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Abstract
With the application of artificial intelligence technology, face detection is now not only concerned with accuracy but

detection speed as well. However, most previous works have relied on heavy backbone networks and required prohibitive

run-time resources, which seriously restricts their scope for deployment and has resulted in poor scalability. In this study,

we used YOLOv5s, which has a good detection rate and accuracy, as the baseline network. First, we added a none-

parameter channel attention self-enhancement module to allow the backbone of the network to capture the characteristic

features of the face more effectively. Second, a low-level feature fusion module was added to enhance the features of

shallow neural layers and then fuse them with the features of deeper layers. Third, a receptive field matching module allows

the network’s perceptual field to better match the scale of actual faces. Finally, contextual information based on face key

points allows the face detector to exclude more cases of error and missed detections. On the most popular and challenging

face detection dataset, WIDER FACE, our model performed better than the original network, with improvements of 3.8,

4.4, and 11.6% on the easy, medium, and hard subsets, respectively, and achieved a rate higher than 72 FPS, which meets

the real-time requirements.

Keywords Face detection � Feature fusion � Attention mechanism � Receptive field matching � Context information

1 Introduction

One of the goals of face detection [1] is to locate the

position of a face in a video automatically. This is an

important task in computer vision and has received wide-

spread attention in recent years. With the increasing

demand for intelligent landing requirements in areas such

as security and attendance, many studies have attempted to

improve face detection by deepening the model structures,

enhancing data, and expanding labels, among others.

However, this can make the algorithm and the model more

complex. Moreover, various facial applications, such as

face alignment [2], recognition [3], and verification [4],

require the face to be detected quickly, which places a high

demand on the detection rate. Therefore, a benchmark

network that meets the real-time requirements of the

application and has a high level of accuracy is required.

Although CNN-based [5] face detection has been widely

studied, detecting faces in real scenarios where high vari-

ability is present, including the effects of pose, occlusion,

expression, appearance, and illumination, remains a chal-

lenge. Many of today’s methods perform well on publicly

available datasets, but do not perform well in terms of

detection speed. For example, the DSFD [6] published by

Tencent performs well on the WIDER FACE [7] dataset,

but only at a rate of approximately 5 FPS, which is not

sufficient to meet the real-time requirement. On the other

hand, many lightweight networks [8, 9] can meet real-time

metrics, but not with high enough accuracy. At this point,

the YOLO [10] family of networks has been selected as the

preferred networks, because a good balance between speed

and accuracy is shown in their midst, and YOLOv5 [11]

has the best performance in its class and was, therefore,

chosen as the baseline for this study.
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Face detection is an intuitive application of traditional

object detection [12]. In other words, the face is a special

object, so some of the traditional improvements to object

detection can also be applied to the face detection task.

However, unlike traditional object detection, the face as a

class of object has its own characteristics, and these can

also be used to improve on the accuracy of detection.

Traditional object detection methods tend to favor one

aspect of accuracy or speed, with high accuracy models gen-

erally having lower detection rates, and many lightweight

networks having good detection rates, but accuracy is the

enhancement point that they ignore. The goal of this study was

to achieve both, simultaneously.As shown inFig. 1, theYOLO

[10] series has a good balance between these two metrics, and

YOLOv5 [11] has the best performance in this series.However,

as withmany deep neural networks, YOLOv5 still suffers from

poordiscriminabilityof the featuremaps aftermultiple layersof

convolution and pooling operations [13]; therefore, we drawon

the channel attention mechanism [14] and propose a none-pa-

rameter channel attention self-enhancement (NCAS) method

and a low-level feature fusion (LFF) module to address these

problems. In addition, this study addresses the problem of

mismatch between the perceptual receptive field [15] of the

detector and the face ratio in face detection; we propose a

receptive fieldmatching (RFM)module suitable to target of the

face specifically, which improves the performance in detecting

faces. We combine the above methods and propose an

improvedmethodbasedonYOLOv5s to achieveaSOTAresult

on the WIDER FACE [7] dataset and ensure that the detection

rate meets the real-time requirement.

In summary, we made the following contributions to

face detection studies:

1. In traditional neural networks, important feature infor-

mation is often not learned by the network due to the

scattered distribution of weights in the channels. In this

paper, an NCAS module is proposed to enable the

network to learn more of the expected features in order

to improve detection performance. Because NCAS

does not carry any activation or convolution structures,

it carries no parameters and, therefore, has little effect

on the detection speed of the overall module.

2. In existing neural networks, most feature extraction

modules apply a square receptive field. However, by

analyzing the data, we found that most faces have

rectangular aspect ratios, which result in a mismatch

between the network receptive field and the facial

target. In this paper, we propose an RFM module that

uses different scales of perceptual fields for face

detection, which can make the network more robust in

detecting specific facial targets.

3. The discriminability of the feature map is often poor

after the deep neural network has been convolved in

multiple layers. In order for facial features with better

discriminability and robustness to be learned by the

network, we designed an LFF module to fuse the

features of the image in the shallow layer of the

network with the features from the deeper layer after

enhancement, so that the network can eventually learn

better quality image feature information.

4. Object detection tasks can generally improve perfor-

mance by using other object features that are strongly

correlated with the target to be detected at the location

to aid detection. In this paper, five face key points that

are strongly correlated with faces are introduced into

the method as background information to aid face

detection and achieve a large performance improve-

ment especially in the hard subset of WIDER FACE

(Fig. 2).

Fig. 1 Comparison of YOLOv5 with other well-known deep neural networks and with the same series of networks. It can be seen that the YOLO

series networks perform better in terms of balancing accuracy and detection rate, and YOLOv5 does better than its peer series
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2 Related work

Since the 1990s, face detection has been a challenging

research field. ‘‘Harr-like’’ features and ‘‘AdaBoost’’ [16]

had been used by Viola and Jones first to train face

detectors and achieve good accuracy and efficiency. After

the 2012 ImageNet [17] classification challenge, CNN-

based face detection methods became mainstream, and

many new CNN-based methods emerged. A multi-task

cascaded network was proposed by MTCNN [2] that can

detect faces and their alignment; RetinaNet [18] which

used a new loss function ‘‘Focal Loss’’ to solve the prob-

lem of serious imbalance in positive and negative samples

in one-stage object detection; Faster RCNN [19] (Girshick

2015) solved the problem of category imbalance through

two-stage cascade and sampling heuristics deep learning;

In addition, CEDN [20] (Wang et al. 2019) is a coupled

encoder-decoder network that jointly detects faces and

localizes facial key points. The encoder and decoder gen-

erate response maps for facial landmark localization.

Faceboxes [21] (Lei et al. 2019) propose a novel face

detector that consists of the rapidly digested convolution

layers and multiple scale convolution layers. The former

was designed to enable Faceboxes to achieve CPU real-

time speed, while the latter aimed to enrich the features and

discretize anchors over different layers to handle faces of

various scales. DCFPN [22] is a novel face detector that

has a dense anchor strategy and a scale-aware anchor

matching scheme to improve the recall rate of small faces

with high accuracy at CPU real-time speed. Chen et al.

proposed that the STC and STR modules, in their SRN [23]

method, should be used to filter the negative samples at the

bottom and adjust the position and size of the high-level

anchors. Cascade RCNN [24] improves the positioning

accuracy of face detection by cascading RCNN with dif-

ferent IoU thresholds. Li et al. [6] proposed a two-shot

model structure, DSFD, in which the feature enhancement

module was also applied to achieve good accuracy in face

detection.

2.1 Feature learning

Before the popularity of deep learning, face detection

mainly relied on artificially preset features, such as skin

color, the vertical line between the binocular and forehead-

chin lines, and others, and used Harr-like features [16],

control point set, edge histogram, and other technologies.

With the development of deep learning, artificial methods

that lack computer guidance are gradually being aban-

doned. Since the ImageNet classification challenge was

won by ‘‘Alexnet’’ [25] by a considerable margin in 2012,

deep learning methods led by convolutional neural net-

works have gradually become mainstream in the field of

computer vision. Methods such as CascadeCNN [24] and

MTCNN [2] use sliding windows in the first stage to build

image pyramids, but they have a slow speed and a low

memory utilization rate. The RCNN [4] series works

through selective search, obtaining the region proposal and

classifying each normalized image region using CNN. The

YOLO series presets anchors of various scales on an

Fig. 2 We validated the final model of this article in the images containing the most faces in the world. The verification results show that the final

model in this paper has reached the level of SOTA
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image, then the image is divided into S� S grids, and each

grid is used as a center point to predict the target position,

which results in a faster speed. Later, DSFD and SRN [26]

of Tencent introduced a two-shot network structure, which

made it possible to supervise the training process of the

entire model more effectively.

2.2 Attention mechanism

The attention mechanism [14] was inspired by the fact that

humans pay particular attention to a few important locali-

ties when observing their surroundings and was created to

enable networks to learn important information from dif-

ferent localities and combine them. The attention mecha-

nism has been shown to be an important method for

improving the performance of deep learning networks. In

particular, a paper published by Google, ‘‘Attention is all

you need,’’ proposed the idea of replacing CNN and RNN

structures entirely with attention mechanism, leading to the

proliferation of such methods. The last ImageNet champion

model, SE-Net [27], was the first effective channel atten-

tion learning mechanism and achieved good results. The

subsequent development of attention mechanisms can be

divided into two broad areas: augmented feature aggrega-

tion and the combination of channel space attention;

however, these approaches are based on complex attention

modules that increase the complexity of deep learning

models.

ECANet [28] that appeared in 2019 was an improve-

ment of SE-Net [27], which reduced the complexity of the

model while learning effective channel attention. It was

realized with a local cross-channel interaction strategy

without dimensionality reduction and considered the K

channels of the current channel and its neighbors; the

K value could be adjusted adaptively. The proposal of this

method has pushed the application and research of the

attention mechanism to a new height. We combined facial

features and added the improved channel attention mech-

anism module to the residual structure of the benchmark

network so that the network could learn more important

parts of the channel and combine them to improve the

performance of the network.

2.3 Receptive field

The feature vector at a location in the feature map of a

layer in a neural network is obtained from a fixed region on

the input of the previous layer, which is called the receptive

field. In object detection tasks, the larger the field of per-

ception, the better; this ensures that important feature

information is not overlooked before making the final

prediction. For anchor-based work, it is necessary to ensure

that the anchor strictly corresponds to the field of

perception, otherwise the detection performance is seri-

ously affected. There are two main methods for increasing

the receptive field:

1) Pooling [13] Here, the reduction in image dimen-

sionality can be achieved in a neural network by

pooling to increase the perceptual field; however, this

method results in a certain loss of image features.

2) Dilated Convolution [29] The additional holes are

added to the standard convolution layer. The advan-

tage of this is that it increases the perceptual field

without pooling the lost information, so that each

convolution output contains a larger range of

information.

3) Contextual Information [30] The basis of computer

vision technology is derived from the laws and habits

of human observation of objects. When humans

observe a target object, they often also rely on the

surrounding things to assist their judgment, so in the

target detection task, if the target to be detected is

understood as the current paragraph to be read, then

the surrounding environment, other objects can be

seen as contextual information, because in real life,

all objects cannot exist alone, but must have some

connection with other objects and the environment

around them.

Therefore, in the target detection task, the interaction

information between the object to be detected and the

surrounding objects and environment can usually be used

as auxiliary information for the detection of the neural

network model, which is called contextual information.

Contextual information in computer vision does not refer to

other features obtained directly from the appearance of the

object to be detected, but rather from feature data of the

domain, annotations of other targets, spatial location

information or statistical information. However, not all

surroundings help to improve the performance of target

detection, and the addition of meaningless background

noise may even have a negative impact on the performance

of the model. Therefore, it is common to use objects,

environments, and parts of objects that co-exist with the

target to be detected as for contextual information, for

example, when doing vehicle detection, the common con-

textual information is the road, wheels, driver, etc.

3 Method

Among the series of YOLOv5 networks, YOLOv5s, as the

lightest version, has the same network structure as

YOLOv5, but its model depth multiplier is one-third of the

original network, layer channel multiplier is two-fifths of

the original network, and the model size is only 0.07 of
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YOLOv5, which is more in line with the objective of

building a fast and accurate face detection network in this

paper; YOLOv5s was therefore chosen as our baseline

network, with the addition of improvements to conven-

tional detection and a hurry-up method that treats faces as

special targets (Fig. 3).

3.1 None-parametric channel attention self-
enhancement

In the development of deep neural networks, the loss of the

model decreases as the number of layers of the network

increases, and subsequently, saturation has been demon-

strated through numerous experiments; if the depth of the

network is increased, the loss will increase, leading to a

decrease in model accuracy, a phenomenon known as

network degradation. When network degradation occurs, a

neural network with fewer layers can achieve better train-

ing than a deeper network. At this point, if the features

from the lower layers are passed to the higher layers, the

results would at least be no worse than those of a shallow

network. Based on this idea, a residual network was cre-

ated. However, owing to the method of passing the features

of the lower layers to the higher layers through direct

mapping, the residual network [31] inevitably made the

features learned by the model more confusing. This

resulted in the feature extraction layer not being able to

extract the effective features of the target to be detected.

The benchmark network chosen for this study, YOLOv5,

also has many residual structures and, therefore, suffers

from the same problems described above.

The above problems are well solved by the advent of the

channel attention mechanism. The attention mechanism in

neural networks is based on the visual attention of the

human eye, which quickly scans a global image to identify

the target area that needs to be focused on, generally

referred to as the focus of attention. Then, more attention

resources are devoted to this area to obtain more detailed

information about the target, while suppressing other use-

less information. Channel attention mechanisms have

shown great potential for improving the performance of

neural networks; however, many related approaches that

have been used to improve the performance of CNNs

introduce complex attention modules, which inevitably

increase the computational burden and slow down the

detection rate. The recent emergence of ECANet [28]

seems to be a good solution to this problem, as it achieves a

good channel attention mechanism with a small number of

parameters through a non-degenerate local cross-channel

interaction strategy. However, it still requires parameters,

requiring the neural network to calculate gradients during

training, thereby increasing training costs, and affecting the

rate during detection.

Therefore, to further meet the real-time requirements for

this study and inspired by ECANet, we designed a none-

parameter channel attention module to achieve the goal of

Fig. 3 Improved YOLOv5s model structure diagram. The red dashed

boxes indicate the three improvements proposed in this article. First,

the image features are passed down through layers such as Focus in

the image input model, and then through (1) the Bottleneck ? NCAS,

using the None-parameter attention module to enable the more useful

features to be passed down the backbone of the network. Next, the

feature maps are passed into (2) the Receptive Field Matching

Module (RFM) that extracts the features; the features that better

match the size of the face are passed down. In the next network

structure, (3) LFF is responsible for fusing the low-level and deep-

level features after enhancement, making the features learned by the

network more robust; (4) we added a large-scale output layer that fits

the key points of the face at the end of the network layer
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improving the detection accuracy without reducing the

detection rate. We referred to the channel attention module

in ECANet and removed two of the one-dimensional

convolutional structures; therefore, the unique parameter

was removed, and the input feature map was directly

regressed. Then, the feature map was combined with itself

through the self-enhancement method to improve the per-

formance of deep learning. We added the improved

parameter-free channel attention self-enhancement module

to the residual structure of BottleneckCSP in YOLOv5s, to

enable the backbone network to learn information that is

more in line with the target characteristics. The formula is

given as follows:

FðxÞ ¼ SIGðGAPðxÞÞ � x ð1Þ

where x is the input feature map, GAP is the global average

pooling operation, and SIG is the sigmoid activation function

of the globally averaged pooled featuremap. Through simple

operations and combined with itself, we can make this

module no matter in terms of accuracy or speed. The

experimental results show that our none-parameter channel

attention self-enhancement module has a better effect on

improving the performance of deep convolutional neural

networks than the channel attention module of ECANet, and

because the parameter layerwas removed, the computational

cost was reduced, and the detection rate was higher.

Figures 4 and 5 show the difference between our mod-

ule and ECANet and show the way our module is used in

the residual structure of YOLOv5 and BottleneckCSP.

3.2 Receptive field matching module

ResNet [32] or VGGNet [33] is currently used by most

detection networks as a basic feature extraction module

with a square perceptual field. In this study, the benchmark

network YOLOv5 was used, and its feature extraction

process is also based on a square field. The square receptive

field performs well in traditional object detection, but in

scenarios with real faces, as in the WIDER FACE dataset, a

large proportion of faces are not square: their aspect ratios

are greater than 2 or less than 0.5. Therefore, if only the

square perceptual field is used for feature extraction, it will

affect the detection accuracy (Fig. 6).

The SPP module in the benchmark network of this paper

uses a maximum pooling layer of 3 sizes for feature

extraction, but its shape is also 1:1, which does not match

some of the face proportions, so the above problem also

occurs during training and detection. To solve this prob-

lem, we borrowed the receptive field enhancement module

from SRN and combined the ideas of SRN and SPP

modules, using two types of convolutional kernels, 5*3 and

3*5, to provide a rectangular perceptual field that matches

the proportion of the face, and with 3*3 and 5*5 pooling

operations to provide a square perceptual field, which can

make the network’s perceptual field both rectangular and

square, more suitable for the specific target of the face.

This module allows the network to have both rectangular

and square receptive fields to better match the face as a

Fig. 4 ECA uses global average pooling (GAP) for channel aggre-

gation and then generates channel weights by performing a fast

convolution of size k, which is then multiplied with activation and

sigmoid, and a feature map is outputted. NCAS performs the GAP

operation directly on the channels, followed by the sigmoid operation

and finally multiplied with the original feature map
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specific target and is named the receptive field matching

module (Fig. 7).

For our method, we reduced the number of channels of

the input RFM layer to a quarter of the original and divided

them into four branches. After passing through a one-di-

mensional convolution, the first two branches used 3 * 5

and 5 * 3 ratios. The convolution kernel provided rectan-

gular receptive fields, and then, a convolution kernel layer

of 1 * 1 was used for the normalization operation and

connected to form a rectangular module. The other two

branches, also after 1 * 1 convolution, used ratios of 7 * 7

and 9 * 9 for maximum pooling, and then a convolution

kernel layer of 1 * 1 for the normalization operation and

connected to form a square module. Then, a ‘‘Concat’’

operation was performed on the rectangular and square

modules to connect the two modules in the form of vectors

with the corresponding convolution kernels. Finally, the

original input feature map was added to make the network

learning more consistent with the features of human faces.

The structure of the improved RFM module used in this

study is shown in Fig. 8.

For the choice of ratios of maxpooling, experimental

analysis is also carried out in this paper in the SPP of the

benchmark network, and the experimental results are as

follows.

From the experimental results in Table 1, we can see

that a square receptive field of (9,7,5) is more suitable for

the face detection task, while the rectangular receptive field

already has a size of 5. In order to adapt the RFM to more

sizes of faces, the final maxpooling size was set to (7,9).

3.3 Low-level feature fusion module

The main modules of the neural network structure are

convolution, pooling, and activation. This is a standard

Fig. 5 Schematic diagram of the structure of adding NCAS to the residual structure of YOLOv5s

Fig. 6 We normalize and analyze the face labels in the dataset.

Corresponding quantity of different colors in the figure are light

green, green, light blue, blue, yellow, orange, and red from the least to

the most. From the figure, it can be seen that the ratio of the faces that

take up more pixels of the image is not 1:1, i.e., the value of height/

width is not 1, which means that such faces are not square. The

smaller the number of pixels in the image, the closer the ratio of the

face is to a square
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nonlinear transformation module, where the lower layer of

the network learns the edge information of the image, the

middle layer of the network learns simple shape

information, and the deeper layer of the network learns the

shape of the target. The deeper layers of the network can

also learn more complex features. If the deep neural

Fig. 7 We analyzed and counted the labels in the dataset. A total of

29,810 human faces were counted and plotted. It can be seen that

there are not many faces with a horizontal and vertical ratio of 1:1.

Among them, 89.6% of the face ratios are concentrated in the 0.65,

0.95 range, and the proportion of faces in the 0.95, 1.00 range only

accounts for 2.9% of all statistical faces. Moreover, the above

figure roughly conforms to Gaussian distribution. The mean value of

this statistical population data is 0.801, the standard deviation is

0.113, and the variance is 0.012. Therefore, 68.3% of the data is

distributed within the range of 0.688, 0.914, which is consistent with

the above analysis. It shows that the aspect ratio of face data is mostly

not square

Fig. 8 Schematic diagram of the

structure of RFM
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network had only one layer, it would mean that the trans-

formations to be learned would be very complex, and

difficult to accomplish. However, a more complex the

neural network, stacked with modules such as convolution

and pooling layers, will result in network degradation as

mentioned in Sect. 3.1; a shallow network is able to

achieve better results than a deep network. To address this

situation, in addition to the residual modules mentioned

above, it is possible to combine the features of the shallow

network with the features of the deep network, to allow the

deep network to learn the feature information in the shal-

low network.

In our benchmark network YOLOv5, the above-men-

tioned approach was also adopted, which combined the

feature information in the backbone with the feature

information in the feature extraction layer to prevent the

emergence of network degradation problems. To make the

feature information of the low-level network better help the

overall network to learn, we propose an LFF module: it

passes the more recognizable features in the backbone

through the module after enhancement, and it is connected

to the feature extraction module, which can merge low-

level and deep-level features, enhance feature mapping,

and achieve the purpose of making the features learned by

the network more recognizable and robust.

Inspired by the feature enhancement module (FEM) in

DSFD[6], we designed an LFF module to solve the above

problem. The FEM module adopts the form of a dilated

convolution for feature enhancement, but the faces studied

in this work was small and dense. Dilated convolution has a

high probability of not extracting faces completely during

each convolution operation. Furthermore, the characteristic

information could make the enhancement effect worse.

Therefore, we used two-dimensional convolutional kernels

instead of dilated convolution in the design of our LFF

module. Because faces are relatively small in images, large

convolutional kernels cannot extract features well; there-

fore, we used a 3 � 3 convolution in the first few layers of

each ladder structure to scan and extract the feature map,

and a 1 � 1 convolutional kernel in the last layer to nor-

malize the feature map. This allowed more robust features

to be passed to the deeper feature extraction layers and

solved the network degradation problem while further

improving face detection accuracy. The structure of the

LFF module is shown in Fig. 9.

Specifically, in this module, we divided the feature map

into three parts, and then divided the three sub-networks

containing different numbers of convolutional layers with

different convolution sizes, and finally connected them. To

enhance the original image features IFði;j;lÞ, LFF uses dif-

ferent dimensional information, including the original

image features IFði;j;lÞ of the upper layer and non-local

image features LFði�d;j�d;lÞ, LFði�d;j;lÞ,…, LFði;jþd;lÞ,

LFðiþd;jþd;lÞ of the current layer. In particular, the enhanced

image features EFði;j;lÞ can be defined mathematically as:

EFði;j;lÞ ¼ fconcat fdilation
X

LFði;j;lÞ

� �� �
ð2Þ

LFði;j;lÞ ¼ fprod IFði;j;lÞ; fup IFði;j;lþ1Þ
� �� �

ð3Þ

where Fði;j;lÞ represent the coordinates (i, j) in the feature

map of the lth layer, f is a set of basic two-dimensional

convolution, element generation, or splicing operations.

3.4 Contextual information based on face key
points

Computer vision technology is derived from the laws and

habits of human observation of objects, and humans also

rely on their surroundings to aid their judgment when

observing a target object. Therefore, in a target detection

task, if the target to be detected is understood as the current

passage to be read, then the surrounding environment,

other objects can be seen as contextual information. In

practice, all objects cannot exist alone, but must have some

connection with other objects and the environment around

them. Therefore, in target detection, the information

between the object to be detected and other objects and the

environment around it can usually be used as auxiliary

information for neural network model detection, which is

called contextual information. Face key points can help the

face detector to exclude the more incorrectly detected

targets and help it to detect more face targets with less

distinctive features.

Table 1 Effectiveness of different sizes of maxpooling on the AP performance

Method Size Easy (%) Medium (%) Hard (%)

The ratios of maxpooling (13,9,7) 89.11 87.29 72.55

(13,9,5) 90.41 88.20 72.63

(9,7,5) 90.67 88.54 72.98

(7,5,3) 90.12 88.24 71.97

(3,5,7) 89.57 87.48 71.91

Bold values indicate the best results
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Considering that the data in the WIDER FACE dataset

are too large, if the context information that is strongly

associated with the face is manually labeled, the time cost

and labor cost are too high, and it is almost impossible to

complete. The face key point detection used in the face

alignment task can directly obtain the corresponding

position through the existing method, and the accuracy of

the face key point detection task has reached extremely

high performance. Therefore, on this basis, this section

proposes a method for assisting face detection with con-

textual information based on key points of the face.

Before training, MTCNN was used to detect the key

points of the face on the WIDER FACE dataset and add the

normalized key coordinates of the face in the annotation

file for subsequent training. The effect is shown in Fig. 10.

The loss function used for key points of the face in

MTCNN[2] is the L2 loss function. The L2 paradigm is

optimized based on the L1 paradigm loss function, but the

L2 loss function is not sensitive to small errors, so it is for

people who overlap and occlude. The face target cannot fit

its key point position well. In this regard, this section

introduces the weighted fusion of Wing Loss and the

original loss function. The formula of Wing Loss [34] is as

follows:

LwingðxÞ ¼
x lnð1þ xj j

�
Þ xj j\x

xj j � C otherwise

8
<

: ð4Þ

where x is a positive number, and its function is to limit

the nonlinear loss value between [-x, x]. � is a parameter

that constrains the overall curvature of the nonlinear

interval. According to formula 4, the constant C ¼ x�
x lnð1þ x

�Þ is calculated. Its function is to smoothly

connect the area of linear and nonlinear segmented points,

making the overall loss function smoother.

4 Experiments

We first analyzed the proposed modules and method in

detail to verify the effectiveness of our contributions. Then,

we evaluated the final model on common face detection

benchmark datasets, including FDDB (Jain and Learner-

Miller 2010), and WIDER FACE [7].

4.1 Dataset

Currently, the most popular face detection datasets are

FDDB and WIDER FACE[7]. FDDB was released in 2010

and reached saturation under the current development sta-

tus of deep neural networks, but it is still the dataset used

by some face detection methods to verify their contribu-

tions. Currently, the WIDER FACE dataset is the most

frequently used public dataset for face detection and con-

tains the largest amount of data. It contains 32,203 pictures

with 393,703 annotated faces. WIDER FACE is divided

into 61 subsets, each of which contains three levels of

detection difficulty: ‘‘Hard,’’ ‘‘Medium,’’ and ‘‘Easy’’.

Because the scale, posture, occlusion, expression, lighting,

and events of the pictures vary widely, this dataset is

complex and represent reality closely; the dataset is divided

into a training set, validation set, and test set at 50, 10, and

40%, respectively. After further analysis, we found that the

data in ‘‘Hard’’ contains pictures that are defined as

‘‘Medium’’ and ‘‘Easy’’, which indicates that the perfor-

mance on ‘‘Hard’’ would better reflect the effectiveness of

Fig. 9 LFF structure diagram
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different methods. Therefore, we chose FDDB and WIDER

FACR as the experimental datasets to verify the method

proposed in this paper.

4.2 Implementation details

4.2.1 Overall network design

We used the lightest version of the YOLOv5 series,

YOLOv5s, as our benchmark network and added the

NCAS module to the BottleneckCSP structure; the SPP

module in the original network was replaced by our RFM

module; the LFF module is used in this paper to connect

the backbone layer to the feature extraction layer. We

added both designed modules and the original modules to

the benchmark network, in turn, for comparison in each

case to demonstrate that our improvements are effective.

We also performed ablation experiments on all modules,

again demonstrating that our designed modules are suit-

able and effective for face detection.

4.2.2 Work before verifying the model

For WIDER FACE, we removed the labels from some

missing images and images with missing labels and con-

verted them into the data format required by YOLOv5 for

training. Before training, we used the K-means [35] clus-

tering algorithm to perform cluster analysis on the face

labels in the dataset and finally obtained nine anchor boxes

with the most suitable size for the dataset, which were

given as follows: [23,26], [137,30], [96,48], [57,109],

[172,47], [139,77], [117,126], [176,126], [261,124].

4.2.3 Losses

We conducted experiments based on the benchmark net-

work to compare three loss functions, CIOU, DIOU [36],

and GIOU [37]. Based on the experimental results, we

chose CIOU as the loss function for our network.

4.2.4 Experimental set

To ensure that each set of experiments was fairly compa-

rable, we used the same parameter settings for all experi-

ments and changed only the components. All models were

trained on the WIDER FACE training set and evaluated on

the validation set. We conducted experiments on a single

NVIDIA GeForce GTX 2080 Super and used the SGD

optimizer to train the model. Our initial parameters were as

follows: the initial learning rate was 0.01, the momentum

was 0.937, the batch was set to 64, the resized input image

Fig. 10 Schematic diagram of face detection after adding face key

points. As can be seen from the diagram, the inclusion of key points

allows the face detector to detect many missed faces and also to

eliminate false detections. Moreover, the average confidence has

increased from 0.563 to 0.751, which can also illustrate the

importance of the method in this chapter
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was 416 � 416, and each experimental round was set to

750 epochs.

4.3 Analysis on HPFace

In this subsection, we discuss the extensive experimental

and ablation study performed on the WIDER FACE dataset

as a way to evaluate the effectiveness of our proposed

modules, thus demonstrating our contributions. The meth-

ods include the NCAS module, RFM module, LFF module,

and contextual information base on key points of face. For

a fair comparison, we used the same parameter settings in

all experiments, except for specific changes to the com-

ponents. All models were trained using the WIDER FACE

training set and evaluated on the validation set, ultimately

validating the performance of all the modules proposed in

this study with official evaluation metrics.

4.3.1 NCAS

First, the NCAS module proposed in this paper enables the

network to learn more expected features, enhance the

detection performance, and solve the problem of disorder

in extracting features from the residual structure, while not

affecting the detection speed. To verify the effectiveness of

this module, we added the best ECANet of the current

channel attention mechanism to the BottleneckCSP struc-

ture of the benchmark network and compare it experi-

mentally with NCAS. From Table 2, it can be seen that

both methods improved the detection accuracy, but NCAS

improved the accuracy more and affected the detection rate

less than ECANet. As a result, NCAS improved the

detection accuracy by 0.9, 1.0, and 3.5% on the three

subsets, respectively, and the FPS only decreased by 1.

4.3.2 RFM

Second, the RFM module proposed in this paper uses dif-

ferent proportional sizes of perception for face detection

tasks, which makes the receptive field of the neural net-

work fit the face better and thus improves the accuracy. We

conducted comparison experiments using the RFM module

designed in this study to replace the SPP module in the

benchmark neural network structure. Since we adopted the

idea from SRN, we also experimented with RFE, the per-

ceptual field module in SRN. Table 2 shows that our

method applied to the benchmark network performs better

than RFE, with accuracy rates improving from 90.40%,

88.20%, and 72.60% to 90.90%, 88.86%, and 75.90%,

respectively, compared to the baseline network (Table 3).

4.3.3 LFF

Third, the LFF module proposed in this paper makes the

final facial features recognized by the network more dis-

criminative and robust by fusing the features first extracted

in the feature extraction layer of the network with the

deeper features after enhancement and reduces the impact

of network degradation on the accuracy rate. We compared

the performance of the proposed LFF module with that of

the FEM module during experiments. Table 4 shows that

both modules helped to improve the performance of the

network, but the proposed LFF was more effective,

resulting in an increase in accuracy from 90.40%, 88.20%,

and 72.60% to 90.30%, 88.80%, and 75.70%, respectively.

4.3.4 Contextual information based on key points

Fourth, the context information based on the key points of

the face proposed in this paper enables the network to

associate the key points with the face features during the

training phase. Therefore, the trained model can use the

key points of the face in the image to guess the position of

the face. Location, thus, greatly improves model perfor-

mance. In this paper, a larger scale is added to the output

scale of the network structure to better fit the key point

positions, among which key point-4 represents the output

results of 4 scales. Table 5 shows the experimental results

of this article for contextual information. After adding the

key points of the face, the overall accuracy rate has been

improved, and the network structure of 4 scales is also not

small compared with the three scales. The accuracy of

Table 2 Effectiveness of the NCAS module on the AP and FPS performance

Component FPS Easy (%) Medium (%) Hard (%) Param (M)

YOLOv5s(baseline) 90 90.40 88.20 72.60 7.091

YOLOv5s?SENet [27] 80 90.42 88.32 74.12 7.695

YOLOv5s?ECANet [28] 84 91.20 89.10 75.50 7.322

YOLOv5s?NCAS(Tanh) 89 91.30 88.93 72.92 7.096

YOLOv5s?NCAS(Mish) 88 91.22 88.89 75.32 7.094

YOLOv5s?NCAS(Relu) 88 91.14 88.87 75.11 7.101

YOLOv5s?NCAS(sigmoid) 89 91.3 89.2 76.1 7.097

Bold values indicate the best results
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network detection increased from 90.40%, 88.20%, and

72.60% to 93.70%, 92.40%, and 83.80%.

After demonstrating the effectiveness of the four

methods proposed in this paper, a full ablation experiment

was conducted to verify the effectiveness of the modules as

a whole. Table 6 presents the final data for this part of the

experiment. As can be seen from the table, the modules

proposed in this paper are not only effective individually,

but the accuracy increased in combining two or three of the

modules, and the best results were achieved by combining

all four methods in the network. The accuracy of network

detection increased from 90.40%, 88.20%, and 72.60% to

94.20%, 92.60%, and 84.20%, respectively, and a detection

rate of 68 FPS on the single NVIDIA GeForce GTX 2080

Super was still achieved, meeting real-time requirements.

As mentioned above, our final model reached the SOTA

level results on the WIDER FACE dataset. To better prove

this point, this study investigated some existing methods

from recent years and compared them in terms of detection

rate and detection accuracy. The results of the comparison

are presented in Table 7.

From the results shown in Table 7, we can see that some

methods achieved higher detection accuracies than our

method, but with FPS less than 30, which does not meet the

real-time requirement. The methods that achieved FPS

greater than 30 and were faster than the model proposed in

this paper had insufficient detection accuracy. Therefore, it

was established that our method reached the SOTA level.

The final model optimized in this paper achieves a face

detection speed of 72 FPS, although there are some gaps in

accuracy compared to some SOTA methods with larger

models. However, the focus of this paper is to investigate a

sufficiently good and fast lightweight face detection model

that is fast enough for PC/server, but also for mobile

applications in future research to achieve the real-time

requirements.

Table 3 Effectiveness of the RFM module on the AP and FPS performance

Component Easy (%) Medium (%) Hard (%) FPS

YOLOv5s(baseline) 90.41 88.20 72.63 90

SPP(9,7,5) 90.67 88.54 72.98 88

YOLOv5s?RFE(SRN) [23] 90.50 88.00 75.30 83

YOLOv5s?RFM 90.90 88.86 75.90 82

Bold values indicate the best results

Table 4 Effectiveness of the LFF module on the AP and FPS

performance

Component Easy (%) Medium (%) Hard (%) FPS

YOLOv5s(baseline) 90.40 88.20 72.60 90

YOLOv5s?FEM [6] 90.80 88.50 75.30 81

YOLOv5s?LFF 90.30 88.80 75.70 83

Bold values indicate the best results

Table 5 Effectiveness of the Contextual information based on key

points on the AP and FPS performance

Component Easy (%) Medium (%) Hard (%) FPS

YOLOv5s(baseline) 90.40 88.20 72.60 90

Key points-3 92.80 90.90 82.80 89

Key points-4 93.70 92.40 83.80 87

Bold values indicate the best results

Table 6 Effectiveness of ablation experiments in various modules on the AP and FPS performance

Component HPFace

NCAS U U U U

RFM U U U U

LFF U U U U

key points U U U U U U U

FPS 90 83 84 82 82 80 79 72

Easy(%) 90.41 92.30 93.80 93.69 93.90 92.25 94.00 94.20

Medium(%) 88.2 91.00 92.30 92.32 92.40 91.15 91.19 92.60

Hard(%) 72.63 83.20 84.02 84.05 94.17 82.33 84.01 84.20

Bold values indicate the best results
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To compare the method in this study more intuitively

with popular face detection methods, they were tested on

the validation and test sets of the WIDER FACE dataset.

Figure 11 shows the final results.

Similarly, the FDDB dataset was used to test the final

obtained model and, after comparing it with many of

today’s popular algorithms, we can see in Fig. 12 that our

method achieves the best results on the FDDB dataset.

4.4 Experimental results display

We show the results of face detection by the final model in

various scenarios.

• In the Light section, we show images with low contrast,

overexposure, and black-and-white.

• In the Angle section, the faces are rotated at a certain

angle and not all the features of the face are shown. On

some faces only half of the face is visible.

• In the Blur section, the background of the image contain

faces, and some of them are blurred due to focus

problems or low resolution.

• In the Occlude section, the faces are partially obscured

due to external factors, in which case many important

features of the face are not recognized.

• Finally, in the Small section, or the dense face section,

all the faces are small in pixel size and close to each

other. This is arguably the biggest challenge for the face

detection task, as some faces are also obscured.

As can be seen in Fig. 13, the final model proposed in this

paper performs well in detecting faces in these challenging

scenarios. The introduction of the three modules designed

in this study resulted in a significant improvement in the

accuracy of the overall network for face detection in var-

ious scenarios, and our network also has the advantage of

being real-time compared to other methods.

5 Discussion

In this paper, we propose three modules to optimize the

face detection task, namely NCAS, RFM, and LFF, for

channel attention, perceptual field matching, and feature

enhancement, respectively. Our proposed method delivered

good results while meeting the real-time requirement. Our

final model achieved 58 FPS on a single NVIDIA GeForce

GTX 2080 Super graphics card, far exceeding the real-time

requirement of 30 FPS.

This study further demonstrated the feasibility of a range

of methods, such as the channel attention mechanism and

feature enhancement, for optimizing face detection models.

Next, we discuss the inspiration derived from other work

during this study.

Table 7 Comparison of the experimental results of the AP and FPS performance

Method Easy subset (%) Medium subset (%) Hard subset (%) FPS

Non-real time MTCNN [2] 84.80 82.50 59.80 25

FastFace [38] 83.30 79.60 60.30 22

Faceness [39] 71.60 60.40 31.50 20

RetinaFace [40] 95.00 91.90 77.90 14

Face R-CNN [41] 93.70 92.10 83.10 26

HAMBox [42] 95.27 93.76 82.75 17

HR-ResNet101 [43] 92.50 91.00 80.60 2

DSFD [6] 94.30 91.50 71.40 5

Real time YOLO-face [44] 89.90 87.20 69.30 38

APNS?RNet48 [45] 88.30 87.90 76.10 41

Faceboxes [21] 84.00 76.60 39.50 45

HPER [46] 88.30 86.80 77.40 44

JFDA [47] 85.10 82.00 60.70 79

LightFace [48] 96.30 87.80 52.80 81

SCRFD [49] 93.78 92.16 77.87 57

YOLOv5Face [50] 93.61 91.54 80.53 82

Img2pose [51] 90.00 89.10 83.90 –

RNNPool [52] 92.00 89.00 70.00 76

Ours HPFace(without key points) 93.00 90.40 76.50 76

HPFace(with key points) 94.20 92.60 84.20 72

([ 30 FPS for real time)
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5.1 Optimization of neural network structures

During the course of the work on this study, we tried to

analyze and experiment with a number of existing methods

and found redundant structures in their practical applica-

tions. As mentioned previously, the ECANet is popular.

Numerous studies demonstrated the effectiveness of

ECANet in improving accuracy. However, when we

removed the activation and convolutional structures, we

found that the new model was still effective in improving

the accuracy, and that the speed of detection was improved

by reducing the number of parameters in the overall net-

work through the reduction in unnecessary operations.

Therefore, we consider trying to simplify our own designed

method or other methods with certain rules to obtain better

results in the future.

Fig. 11 Precision-recall curves on WIDER FACE validation and testing subsets
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5.2 Plug-and-play module

With the rapid development of deep learning technologies,

the concept of ‘‘plug and play’’ is starting to take hold. As

with the three modules presented in this paper, the code is

simple to implement, and the number of channels of input

and output of the module can be adjusted simply for the

model to be reused in other models. Such a design can be

very convenient for others to reproduce or apply.

5.3 Real time

The work in this study was designed based on the criterion

of real time and, therefore, has a good application in cur-

rent ‘‘industrialized algorithms’’ and provides a good basis

as a pre-task for face recognition, face alignment, and other

tasks. Many current methods focus more on accuracy as a

metric and ignore real time, which is detrimental to the

application of algorithms in real-life applications. In recent

years, the application of algorithms such as face detection

to mobile devices has also become a popular research

direction, thus requiring lighter weight models and faster

detection speeds. This poses new challenges for tasks such

as detection and recognition, where accuracy is now the

main evaluation criterion, but it is also important to balance

accuracy and detection speed. This is the basis of the

research presented in this paper.

However, there are still areas for improvement: In

designing these methods, we modified the size of the

convolution kernel for a facial target, i.e., we made the

model more suitable for the face; therefore, applying this

method to the detection other types of targets may be less

effective. In the future, we hope to develop new ideas and

work in the direction of ‘‘adaptive network restructuring,’’

so that methods originally applied to single target detection

can be better applied to traditional target detection tasks.

6 Conclusion

In this paper, for the task of face detection, we presented

three new modules—the NCAS module, the RFM module,

and the LFF module—and applied these three modules to

the lightweight version of YOLOv5s. NCAS was used with

the residual module in the benchmark network to enable

the network to focus more on facial features. RFM replaced

the SPP module in the original network, and the single

square receptive field module was replaced with a

Fig. 12 Precision-recall curves on FDDB
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Fig. 13 Experimental results

display diagram
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combination of rectangular and square receptive field

modules to make the receptive field of the network more

compatible with the target of the face and enabled the

network to extract complete facial features. The LFF

module combined the backbone with the feature extraction

module, fusing the shallow features in the backbone with

the feature extraction layer after enhancement, and passing

the more robust features to the deeper feature extraction

layer; this solved the network degradation problem while

further improving the face detection accuracy. The context

information-assisted detection method based on the key

points of the face provides a new reference target for the

detection model to detect faces with inconspicuous fea-

tures, which greatly improves the performance. Our

method was extensively tested on the FDDB and WIDER

FACE datasets, and the results showed that our method met

the SOTA criteria and the criteria for real-time detection

compared to other common methods.
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