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inequality and Assumption 4, one can get the following

inequalities (51), (52) and (53).

ci _ci ¼ ciW
�T
i UiðZiÞ þ ciDi � pic

2
i

� ri/
2
i c

2
i þ

1

ri
jjW�T

i jj2 þ 1

2
c2i þ

1

2
D2

i � pic
2
i

� � ðpi � ri/
2
i �

1

2
Þc2i þ

1

ri
jjW�T

i jj2 þ 1

2
�D
2
i

ð51Þ

~Di
_~Di ¼ ~Di

_Di � li
~DiW

�T
i UiðZiÞ � li ~Di

~Di

� 1

2
~D
2

i þ
1

2
_D2
i þ ri/

2
i
~D
2

i þ
l2i
ri
jjW�T

i jj2 � li
~D
2

i

� � ð� 1

2
� ri/

2
i þ liÞ ~D

2

i þ
1

2
��D
2
i þ

l2i
ri
jjW�T

i jj2

ð52Þ

where jUiðZiÞj �/i, ri [ 0 is a design parameter.

eiþ1 _eiþ1 ¼ eiþ1ð
�eiþ1

niþ1

Þ þ eiþ1Miþ1ð�Þ

� � 1

niþ1

e2iþ1 þ
1

2
e2iþ1 þ

1

2
B2

iþ1

ð53Þ

Considering the Lyapunov function candidate be

Vi ¼
1

2
z2i þ

1

2
~W

T

i K
�1
i

~Wi þ
1

2
c2i þ

1

2
~D
2

i þ
1

2
e2iþ1

ð54Þ

Differentiating Vi

_Vi ¼ �zi�1zi � kiz
2
i þ ziziþ1 þ zieiþ1 þ zi

~Di

þ ri
~W

T

i Ŵi þ ci _ci þ ~Di
_~Di þ eiþ1 _eiþ1

ð55Þ

Now, substituting (51), (52) and (53) into (55), one can get

_Vi � � zi�1zi � kiz
2
i þ ziziþ1 þ z2i þ

1

2
e2iþ1 þ

1

2
~D
2

i þ ri
~W

T

i Ŵi

þ ci _ci þ ~Di
_~Di þ eiþ1 _eiþ1

� � ðki � 1Þz2i � ðpi � ri/
2
i �

1

2
Þc2i � ð�1� ri/

2
i þ liÞ ~D

2

i

� ð 1

niþ1

� 1Þe2iþ1 � zi�1zi þ ziziþ1 þ ri
~W

T

i Ŵi

þ l2i þ 1

ri
jjW�T

i jj2

þ 1

2
�D
2
i þ

1

2
��D
2
i þ

1

2
B2

iþ1

ð56Þ

Step n: According (1) and (9), the time derivative of zn as

_zn ¼ _xn � _xn � _ln

¼ fnð�xÞ þ dn � _xn þ hnln þ gn�1ln�1 þ mvðtÞ þ dðvðtÞÞ
ð57Þ

As in step i, for given en [ 0, fnð�xÞ can be modeled by a

suitable W�T
n UnðZnÞ, i.e.,

fnð�xÞ ¼ W�T
n UnðZnÞ þ dnðZnÞ; jdnðZnÞj � en ð58Þ

where dnðZnÞ and Zn ¼ ½x1; x2; � � � ; xn�T denote the

approximation error and input vector, respectively.

Substituting (58) into (57), then (57) can be rewritten as

_zn ¼ W�T
n UnðZnÞ þ dnðZnÞ þ dn � _xn

þ hnln þ gn�1ln�1 þ mvðtÞ þ dðvðtÞÞ
ð59Þ

Now, design the desired feedback control v� as

v� ¼ 1

m
ð�zn�1 � knzn � W�T

n UnðZnÞ

� Dn � hnln � gn�1ln�1 þ _xnÞ
ð60Þ

where Dn ¼ dnðZnÞ þ dn þ dðvðtÞÞ. By using Assumption

4, the idea of NNS approximation, and taking jdðvðtÞÞj � d�

into account, one can get Dn � en þ dnU þ d� ¼ �Dn and

j _Dnj is bounded, i.e., j _Dnj � ��Dn .

Since W�
n and Dn are unknown, we use Ŵn and D̂n to

estimate W�
n and Dn, respectively. Then, the desired feed-

back control is designed as

v ¼ 1

m
ð�zn�1 � knzn � Ŵn

TUnðZnÞ

� D̂n � hnln � gn�1ln�1 þ _xnÞ
ð61Þ

and the adaptive law is designed as

_̂Wn ¼ KnznUnðZnÞ � rnŴn ð62Þ

where Kn ¼ KT
n [ 0 and rn [ 0 the design parameters.

Substituting (61) into (59), one can get

_zn ¼ �zn�1 � knzn þ ~W
T

nUnðZnÞ þ ~Dn ð63Þ

where ~Wn ¼ W�
n � Ŵn and ~Dn ¼ D�

n � D̂n represent the

estimation errors for W�
n and Dn, respectively.

Next, to estimate Dn, an auxiliary variable cn is pro-

posed to design a DO, i.e.,

cn ¼ zn � on ð64Þ

with on being an intermedial variable defined as

_on ¼ pncn þ mv � _xn þ hnln þ gn�1ln�1 ð65Þ

where pn [ 0 is a designed parameter.

Based on (63), (64) and (65), differentiating cn, then

_cn ¼ W�T
n UnðZnÞ þ Dn � pncn ð66Þ

Let the DO be designed as

D̂n ¼ lnðcn � unÞ ð67Þ

with ln [ 0 being a design parameter, un being an inter-

medial variable defined as
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_un ¼ �pncn þ D̂n ð68Þ

Based on (66) and (68), differentiating D̂n, then

_̂Dn ¼ lnW�T
n UnðZnÞ þ ln

~Dn ð69Þ

Furthermore, one can get

_~Dn ¼ _Dn � lnW�T
n UnðZnÞ � ln ~Dn ð70Þ

Similar to Step i, according to (66) and (69) and according

to Young’s inequality and Assumption 4, one can get the

following inequalities (71) and (72).

cn _cn ¼ cnW�T
n UnðZnÞ þ cnDn � pnc

2
n

� rn/
2
nc

2
n þ

1

rn
jjW�T

n jj2 þ 1

2
c2n þ

1

2
D2

n � pnc
2
n

� � ðpn � rn/
2
n �

1

2
Þc2n þ

1

rn
jjW�T

n jj2 þ 1

2
�D
2
n

ð71Þ

~Dn
_~Dn ¼ ~Dn

_Dn � ln ~DnW�T
n UnðZnÞ � ln

~Dn
~Dn

� 1

2
~D
2

n þ
1

2
_D2
n þ rn/

2
n
~D
2

n þ
l2n
rn
jjW�T

n jj2 � ln
~D
2

n

� � ð� 1

2
� rn/

2
n þ lnÞ ~D

2

n þ
1

2
��D
2
n þ

l2n
rn
jjW�T

n jj2

ð72Þ

where jUnðZnÞj �/n, rn [ 0 is a design parameter.

Then, the Lyapunov function is taken as

Vn ¼ 1

2
z2n þ

1

2
~W

T

nK
�1
n

~Wn þ
1

2
c2n þ

1

2
~D
2

n
ð73Þ

Differentiating Vn

_Vn ¼ znð�zn�1 � knzn þ ~W
T

nUnðZnÞ þ ~DnÞ

� ~W
T

nK
�1
n

_̂Wn þ cn _cn þ ~Dn
_~Dn

¼ �zn�1zn � knz2n þ zn
~Dn þ rn

~W
T

n Ŵn þ cn _cn þ ~Dn
_~Dn

ð74Þ

Consequently, substituting (63), (71) and (72) into (74), we

can have the following result

_Vn � � zn�1zn � knz2n þ z2n þ
1

2
~D
2

n þ rn
~W

T

n Ŵn þ cn _cn þ ~Dn
_~Dn

� � ðkn � 1Þz2n � ðpn � rn/
2
n �

1

2
Þc2n

� ð�1� rn/
2
n þ lnÞ ~D

2

n

� zn�1zn þ rn
~W

T

n Ŵn þ
l2n þ 1

rn
jjW�T

n jj2

þ 1

2
�D
2
n þ

1

2
��D
2
n

ð75Þ

3.3 Main result

Based on the above detailed design procedures, now the

main result can be described by the following theorem.

Theorem 1 Based on Assumptions 1–5, for system (1) the

disturbance observer is designed in (25), (47), (67), the

virtual signals defined in (17), (39) for 1� i� n � 1 , the

real controller defined in (61), and the adaptive law defined

in (40) for 1� i� n, which can ensure that all the signals

of the closed-loop system are bounded, and the tracking

error converges to a bounded compact set near the origin.

Proof Firstly, we design the following Lyapunov function

candidate to discuss the stability of the closed-loop system.

V ¼
Xn

i¼1

Vn ¼
Xn

i¼1

1

2
z2i þ

1

2
~W

T

i K
�1
i

~Wi þ
1

2
c2i þ

1

2
~D
2

i

� �

þ
Xn�1

i¼1

1

2
e2iþ1

� �

ð76Þ

Based on the fact ~W
T

i Ŵi � 1
2
jjW�

i jj
2 � 1

2
jj ~Wijj2 for

i ¼ 1; � � � ; n, and differentiating Vn, then

_V � �
Xn

i¼1

ðki � 1Þz2i þ
Xn

i¼1

ri
~W

T

i Ŵi �
Xn

i¼1

ðpi � ri/
2
i �

1

2
Þc2i

�
Xn

i¼1

ð�1� ri/
2
i þ liÞ ~D

2

i �
Xn�1

i¼1

ð 1

niþ1

� 1Þe2iþ1

þ
Xn

i¼1

l2i þ 1

ri
jjW�T

i jj2 þ 1

2
�D
2
i þ

1

2
��D
2
i

� �

þ
Xn�1

i¼1

1

2
B2

iþ1

� �
Xn

i¼1

ðki � 1Þz2i �
Xn

i¼1

ri

2
jj ~Wijj2 �

Xn

i¼1

ðpi � ri/
2
i �

1

2
Þc2i

�
Xn

i¼1

ð�1� ri/
2
i þ liÞ ~D

2

i �
Xn�1

i¼1

ð 1

niþ1

� 1Þe2iþ1

þ
Xn

i¼1

ri

2
þ l2i þ 1

ri

� �

jjW�T
i jj2 þ 1

2
�D
2
i þ

1

2
��D
2
i

� �

þ
Xn�1

i¼1

1

2
B2

iþ1

¼ �cV þ d

ð77Þ

where c ¼ minf2ðki � 1Þ : 1� i� n; ri

kmaxðK�1
i Þ :

1� i� n; 2ðpi� ri/
2
i � 1

2
Þ : 1� i� n; 2ð�1� ri/

2
i þ liÞ :

1� i� n; ð 1
niþ1

� 1Þ : 1� i� n� 1g, and
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d ¼
Xn

i¼1

ri

2
þ l2i þ 1

ri

� �

jjW�T
i jj2 þ 1

2
�D
2
i þ

1

2
��D
2
i

� �

þ
Xn�1

i¼1

1

2
B2

iþ1

Multiplying (77) by ect on both sides, and integrating from

0 to t, one can get

VðtÞ� Vð0Þ � d

c

� �

e�ct þ d

c
ð78Þ

For (78), if t ! 1, then e�ct ! 0 and V is convergent.

This means that all the signals zi, ~Wi, ci, ~Di and eiþ1 are all

bounded.

In what follows, we consider the boundedness of li. Let

the Lyapunov function defined as

Vl0 ¼
1

2

Xn

i¼1

l2i þ
1

b

Z t

t�s

Z t

h
jj _vðsÞjj2dsdh ð79Þ

Thus, the derivative of Vl0 satisfies that

_Vl0 � l1ðl2 � p1l1Þ þ
Xn�1

i¼2

liðliþ1 � pili � gi�1li�1Þ

þ lnð�pnln � gn�1ln�1 þ Dðvðt � sÞÞ � DðvðtÞÞÞ

þ s
b
jj _vðtÞjj2 � 1

b

Z t

t�s
jj _vðsÞjj2ds

¼
Xn�1

i¼1

ðð1� giÞliliþ1Þ þ
Xn

i¼1

ð�pil
2
i Þ þ ðDðvðt � sÞÞ � DðvðtÞÞÞln

þ s
b
jj _vðtÞjj2 � 1

b

Z t

t�s
jj _vðsÞjj2ds

�
Xn�1

i¼1

j1� gij
2

ðl2i þ l2iþ1Þ

þ
Xn�1

i¼1

ð�pil
2
i Þ þ ð�pnl

2
nÞ þ ðmvðt � sÞ

� mvðtÞÞln þ ðdvðt � sÞ � dvðtÞÞln þ
s
b
jj _vðtÞjj2

� 1

b

Z t

t�s
jj _vðsÞjj2ds

� � ðp1 �
j1� g1j

2
Þl21

�
Xn�1

i¼2

ðpi �
j1� gi�1j

2
� j1� gij

2
Þl2i � ðpn

� j1� gn�1j
2

� 1Þl2n þ
m2

2
jjvðt � sÞ � vðtÞjj2

þ 1

2
jjdvðt � sÞ � dvðtÞjj2

þ s
b
jj _vðtÞjj2 � 1

b

Z t

t�s
jj _vðsÞjj2ds

ð80Þ

Based on Assumption 3, we have

1

2
jjdvðt � sÞ � dvðtÞjj2 � 1

2
ðjjdvðt � sÞjj2 þ jjdvðtÞjj2Þ� d�2

ð81Þ

According to the Cauchy–Schwarz inequality, then

1

2
jjvðt � sÞ � vðtÞjj2 � s

2

Z t

t�s
jj _vðsÞjj2ds ð82Þ

Furthermore, substituting (81) and (82) into (80), one has

_Vl0 � �
Xn

i¼1

�hil
2
i �

1

b
� ms

2

� �Z t

t�s
jj _vðsÞjj2ds

þ s
b
jj _vðtÞjj2 þ d�2

ð83Þ

where �h1 ¼ h1 � j1�g1j
2

, �hi ¼ hi � j1�gijþj1�gi�1j
2

,

i ¼ 2; 3; � � � ; n � 1, and �hn ¼ hn � j1�gn�1j
2

� 1.

In what follows, we consider the boundedness of
s
b jj _vðtÞjj

2
in (83).

According to (10), (17), (18), (39),(40),(61) and (62), we

describe v(t) and _vðtÞ as
vðtÞ ¼ f1ðzn�1; zn; Ŵn; D̂nÞ þ f2ln þ f3ln�1 þ f4ðenÞ

ð84Þ

_vðtÞ ¼ f5ðzn�2; zn�1; zn; Ŵn�1; Ŵn; ~DnÞ þ
Xn

j¼1

f8jðz; ŴÞlj

þ f6ðMnð:Þ; enÞ þ f7ðz; ŴÞvðt � sÞ
ð85Þ

where f1ð:Þ; f2ð:Þ; � � � ; f7ð:Þ and f8jð:Þð1� j� nÞ are C1

functions. Due to the fact that zn�2, zn�1, zn, Ŵn�1, Ŵn, D̂n ,
~Dn, en and Mnð:Þ are all bounded, therefore, one can obtain

that

jfijj � ji; i ¼ 1; 2; � � � ; 7 and jjfikjj � jjk ð86Þ

where ji and jjk; ðj ¼ 8; 1� k� nÞ are the positive

constants.

jjvðtÞjj2 �ðjjf1jj þ jjf2jjln�1 þ jjf3jjln þ jjf4ðenÞjjÞ2

�ðj1 þ j2ln þ j3ln�1 þ j4Þ2

� 4j21 þ 4j22l
2
n þ 4j23l

2
n�1 þ 4j24

� j01 þ j02l
2
n þ j03l

2
n�1 þ j04

ð87Þ

where j01 ¼ 4j21, j
0
2 ¼ 4j22, j

0
3 ¼ 4j23, and j04 ¼ 4j24. Fur-

thermore, for vðt � sÞ it satisfies that
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jjvðt � sÞjj2 � j01 þ j02l
2
nðt � sÞ þ j03l

2
n�1ðt � sÞ þ j04

ð88Þ

From (85) and (88), the upper boundedness of s
b jj _vðtÞjj

2
can

be estimated by

s
b
jj _vðtÞjj2 � s

b
jjf5 þ

Xn

j¼1

f8jðz; ŴÞlj

þ f6ðMnð:Þ; enÞ þ f7ðz; ŴÞvðt � sÞjj2

� s
b
4ðj25 þ n

Xn

j¼1

j28jl
2
j þ j26 þ j27v2ðt � sÞÞ

� s
b
ð4j25 þ 4j27ðj01 þ j04Þ þ j26 þ 4n

Xn

j¼1

j28jl
2
j

þ 4j27j
0
2l

2
nðt � sÞ þ 4j27j

0
3l

2
n�1ðt � sÞÞ

� s
b
ðj05 þ

Xn

j¼1

j08jl
2
j þ j06l

2
nðt � sÞ þ j07l

2
n�1ðt � sÞÞ

ð89Þ

where j05 ¼ 4j25 þ 4j27ðj01 þ j04Þ þ j26 , j08j ¼ 4nj28j, j
0
6 ¼

4j27j
0
2 and j07 ¼ 4j27j

0
3.

According to (89) and rewriting (83) as

_Vl0 � �
Xn

i¼1

~hil
2
i �

1

b
� ms

2

� �Z t

t�s
jj _vðsÞjj2ds þ sj06

b
l2nðt � sÞ

þ sj07
b

l2n�1ðt � sÞ þ d�2 þ s
b
j05

ð90Þ

where ~hi ¼ �hi � s
b j

0
8i ,1� i� n.

For the auxiliary system (9), let the Lyapunov function

candidate be

Vl ¼ Vl0 þ
sj06
b

Z t

t�s
l2nðsÞds þ 1

v1

Z t

t�s

Z t

h
l2nðsÞdsdh

þ sj07
b

Z t

t�s
l2n�1ðsÞds þ 1

v2

Z t

t�s

Z t

h
l2n�1ðsÞdsdh

ð91Þ

Differentiating Vl, then

_Vl � �
Xn

i¼1

ĥil
2
i �

1

b
� ms

2

� �Z t

t�s
jj _vðsÞjj2ds � 1

v1

Z t

t�s
l2nðsÞds

� 1

v2

Z t

t�s
l2n�1ðsÞds þ s

b
j04 þ d�2 þ s

b
j05

ð92Þ

where ĥi ¼ ~hi ð1� i� n � 2Þ, ĥn�1 ¼ ~hn�1 þ s
b j

0
7 � s

v2
, and

ĥn ¼ ~hn þ s
b j

0
6 � s

v1
.

By designing the parameters hi; b , v1 and v2, we can

have

ĥi [ 0;
1

b
� ms

2
[ 0 ð93Þ

Furthermore, one can get
Z t

t�s

Z t

h
jj _vðsÞjj2dsdh

� s sup
h2½t�s;t�

Z t

t�s
jj _vðsÞjj2ds ¼ s

Z t

t�s
jj _vðsÞjj2ds

ð94Þ

Z t

t�s

Z t

h
l2kðsÞdsdh

� s sup
h2½t�s;t�

Z t

t�s
l2kðsÞds ¼ s

Z t

t�s
l2kðsÞds; k ¼ n � 1; n:

ð95Þ

Consequently, the derivative of Vl satisfies that

_Vl � �
Xn

i¼1

ĥil
2
i �

1

b
� ms

2

� �Z t

t�s
jj _vðsÞjj2ds

� 1

v1
� sj06

b

� �Z t

t�s
l2nðsÞds

� sj06
b

Z t

t�s
l2nðsÞds � 1

v2
� sj07

b

� �Z t

t�s
l2n�1ðsÞds

� sj07
b

Z t

t�s
l2n�1ðsÞds þ s

b
j04 þ d�2 þ s

b
j05

� �
Xn

i¼1

ĥil
2
i �

1

s
� mb

2

� �
1

b

Z t

t�s

Z t

h
jj _vðsÞjj2dsdh

� 1

s
� v1j06

b

� �
1

v1

Z t

t�s

Z t

h
l2ndsdh� sj06

b

Z t

t�s
l2nðsÞds

� 1

s
� v2j07

b

� �
1

v2

Z t

t�s

Z t

h
l2n�1dsdh� sj07

b

Z t

t�s
l2n�1ðsÞds

þ s
b
j04 þ d�2 þ s

b
j05

� � .Vl þ j

ð96Þ

where . ¼ minf2ĥi;
1
s �

mb
2
; 1s �

v1j06
b ; 1; 1s �

v2j07
b ; i ¼

1; 2; � � � ; ng and j ¼ s
b j

0
4 þ d�2 þ s

b j
0
5.

By integrating (96) on both sides over [0, t], one can

obtain that

VlðtÞ� ðVlð0Þ �
j
.
Þe�.t þ j

.
ð97Þ

From (98), we can conclude that li is bounded, i.e.,

jlij �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ðVlð0Þ � j=.Þe�.t þ j=.
q

i ¼ 1; 2; � � � ; n:

ð98Þ

According to (78), the signals zi, ~Wi, ci, ~Di and eiþ1 for

1� i� n are all bounded. Furthermore, from (17), (39),

(61) and (98) one can get ai and v are also bounded. Thus,
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xi is bounded which can be derived from the fact that eiþ1

and ai. Consequently, based on the boundedness of zi, li,

xi, ai and v, one can get xi is also bounded. In particular,

one can get jy � ydj � jz1j þ jl1j which means that the

tracking error is bounded. From above discussions, we can

get that for 1� i� n, all the signals of the closed-loop

system are all bounded. The proof is completed.

Remark 5 From above discussions, the tracking error can

be minimized by adjusting the design parameters ki, hi, gi,

ri, pi, li and ni, such that a good robust performance of the

closed-loop systems can be obtained. In particular, if we

increase the parameters ki, hi, gi, pi and li, the tracking

errors will be decreased. On the other hand, if we decrease

the parameters of ni, ri, then the tracking errors will also be

decreased.

Remark 6 Based on the auxiliary system, the disturbance

observer is introduced to estimate the approximation error

and unknown time-varying external disturbance. There is

no need to know the boundary of the approximation error

or time-varying external disturbance.

Remark 7 The output information of the disturbance

observer is employed to construct the virtual control signal

and the real control signal. Then the control signal can be

adaptive adjusted according to the output of the disturbance

observer. Compared with the existing results in

[28–33, 49–53], the proposed adaptive neural dynamic

surface control scheme in this paper which not only esti-

mates the unknown time-varying external disturbance and

the approximation error caused by the NNS, but also

eliminates the effect caused by input delay and dead-zone.

Consequently, the disturbance rejection performance of the

closed-loop system can be effectively improved.

Remark 8 In practical applications, the proposed auxiliary

system can be constructed easily according to the number

of system state variables. The compensation signal

liði ¼ 1; 2; � � � ; nÞ in the auxiliary system can be used in

the virtual signals and real control signal. The stability of

the closed-loop system can also be guaranteed by choosing

the appropriate Lyapunov function and the setting

parameters.

4 Simulation

In this section, two examples of strict-feedback nonlinear

systems are given to show the effectiveness and charac-

teristics of the proposed method. Example 1 is a third-order

numerical example with constant input delay and dead-

zone used for a comparison with the proposed method in

[53]. Example 2 is an application example of third-order

one-link robot system with time-varying input delay and

dead-zone used to show the superiority of the proposed

approach.

Example 1 A third-order nonlinear system with time-

varying external disturbance, input dead-zone and input

delay described as the following form:

_x1 ¼ �x21 � sinðx1Þ þ x2 þ d1ðtÞ
_x2 ¼ x21 þ x1x2 þ x2cosðx1Þ þ x3 þ d2ðtÞ
_x3 ¼ 0:1x1x2e

x3 þ 0:5x3 cosðx1x2Þ þ Dðvðt � sÞÞ þ d3ðtÞ
y ¼ x1

8
>>><

>>>:

where d1ðtÞ ¼ 0:5cosðtÞ, d2ðtÞ ¼ sinð0:5tÞ and d3ðtÞ ¼
sinð0:2tÞ þ 0:5cosð0:1tÞ are time-varying external distur-

bance. The initial conditions xð0Þ ¼ ½0:5; 0; 0�T .

The control object is to make the output to track the

reference signal yd ¼ 0:5sinðtÞ þ 0:5cosð0:5tÞ with the

input delay being s ¼ 1s, and the dead-zone parameters

being m ¼ 1, br ¼ 2, bl ¼ �2.

Firstly, in order to verify the effectiveness of the pro-

posed method in this paper, a comparison with the pro-

posed method in [53] is carried out to test the tracking

performance for the reference signal.

The simulation parameters in [53] (please see [53])

which are selected as k1 ¼ 20, k2 ¼ 30, k3 ¼ 40,

K1 ¼ 0:01I, K2 ¼ 0:02I, K3 ¼ 0:01I, r1 ¼ 5, r2 ¼ 8,

r3 ¼ 15, c1 ¼ 8, c2 ¼ 10, c3 ¼ 15, l1 ¼ 20, l2 ¼ 20,

l3 ¼ 50, b1 ¼ 0:015, b2 ¼ 0:01. The simulation result is

shown in Fig. 1.

From Fig. 1, one can observe that the system trajectory

x1 can not track the reference signal yd, and the system

trajectory x1 is unstable when the input delay s ¼ 1s, input

dead-zone, and external disturbances appear. The simula-

tion result shows that the control signal is completely

invalid when the input delay occurs. This means that, the

Pade approximation method is invalid for long input delay.

In what follows, we test the effectiveness of the pro-

posed method in this article. In the simulation, some

parameters are selected as above, let the parameters be

Ŵ1ð0Þ= Ŵ2ð0Þ= Ŵ3ð0Þ ¼ 0:1, c1ð0Þ ¼ c2ð0Þ ¼ c3ð0Þ ¼ 0,

l1ð0Þ=l2ð0Þ=l3ð0Þ ¼ 0, x1ð0Þ ¼ x2ð0Þ ¼ 0,

o1ð0Þ ¼ o2ð0Þ ¼ o3ð0Þ ¼ 0, k1 ¼ 20, k2 ¼ 30, k3 ¼ 40,

h1 ¼ 2, h2 ¼ 4, h3 ¼ 3, g1 ¼ 1, g2 ¼ 1, K1 ¼ 0:01I,

K2 ¼ 0:02I, K3 ¼ 0:01I, r1 ¼ 5, r2 ¼ 8, r3 ¼ 15, p1 ¼ 8,

p2 ¼ 10, p3 ¼ 15, l1 ¼ 20, l2 ¼ 20, l3 ¼ 50, n1 ¼ 0:015,

n2 ¼ 0:01. The Gaussian NNS are employed in the
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simulation, and the center of the receptive field is v ¼
½�5;�4;�3;�2;�1; 0; 1; 2; 3; 4; 5�T with the width g ¼ 1.

The simulation time is 30s, and the simulation results are

shown in Figs. 2, 3, 4, 5, 6, 7, 8, 9, 10.

Figure 2 draws the trajectories of the state x1 and yd.

From Fig. 2, one can observe that under the input delay

s ¼ 1s, input dead-zone and external disturbances, the

system state trajectory of x1 can track yd quickly.

Figure 3 draws the state trajectories of x2 and x3,

respectively. From Fig.3 one can observe that the state

trajectories of x2 and x3 are all bounded with input delay

s ¼ 1s, input dead-zone, and time-varying external

disturbances.

Figure 4 depicts the trajectories of z1, z2 and z3 are all

bounded with input delay s ¼ 1s, input dead-zone and

time-varying external disturbances. This means that the

proposed adaptive controller can ensure that the tracking

errors converge to a compact set of the origin.

Figure 5 depicts the state trajectories of auxiliary system

l1, l2 and l3
From Fig. 5, one can observe that the auxiliary systems

l1, l2 and l3 are asymptotically stable. Therefore, the

compensation signals are bounded, which verifies the cor-

rectness of the theoretical analysis.

Figure 6 displays the adaptive laws Ŵ1, Ŵ2 and Ŵ3 are

bounded.

From the simulation result in Fig.6, although the input

delay and input dead zone exist in practical system, one can

conclude that the adaptive laws are all bounded. This

demonstrates the effectiveness of the proposed compensa-

tion mechanism.

Figures 7, 8 and 9 depict the trajectories of D̂1, D1, D̂2,

D2, D̂3, D3, respectively.

From Figs. 7, 8, 9, one can observe that the proposed

disturbance observer can estimate the approximation error

and the external time-varying disturbance accurately and

quickly. This means that the proposed disturbance observer

can effectively provide the estimation information for the

adaptive controller, thus improving the disturbance rejec-

tion performance of the closed-loop system.

The control signal Dðvðt � sÞÞ with s ¼ 1s is shown in

Fig. 10. It can be seen from Fig. 10 that the input signal is

bounded.

From Fig. 10, one can observe that the proposed con-

troller is bounded by using the compensation mechanism,

although the input delay and input dead zone exist in

practical system.

From the simulation results in Figs. 2, 3, 4, 5, 6, 7, 8, 9,

10 one can obtain that for input delay s ¼ 1s and the time-

varying external disturbance d1ðtÞ ¼ 0:5cosðtÞ, d2ðtÞ ¼
sinð0:5tÞ and d3ðtÞ ¼ sinð0:2tÞ þ 0:5cosð0:1tÞ, and input

dead-zone, all the signals of the closed-loop systems are

bounded by using the proposed adaptive neural controller.

From the comparative results of Figs. 1, 2, 3, 4, 5, 6, 7,

8, 9, 10, one can observe that the proposed method in this

paper can tackle disturbance-observer-based adaptive

control for strict-feedback systems with long input delay

and dead-zone. At the same time, the proposed

scheme shows excellent tracking performance.

Fig. 1 The trajectories of x1 and
yd with input delay s ¼ 1s using
the method [53] in example 1
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Example 2 Consider a one-link robot system used in [58].

The dynamics model of the system with input dead-zone

and time-varying delay is described as follows:

D€q þ B _q þ N sinðqÞ ¼ I

M _I þ JI ¼ �Km _q þ Dðvðt � sÞÞ

y ¼ q

8
>><

>>:

where q represents the link position, _q represents the

angular velocity, and €q represents the angular acceleration.

I denotes the motor shaft angle and _I denotes the velocity. v

is the motor torque, and Dðvðt � sÞÞ represents the input

dead-zone and delay for control input v.

Fig. 2 The trajectories of x1 and
yd with input delay s ¼ 1s in

example 1

Fig. 3 The trajectories of x2
with input delay s ¼ 1s in

example 1
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Let x1 ¼ q, x2 ¼ _q and x3 ¼ I=D, we add the external

disturbances d1ðtÞ ¼ 0:3sinðtÞ, d2ðtÞ ¼ 0:2sinð2tÞ and

d3ðtÞ ¼ 0:3cosðtÞ and rewrite the system as

_x1 ¼ x2 þ d1ðtÞ

_x2 ¼ �N

D
sinðx1Þ �

B

D
x2 þ x3 þ d2ðtÞ

_x3 ¼ �Km

M
x2 �

DJ

M
x3 þ

1

M
Dðvðt � sÞÞ þ d3ðtÞ

y ¼ x1

8
>>>>>>>><

>>>>>>>>:

where D ¼ 1, B ¼ 1, M ¼ 1, Km ¼ 10, J ¼ 0:5, N ¼ 10

and xð0Þ ¼ ½0; 0; 0�T .
The control object is to make the output to track the

reference signal yd ¼ 0:5sinðtÞ with the time-varying input

delay being s ¼ 0:8þ 0:5sinðtÞs, and the dead-zone

parameters being m ¼ 2:5, br ¼ 2, bl ¼ �2.

Let the initial conditions Ŵ1ð0Þ= Ŵ2ð0Þ=
Ŵ3ð0Þ ¼ 0:01, c1ð0Þ ¼ c2ð0Þ ¼ c3ð0Þ ¼ 0,

l1ð0Þ=l2ð0Þ=l3ð0Þ ¼ 0, x1ð0Þ ¼ x2ð0Þ ¼ 0,

Fig. 4 The trajectories of z1,z2
and z3 in example 1

Fig. 5 The auxiliary system’s

states l1, l2 and l3 in example

1
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o1ð0Þ ¼ o2ð0Þ ¼ o3ð0Þ ¼ 0, k1 ¼ 20, k2 ¼ 10, k3 ¼ 10,

h1 ¼ 8, h2 ¼ 8, h3 ¼ 5, g1 ¼ 2, g2 ¼ 2, K1 ¼ 0:0001I,

K2 ¼ 0:0001I, K3 ¼ 0:0001I, r1 ¼ 1, r2 ¼ 1, r3 ¼ 1,

p1 ¼ 9, p2 ¼ 9, p3 ¼ 9, l1 ¼ 18, l2 ¼ 18, l3 ¼ 18,

n1 ¼ 0:015, n2 ¼ 0:01. The Gaussian NNS are employed in

the simulation, and the center of the receptive field is v ¼
½�5;�4;�3;�2;�1; 0; 1; 2; 3; 4; 5�T with the width g ¼ 1.

The simulation time is 30s, and the simulation results are

shown in Figs. 11, 12, 13, 14, 15, 16, 17, 18, 19. The

trajectories of the state x1 and yd are depicted in Fig. 11.

From Fig. 11, one can observe that under the input delay

s ¼ 0:8þ 0:5sinðtÞs, input dead-zone and external distur-

bances, the system state trajectory of x1 can track the ref-

erence signal yd.

Figure 12 draws the state trajectories of x2 and x3.

Fig. 6 The adaptive laws’

trajectories Ŵ1, Ŵ2 and Ŵ3 in

example 1

Fig. 7 The adaptive laws’

trajectories D̂1, and D1 in

example 1
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From Fig.12 we can see that the state trajectories of x2
and x3 are bounded with input delay s ¼ 0:8þ 0:5sinðtÞs,
input dead-zone and external disturbances.

Figure 13 depicts the trajectories of z1, z2 and z3.

From Fig. 13, we can observe that all the signals of the

tracking errors are bounded by using the proposed adaptive

controller with input delay s ¼ 0:8þ 0:5sinðtÞs, input

dead-zone and time-varying external disturbances.

Figure 14 shows the state trajectories of auxiliary sys-

tem l1; l2 and l3 are asymptotically stable.

Figure 15 displays the adaptive laws Ŵ1, Ŵ2 and Ŵ3 are

bounded with time-varying input delay, input dead-zone

and time-varying external disturbances.

Figures 16, 17 and 18 depict the trajectories of D̂1, D1,

D̂2, D2, D̂3, D3, respectively.

From Figs. 16, 17, 18, one can observe that the proposed

disturbance observer can estimate the approximation error

and the external time-varying disturbance accurately and

quickly.

Fig. 8 The adaptive laws’

trajectories D̂2, and D2 in

example 1

Fig. 9 The adaptive laws’

trajectories D̂3, and D3 in

example 1
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The control signal Dðvðt � sÞÞ with s ¼ 0:8þ 0:5sinðtÞs
is shown in Fig.19.

From the simulation results in Figs. 11, 12, 13, 14, 15,

16, 17, 18, 19, one can conclude that for the time-varying

input delay s ¼ 0:8þ 0:5sinðtÞs, input dead-zone and the

time-varying external disturbance d1ðtÞ ¼ 0:3sinðtÞ,
d2ðtÞ ¼ 0:2sinð2tÞ and d3ðtÞ ¼ 0:3cosðtÞ, all the signals of

the closed-loop systems are bounded by using the proposed

adaptive neural controller.

In order to illustrate the superiority of the proposed

method in this paper, a comparison with [52] and [53] is

carried out to test the effectiveness of the method in han-

dling different input delays. The reference signal is selec-

ted as above, and the comparison results are shown in

Table 1. In Table 1, the mark U denotes the output signal

can track the reference signal, and the mark 	 denotes the

output signal cannot track the reference signal.

Fig. 10 The control signal

Dðvðt � sÞÞ with s ¼ 1s in

example 1

Fig. 11 The trajectories of x1
and yd with time-varying input

delay s ¼ 0:8þ 0:5sinðtÞs in

example 2
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From the results in Table 1, one can observe that for the

smallest input delay, all proposed method are effectiveness.

However, if the input delay s� 0:1s, the method in [52] is

completely invalid, and the output signal of the system

cannot track the reference signal. The method in [53] is

superior to the method in [52]. However, if the input delay

s� 1:5s, then the closed-loop system become unstable for

the method in [53]. For the proposed method in this paper,

the system state variables are still controllable when

s� 2:0s. From the results in Table 1, one can conclude that

the proposed method in this paper is super to the methods

in [52, 53].

Fig. 12 The state trajectory of

x2 and x3 with input delay s ¼
0:8þ 0:5sinðtÞs in example 2

Fig. 13 The trajectory of z1, z2
and z3 in example 2
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4.1 Comparative explanations

The proposed method in this paper gives an effective way

for strict-feedback nonlinear systems with time-varying

external disturbance, input dead-zone and input delay.

Compared with the existing results in

[13–16, 28–33, 49–53], the main advantages of the pro-

posed method can be summarized in the following three

aspects.

(1) The proposed compensation mechanism is conve-

nient to overcome the design difficulty on the input-

delay systems theoretically. Unlike the Pade approx-

imation method which is invalid once the input delay

is long, the proposed method can tackle long input

delay.

(2) Different from [28–33], the proposed control

scheme can not only estimate the unknown time-

varying external disturbance and the approximation

error caused by the NNS, but also eliminate the

effect caused by input delay and dead-zone.

(3) Compared with the existing results in [13–16]

[49–53], the disturbance rejection performance of

Fig. 14 The auxiliary system’s

states l1, l2 and l3 in example

2

Fig. 15 The adaptive laws’

trajectories Ŵ1, Ŵ2 and Ŵ3 in

example 2
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the closed-loop system can be effectively improved.

Especially, when the system has input delay and

dead zone, the robust performance of the system can

be effectively guaranteed.

5 Conclusions

In this article, based on the idea of DSC scheme and by

combing NNS with backstepping technique, we consider

disturbance-observer-based adaptive tracking control for

strict-feedback nonlinear systems with time-varying

external disturbance, input dead-zone and input delay. To

degrade the complexity and difficulty of controller design,

a novel compensation mechanism is developed to exclude

the effect caused by input dead-zone and input delay.

Based on the auxiliary system, a disturbance observer is

constructed to estimate the approximation error and the

unknown external time-varying disturbance in each back-

stepping step, and the effect of input dead zone and delay

can be eliminated. The ‘‘explosion of complexity’’ problem

has been avoided by DSC scheme. Finally, the simulation

Fig. 16 The adaptive laws’

trajectories D̂1, and D1 in

example 1

Fig. 17 The adaptive laws’

trajectories D̂2, and D2 in

example 1
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results show that the proposed scheme has better tracking

performance. In the future, we will discuss the problem of

nonlinear systems control with unknown input delay in

depth.
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Fig. 18 The adaptive laws’

trajectories D̂3, and D3 in

example 1

Fig. 19 The control signal

Dðvðt � sÞÞ with s ¼
0:8þ 0:5sinðtÞs in example 2

Table 1 The comparison

between different methods
s ¼ 0:02s s ¼ 0:1s s ¼ 1:0s s ¼ 1:5s s ¼ 2:0s s ¼ 3:0s

[52] U 	 	 	 	 	
[53] U U U 	 	 	
This paper U U U U U 	
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