
ORIGINAL ARTICLE

An investigation of feature selection methods for soil liquefaction
prediction based on tree-based ensemble algorithms using AdaBoost,
gradient boosting, and XGBoost

Selçuk Demir1 • Emrehan Kutlug Sahin1

Received: 11 November 2021 / Accepted: 21 September 2022 / Published online: 8 October 2022
� The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022

Abstract
Previous major earthquake events have revealed that soils susceptible to liquefaction are one of the factors causing

significant damages to the structures. Therefore, accurate prediction of the liquefaction phenomenon is an important task in

earthquake engineering. Over the past decade, several researchers have been extensively applied machine learning (ML)

methods to predict soil liquefaction. This paper presents the prediction of soil liquefaction from the SPT dataset by using

relatively new and robust tree-based ensemble algorithms, namely Adaptive Boosting, Gradient Boosting Machine, and

eXtreme Gradient Boosting (XGBoost). The innovation points introduced in this paper are presented briefly as follows.

Firstly, Stratified Random Sampling was utilized to ensure equalized sampling between each class selection. Secondly,

feature selection methods such as Recursive Feature Elimination, Boruta, and Stepwise Regression were applied to develop

models with a high degree of accuracy and minimal complexity by selecting the variables with significant predictive

features. Thirdly, the performance of ML algorithms with feature selection methods was compared in terms of four

performance metrics, Overall Accuracy, Precision, Recall, and F-measure to select the best model. Lastly, the best

predictive model was determined using a statistical significance test called Wilcoxon’s sign rank test. Furthermore,

computational cost analyses of the tree-based ensemble algorithms were performed based on parallel and non-parallel

processing. The results of the study suggest that all developed tree-based ensemble models could reliably estimate soil

liquefaction. In conclusion, according to both validation and statistical results, the XGBoost with the Boruta model

achieved the most stable and better prediction performance than the other models in all considered cases.

Keywords AdaBoost � Boruta � Liquefaction � Recursive feature elimination � Stepwise feature selection �
XGBoost

1 Introduction

The term ‘‘liquefaction’’ is frequently known as the trans-

formation of saturated loose sandy soil from a solid to a

liquid state as a result of an increase in pore water pressures

and consequent complete loss of effective stresses when it

is subjected to strong and rapid seismic loading conditions.

This phenomenon was not seriously considered by engi-

neers until 1964 [1]. However, the Alaska and the Niigata

earthquakes in 1964 led to significant damages to the

environment, structures, and underground facilities due to

soil liquefaction [2–4]. The damaging effects of liquefac-

tion were also observed during recent earthquakes [5–8].

Therefore, it is crucial to appropriately evaluate the soil

liquefaction potential when designing any soil-structure

system. In this regard, many researchers commenced

extensive investigations on earthquake-induced soil lique-

faction and its prediction.

Various empirical or semi-empirical methods are pro-

posed to evaluate liquefaction potential. The most common

way for estimation of soil liquefaction is the stress-based

approach called simplified procedure [9]. This approach

& Selçuk Demir

selcukdemir@ibu.edu.tr

Emrehan Kutlug Sahin

emrehansahin@ibu.edu.tr

1 Department of Civil Engineering, Bolu Abant Izzet Baysal

University, 14030 Bolu, Turkey

123

Neural Computing and Applications (2023) 35:3173–3190
https://doi.org/10.1007/s00521-022-07856-4(0123456789().,-volV)(0123456789().,- volV)

http://orcid.org/0000-0003-2520-4395
http://orcid.org/0000-0002-9830-8585
http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-022-07856-4&domain=pdf
https://doi.org/10.1007/s00521-022-07856-4

needs the capacity of soil to resist liquefaction. The liq-

uefaction resistance of soil can be determined from labo-

ratory tests or in-situ geotechnical investigations. In-situ

tests are much preferred for soil liquefaction evaluation due

to the defects of laboratory tests, such as representing

actual field conditions and obtaining high-quality soil

samples. Some of the in-situ tests preferred for liquefaction

triggering analysis are shear wave velocity test, cone

penetration test (CPT), and standard penetration test (SPT)

[10–17]. Moreover, numerous nonlinear numerical analy-

ses have been performed for the calculation of soil lique-

faction. However, numerical approach may require a

sophisticated constitutive soil model and solid knowledge

during dynamic analyses. Therefore, the complexity of the

model may render numerical approach ineffective and

time-consuming. Considering these facts, nonconventional

approaches (e.g., machine learning) become an alternative

tool for providing solutions to various problems in this

topic. Machine learning (ML) methods have an adequate

capacity to capture the potential correlations among

information without any prior assumptions [18].

Currently, ML methods, such as support vector machine

(SVM), logistic regression (LR), artificial neural network

(ANN), random forest (RF), naive bayes, eXtreme gradient

boosting (XGBoost), decision tree, and etc., are being

increasingly used in different engineering applications.

With regard to geotechnical engineering, employing ML

methods can supply our understanding of the complex

behavior of liquefiable soils. It can be also a contributory

tool for improving liquefaction hazard analysis [19].

According to Xie, et al. [20], various ML techniques have

been adopted many times for liquefaction assessment

[21–33].

In recent years, ensemble algorithms have gained great

attention in various fields due to the predictive capabilities

of these methods [31, 34–37]. Ensemble method is an

algorithm that combines multiple classifiers to solve a

complex problem and improve the model’s performance.

The idea of ensemble learning is to reduce the chance of

error while expanding the general dependability and cer-

tainty of the model [38]. Over the past decades, widely

used algorithms such as SVM, ANN, and LR have showed

strong performance for both regression and classification

tasks. However, tree-based ensemble (TBE) approaches

have significantly improved performance and are becoming

more widely accepted methods [39]. Bagging [40] (i.e.,

RF) and boosting (i.e., XGBoost) are the classical well-

known TBE approaches. Bagging and boosting algorithms

mainly differ from each other in two aspects. First, while

the boosting algorithm mainly utilizes weighted averages

to make multiple weak learners into stronger learners,

bagging (which stands for Bootstrapping) is a combination

of multiple independent learners [41]. Second, the boosting

algorithm aims to produce an ensemble model less biased,

whereas the bagging algorithm mainly aims to get strong

models with less variance than its components [42]. Per-

haps not surprisingly, TBE methods have become a par-

ticularly popular approach since it combines properties

from both statistical and ML methods [43] and they pro-

vide a high accuracy prediction model with ease of inter-

pretation and feature importance analysis for large datasets.

Also, ensemble methods based on decision trees (e.g., RF

and XGBoost) have been widely used to deal with non-

linear problems. Beside, the primary advantages of TBE

methods are that they work on fewer assumptions com-

pared to other existing alternatives for classification (such

as SVM, LR, and discriminant analysis) and they require

minimum data pre-processing [43, 44]. With the growing

interest in ML, many studies have been conducted in var-

ious domains by using TBE methods, such as information

science [45], biological [46], energy [47], and healthcare

[48]. In these studies, prediction results are compared with

other classification methods. They are concluded that the

TBE methods provide better prediction accuracy than the

other classification models.

TBE methods have also been successfully introduced in

geotechnical engineering. For example, Wang, et al. [35]

and Bharti, et al. [36] applied the XGBoost approach for

the slope stability problems. Zhang, et al. [37] adopted

XGBoost and RF algorithms to predict the relationship

between the undrained shear strength and several basic soil

parameters. Pham, et al. [49] utilized the Adaptive Boost-

ing (AdaBoost) algorithm for the classification of soils, and

the results indicated that AdaBoost offers important results

for soil samples by the automatic classification. Wang,

et al. [50] used five different algorithms, including gradient

boosting machine (GBM) and RF to estimate bearing

deformation and column drift ratio responses of extended

pile-shaft-supported bridges. They concluded that the

GBM algorithm well predicted the seismic responses of the

soil-bridge systems as compared to other studied methods.

However, the literature review shows that advanced

boosting algorithms such as GBM and XGBoost have been

rarely employed for liquefaction prediction [31, 51].

Moreover, no previous study investigated the AdaBoost

algorithm for the seismic soil liquefaction prediction.

Indeed, there is not enough example of a quantitative-

systematic comparison of boosting algorithms in liquefac-

tion prediction. As previously stated, the goal is to develop

the process of building ML models not only using robust

algorithms, such as the cases of ensemble learners but also

simpler and faster learning algorithms seeking to assess

which of the algorithms can better predict. Considering

many advantages of TBE methods (e.g., reliability,

robustness, and high accuracy) and the lack of the lique-

faction prediction studies based on TBE methods in the

3174 Neural Computing and Applications (2023) 35:3173–3190

123

literature, AdaBoost, GBM, and XGBoost algorithms are

applied in the present study.

It is well known that when building an ML-based model

for making a prediction, lots of data and features are

required. Not all features in the dataset may be necessary

during the modeling phase. The principal goal for engi-

neers or researchers is to reach the best predictive ability of

the created model. Hence, removing the irrelevant data

may be contributed minimizing the errors, enhancing

learning accuracy, and reducing the computation time

[52–54]. Furthermore, using the dataset without pre-pro-

cessing would increase the overall complexity of the

model. This limitation can be remedied by using feature

selection (FS) methods as it reduces the size of the training

dataset and removes the superfluous features. FS is a pro-

cedure of specifying an optimal subset of features through

all possible combinations of feature subsets from the

original dataset, which reduces the number of predictors as

far as possible without compromising predictive perfor-

mance [55]. Das, et al. [54] determined important input

features of SPT, CPT, and Vs datasets using FS methods in

a multi-objective optimization framework. Hu [56] used

the filter method, which is one of the classes of FS meth-

ods, to move all irrelevant variables for gravelly soil liq-

uefaction. Demir and Sahin [57] applied the RFE method

as an efficient FS technique for liquefaction prediction. All

studies concluded that FS methods are able to improve the

predictive capability of models. Therefore, identifying

relevant features of a dataset is a noteworthy process in the

preparation of the prediction model.

The objective of the proposed study is to predict the soil

liquefaction through AdaBoost, GBM, and XGBoost

algorithms considering three FS methods, namely Recur-

sive Feature Elimination (RFE), Boruta, and Stepwise

Regression (SR), for enhancing the performance of TBE

algorithms. For this, 620 SPT case studies collected from

Kocaeli and Chi-Chi earthquakes are used in the experi-

ments. Four performance metrics such as Overall Accu-

racy, Precision, Recall, and F-measure were used to

measure the performance of the models. The entire anal-

yses were performed with the R package software [58]. The

novelty of this paper can be summarized with the following

headings: (1) The application of GBM and XGBoost is still

rare in the prediction of soil liquefaction. In addition, the

AdaBoost algorithm was first time applied in this study and

compared the other studied boosting algorithms for proper

liquefaction prediction assessment. The investigation of

these algorithms and their comparison with each other is

highly necessary to reach sufficient background and obtain

some proper findings. (2) The growing popularity of FS

methods and their frequent application raise new questions

about their influence on the prediction performance of the

models. Hence, the results of RFE, Boruta, and SR meth-

ods were compared to the original dataset including all

features to enhance our understanding in terms of the skills

of these algorithms in providing the optimal features. (3)

One of the important things when building a prediction

model is sampling. In current ML-based liquefaction pre-

diction practices, data is randomly subdivided into training

and testing samples by generally using the simple random

sampling (SRS) technique, which may be problematic

when the distribution of the liquefaction events in the

dataset is imbalanced [55]. However, in this study, the

training and test samples were produced through the

Stratified Random Sampling (StrRS) technique to ensure

the selection of balanced samples. This approach generates

random sampling points and distributes them equally

between each class (liquefied and non-liquefied). (4) A

nonparametric statistical test called the Wilcoxon sign rank

test [59] was applied to find out whether there is a statis-

tical significance between the prediction results of the

algorithms. (5) Lastly, computation costs of the TBE

algorithms were evaluated in the cases of parallel and non-

parallel processing.

2 Methodology

This section presents the theoretical details of TBE algo-

rithms and FS methods applied in this study. Moreover, an

introduction to the liquefaction dataset and the perfor-

mance measurement and accuracy assessment steps are

briefly mentioned. A flowchart of the methodology is

presented in Fig. 1.

2.1 Description of the dataset

A total of 620 SPT records with 12 parameters collected

from the two major earthquakes in 1999 are considered for

the purpose of the study [24]. The dataset consists of binary

classification, including 256 liquefied (Yes) and 364 non-

liquefied (No) cases. The further details about the dataset

are summarized in Table 1.

2.2 Overview of tree-based ensemble (TBE)
algorithms

Ensemble algorithms utilize several weak learners and

aggregate their outcomes to improve the performance of a

model. There are several types of TBE algorithms. Among

them, AdaBoost, GBM, and XGBoost were employed to

predict soil liquefaction. A brief discussion of the three

algorithms is provided here.

Neural Computing and Applications (2023) 35:3173–3190 3175

123

2.2.1 Adaptive boosting (AdaBoost)

AdaBoost is one of the most commonly applied boosting

algorithms introduced by Freund and Schapire [60]. The

AdaBoost algorithm exhibits an efficient performance

since it is capable of generating expanding diversity. It has

been successfully applied for solving two-class, multi-class

single-label, multi-class or multi-label, and categories of

single-label problems. This algorithm is an iterative

process that tries to generate a strong classifier with weak

classifiers [61]. The weak classifiers are chosen to mini-

mize the errors in each iteration step during the training

process and used to build a much better classifier so that

boosts the performance of the weak classification algorithm

[62]. This boosting is accomplished by averaging the out-

put of the set of weak classifiers. Pseudocode for the

AdaBoost algorithm is presented in Algorithm 1 [53].

Fig. 1 The route of the methodology followed in this study

Table 1 Parameters and some

statistical measures of the

dataset [24]

No Parameter Notation Unit Mean Median Min Max

1 The depth of the soil layer z m 7.655 6.7 0.8 19.8

2 SPT blow number ðN1Þ60 – 14.480 11 1 75

3 Groundwater table depth dw m 1.454 1.1 0.35 10

4 Total vertical stress rv kPa 144.60 121.6 12.1 408.9

5 Effective vertical stress r0v kPa 82.475 68.15 7.5 233.7

6 Peak horizontal acceleration amax g 0.384 0.4 0.18 0.67

7 Threshold acceleration at g 0.074 0.06 0 0.85

8 Fine content less than 75 lm FC % 62.990 74.5 1 100

9 Internal soil friction angle /0 ð�Þ 31.962 31.41 23.46 52.08

10 Cyclic stress ratio CSR – 0.3737 0.39 0.12 0.77

11 Earthquake magnitude Mw – 7.494 7.4 7.4 7.6

12 Shear wave velocity Vs m/s 166.98 155 37 500

3176 Neural Computing and Applications (2023) 35:3173–3190

123

2.2.2 Gradient boosting machine (GBM)

GBM can be utilized for both classification and regression

problems in terms of ML applications. GBM is used to find

an additive model that will minimize the loss function,

which is to construct the new base-learners to be maxi-

mally correlated, associated with the whole ensemble [63].

It is possible to assign the loss function arbitrarily. If the

error function is a classic squared-error loss, the process of

learning may result in consecutive error-fitting to achieve a

better intuition. A GBM model mainly contains a few

hyperparameters such as max_depth, min_rows, ntrees,

col_sample_rate and learn_rate. The GBM algorithm may

be summarized as the following pseudocode given in

Algorithm 2 [63].

Neural Computing and Applications (2023) 35:3173–3190 3177

123

2.2.3 eXtreme gradient boosting (XGBoost)

The open-source XGBoost is a free-to-use library of the

gradient boosted tree algorithm that has recently dominated

science competitions for structured or tabular data. The

XGBoost combines all the predictions of a set of weak

learners by combining several of them to create a strong

learner that obtains better prediction performances [64].

This method needs to decide the primary hyperparameters

for the prediction of the model. Every ML algorithm

achieves the best performance of the model with the best

hyperparameters, so appropriate tuning is particularly

important, including XGBoost [65]. Therefore, the grid

search (GS) method is utilized to reach the appropriate

model hyperparameters of XGBoost, namely eta (the

learning rate), subsample (subsample ratio of the training

instance), max_depth (maximum depth of a tree), gamma

(minimum loss reduction), colsample_bytree (subsample

ratio of columns when constructing each tree), min_-

child_weigh (minimum sum of instance weight) and

nrounds (number of boosting iterations). The package

named as ‘‘xgboost’’ from the ‘‘caret’’ library in R was

used to perform XGBoost operations [66]. The pseudocode

of the XGBoost was given in Algorithm 3 [67].

3178 Neural Computing and Applications (2023) 35:3173–3190

123

2.3 Feature selection (FS) methods

FS is a part of developing predictive models in ML for

reducing the number of input variables. The potential

benefits of FS consist of facilitating data understanding,

shortening computational cost, and getting rid of the

problem of dimensionality to improve the performance of

the prediction model [68]. Several FS methods have been

developed to obtain which features are most relevant and

should be used in prediction models. In this study, three FS

methods RFE, Boruta, and SR have been utilized to select

only important and relevant features. The detail of the three

FS methods is described in the following sections.

2.3.1 Recursive feature elimination (RFE)

RFE is commonly used for the FS method proposed by

Guyon, et al. [69]. RFE is used to rank the features in a

dataset according to the importance provided by the RF

algorithm. The RFE method contains several main steps

[70, 71]. Firstly, the importance of each feature is calcu-

lated for each iteration in the process of the feature elim-

ination step. Secondly, the features are sorted from high to

low according to their importance value. Finally, the least

important feature(s) is removed from the model. After this

step, the model is built again, and feature importance

scores are recalculated. This process has recurred until a

feature is found not to be redundant or irrelevant. Detailed

information on the RFE method is given in Algorithm 4 as

pseudocode [72].

Neural Computing and Applications (2023) 35:3173–3190 3179

123

2.3.2 Boruta

Boruta (Algorithm 5 [73]) is a wrapper-built feature ranking

and selection method based on RF for feature relevance esti-

mation in the R statistical package [74]. The importance of

features is established in theRF algorithm.Calculating variable

importance with RF is possible by the measure of accuracy

decreasing when information about variables in a node is

removed from the model. Similar to the RF algorithm, the

Borutamethod is based on adding randomness to themodel and

collecting results from the ensemble of randomized samples

[75]. The Boruta method involves the following steps [66]; (1)

Duplicating all features to extend the information system, (2)

shuffling the added attributes to eliminate their correlations

with the response, (3) running the RF model on the extended

system and gathering importance (Z) scores, (4) gaining the

MZSA (the maximum Z score among the duplicated (i.e. sha-

dow) features) value and assigning a hit to every feature that

scored better thanMZSA, (5) applying a two-sided equality test

with theMZSAfor each featurewithundetermined importance,

(6) assuming the features which have less importance than

MZSA as unimportant and removing them from the informa-

tion system permanently, (7) removing duplicated variables,

and (8) repeating the procedures from step (1) to (7) until the

importance is assigned for all attributes. The detail of the

method is clearly described in Kursa and Rudnicki [74].

3180 Neural Computing and Applications (2023) 35:3173–3190

123

2.3.3 Stepwise regression (SR)

SR [76] is the most well-known method for choosing

features in a model that keeps relevant features and

removes irrelevant or redundant ones. Indeed, SR was

developed as an FS procedure for linear regression models

that is a combination of the forward and backward selec-

tions. The focus of the method is to modify the forward

selection so that after each step of the algorithm, all can-

didate variables in the model are checked to see if their

significance has been reduced below the specified tolerance

level. At the end of the process, if a non-significant variable

is observed, it is excluded from the base model [77]. SR

requires two independent statistical significance cut-off

values for adding and deleting variables from the model

[78]. More detail about the mathematic background of SR

can be found in the literature [76, 78]. The pseudocode of

the SR method is shown in Algorithm 6 [79].

Neural Computing and Applications (2023) 35:3173–3190 3181

123

2.4 Performance evaluation methodology

There are many kinds of performance evaluation metrices

to evaluate classification performance of ML models. In

this study, the metrics of Overall Accuracy (Acc), Precision

(P), Recall (R), and F-measure (F) were used. The per-

formance of two-class classification models is described

based on the Confusion Matrix (CM). Accordingly, CM

parameters namely TP, FN, FP, and TN were utilized to

compute performance evaluation metrics as shown in

Fig. 2

The accuracy of the liquefaction prediction produced by

the ML models is estimated from the CM for the validation

data. The produced models can show good performance

results considering the measurements, but it would be

appropriate to use a statistical significance test to determine

the best single model among the other produced models.

Therefore, Wilcoxon’s sign rank test [59], which is one of

the most important nonparametric tests for multiple com-

parisons, was used to identify significant differences

between the models.

3 Results and discussion

Several TBE algorithms and FS methods were applied in

the present work. First, three FS methods were used to

detect the most relevant features according to their

importance. The objective of FS is to remove irrelevant and

redundant features by keeping the ones that can predict the

optimum feature. The FS process might help decrease the

computational time, improve the performance of the

algorithm, and prevent overfitting. After the FS process, for

the purpose of analyzing the best feature subset TBE

algorithms were employed. Besides, all feature combina-

tions (i.e., RAW SPT data including 12 features) was also

considered as a comparison model. The most important fact

in optimum model preparation is that model accuracies

mainly depend on the selected hyperparameters. Therefore,

the tenfold cross-validation, which is randomly partitioned

into k equal sized subsamples, was applied to the proposed

models for hyperparameter tuning. The algorithms namely

AdaBoost, GBM, and XGBoost were utilized to decide the

overall best performing one among models. The quality of

the resulting models was evaluated using Acc, P, R, and

F metrics, respectively. Wilcoxon’s sign test was also

utilized to acquire the statistical differences of the accu-

racies of models. For interest, applications in the proposed

methodology were performed using the R programing

language (version 3.6.3) [58] with the following main

R packages: caret, sp, randomForest, Boruta, adabag,

gbm, e1071, h2o, and xgboost, respectively. All applica-

tions for liquefaction assessment were performed on a PC

with 4.0 GHz AMD Ryzen 9 3950X CPU, 64 GB RAM,

and Windows 10 operating system.

3.1 Determination of training and test sample
size

ML algorithms build a model that relies on training sam-

ples in order to make predictions or decisions. Therefore,

training sample size had a larger impact on model accuracy

than the algorithm used [80]. However, there is no advice

or exact ratio for a minimum number of samples required

for ML prediction. It could be said that the determination

of the best sample size for the prediction of the model may

depend on the ML algorithm, the number of input vari-

ables, and the size of the original database [81]. Addi-

tionally, another important aspect of determining the

training and test sample size is the training data selection

method. Sampling strategies can be divided into two types

namely, probability or random sampling and non-

Fig. 2 Description of CM and performance matrices

3182 Neural Computing and Applications (2023) 35:3173–3190

123

probability sampling. In a random sampling technique,

each member of the sampling unit has an equal chance of

being selected in the sample. There are several random

sampling techniques available for managing sampling sizes

[82, 83]. Non-probability sampling is a population using a

subjective (i.e., non-random) which the user selects sam-

ples based on subjective judgment rather than random

selection [84]. The following examples of non-probability

sampling methods can be found in the literature including,

quota, snowball, judgment, and convenience sampling.

Sampling is the technique of selecting a subset of a

population from the entire population for the purpose of

determining the characteristics of the whole population to

make statistical inferences. There are several types of

sampling techniques but two sampling techniques namely

Simple Random Sampling (SRS) and Stratified Random

Sampling (StrRS) are the most preferred methods in the

ML area. SRS is the basic sampling technique where a

group of samples was selected from a population. This

sampling method is the most appropriate option when the

entire population from which the sample is taken is

homogeneous. Otherwise, StrRS would be the ideal

approach in circumstances where the population is

heterogeneous or dissimilar. In this study, StrRS was used

as a sampling size strategy. The population is directly

divided into subgroups in this method and a random sample

is taken from each subgroup, meaning each subgroups

sample has the same sampling fraction. These mentioned

subgroups are called strata. The main advantage of StrRS is

that it captures key population characteristics in the sample

and the process of stratifying reduces sampling error with

ensuring a greater level of representation. Usually, training

data size is set to split in the ratio of 60:40, 70:30, or 80:20

(training/testing set). The training dataset is used for model

building and test dataset is utilized for model evaluation.

On the other hand, many researchers proposed a ratio of

70:30 or 80:20 for producing datasets

[26, 29, 31–33, 54, 57, 85]. In this study, the ratio of 70:30

(training/test set) was chosen like other literature research

[54, 57, 85, 86] and SPT data (a total of 256 ‘‘Yes’’ and

364 ‘‘No’’) was used for the analysis. When the distribu-

tions of the two classes (i.e., Yes and No) in the dataset are

compared, the No class is proportionally more than the Yes

class. It has been revealed that the classes are not homo-

geneously distributed. In other words, the distribution of

the liquefaction events in the dataset is imbalanced.

Therefore, the SPT data is divided into training/test set

using the StrRS technique. After the sampling process,

training data is contained 179 events of ‘‘Yes’’ and ‘‘No’’,

and test data is contained 77 events of ‘‘Yes’’ and ‘‘No’’

liquefaction events. As a result, characteristics of both

training and test sample sizes became proportional to the

entire population into homogeneous units. Also, a com-

parative example of between the two sampling strategies

are given in Table 2. The mean values of liquefied events

for the dataset using StrRS and SRS techniques are 0.500

and 0.4124, respectively. This finding shows that the dis-

tribution of each sample (i.e., Yes and No) is dispropor-

tionate for SRS. Thus, using the StrRS technique will

guarantee that each class has sufficient samples.

3.2 Feature selection for dimensionality
reduction

FS methods select variables in the original dataset which

are more important and relevant for the prediction process

and remove unrelated ones. FS methods provide several

benefits to circumvent the curse of dimensionality,

increasing learning process speed, simplifying models, and

improving the quality of ML methods as well as training

efficiency [87, 88]. In this study, three different FS meth-

ods RFE, Boruta, and SR were compared. Table 3 shows

the ranks of all selected features and their feature impor-

tance (FI) scores.

The model was initially applied to the training data by

utilizing RF-FI analysis to identify which features are the

most effective in liquefaction prediction. The most

important features obtained from RF-FI scores are given in

Table 2 A comparative example of the difference between StrRS and SRS techniques according to SPT dataset

SPT Dataset

Yes (256) No (364)

The approximate selected training ratio Train/Test

ratio

Class distribution in Train Data Class distribution in Test Data Statistic of Train

Set

Train Test Y/N Y/N Mean Variance

Stratified Random Sampling Technique

58% 70% 30% 179/179 77/77 0.5000 0.2507

Simple Random Sampling Technique

70% 70% 30% 179/255 77/109 0.4124 0.2429

Neural Computing and Applications (2023) 35:3173–3190 3183

123

Table 3. The features namely FC, /0, and ðN1Þ60 were

found the most important parameters based on the SPT

dataset. On the other hand, at, Vs, amax, andMw was the less

effective features based on the RF-FI score analysis. It is

important to note that these results only show which of the

features are more or less important. After the model eval-

uation using the entire set of features (i.e., RAW data) as

input features, the FS methods RFE, Boruta, and SR were

performed for identifying the least important feature/s and

removing them from the dataset. When the FS results were

analyzed, it was seen that the RFE, Boruta, and SR

methods determined 4 (FC, /0, ðN1Þ60, and CSR), 9 (/0,

ðN1Þ60, CSR, z, r0v, rv, amax, Vs, and FC), and 10 (/0, CSR,

FC, at, Vs, ðN1Þ60, dw, r0v, rv, and amax) parameters as the

most effective features, respectively. Evaluating the based-

on FS methods overlap taken over all each selected feature

revealed that /0 and CSR were found to be common fea-

tures. The results of Boruta and SR was found to be very

similar in that most have a very similar ranking. The big-

gest difference in performed FS analyzes was seen between

the RFE and the other two methods because RFE is a

greedy optimization algorithm that eliminates most fea-

tures. As a result of the FS processes, new data models

were created, and each feature model was given a new

name such as Model_RFE, Model_Boruta, and Model_SR.

In addition, RAW_Data (i.e., original of SPT data) was

used as a benchmark model for an objective comparison

with the other models (i.e., Model_RFE, Model_Boruta,

and Model_SR).

3.3 Optimization of hyperparameter with grid-
search

Hyperparameter optimization in ML aims to detect the

optimum hyperparameters that deliver the best

performance as measured on a validation set. One of the

methods to tune ML problems is the k-fold cross-validation

(CV). CV is also a very useful approach in cases where

needed to mitigate overfitting and provide a less biased

estimation of a tuned model’s performance on the dataset.

In this approach, the training data are randomly split into

k subgroups (e.g., k = 10 and becoming tenfold CV), and

the model is then run k times with one of the subsets held

back for validation each time. Importantly, each subset in

the data sample is designated to an individual group and

stays in that group for the duration of the procedure. The

results of each run are evaluated using the pending data,

and the results are averaged across all k scores [81]. At the

end of the process, the group that gives the best perfor-

mance, commonly defined based on the mean of the model

skill scores, is chosen.

In this study, to make sure that each fold is a good

representative of the whole data, StrRS technique was used

as a training sample size strategy. The SPT dataset was

split into training/test set in the ratio of 70:30 using StrRS

for hyperparameter estimation and performance analysis.

The training data, which is offered as the best overall

performance score by k-fold CV, was used for training the

model, and the test data (or validation data) was used for

setting the evaluating performance of models. The hyper-

parameter tuning process was performed using Grid Search

based on CV with tenfold (Table 4). This was carried on

using only the training data to targeting at a better com-

parison between models. It should be noted that ‘‘train’’

function on the ‘‘caret’’ package was used to find tuning

parameters automatically for these models [89].

Table 3 Selected factors and

their importance scores

estimated by FS methods

Model Model_RFE Model_Boruta Model_SR Model_RAW

Method RFE FI Boruta FI SR FI RAW_Data RF-FI

1 FC 27.22 /0 13.69 /0 4.84 FC 33.11

2 /0 23.35 ðN1Þ60 13.24 CSR 3.14 /0 30.29

3 ðN1Þ60 19.88 CSR 11.11 FC 6.97 ðN1Þ60 21.62

4 CSR 17.07 z 10.71 at 2.59 CSR 17.48

5 rv 8.90 Vs 2.04 z 14.10

6 amax 7.87 N 1.62 rv 13.76

7 r0v 7.30 dw 2.96 r0v 13.40

8 Vs 4.96 r0v 2.75 dw 11.11

9 FC 4.55 rv 3.22 at 9.47

10 amax 1.43 Vs 8.93

11 amax 4.02

12 Mw 1.03

3184 Neural Computing and Applications (2023) 35:3173–3190

123

3.4 Evaluating performance of models

Using the same dataset with the different types of ML

algorithms or using the different datasets with the same

type of algorithms produces very different performances.

Therefore, this study systematically compares how per-

formance varies as different combinations of FS methods

and ML algorithm types are combined. To this end, FS

methods namely RFE, Boruta, and SR were used during the

selection of the best feature combination. Three types of

TBE methods namely AdaBoost, GBM, and XGBoost were

utilized as liquefaction prediction algorithms. Performance

evaluation of 12 (4 9 3) models with the different types of

prediction algorithms and FS methods combination were

analyzed in two perspectives in this study. The first per-

spective is to calculate the performance of models with

Acc, P, R, and F metrics based on CM. The second per-

spective is to identify statistical significance between the

models using the Wilcoxon’s test. The results of perfor-

mance metrics of the models in terms of CM are given in

Table 5. When the Acc results of the models reviewed, the

XGBoost classifier performed the highest accuracies

among the other FS-based models. In should also be noted

that from Table 5, Model_RFE and Model_Boruta were

found as the best feature subset as compared to Model_SR

and Model_RAW for various performance metrics.

It is essential to assess the P, R, and F values for pre-

dicting ‘‘Yes’’ and ‘‘No’’ classes to specify the strengths

and weaknesses of each method and fully understand the

quality of the result [90]. When the CM result in Table 5

was analyzed, almost all three ML methods predicted the

‘‘Yes’’ class better than the ‘‘No’’ class. The P value refers

to the number of actual ‘‘Yes’’ classes relative to all

samples identified as ‘‘Yes’’. Higher P means that ‘‘Yes’’

classes are correctly mapped than ‘‘No’’ classes. R is the

percentage of all liquefaction events (i.e., ‘‘Yes’’ and

‘‘No’’) that are properly identified. Having low R values

means that the model predicted more False Negatives

(should be positive but labelled negative). Higher R values

indicate that most of the liquefaction events are labelled as

‘‘Yes’’. F-measure is the harmonic mean of the ‘‘Yes’’ and

‘‘No’’ label on validation datasets and the higher F value

shows that the final model is in making predictions more

accurately. Another important observation is that the best

performance accuracy for Model_RAW was obtained by

using the AdaBoost algorithm.

When the overall performance of all pairs of models was

analyzed, the XGBoost algorithm based on Model_Boruta

feature dataset showed the best Acc result (Acc = 0.9675)

when compared to the results of Adaboost with Mod-

el_RFE (Acc = 0.9545) and GBM with Model_Boruta

(Acc = 0.8961) algorithms. It is clearly seen that there are

minimal differences between the Acc values of the models.

However, identifying the significance of the differences

between the models should be conducted by statistical

analysis. Therefore, Wilcoxon’s sign rank test was utilized

for the evaluation of the statistical significance of the dif-

ference in the performance of models. Wilcoxon’s sign

rank test with p-value was applied for pairwise compar-

isons of the models. If the calculated p-value is lower than

or equal to 0.05, it means that the performance of models is

different, otherwise, the p-value is higher than 0.05, the

results are non-significant, and the performance of the

model result tends to be the same. During the comparison

of the p-values of the models, only Model_Boruta with

XGBoost, Model_RFE with AdaBoost, and Model_Boruta

Table 4 Details of the hyperparameter tuning of methods according to the FS based models

Method Model Best parameters found

AdaBoost RFE mfinal = 100, maxdepth = 3 and coeflearn = Freund

Boruta mfinal = 50, maxdepth = 3 and coeflearn = Freund

Stepwise mfinal = 150, maxdepth = 2 and coeflearn = Zhu

RAW mfinal = 100, maxdepth = 3 and coeflearn = Breiman

XGBoost RFE nrounds = 150, max_depth = 3, min_child_weight = 1, subsample = 0.75, eta = 0.3, colsample_bytree = 0.8, and

gamma = 0

Boruta ntrees = 150, min_rows = 10, max_depth = 2, col_sample_rate = 1, and learn_rate = 0.1

Stepwise nrounds = 100, max_depth = 3, min_child_weight = 1, colsample_bytree = 0.8, subsample = 0.5, eta = 0.3, and

gamma = 0,

RAW nrounds = 100, max_depth = 3, min_child_weight = 1, subsample = 0.75, colsample_bytree = 0.6, eta = 0.3, and

gamma = 0

GBM RFE ntrees = 150, min_rows = 10, max_depth = 2, col_sample_rate = 1, and learn_rate = 0.1

Boruta ntrees = 100, min_rows = 10, max_depth = 3, col_sample_rate = 1, and learn_rate = 0.1

Stepwise ntrees = 150, min_rows = 10, max_depth = 2, col_sample_rate = 1, and learn_rate = 0.1

RAW ntrees = 50, min_rows = 10, max_depth = 3, col_sample_rate = 1, and learn_rate = 0.1

Neural Computing and Applications (2023) 35:3173–3190 3185

123

with GBM were considered due to their achievement in

Acc results. The statistical results of the Wilcoxon’s sign

rank test given in Table 6 show that the performance of the

Model_Boruta with the XGBoost method was statistically

insignificant than the Model_RFE with Adaboost method.

Furthermore, when the statistical test results of the

XGBoost and AdaBoost methods were compared to the

GBM results, the p-value was found lower than the sig-

nificance level of 0.05, which means that both methods

indicated different performances. Overall, all models per-

formed acceptable results for liquefaction prediction, but

XGBoost with Model_Boruta exhibited the most stable and

best performance according to validation and statistical

results.

3.5 Computational costs

Training time of ML algorithms according to two types of

feature subsets such as Model_RAW and Model_RFE were

calculated considering two different options, parallel and

non-parallel processing. The parallel processing is a tech-

nique in running program tasks with two or more computer

processors (CPUs) to handle separate parts of an overall

task. On the contrary, only running one processor to handle

all parts of the task is called non-parallel processing.

Training and tunning times of two models with three dif-

ferent kinds of ML algorithms are shown in Table 7. It

should be noted that the computational costs stated here is

only the training time of average tuning (i.e., not including

prediction process), which does count the time with each

hyperparameter tuning operation. In order to clearly

observe computation costs of the ML algorithms, only

Model_RFE, which contains the least data (four), and

Model_RAW, which includes all features (twelve), was

selected. From Table 7, it is seen that the XGBoost algo-

rithm performed the training/tuning process quickly than

the other algorithms for both datasets using parallel and

non-parallel processing. On the other hand, the AdaBoost

algorithm was computed the training/tuning process with

the longest computation time for both parallel and non-

parallel options. In addition, the GBM algorithm has been

processed at acceptable times, but the used library called

Table 5 Comparison of performance results of the models based on CM

Model_Name Methods

AdaBoost XGBoost GBM

No
(%)

Yes
(%)

No
(%)

Yes
(%)

No
(%)

Yes
(%)

Model_RFE No 73

(95%)

3

(5%)

Acc:0.9545

Pre:0.9487

Rec:0.9610

F1:0.9548

73

(95%)

2

(3%)

Acc:0.9610

Pre:0.9494

Rec:0.9740

F1:0.9615

61

(79%)

1

(1%)

Acc:0.8896

Pre:0.8261

Rec:0.9871

F1:0.8994

Yes 4

(4%)

74

(96%)

4

(5%)

75

(97%)

16

(21%)

76

(99%)

Model_Boruta No 70

(91%)

1

(1%)

Acc:0.9481

Pre:0.9157

Rec:0.9870

F1:0.9500

74

(96%)

2

(3%)

Acc:0.9675

Pre:0.9615

Rec:0.9740

F1:0.9677

66

(95%)

5

(4%)

Acc:0.8961

Pre:0.8675

Rec:0.9351

F1:0.9000

Yes 7

(9%)

76

(99%)

3

(4%)

75

(97%)

11

(5%)

72

(96%)

Model_SR No 67

(87%)

3

(4%)

Acc:0.9156

Pre:0.8810

Rec:0.9610

F1:0.9193

68

(88%)

3

(4%)

Acc:0.9221

Pre:0.8916

Rec:0.9610

F1:0.9250

68

(88%)

7

(9%)

Acc:0.8961

Pre:0.8861

Rec:0.9091

F1:0.8947

Yes 10

(13%)

74

(96%)

9

(12%)

74

(96%)

9

(12%)

70

(91%)

Model_RAW No 71

(92%)

5

(6%)

Acc:0.9286

Pre:0.9231

Rec:0.9351

F1:0.9290

71

(92%)

6

(8%)

Acc:0.9221

Pre:0.9221

Rec:0.9221

F1:0.9221

64

(83%)

5

(6%)

Acc:0.8831

Pre:0.8471

Rec:0.9351

F1:0.8889

Yes 6

(8%)

72

(94%)

6

(8%)

71

(92%)

13

(12%)

72

(64%)

The best performance of a model in each category are shown in bold

Table 6 Results of the Wilcoxon’s sign rank test

Algorithm XGBoost AdaBoost GBM

Model Model_Boruta Model_RFE Model_Boruta

XGBoost

Model_Boruta

1 0.8121 0.04108

AdaBoost

Model_RFE

1 0.03109

GBM

Model_Boruta

1

Bold values indicates statistical significance p-value lower than 0.05

3186 Neural Computing and Applications (2023) 35:3173–3190

123

‘‘Package h2o’’ does not currently allow parallelization.

Hyperparameter tuning, especially with k-fold CV, is an

expensive process that can benefit from parallelization. The

results showed that parallelization processing was benefi-

cial for reducing computation costs for this study. How-

ever, k-fold CV obviously required a large computation

time, in which case other approaches may be more

appropriate for users who do not have a powerful computer

and time.

4 Conclusions

Soil liquefaction has been accepted as one of the essential

risk factors to the seismic performance of structures in

liquefaction-prone areas due to its behavioral complexity.

Nowadays, ML algorithms have been considered a useful

tool for the prediction of soil liquefaction with impressive

predicting accuracy. Therefore, this research investigates

and compares the prediction performance of the TBE

algorithms AdaBoost, GBM, and XGBoost for predicting

soil liquefaction. These algorithms are relatively new in

geotechnical applications that have rarely been employed

to predict soil liquefaction. Also, performances of three

different FS methods (RFE, Boruta, and SR) were com-

pared by combining with the TBE algorithms. The results

indicated that although all models performed acceptably

good performance, the XGBoost algorithm based on the

Boruta method (i.e., Model_Boruta) achieved the highest

overall accuracy ðAcc ¼ 96:75%Þ. Besides, XGBoost with
Model_RFE successfully predicted liquefaction events

even though four out of twelve parameters (FC, /0, ðN1Þ60,
and CSR) were selected from the original SPT dataset. The

Acc value of the XGBoost model were found to be Acc ¼
96:10% and Acc ¼ 92:21% for the four featured model

(Model_RFE) and the original dataset (Model_RAW),

respectively. On the other hand, the XGBoost algorithm

required a significantly shorter training time than the other

algorithms. At the same time, while k-fold CV obviously

required a large computation time, the parallel processing

utilized by the TBE algorithms except GBM led to

reducing computational costs. This study can provide

insights into the parameter settings, feature selection, and

algorithm selection for liquefaction prediction analysis.

Moreover, the results of this study may be helpful for

researchers who build models to make a prediction and

evaluate the performance of different problems using TBE

algorithms and FS methods. In the future, detailed feature

engineering strategies may be addressed to improve the

performance of these ensemble methods. Also, imple-

mentation of relatively new and sophisticated boosting

algorithms such as LightGBM, CatBoost etc. may be

considered for the further studies to predict soil

liquefaction.

Author contributions SD: Conceptualization, Investigation, Writing-

review and editing, Writing-original draft, Visualization. EKS: Con-

ceptualization, Methodology, Software, Writing-review and editing,

Writing-original draft, Visualization.

Funding No funding was received for conducting this study.

Declarations

Conflict of interest The authors have no conflicts of interest to declare

that are relevant to the content of this article.

Data availability The dataset analyzed during the current study are

publicly available at location cited in the reference section.

Table 7 Training/Tuning

computation times with parallel

and without a parallel process

Model_RAW

Training and Tuning time with k-fold Training and Tuning time without k-fold

Parallel Non-parallel Parallel Non-parallel

AdaBoost 2.37 min 39.50 min 56.57 secs 9.02 min

XGBoost 14.05 secs 2.32 min 5.23 secs 9.87 secs

GBM Not-Supporting 3.59 min Not-Supporting 1.05 min

Model_RFE

Parallel Non-parallel Parallel Non-parallel

AdaBoost 2.32 min 31.17 min 59.40 secs 8.91 min

XGBoost 12.65 secs 2.34 min 5.15 secs 10.43 secs

GBM Not-Supporting 3.78 min Not-Supporting 1.08 min

Neural Computing and Applications (2023) 35:3173–3190 3187

123

References

1. Towhata I (2008) Geotechnical earthquake engineering. Springer-

Verlag, Berlin

2. Ishihara K, Koga Y (1981) Case studies of liquefaction in the

1964 Niigata earthquake. Soils Found 21(3):35–52

3. Seed HB, Idriss IM (1967) Analysis of soil liquefaction: Niigata

earthquake. J Soil Mech Found Div 93(3):83–108

4. Youd T (2014) Ground failure investigations following the 1964

Alaska Earthquake. In: Proceedings of the 10th National Con-

ference in Earthquake Engineering, Earthquake Engineering

Research Institute, Anchorage, AK

5. Chen L, Yuan X, Cao Z, Hou L, Sun R, Dong L, Wang W, Meng

F, Chen H (2009) Liquefaction macrophenomena in the great

Wenchuan earthquake. Earthq Eng Eng Vib 8(2):219–229

6. Orense RP, Kiyota T, Yamada S, Cubrinovski M, Hosono Y,

Okamura M, Yasuda S (2011) Comparison of liquefaction fea-

tures observed during the 2010 and 2011 Canterbury earthquakes.

Seis Res Lett 82(6):905–918

7. Yasuda S, Harada K, Ishikawa K, Kanemaru Y (2012) Charac-

teristics of liquefaction in Tokyo Bay area by the 2011 Great East

Japan earthquake. Soils Found 52(5):793–810

8. Papathanassiou G, Mantovani A, Tarabusi G, Rapti D, Caputo R

(2015) Assessment of liquefaction potential for two liquefaction

prone areas considering the May 20, 2012 Emilia (Italy) earth-

quake. Eng Geol 189:1–16

9. Seed HB, Idriss IM (1971) Simplified procedure for evaluating

soil liquefaction potential. J Soil Mech and Found Div

97(9):1249–1273

10. Robertson PK, Wride C (1998) Evaluating cyclic liquefaction

potential using the cone penetration test. Can Geotech J

35(3):442–459

11. Andrus RD, Stokoe KH II (2000) Liquefaction resistance of soils

from shear-wave velocity. J Geotech Geoenviron Eng

126(11):1015–1025

12. Cetin KO, Seed RB, Der Kiureghian A, Tokimatsu K, Harder LF

Jr, Kayen RE, Moss RE (2004) Standard penetration test-based

probabilistic and deterministic assessment of seismic soil lique-

faction potential. J Geotech Geoenviron Eng 130(12):1314–1340

13. Moss R, Seed RB, Kayen RE, Stewart JP, Der Kiureghian A,

Cetin KO (2006) CPT-based probabilistic and deterministic

assessment of in situ seismic soil liquefaction potential. J Geotech

Geoenviron Eng 132(8):1032–1051

14. Kayen R, Moss R, Thompson E, Seed R, Cetin K, Kiureghian

AD, Tanaka Y, Tokimatsu K (2013) Shear-wave velocity–based

probabilistic and deterministic assessment of seismic soil lique-

faction potential. J Geotech Geoenviron Eng 139(3):407–419

15. Boulanger R, Idriss I (2014) CPT and SPT based liquefaction

triggering procedures. Report No UCD/CGM-14 1

16. Boulanger RW, Idriss I (2016) CPT-based liquefaction triggering

procedure. J Geotech Geoenviron Eng 142(2):04015065

17. Cetin KO, Seed RB, Kayen RE, Moss RE, Bilge HT, Ilgac M,

Chowdhury K (2018) SPT-based probabilistic and deterministic

assessment of seismic soil liquefaction triggering hazard. Soil

Dynam Earthq Eng 115:698–709

18. Zhang W, Li H, Li Y, Liu H, Chen Y, Ding X (2021) Application

of deep learning algorithms in geotechnical engineering: a short

critical review. Artif Intell Rev 54:5633–5673. https://doi.org/10.

1007/s10462-021-09967-1

19. Durante MG, Rathje EM (2021) An exploration of the use of

machine learning to predict lateral spreading. Earthq Spect.

https://doi.org/10.1177/87552930211004613

20. Xie Y, Ebad Sichani M, Padgett JE, DesRoches R (2020) The

promise of implementing machine learning in earthquake engi-

neering: a state-of-the-art review. Earthq Spect 36(4):1769–1801

21. Goh AT (1996) Neural-network modeling of CPT seismic liq-

uefaction data. J Geotech Geoenviron Eng 122(1):70–73

22. Pal M (2006) Support vector machines-based modelling of seis-

mic liquefaction potential. Int J Num Anal Meth Geomech

30(10):983–996

23. Goh AT, Goh S (2007) Support vector machines: their use in

geotechnical engineering as illustrated using seismic liquefaction

data. Comput Geotech 34(5):410–421

24. Hanna AM, Ural D, Saygili G (2007) Neural network model for

liquefaction potential in soil deposits using Turkey and Taiwan

earthquake data. Soil Dynam Earthq Eng 27(6):521–540

25. Ülgen D, Engin HK (2007) A study of CPT based liquefaction

assessment using artificial neural networks. In: 4th international

conference on earthquake geotechnical engineering, pp. 1–12

26. Rezania M, Faramarzi A, Javadi AA (2011) An evolutionary

based approach for assessment of earthquake-induced soil liq-

uefaction and lateral displacement. Eng Appl Artif Intell

24(1):142–153

27. Zhang J, Zhang LM, Huang HW (2013) Evaluation of general-

ized linear models for soil liquefaction probability prediction.

Environ Earth Sci 68(7):1925–1933

28. Kohestani V, Hassanlourad M, Ardakani A (2015) Evaluation of

liquefaction potential based on CPT data using random forest.

Nat Hazards 79(2):1079–1089

29. Hoang N-D, Bui DT (2018) Predicting earthquake-induced soil

liquefaction based on a hybridization of kernel Fisher discrimi-

nant analysis and a least squares support vector machine: a multi-

dataset study. Bull Eng Geol Env 77(1):191–204

30. Pirhadi N, Tang X, Yang Q, Kang F (2019) A new equation to

evaluate liquefaction triggering using the response surface

method and parametric sensitivity analysis. Sustainability

11(1):112

31. Zhou J, Li E, Wang M, Chen X, Shi X, Jiang L (2019) Feasibility

of stochastic gradient boosting approach for evaluating seismic

liquefaction potential based on SPT and CPT case histories.

J Perform Constr Facil 33(3):04019024

32. Cai M, Hocine O, Mohammed AS, Chen X, Amar MN, Hasa-

nipanah M (2021) Integrating the LSSVM and RBFNN models

with three optimization algorithms to predict the soil liquefaction

potential. Eng Comput, 1–13

33. Zhao Z, Duan W, Cai G (2021) A novel PSO-KELM based soil

liquefaction potential evaluation system using CPT and Vs

measurements. Soil Dynam Earthq Eng 150:106930

34. Wang L, Wu C, Tang L, Zhang W, Lacasse S, Liu H, Gao L

(2020) Efficient reliability analysis of earth dam slope stability

using extreme gradient boosting method. Acta Geotech

15(11):3135–3150

35. Wang M-X, Huang D, Wang G, Li D-Q (2020) SS-XGBoost: a

machine learning framework for predicting newmark sliding

displacements of slopes. J Geotech Geoenviron Eng

146(9):04020074

36. Bharti JP, Mishra P, Sathishkumar V, Cho Y, Samui P (2021)

Slope stability analysis using Rf, Gbm, Cart, Bt and Xgboost.

Geotech Geol Eng 39(5):3741–3752

37. Zhang W, Wu C, Zhong H, Li Y, Wang L (2021) Prediction of

undrained shear strength using extreme gradient boosting and

random forest based on Bayesian optimization. Geosci Front

12(1):469–477

38. Polikar R (2012) Ensemble learning. Ensemble machine learning.

Springer, pp. 1–34

39. Worasucheep C (2021) Ensemble classifier for stock trading

recommendation. Appl Artif Intell, 1–32

40. Breiman L (1996) Bagging predictors. Mach Learn

24(2):123–140

41. Quinlan JR (1996) Bagging, boosting, and C4. 5. Aaai/iaai

1:725–730

3188 Neural Computing and Applications (2023) 35:3173–3190

123

https://doi.org/10.1007/s10462-021-09967-1
https://doi.org/10.1007/s10462-021-09967-1
https://doi.org/10.1177/87552930211004613

42. Rocca J (2019) Ensemble methods: bagging, boosting and

stacking. medium-towards data science. https://towardsda

tascience.com/ensemble-methods-bagging-boosting-and-stack

ing-c9214a10a205

43. Papadopoulos S, Azar E, Woon W-L, Kontokosta CE (2018)

Evaluation of tree-based ensemble learning algorithms for

building energy performance estimation. J Build Perform Simul

11(3):322–332

44. Bou-hamad I, Larocque D, Ben-Ameur H, Mâsse LC, Vitaro F,

Tremblay RE (2009) Discrete-time survival trees. Can J Stat

37(1):17–32

45. Sabbeh SF (2018) Machine-learning techniques for customer

retention: a comparative study. Int J Adv Comput Sci Appl, 9(2).

https://doi.org/10.14569/IJACSA.2018.090238

46. Qi Y, Bar-Joseph Z, Klein-Seetharaman J (2006) Evaluation of

different biological data and computational classification methods

for use in protein interaction prediction. Proteins 63(3):490–500

47. Musbah H, Aly HH, Little TA (2021) Energy management of

hybrid energy system sources based on machine learning classi-

fication algorithms. Electric Power Syst Res 199:107436

48. Muhammad L, Islam MM, Usman SS, Ayon SI (2020) Predictive

data mining models for novel coronavirus (COVID-19) infected

patients’ recovery. SN Comp Sci 1(4):1–7

49. Pham BT, Nguyen MD, Nguyen-Thoi T, Ho LS, Koopialipoor M,

Quoc NK, Armaghani DJ, Van Le H (2021) A novel approach for

classification of soils based on laboratory tests using Adaboost.

Tree ANN Model Transp Geotech 27:100508

50. Wang X, Li Z, Shafieezadeh A (2021) Seismic response predic-

tion and variable importance analysis of extended pile-shaft-

supported bridges against lateral spreading: exploring optimized

machine learning models. Eng Struct 236:112142

51. Chen Z, Li H, Goh ATC, Wu C, Zhang W (2020) Soil lique-

faction assessment using soft computing approaches based on

capacity energy concept. Geosciences 10(9):330

52. Guyon I, Gunn S, Nikravesh M, Zadeh LA (2008) Feature

extraction: foundations and applications. Springer, Berlin

53. Zheng A, Casari A (2018) Feature engineering for machine

learning: principles and techniques for data scientists. O’Reilly

Media Inc, Sebastopol

54. Das SK, Mohanty R, Mohanty M, Mahamaya M (2020) Multi-

objective feature selection (MOFS) algorithms for prediction of

liquefaction susceptibility of soil based on in situ test methods.

Nat Hazards 103:2371–2393

55. Kuhn M, Johnson K (2019) Feature engineering and selection: A

practical approach for predictive models. CRC Press, Boca Raton

56. Hu J (2021) Data cleaning and feature selection for gravelly soil

liquefaction. Soil Dynam Earthq Eng 145:106711

57. Demir S, Sahin EK (2021) Assessment of feature selection for

liquefaction prediction based on recursive feature elimination.

Eur J Sci Tech 28:290–294

58. Team RDC (2020) R: A language and environment for statistical

computing. R Foundation for Statistical Computing. https://www.

r-project.org.

59. Derrac J, Garcı́a S, Molina D, Herrera F (2011) A practical

tutorial on the use of nonparametric statistical tests as a

methodology for comparing evolutionary and swarm intelligence

algorithms. Swarm Evolut Comput 1(1):3–18

60. Freund Y, Schapire RE (1997) A decision-theoretic generaliza-

tion of on-line learning and an application to boosting. J Comput

Syst Sci 55(1):119–139

61. Hastie T, Rosset S, Zhu J, Zou H (2009) Multi-class adaboost.

Stat Interface 2(3):349–360

62. An T-K, Kim M-H (2010) A new diverse AdaBoost classifier. In:

2010 International conference on artificial intelligence and

computational intelligence. IEEE, pp 359–363

63. Natekin A, Knoll A (2013) Gradient boosting machines, a tuto-

rial. Front Neurorobot 7:21

64. Chen T, Guestrin C (2016) Xgboost: A scalable tree boosting

system. In: Proceedings of the 22nd acm sigkdd international

conference on knowledge discovery and data mining,

pp. 785–794

65. Qin C, Zhang Y, Bao F, Zhang C, Liu P, Liu P (2021) XGBoost

optimized by adaptive particle swarm optimization for credit

scoring. Math Probl Eng. https://doi.org/10.1155/2021/6655510

66. XGBoost-Documentation (2021). https://xgboost.readthedocs.io/

en/stable/. Accessed 16 Sept 2021

67. Zhang H, Qiu D, Wu R, Deng Y, Ji D, Li T (2019) Novel

framework for image attribute annotation with gene selection

XGBoost algorithm and relative attribute model. Appl Soft

Comput 80:57–79

68. Guyon I, Elisseeff A (2003) An introduction to variable and

feature selection. J Mach Learn Res 3:1157–1182

69. Guyon I, Weston J, Barnhill S, Vapnik V (2002) Gene selection

for cancer classification using support vector machines. Mach

Learn 46(1):389–422

70. Shi F, Peng X, Liu Z, Li E, Hu Y (2020) A data-driven approach

for pipe deformation prediction based on soil properties and

weather conditions. Sustain Cities Soc 55:102012

71. Sun D, Shi S, Wen H, Xu J, Zhou X, Wu J (2021) A hybrid

optimization method of factor screening predicated on

GeoDetector and random forest for landslide susceptibility

mapping. Geomorphology 379:107623

72. Svetnik V, Liaw A, Tong C, Wang T (2004) Application of

Breiman’s random forest to modeling structure-activity relation-

ships of pharmaceutical molecules. In: International workshop on

multiple classifier systems. Springer, pp 334–343

73. Paja W, Pancerz K, Grochowalski P (2018) Generational feature

elimination and some other ranking feature selection methods.

Advances in feature selection for data and pattern recognition.

Springer, pp. 97–112

74. Kursa MB, Rudnicki WR (2010) Feature selection with the

Boruta package. J Stat Softw 36(11):1–13

75. Stańczyk U, Zielosko B, Jain LC (2018) Advances in feature

selection for data and pattern recognition: an introduction.

Advances in feature selection for data and pattern recognition.

Springer, pp 1–9

76. Breaux HJ (1967) On stepwise multiple linear regression. Report

no. 1369. Ballistic research laboratories aberdeen proving

ground, Maryland

77. Kumar S, Attri S, Singh K (2019) Comparison of Lasso and

stepwise regression technique for wheat yield prediction.

J Agrometeorol 21(2):188–192

78. Chowdhury MZI, Turin TC (2020) Variable selection strategies

and its importance in clinical prediction modelling. Fam Med

Commun Health 8(1):e000262. https://doi.org/10.1136/fmch-

2019-000262

79. Huang C, Townshend J (2003) A stepwise regression tree for

nonlinear approximation: applications to estimating subpixel land

cover. Int J Remote Sens 24(1):75–90

80. Huang C, Davis L, Townshend J (2002) An assessment of support

vector machines for land cover classification. Int J Remote Sens

23(4):725–749

81. Maxwell AE, Warner TA, Fang F (2018) Implementation of

machine-learning classification in remote sensing: an applied

review. Int J Remote Sens 39(9):2784–2817

82. Etikan I, Bala K (2017) Sampling and sampling methods. Biom

Biostat Int J 5(6):00149

83. Berndt AE (2020) Sampling methods. J Hum Lact 36(2):224–226

84. Fink A (2003) How to sample in surveys. Sage, Thousand Oaks

Neural Computing and Applications (2023) 35:3173–3190 3189

123

https://towardsdatascience.com/ensemble-methods-bagging-boosting-and-stacking-c9214a10a205
https://towardsdatascience.com/ensemble-methods-bagging-boosting-and-stacking-c9214a10a205
https://towardsdatascience.com/ensemble-methods-bagging-boosting-and-stacking-c9214a10a205
https://doi.org/10.14569/IJACSA.2018.090238
https://www.r-project.org
https://www.r-project.org
https://doi.org/10.1155/2021/6655510
https://xgboost.readthedocs.io/en/stable/
https://xgboost.readthedocs.io/en/stable/
https://doi.org/10.1136/fmch-2019-000262
https://doi.org/10.1136/fmch-2019-000262

85. Samui P, Sitharam T (2011) Machine learning modelling for

predicting soil liquefaction susceptibility. Nat Hazards Earth Syst

Sci 11(1):1–9

86. Demir S, Sahin EK (2022) Comparison of tree-based machine

learning algorithms for predicting liquefaction potential using

canonical correlation forest, rotation forest, and random forest

based on CPT data. Soil Dynam Earth Eng 154:107130

87. Ao S-I (2008) Data mining and applications in genomics.

Springer Science & Business Media, Berlin

88. Sahin EK (2022) Comparative analysis of gradient boosting

algorithms for landslide susceptibility mapping. Geocarto Int

37(9):2441–2465. https://doi.org/10.1080/10106049.2020.

1831623

89. Kuhn M (2008) Building predictive models in R using the caret

package. J Stat Softw 28(1):1–26

90. Keyport RN, Oommen T, Martha TR, Sajinkumar K, Gierke JS

(2018) A comparative analysis of pixel-and object-based detec-

tion of landslides from very high-resolution images. Int J App

Earth Obs Geoinf 64:1–11

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor holds exclusive rights to this article

under a publishing agreement with the author(s) or other rightsh-

older(s); author self-archiving of the accepted manuscript version of

this article is solely governed by the terms of such publishing

agreement and applicable law.

3190 Neural Computing and Applications (2023) 35:3173–3190

123

https://doi.org/10.1080/10106049.2020.1831623
https://doi.org/10.1080/10106049.2020.1831623

	An investigation of feature selection methods for soil liquefaction prediction based on tree-based ensemble algorithms using AdaBoost, gradient boosting, and XGBoost
	Abstract
	Introduction
	Methodology
	Description of the dataset
	Overview of tree-based ensemble (TBE) algorithms
	Adaptive boosting (AdaBoost)
	Gradient boosting machine (GBM)
	eXtreme gradient boosting (XGBoost)

	Feature selection (FS) methods
	Recursive feature elimination (RFE)
	Boruta
	Stepwise regression (SR)

	Performance evaluation methodology

	Results and discussion
	Determination of training and test sample size
	Feature selection for dimensionality reduction
	Optimization of hyperparameter with grid-search
	Evaluating performance of models
	Computational costs

	Conclusions
	Author contributions
	Funding
	References

