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Abstract
Computer-aided medical image segmentation has been applied widely in diagnosis and treatment to obtain clinically useful

information of shapes and volumes of target organs and tissues. In the past several years, convolutional neural network

(CNN)-based methods (e.g., U-Net) have dominated this area, but still suffered from inadequate long-range information

capturing. Hence, recent work presented computer vision Transformer variants for medical image segmentation tasks and

obtained promising performances. Such Transformers modeled long-range dependency by computing pair-wise patch

relations. However, they incurred prohibitive computational costs, especially on 3D medical images (e.g., CT and MRI). In

this paper, we propose a new method called Dilated Transformer, which conducts self-attention alternately in local and

global scopes for pair-wise patch relations capturing. Inspired by dilated convolution kernels, we conduct the global self-

attention in a dilated manner, enlarging receptive fields without increasing the patches involved and thus reducing

computational costs. Based on this design of Dilated Transformer, we construct a U-shaped encoder–decoder hierarchical

architecture called D-Former for 3D medical image segmentation. Experiments on the Synapse and ACDC datasets show

that our D-Former model, trained from scratch, outperforms various competitive CNN-based or Transformer-based seg-

mentation models at a low computational cost without time-consuming per-training process.
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1 Introduction

Medical image segmentation, as one of the critical com-

puter-aided medical image analysis problems, aims to

capture precisely the shapes and volumes of target organs

and tissues by pixel-wise classification, obtaining clinically

useful information for diagnosis, treatment, and interven-

tion. With the recent development of deep learning meth-

ods and computer vision algorithms, medical image

segmentation has been revolutionized and remarkable

progresses have been achieved (e.g., automatic liver and

tumor lesion segmentation [1], brain tumor segmenta-

tion [2], and multiple sclerosis (MS) lesion

segmentation [3]).

Fully convolutional network (FCN) [4] was first proved

effective for general image segmentation tasks, which

became a predominant technique for medical image seg-

mentation [5–9]. However, it was observed that vital

details can be missing with the decrease of feature map

sizes when FCN models went deeper. To this end, a family

of U-shaped networks [10–17] was proposed to extend the

sequential FCN frameworks to encoder–decoder-type

architectures, alleviating the spatial information loss using

skip connections. In DeepLab models [18–21], atrous

convolutions instead of pool layers were applied to expand

the receptive field and fully connected conditional random

field (CRF) was introduced to maintain fine details.

Although these CNN-based methods have achieved great

performances on medical image segmentation tasks, they

still suffered from limited receptive fields and were unable

to capture long-range dependencies, leading to sub-optimal

accuracy and failing to meet the needs of various medical

image segmentation scenarios.

Inspired by the success of Transformer with its self-

attention mechanism in natural language processing (NLP)

tasks [22, 23], researchers tried to adapt Transformers

[24–27] to computer vision (CV) in order to compensate

the locality of CNNs. The self-attention mechanism in

Transformers enabled to compute pair-wise relations

between patches globally, consequently achieving feature

interactions across a long range. The self-attention mech-

anism was first adopted by non-local neural networks [28]

to complement CNNs for modeling pixel-level long-range

dependency for visual recognition tasks. Then, a pure

Transformer framework was proposed by the Vision

Transformer (ViT) [24] for vision tasks, treating an image

as a collection of spatial patches. Recently, Transformers

have achieved excellent outcomes on a variety of vision

tasks [29–34], including image recognition [29–31, 35, 36],

semantic segmentation [32], and object detection [33, 34].

On semantic medical image segmentation, Transformer-

combined architectures can be divided into two categories:

The main one adopted self-attention like operations to

complement CNNs [37–40] and the other used pure

Transformers to constitute encoder–decoder architectures

so as to capture deep representations and predict the class

of each image pixel [32, 41–43].

Although the above medical image segmentation

methods were promising and yielded good performance to

some extent, they still suffered considerable drawbacks. (1)

The majority of these Transformer segmentation models

were designed for 2D images [37, 39, 41–43]. For 3D

medical images (e.g., 3D MRI scans), they divided the

input images into 2D slices and processed the individual

slices with the 2D models, which could lose useful 3D

contextual information. (2) Compared with common 2D

natural scene images, processing 3D medical images

inevitably incurred larger model sizes and computational

costs, especially when computing global feature interac-

tions with self-attention in vanilla Transformer [22] (see

more details in Sect. 3.3). Although some adaptations were

proposed to reduce the operation scopes of self-attention

[29–31, 44–47] (e.g., progressive scaling pyramids were

used in the Pyramid Vision Transformer [30] to reduce the

computation costs of large feature maps), insufficient glo-

bal information fusion incurred. (3) The self-attention

operation in Transformers was shown to be permutation-

equivalent [22], which omitted the order of patches in an

input sequence. However, the permutation equivalence

nature can be detrimental to medical image segmentation

since segmentation results are often highly position-corre-

lated. In prior works, absolute position encoding (APE)

[22] and relative position encoding (RPE) [29, 48] were

utilized to supplement position information. But, APE

required a pre-given and fixed patch amount and thus failed

to generalize to different image sizes, while RPE ignored

the absolute position information that could be a vital cue

in medical images (e.g., the positions of bones are often

relatively stable).

To address the above drawbacks, we propose a new

efficient model called Dilated Transformer (D-Former) to

directly process 3D medical images (instead of dealing

with 2D slices of 3D images independently) and predict

volumetric segmentation masks. Our proposed D-Former is

a 3D U-shaped architecture with hierarchical layers, and

employs skip connections from encoder to decoder fol-

lowing [10–17]. This model’s stem is constructed with

eight D-Former blocks, each of which consists of several

local scope modules (LSMs) and global scope modules

(GSMs). The LSM conducts self-attention locally, focusing

on fine information capturing. The GSM performs global

self-attention on uniformly sampled patches, aiming to

explore rough and long-range-dependent information at

low cost. The LSMs and GSMs are arranged in an alternate

manner to achieve local and global information interaction.
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For drawback (3), we manage to incorporate position

information among patches in a more dynamic manner.

Inspired by [44, 49], we utilize depth-wise convolutions

[50] to learn position information, which can help provide

useful position cues in medical image segmentation.

Benefiting from these designs, our proposed D-Former

model could be more suitable for medical image segmen-

tation tasks and yield better segmentation accuracy. The

main contributions of this work are as follows:

(1) We construct a 3D Transformer-based architecture

which allows to process volumetric medical images

as a whole and thus spatial information along the

depth dimension of 3D medical images can be fully

captured.

(2) We design local scope modules (LSMs) and global

scope modules (GSMs) to increase the scopes of

information interactions without increasing the

patches involved in computing self-attention, which

helps reduce computational costs.

(3) To further incorporate relative and absolute position

information among patches, we apply a dynamic

position encoding method to learn it from the input

directly. As a result, an inherent problem of common

Transformers, permutation equivalence [22], could

be considerably alleviated.

(4) Extensive experimental evaluations show that our

model outperforms state-of-the-art segmentation

methods in different domains (e.g., CT and MRI),

with smaller model sizes and less FLOPs than the

known methods.

2 Related work

2.1 CNN-based segmentation networks

Since the advent of the seminal U-Net model [10], many

CNN-based networks have been developed [17, 51–54]. As

for the design of skip connections, U-Net?? [55] and

U-Net3? [56] were proposed to attain dense connections

between encoder and decoder. In addition, regarding the

locality of CNNs, different kinds of mechanisms were

designed to enlarge the receptive field, such as larger

kernel [57], dilated convolution module [58, 59], pyramid

pooling module [60, 61], and deformable convolution

module [62, 63]. In particular, dilated convolution was an

ingenious design in which the convolution kernel was

expanded by inserting holes between its consecutive ele-

ments. This design has been adopted by various segmen-

tation models, achieving good performance compared with

the original convolution-based methods. Our Dilated

Transformer also obtains a key idea from this design and

aims to conduct self-attention in a patch skipping manner

(see Sect. 3.3 for details).

2.2 Visual Transformer variants

Transformer and its self-attention mechanism were first

designed for sequence modeling and transduction tasks in

the domain of natural language processing (NLP),

achieving state-of-the-art performance [22, 23]. Inspired by

tremendous success of Transformers in NLP, Transformers

were adapted for computer vision tasks. The first attempt

was vision Transformer (ViT) [24] which needed huge pre-

training datasets. To overcome this weakness, a wide range

of training strategies with knowledge distillation was pro-

posed by DeiT [25], which contributed to better perfor-

mances of vanilla Transformer. There were different kinds

of adaptations for vanilla Transformer, such as Swin

Transformer [29], pyramid vision Transformer [30],

Transformer in Transformer [64], and aggregating nested

Transformers [31]. In particular, Swin Transformer showed

great success in various computer vision tasks with its

elegant shift window mechanism and hierarchical archi-

tecture. Our proposed D-Former is inspired by Swin

Transformer’s local–global combining scopes of informa-

tion interactions.

2.3 Transformers for segmentation tasks

As mentioned above, Transformers used in medical image

segmentation methods can be divided into two categories.

In the main category, Transformer and its self-attention

mechanism were utilized as a supplement for the convo-

lution-based stem. SETR [65] was proposed to apply

Transformer as encoder to extract features for segmenta-

tion tasks. In medical images, many models with Trans-

formers focused on segmentation tasks. In TransUNet [37],

convolutional layer was used as a feature extractor to

obtain detailed information from raw images, and the

generated feature maps were then put into Transformer

layer to obtain global information. UNETR [38] proposed a

3D Transformer-combining architecture for medical ima-

ges, which treated Transformer layer as encoder to extract

features and convolutional layer as decoder. A great

amount of such work focused on taking advantage of both

Transformer’s long-range dependency and CNN’s induc-

tive bias. In the other category, Transformer was regarded

as the main stem for building the whole architecture

[32, 41–43]. In MedT [66], the gated axial attention

mechanism and Gated Axial Transformer layer were pro-

posed to build the architecture. Swin-Unet [41] was con-

structed with the basic units of Swin Transformer blocks,

which was further extended in DS-TransUNet [42] by

adding another encoder pathway for input of different

Neural Computing and Applications (2023) 35:1931–1944 1933

123



sizes. Compared with these previous methods, our pro-

posed D-Former model has several advantages: (1) Our

method focuses on 3D medical image segmentation, which

is a topic with little previous exploration in the context of

Transformer; (2) our D-Former avoids cumbersome design

for fusing CNN and Transformer specifically, constructing

the architecture stem based on Transformer only; and (3)

by designing LSMs and GSMs (see Sect. 3.3), our model

complexity is significantly lower than the compared

methods.

3 Method

3.1 The overall architecture

Our proposed D-Former model is outlined in Fig. 1, which

is a hierarchical encoder–decoder architecture. The enco-

der pathway consists of one patch embedding layer for

transforming 3D images into sequences and four proposed

D-Former blocks for feature extraction with three down-

sampling layers in between them. The first, second, and

fourth D-Former blocks each consist of one local scope

module (LSM) and one global scope module (GSM),

respectively, while the third D-Former block has three

LSMs and three GSMs, in which the LSMs and GSMs are

arranged in an alternate manner. The decoder pathway is

symmetric to the encoder pathway, which also has four

D-Former blocks, three up-sampling layers, and one patch

expanding layer. In addition, skip connections are used to

transfer information from the encoder to the decoder at the

corresponding levels. The feature maps from the encoder

are concatenated with the corresponding feature maps

along the channel dimension, which may compensate for

the loss of fine-grained information as the model goes deep.

In this section, we will present the components of D-

Former one by one, including the patch embedding and

patch expanding layers (Sect. 3.2), the D-Former block and

its major modules, the local scope module and global scope

module (Sect. 3.3), the down-sampling and up-sampling

operations (Sect. 3.4), and the dynamic position encoding

block (Sect. 3.5).

Fig. 1 Overall architecture of our D-Former model. Each D-Former

block is constructed with one dynamic position encoding block (DPE)

and several local scope modules (LSMs) and global scope modules

(GSMs). The input size of the D-Former block i is reported sideward,

and the output sizes are the same as the corresponding input sizes.

The values in round brackets denote the numbers of patches, which

are regarded as one dimension when computed in Transformers (i.e.,

ðW
4
� H

4
� D

2
Þ, ðW

8
� H

8
� D

4
Þ, ðW
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8
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Þ)
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3.2 Patch embedding and patch expanding

Similar to common Transformers in computer vision, after

data augmentation, an input 3D medical image x 2
RW�H�D is first processed by a patch embedding layer and

is divided into a series of patches of size 4� 4� 2 each,

and then is projected into C channel dimensions by linear

projection to yield a feature map (denoted by x1) of size

ðW
4
� H

4
� D

2
Þ � C, where ðW

4
� H

4
� D

2
Þ denotes the number

of patches and C is the number of the channel dimensions.

Hence, the input 3D image is reorganized as a sequence (of

length ðW
4
� H

4
� D

2
Þ) and can be directly fed to a Trans-

former architecture. The final patch expanding layer is used

to restore the feature map to the original input size, and a

segmentation head (like 3D UNet [67]) is utilized to attain

pixel-wise segmentation masks.

3.3 D-former blocks

After patch embedding, x1 is directly fed to D-Former

block 1. In the processing by Transformer block 1, x1 is

first processed by a new dynamic position encoding block

that embeds position information into feature maps (see

details in Sect. 3.5), and then it is operated by the Local

Scope Module (LSM) and Global Scope Module (GSM)

alternatively to extract higher-level features. The other

D-Former Blocks process the corresponding input features

similarly, and the feature map sizes are provided in Fig. 1.

3.3.1 Local scope module and global scope module

The local scope module (LSM) and global scope module

(GSM) are designed to capture local and global features,

respectively, for which two different self-attention opera-

tions are employed, called local scope multi-head self-at-

tention (LS-MSA) and global scope multi-head self-

attention (GS-MSA). As shown in Fig. 2, an LSM is

composed of a LayerNorm layer [68], a proposed LS-MSA,

another LayerNorm layer, and a multilayer perceptron

(MLP), in sequence, with two residual connections to

prevent gradient vanishing [22]. In a GSM, the LS-MSA is

replaced by a proposed GS-MSA, and the other compo-

nents are kept the same as the LSM. To allow local features

and global features to be captured and fused well, LSM and

GSM are arranged alternatively in each D-Former block.

With these components, their operations are formally

defined as:

ẑl ¼LS-MSA LN zl�1
� �� �

þ zl�1; ð1Þ

zl ¼MLP LN ẑl
� �� �

þ ẑl; ð2Þ

ẑlþ1 ¼GS-MSA LN zl
� �� �

þ zl; ð3Þ

zlþ1 ¼MLP LN ẑlþ1
� �� �

þ ẑlþ1; ð4Þ

where ẑl and zl denote the outputs of LS-MSA and the

corresponding MLP, respectively, and ẑlþ1 and zlþ1 denote

the outputs of GS-MSA and the corresponding MLP,

respectively.

3.3.2 Local scope multi-head self-attention (LS-MSA)

Self-attention is conducted in the vanilla Transformer in a

global scope in order to capture pair-wise relationships

between patches, leading to quadratic complexity with

respect to the number of patches. However, due to the fact

that 3D medical images would increase computation

inevitably, this original self-attention would not be suit-

able for 3D medical image related tasks, especially for

semantic segmentation with dense prediction targets.

Under such circumstances, as illustrated in Fig. 3a, a whole

feature map is first divided evenly into non-overlapping

units (the number of patches in each unit is denoted by

ud � uh � uw, where ud denotes the number of patches in

one unit along the depth dimension D, uh along the height

dimension H, and uw along the width dimension W), and

self-attention is conducted within each unit. In this way, the

computational complexity will be reduced to linear in

terms of the number of patches in the whole feature map.

Fig. 2 Local scope module (LSM) and global scope module (GSM),

which should be arranged in pair to combine local and global

information
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The computational complexity (X) of these two different

self-attention mechanisms is computed as:

XðMSAÞ ¼ 4dhwC2 þ 2ðdhwÞ2C; ð5Þ

XðLS-MSAÞ ¼ 4dhwC2 þ 2uduhuwdhwC; ð6Þ

where uduhuw denotes the number of patches in one unit

and dhw denotes the number of patches in the whole fea-

ture map. (d, h, and w denote the depth, height, and width

of the feature map, respectively.) In most cases,

uduhuw � dhw. The Softmax operation is omitted when

computing the computational complexity.

3.3.3 Global scope multi-head self-attention (GS-MSA)

The LS-MSA performs self-attention only within each

local unit, which lacks global information interaction and

long-range dependency. To address this issue, we design a

global scope multi-head self-attention mechanism to attain

information interaction across different units in a dilated

manner. As illustrated in Fig. 3b, for a whole feature map,

we pick one patch every g distance along each dimension

and form a unit with all the patches thus picked, on which

self-attention would then be conducted. Likewise, we pick

the other patches to form new units, until all the patches are

utilized. Hence, the receptive field in computing self-at-

tention will be enlarged but the number of patches involved

will not be increased, which means that it would not

increase the computational cost while getting access to

long-range information interaction. To keep consistency

between LSM and GSM, we set d ¼ gd � ud, h ¼ gh � uh,

and w ¼ gw � uw, which ensures that the numbers of units

in LSM and GSM are kept the same. Here, d � h� w

denotes the number of patches in the whole feature map,

ud � uh � uw denotes the number of patches in one unit,

and gd, gh, and gw denote the distance between two nearest

patches picked along the depth dimension D, height

dimension H, and width dimension W, respectively.

3.4 Down-sampling and up-sampling

Between every two adjacent D-Former blocks of the

encoder, a down-sampling layer is utilized to merge pat-

ches for further feature fusion. Specifically, a down-sam-

pling layer concatenates the feature maps of 2� 2� 2

neighboring patches (2 neighboring patches along the

width, height, and depth dimensions, respectively), reduc-

ing the number of patches by 8 times. Then, a fully con-

nected layer is utilized to reduce the feature channel size by

4 times to ensure that the channel size can be doubled after

each down-sampling layer. Thus, the output feature maps

of each down-sampling layer will be x2 2 RðW
8
�H

8
�D

4
Þ�2C,

x3 2 RðW
16
�H

16
�D

8
Þ�4C, and x4 2 RðW

32
�H

32
�D

16
Þ�8C, respectively. In

reverse to the down-sampling layers, four up-sampling

layers of the decoder are used to enlarge the low-resolution

(a) (b)

Fig. 3 a Local scope multi-head self-attention: The self-attention is

conducted in a local unit (colored in blue) where the patches are

adjacent. b Gobal scope multi-head self-attention: The self-attention

is conducted in a global unit (colored in blue) where patches are

picked every gth patch across the feature map. A small cube

represents one patch. The feature map size is set as 6� 6� 6 and the

unit size is 3� 3� 3 as an example. We color only the patches of one

unit in blue for illustration; the other gray patches are also utilized to

construct seven other units in both LS-MSA and GS-MSA
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feature maps and reduce the number C of the channel

dimensions. In this way, our model will be able to extract

features in a multi-scale manner and yield better segmen-

tation accuracy.

3.5 The dynamic position encoding block

The depth-wise convolution (DW-Conv) is a type of con-

volution that applies a single convolutional filter for each

input channel instead of for all channels as in a common

convolution, which can decrease the computational cost.

We apply 3D depth-wise convolution [50] to the input

feature maps (or images) once in every D-Former block to

learn position information. Then the learned position

information will be added to the original input xi as:

x0i ¼ ResizeðDW-ConvðResizeðxiÞÞÞ þ xi; ð7Þ

where xi denotes the input feature maps of the ith D-For-

mer block and x0i denotes the output feature maps embed-

ded with position information. Resize is used to adjust the

dimensions of feature maps xi to cater the input need of

DW Convolution.

In this way, position information among patches can be

extracted by a DW-Convolution. Given the fact that posi-

tion information could be dynamically learned based on the

input x itself, a drawback in the previous work that requires

a fixed number of patches can be avoided. In addition, the

convolution’s inherent nature of translation invariance can

be utilized to increase the stability and generalization

performance [69].

4 Experiments

4.1 Datasets

The Synapse multi-organ segmentation (Synapse) data-

set includes 30 axial contrast-enhanced abdominal CT

scans. Following the training–test split in [37], 18 of the 30

scans are used for training and the remaining ones are for

testing. The average dice similarity coefficient (DSC) [17]

is used as the measure for evaluating the segmentation

performances of the eight target organs, including aorta,

gallbladder, kidney (L), kidney (R), liver, pancreas, spleen,

and stomach.

The Automated Cardiac Diagnosis Challenge

(ACDC) dataset contains 150 magnetic resonance imaging

(MRI) 3D cases collected from different patients, and each

case covers a heart organ from the base to the apex of the

left ventricle. Following the setting in [37], only 100 well-

annotated cases are used in the experiments, and the

training, validation, and test data are partitioned with the

ratio of 7: 1: 2. For fair comparison, the average DSC is

employed to evaluate the segmentation performances fol-

lowing the previous work [37], and three key parts of the

heart are chosen as targets, including the right ventricle

(RV), myocardium (Myo), and left ventricle (LV).

4.2 Implementation setup

Pre-training. Our D-Former model is trained from scratch,

which means that we initialize the model’s weights ran-

domly. Note that in common practice, pre-training is

important to Transformer-based models. This is because

the pre-training process provides generalized representa-

tions and prior knowledge for downstream tasks. For

example, in vision Transformer (VIT) [24], it considered

that the model performance depends heavily on pre-train-

ing, and its experiments verified this view. Besides, lots of

known medical image segmentation methods used pre-

trained weights to initialize their models

[32, 37, 39, 70, 71]. However, the pre-training process of

Transformer-based models brings up two issues. First, the

pre-training process usually incurs high computational

complexity in terms of time or computation consumed.

Second, for medical images, there are few complete and

acknowledged sizable datasets for pre-training (in com-

parison, ImageNet [72] is available for natural scene ima-

ges), and the domain gap between natural images and

medical images makes it hard for medical image segmen-

tation models to use existing large natural image datasets

directly. For these reasons, we choose to train our D-For-

mer model from scratch, which nevertheless yields

promising performance that surpasses state-of-the-art

methods with pre-training.

Implementation details. Our proposed D-Former is

implemented on PyTorch 1.8.0, and all the experiments are

trained on an NVIDIA GeForce RTX 3090 GPU with 24

GB memory. The batch size during training is 2 and during

inference in 1. The SGD optimizer [73] with momentum

0.99 is used. The initial learning rate is 0.01 with weight

decay of 3e–5. The polylearning rate strategy [74] is uti-

lized with the maximum training epochs of 3000 for the

Synapse dataset and 1500 for the ACDC dataset. The

training takes about 8 h for the Synapse dataset and about

6.5 h for the ACDC dataset, and the test time of one sample

takes about 1.3 s for the Synapse dataset and about 1.2 s

for the ACDC dataset.

Loss function. The cross-entropy loss and Dice loss are

both widely used for general segmentation tasks. However,

since the cross-entropy loss is apt to perform well for

uniform class distribution while Dice loss is more suit-

able for target objects of large sizes [75], each of them

alone may not be effective for medical image segmentation
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tasks that involve imbalanced classes and target objects of

small sizes. Thus, our loss function combines the binary

cross-entropy loss Y [76] and Dice loss Ŷ [17] together,

which is defined as:

LðY ; ŶÞ ¼ � 1

N

XN

n¼1

1

2
� Yn � log Ŷn þ

2 � Yn � Ŷn

Yn þ Ŷn

� �
ð8Þ

where Yn and Ŷn denote the ground truth and predicted

probabilities of the nth image, respectively, and N is the

batch size.

4.3 Quantitative results

We evaluate the performance of our proposed D-Former

model on the Synapse and ACDC datasets, and compare

with various state-of-the-art models, including V-Net [17],

DARR [77], R50 U-Net [10], R50 Att-UNet [78], U-Net

[10], Att-UNet [78], VIT [24], R50 VIT [24], TransUNet

[37], Swin-UNet [41], LeVit-Unet-384 [71], nnFormer

[32], and MISSFormer [43].

Quantitative results on the Synapse dataset are reported

in Table 1, which show that our method outperforms the

previous work by a clear margin. It is notable that the

Table 1 Segmentation performances of different methods on the synapse dataset (average dice similarity coefficient (DSC))

Method Average Aotra Gallbladder Kidnery (L) Kidnery (R) Liver Pancreas Spleen Stomach p value

V-Net 0.6881 0.7534 0.5187 0.7710 0.8075 0.8784 0.4004 0.8056 0.569 0.02

DARR 0.6977 0.7474 0.5377 0.7231 0.7324 0.9408 0.5418 0.8990 0.4596 0.02

R50 U-Net 0.7468 0.8774 0.6366 0.8060 0.7819 0.9374 0.5690 0.8587 0.7416 0.02

R50 Att-UNet 0.7557 0.5592 0.6391 0.7920 0.7271 0.9356 0.4937 0.8719 0.7495 0.02

U-Net 0.7685 0.8907 0.6972 0.7777 0.6860 0.9343 0.5398 0.8667 0.7558 0.02

Att-UNet 0.7777 0.8955 0.6888 0.7798 0.7111 0.9357 0.5804 0.8730 0.7575 0.02

VIT 0.6786 0.7019 0.4510 0.7470 0.6740 0.9132 0.4200 0.8175 0.7044 0.02

R50 VIT 0.7129 0.7373 0.5513 0.7580 0.7220 0.9151 0.4599 0.8199 0.7395 0.02

TransUNet 0.7748 0.8723 0.6313 0.8187 0.7702 0.9408 0.5586 0.8508 0.7562 0.02

Swin-UNet 0.7913 0.8547 0.6653 0.8328 0.7961 0.9429 0.5658 0.9066 0.7660 0.02

TransClaw U-Net 0.7809 0.8587 0.6138 0.8483 0.7936 0.9428 0.5765 0.8774 0.7355 0.02

LeVit-Unet-384 0.7853 0.8733 0.6223 0.8461 0.8025 0.9311 0.5907 0.8886 0.7276 0.02

nnFormer 0.8740 0.9204 0.7109 0.8764 0.8734 0.9653 0.8249 0.9291 0.8917 0.09

MISSFormer 0.8196 0.8699 0.6865 0.8521 0.8200 0.9441 0.6567 0.9192 0.8081 0.02

D-Former 0.8883 0.9212 0.8009 0.9260 0.9191 0.9699 0.7667 0.9378 0.8644 –

The best results are marked in bold

The DSC values of the compared methods are from open source of the original papers

The p value in each rows is obtained by the Sign test in comparing to our D-Former, respectively

Table 2 Segmentation performances of different methods on the

ACDC dataset (average dice similarity coefficient (DSC))

Method Average RV Myo LV p value

R50 U-Net 0.8755 0.8710 0.8063 0.9492 0.05

R50 Att-UNet 0.8675 0.8758 0.7920 0.9347 0.05

VIT 0.8145 0.8146 0.7071 0.9218 0.03

R50 VIT 0.8757 0.8607 0.8188 0.9475 0.03

TransUNet 0.8971 0.8886 0.8454 0.9573 0.08

Swin-UNet 0.9000 0.8855 0.8562 0.9583 0.05

LeVit-Unet-384 0.9032 0.8955 0.8764 0.9376 \ 0.01

nnFormer 0.9178 0.9022 0.8953 0.9559 0.1

MISSFormer 0.8790 0.8636 0.8575 0.9159 \ 0.01

D-Former 0.9229 0.9133 0.8960 0.9593 –

The best results are marked in bold

The DSC values of the compared methods are from open source of the

original papers

The p value in each rows is obtained by the Paired T-test in com-

paring to our D-Former, respectively

Table 3 Comparison of the numbers of parameters and FLOPs among

various methods that segment 3D medical images directly

Method #Params (M) FLOPs (G)

3D U-Net 16.31 947.69

UNETR 92.25 86.02

CoTr 41.86 377.48

TransBTS 32.19 171.30

nnFormer 158.92 157.88

D-Former (ours) 44.26 54.46

*The numbers of FLOPs are computed with the input image size of

D�W � H ¼ 64� 128� 128
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concurrent Transformer-based methods nnFormer and

MISSFormer achieve some performance gains compared to

the CNN-based methods, while our method still brings

further improvement in the average DSC by 0.0143 com-

pared to nnFormer and by 0.0687 compared to MIS-

SFormer. Besides, our D-Former obtains accuracy

improvement on almost every organ class, except for the

pancreas and stomach, which verifies that our D-Former is

a promising and robust framework.

Quantitative results on the ACDC dataset are reported in

Table 2, and a similar conclusion can be drawn. D-Former

achieves the best average DSC of 0.9229 without pre-

training. Compared with the other methods, our method

brings improvements in the average DSC by 0.0474 over

R50 U-Net and by 0.0554 over R50 Att-UNet. Compared

to the concurrent Transformer-based methods, our method

still achieves 0.0051 performance gain over nnFormer and

0.0439 over MISSFormer in the average DSC. Specifically,

among all the key parts of the heart, including the right

ventricle (RV), myocardium (Myo), and left ventricle

(LV), our D-Former obtains the best segmentation accu-

racy compared to the other methods in the average DSC.

The results in Tables 1 and 2 show that our D-Former

attains excellent generalization on both CT data and MRI

data, outperforming the previous methods. Notably, dif-

ferent from most of the known Transformer-based frame-

works that require a pre-training process, D-Former is

initialized randomly and is trained from scratch, yet still

obtains competitive performances. This implies that our

Table 4 Comparison of the numbers of parameters and FLOPs with/

without key designs in our method

Design #Params (M) FLOPs (G)

w/o Patch Embedding 39.21 1189.47

w/o LS-MSA &GS-MSA 44.26 477.19

Ours 44.26 54.46

*The numbers of FLOPs are computed with the input image size of

D�W � H ¼ 64� 128� 128

(e) UNet(c) Swin-Unet (d) TransUnet(b) Ours(a) GT

Liver Right kidney Left kidney PancreasAorta Spleen Stomach Gallbladder

Fig. 4 Visual comparison with several state-of-the-art methods on some hard samples of the Synapse dataset. The red marks regions where our

model attains discriminative segmentation performance
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model could be more suitable for medical imaging tasks

when general large size medical image pre-training data-

sets (such as ImageNet [72] for natural scene images) are

lacking.

To verify the statistical difference between our proposed

method and other compared methods, Sign test [79] and

Paired T-test [80] are conducted. (1) For the Synapse

dataset, the Sign test is conducted between our method and

other compared methods one by one, where the inputs are

the organ’s segmentation accuracy (i.e., average DSC) of

two paired groups (i.e., one is our method and the other is

one compared method). In comparing our proposed method

with nnFormer, the output p-value is 0.09, and p-values are

0.02 between our proposed method and other methods. (2)

For the ACDC dataset, the Paired T-test is utilized, where

the inputs are the organ’s segmentation accuracy of two

paired groups (i.e., one is our method and the other is one

compared method). The detailed p values are shown in

Table 2. One can see that our proposed method slightly

outperforms nnFormer and TransUNet, while significantly

outperforms other methods. Meanwhile, our method still

achieves a lower computational cost compared to nnFor-

mer and other methods (see Sect. 4.4).

4.4 Comparison of model complexity

In Table 3, we compare the numbers of parameters and

floating point operations (FLOPs) of our proposed D-For-

mer with those of different 3D medical image segmentation

models, including UNETR [38], CoTr [40], TransBTS

[70], and nnFormer [32]. The number of FLOPs is calcu-

lated based on the input image size of 64�128�128 for fair

comparison. We should note that we omit the part of the

complexity brought by activation functions and normal-

ization layers. Table 3 shows that our D-Former has

44.26M parameters and 54.46G FLOPs, which has a lower

computational cost compared to nnFormer (157.88G

FLOPs), TransBTS (171.30G FLOPs), CoTr (377.48G

FLOPs), UNETR (86.02G FLOPs), and 3D U-Net

(947.69G FLOPs). The CNN-based model of 3D U-Net has

less parameters, but it is burdened with a high model

complexity of 947.69G FLOPs, which is much bigger than

our D-Former method. Moreover, compared with the other

Transformer-based models, our model still shows compa-

rable model complexity while outperforming these models

by a large margin.

To further explore the effectiveness of our model in

reducing model complexity, we remove two key designs,

respectively, and compute the corresponding numbers of

parameters and floating point operations (FLOPs). As

shown in Table 4, one can see that our patch embedding

layer, and local scope multi-head self-attention (LS-MSA)

and global scope multi-head self-attention (GS-MSA)

contribute to decreasing the model complexity consider-

ably. Specifically, without the patch embedding layer, an

input image is directly projected into C channel dimensions

and fed to the subsequent Transformer architecture, leading

to 1189.47G FLOPs. Besides, the introduction of LS-MSA

and GS-MSA helps decrease the FLOPs from 477.19G to

54.46G, and this is consistent with the theoretical analysis

in Sect. 3.3.2.

4.5 Qualitative visualizations

To intuitively demonstrate the performances of our

D-Former model, we compare some qualitative results of

our model with several other methods (including Swin-

Unet, TransUnet, and UNet) on the Synapse dataset, and

some hard samples are shown in Fig. 4. One can see that

the predicted organ masks of our model are much more

similar to the ground truth in general. As for specific

organs, our model has better accuracy in identifying and

sketching the contours of stomach (e.g., the first and fourth

rows), which is consistent with the conclusions based on

Table 5 Ablation study on the effect of the global scope module (GSM) (average dice similarity coefficient (DSC))

Method Average Aotra Gallbladder Kidnery (L) Kidnery (R) Liver Pancreas Spleen Stomach

w/o GSM 0.8817 0.9100 0.7953 0.9240 0.9162 0.9639 0.7768 0.9274 0.8400

GSM (ours) 0.8883 0.9212 0.8009 0.9260 0.9191 0.9699 0.7667 0.9378 0.8644

The best results are marked in bold

Table 6 Ablation study on the effect of the global scope multi-head self-attention (GS-MSA) (average dice similarity coefficient (DSC))

Method Average Aotra Gallbladder Kidnery (L) Kidnery (R) Liver Pancreas Spleen Stomach

SW-MSA 0.8750 0.9137 0.7748 0.9255 0.9307 0.9626 0.7662 0.8836 0.8427

GS-MSA (ours) 0.8883 0.9212 0.8009 0.9260 0.9191 0.9699 0.7667 0.9378 0.8644

The best results are marked in bold
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the above quantitative results. In the second row, only our

model can delineate the outline of pancreas well, thus

suggesting that our model has a better ability to capture

long-range dependency given the fact that the shape of

pancreas is long and narrow. In addition, as illustrated in

the third row, our D-Former is able to identify the true

region of liver, while the other three models incur some

mistakes on the liver. This shows that our method is

effective at exploiting the relations between the target

organs’ patches and the other patches, owing to our mod-

el’s dynamic position encoding block. In a nutshell, the

qualitative visualizations provide intuitive demonstrations

of our model’s high segmentation accuracy, especially on

some slices that are difficult to segment.

4.6 Ablation studies

We conduct ablation studies on the Synapse dataset to

evaluate the effectiveness of our model design.

Effect of global scope module (GSM). To investigate the

necessity of the Global Scope Module (GSM), we replace it

by the Local Scope Module (LSM), with the other archi-

tectural components unchanged. As shown in Table 5, one

can see that the GSM is beneficial to the segmentation

accuracy, outperforming using only LSM modules by

0.0066 in the average DSC. This verifies the necessity to

explore global interactions of patches across units.

Global scope multi-head self-attention (GS-MSA)

vs. other self-attention. In order to confirm the effec-

tiveness of our GS-MSA, we compare it with the shift

Table 7 Ablation study on the effect of dynamic position encoding (DPE) (average dice similarity coefficient (DSC))

Method Average Aotra Gallbladder Kidnery (L) Kidnery (R) Liver Pancreas Spleen Stomach

APE 0.8478 0.8814 0.7665 0.9016 0.8638 0.9565 0.6747 0.9135 0.8247

SPE 0.8604 0.8851 0.7713 0.9375 0.8847 0.9640 0.6847 0.9277 0.8281

RPE 0.8635 0.9037 0.7841 0.9230 0.8737 0.9606 0.7086 0.9170 0.8376

DPE (ours) 0.8883 0.9212 0.8009 0.9260 0.9191 0.9699 0.7667 0.9378 0.8644

The best results are marked in bold

(a) (b) (c)

Fig. 5 Different positions to apply the DPE block. D-Former block 3

is used as an example for illustration, which contains three LSMs and

three GSMs, arranging in an alternate manner

Table 8 Ablation study on the positions of the dynamic position encoding block (average dice similarity coefficient (DSC))

Method Average Aotra Gallbladder Kidnery (L) Kidnery (R) Liver Pancreas Spleen Stomach

After the 1st LSM 0.8791 0.9160 0.7714 0.9397 0.9031 0.9564 0.7739 0.9064 0.8659

After the 1st GSM 0.8820 0.9185 0.7816 0.9351 0.9131 0.9568 0.7600 0.9272 0.8636

Before the 1st LSM (ours) 0.8883 0.9212 0.8009 0.9260 0.9191 0.9699 0.7667 0.9378 0.8644

The best results are marked in bold

Table 9 Ablation study on the sizes of different architecture variants (average dice similarity coefficient (DSC))

Method Average Aotra Gallbladder Kidnery (L) Kidnery (R) Liver Pancreas Spleen Stomach

D-Former-S 0.8403 0.8734 0.7104 0.8875 0.8744 0.9213 0.7462 0.8875 0.8214

D-Former-B 0.8741 0.8929 0.7854 0.9119 0.9098 0.9587 0.7594 0.9272 0.8473

D-Former-L (ours) 0.8883 0.9212 0.8009 0.9260 0.9191 0.9699 0.7667 0.9378 0.8644

The best results are marked in bold
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window strategy proposed in Swin Transformer [29] which

achieves state-of-the-art performance in multiple computer

vision tasks. Similar to our GS-MSA design, the shift

window strategy (SW-MSA) aims to introduce global

attention. Table 6 shows that our global attention design

surpasses that in Swin Transformer by 0.0133 in the

average DSC.

Dynamic position encoding vs. other position encodings.

We compare our dynamic position encoding (DPE) with

other common position encoding methods, including the

relative position encoding (RPE) [29, 48], absolute position

encoding (APE) [22], and sinusoidal position encoding

(SPE) [22]. The results are shown in Table 7. Compared to

APE, SPE, and RPE, our DPE improves them by 0.0405,

0.0279, and 0.0248 in the average DSC, respectively.

Position of the dynamic position encoding block. We

conduct experiments to examine the performances of dif-

ferent choices of positions to apply the dynamic position

encoding block, including placing it (a) before the first

LSM, (b) right after the first LSM, and (c) right after the

first GSM, in every D-Former block, as illustrated in Fig. 5

taking D-Former block 3 as an example. Table 8 shows that

introducing the position information before the first LSM

provides the best segmentation outcomes.

The sizes of different architecture variants. To evaluate

the performances of variants with different sizes, three

variants of our D-Former are evaluated. Specifically, the

architecture hyper-parameters of our model variants are:

• D-Former-Small: C = 64, L = {2, 2, 2, 2},

• D-Former-Base: C = 64, L = {2, 2, 6, 2},

• D-Former-Large: C = 96, L = {2, 2, 6, 2},

where C is the channel number of the hidden layers and L is

the total number of LSMs and GSMs in the encoder

pathway. As shown in Table 9, D-Former-Large achieves

the best performance in terms of the average DSC with

0.8883, improving by 0.0480 and 0.0142 comparing with

D-Former-Small and D-Former-Base.

5 Conclusions

In this paper, we proposed a novel 3D medical image

segmentation framework called D-Former, which utilizes

the common U-shaped encoder–decoder design and is

constructed based on our new Dilated Transformer. Our

proposed D-Former model can achieve both good effi-

ciency and accuracy, due to its reduced number of patches

used in self-attention in local scope module (LSM) and its

exploration of long-range dependency with a dilated scope

of attention in global scope module (GSM). Moreover, we

introduced the dynamic position encoding block, making it

possible to flexibly learn vital position information within

input sequences. In this way, our model not only reduces

the model parameters and decreases the FLOPs, but also

attains state-of-the-art semantic segmentation performance

on the Synapse and ACDC datasets.
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5. Korez R, Likar B, Pernuš F (2016) Model-based segmentation of

vertebral bodies from MR images with 3D CNNs. In: MICCAI.

Springer, pp 433–441

6. Zhou X, Ito T, Takayama R (2016) Three-dimensional CT image

segmentation by combining 2D fully convolutional network with

3D majority voting. In: Deep learning and data labeling for

medical applications. Springer, pp 111–120

7. Moeskops P, Wolterink JM (2016) Deep learning for multi-task

medical image segmentation in multiple modalities. In: MICCAI.

Springer, pp 478–486

1942 Neural Computing and Applications (2023) 35:1931–1944

123

https://doi.org/10.7303/syn3193805
https://acdc.creatis.insa-lyon.fr/#challenge/5846c3366a3c7735e84b67ec
https://acdc.creatis.insa-lyon.fr/#challenge/5846c3366a3c7735e84b67ec
http://arxiv.org/abs/1702.05970


8. Shakeri M, Tsogkas S, Ferrante E (2016) Sub-cortical brain

structure segmentation using F-CNN’s. In: International sympo-

sium on biomedical imaging. IEEE, pp 269–272

9. Alansary A, Kamnitsas K, Davidson A (2016) Fast fully auto-

matic segmentation of the human placenta from motion corrupted

MRI. In: MICCAI. Springer, pp 589–597

10. Ronneberger O, Fischer P, Brox T (2015) U-Net: Convolutional

networks for biomedical image segmentation. In: MICCAI,

pp 234–241

11. Wang C, MacGillivray T, Macnaught G et al (2018) A two-stage

3D Unet framework for multi-class segmentation on full resolu-

tion image. ArXiv:1804.04341
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