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Abstract
With shrinking natural resources and the climate challenges, it is foreseen that there will be an imminent stress in

agricultural outputs. Deep learning provides immense possibilities in allowing computational models to learn represen-

tation of data generated for precise application of agricultural inputs and the smart management of outputs. This will go a

long way in addressing the global food security concerns.

Present study demonstrates the discriminative and predictive power of state-of-the-art deep learning approaches that

have been successfully applied to the various facets of engineering in agriculture; ranging from estimation of soil moisture,

water stress determination, disease detection, weed identification, agro-produce quality evaluation and more. Realization of

these approaches will preclude human judgment by the underlying iterations of deep learning framework resulting in an

increased precision and universality. Broader acceptance and applicability of deep learning would require inclusion of

ground-truth datasets and should feature integration of mechanisms for fusion of data from multiple provenances; thus

making the models robust and field worthy.
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1 Introduction

By the middle of this century, we will be roughly 9.7 bil-

lion [1], this will include 1 billion of us who shall be

chronically under-nourished and would suffer from multi-

ple nutritional deficiencies [2]. Generous estimates predict

a 60 per cent increase in the global food production (based

on 2005–2007 levels) has to be achieved at all cost for

negotiating this monumental challenge [3]. Besides the

challenge of attaining this production level, a key consid-

eration has to be the equitability of access of the food

produced. Thus, direct and indirect cost of production of

the food has to remain plateaued. This in turn can be

attained by optimizing the inputs in terms of water

requirement; fertilizers, insecticides, pesticides, weedi-

cides, etc.; controlling the postharvest losses, restoring the

quality of produce during storage, maintaining cold chain,

etc.

There are challenges to be meted out while we look for

this increased agricultural production figures. Coming

decades shall witness scenes of severe water scarcity as

agricultural water use rises from 3220 to 5152 km3 by 2050

[4]. Similarly, there will be a marked decrease in arable

land as soil erosion will take away 33 billion tons of arable

land and fertilizer usage will rise from the present 190

million tons to a new high of 223 million tons [5]. This

increase in fertilizer application shall contribute to
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pollution of water by increasing its nitrogen and phos-

phorus content to 150 and 130 per cent, respectively [6].

Water requirement by the crops needs to be optimized in

terms of water stress invoked due to deficiency of the same.

Soil moisture can be directly correlated with the water

availability for plants; it is therefore widely used as an

indicator of water stress [7, 8]. While pressing water stress

can reduce productivity, affect produce quality and facili-

tate onset of disease [9]; moderate water stress has been

reported to improve quality of yield of the agro-produce

[10]. Regulated deficit irrigation (RDI) can be a potent

technological intervention for reducing the staggering

amount of water used for irrigation [11].

Providing food security and ensuring sustainability in

agricultural production while decreasing the environmental

impact of agriculture can be made possible by precision

agricultural practices [12, 13]. It is basically data driven,

technologically enabled sustainable farm management

system which requires deployment of internet-of-things

(IoT) [14] based sensors [15] for monitoring crop stress

phenotyping [16], assessing nutrient requirement [17],

analysing crop growth [18], using unmanned vehicles for

computer vision-based weed and disease identification

[19]. All this information is compiled by suitable software

tools in smart embedded devices for a resilient artificial

intelligence (AI)-based decision support system in the

agroecosystem [20]. Successful realization of precision

agriculture applications shall result in reducing production

cost, optimizing labour, energy, space; all this will ulti-

mately lead to enhanced profits from farming.

It is estimated that between 30 and 50 per cent (1.2–2

billion tons) of food produced on the planet is not con-

sumed [21]. The spoils are shared equally by the posthar-

vest losses attributed to quantitative losses due to

managerial and logistic issues; and food wastage due to

qualitative issues attributed to the biochemical changes

within the food matrix. The blue water foot print of this

food lost is about 250 km3 annually [22]. Assessment of

the external and internal quality of food and agro produce

can be cost effectively carried out non-destructively by

spectroscopic sensing approaches [23–26]. Heterogeneity

of samples, spectrometers and environment results in a lot

of inconsistencies with the spectral data leading to

numerous problems during quality evaluation [27]. During

feature extraction, the chemometric models should display

robustness and possess the inherent capabilities to remain

unaffected by detection conditions and biological vari-

abilities of the samples.

Penchant for predictions becomes an obsession for

humans when uncertainty prevails over the outcomes.

Agriculture is one such set of activities where uncertainty

lurks behind every operation, and for operations involving

engineering interventions the associated challenges have a

substantial monetary baggage as well. Unreliable expertise

in judging and foreseeing the unpleasant situations has

constantly tickled humans to device tools and methods to

scale time and opt for corrective measures to reap a rich

harvest sustainably. A tool of relevance for predicting sit-

uations and causes in relation to agriculture is deep learn-

ing network. It includes a broad category of machine

learning techniques wherein features are learnt in a hier-

archical fashion. This technique can successfully handle

computer vision tasks, which includes image classification,

detection and segmentation [28]. Literally it means that the

simple modules stacked in numerous layers are all learning

and simultaneously computing nonlinear input–output

mappings. Each module is capable of transforming the

representation of input to increase selectivity and invari-

ance. Multiple nonlinear layers make it possible for a deep

learning architecture to implement extremely intricate

input functions while being sensitive to all the minute

details. This makes it possible for deep learning modules to

distinguish, say, between a diseased leaf and a healthy leaf

while not taking into consideration the background, ori-

entation, lighting or the surroundings.

Past decade has seen a deluge of sensors and transducers

that have been coupled with various electronic gadgetry to

record responses of the various vectors causing detrimental

effect in agricultural production. The plethora of sensors

are generating massive volume of data. Interpretation of

this data to decipher valuable information poses a worthy

challenge across all disciplines of agricultural engineering.

Deep learning network has made extraction of features

from complex nonlinear data simpler by using convolu-

tional neural network (CNN) [29], recurrent neural network

(RNN) which includes long short term memory (LSTM),

bidirectional long short term memory (bi-LSTM) and gated

recurrent unit (GRU) [30–32]. Some of the other deep

learning architecture include deep belief network [33], auto

encoders [34] and deep Boltzman machine.

Deep learning can be used to carry out big data analysis

for computer vision [35] applications related to plant water

stress management [36] and help in formulating the pro-

tocols of RDI for efficient water management. Extraction

of information from spectral data representing local and

global features of agro produce can be effectively carried

out by deep learning approaches [37]. Deep learning can

handle complex image-based plant phenotyping like, leaf

counting [38], disease detection [39], pixel-wise localiza-

tion of root, shoot and ears [40]. All this information can be

combined to support the development of intelligent agri-

cultural machineries [41].

During the past century, agricultural engineers have

immensely contributed to several path breaking advance-

ments and developments in agricultural mechanization

[42]; these professionals are instrumental in supervising the
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agrarian community for their sublime transition from

machinery operators to machinery supervisors. Thus,

enabling them with precision agricultural technologies

circumscribing precision in water management, intelligent

use of agricultural machinery and smart postharvest man-

agement of agricultural produce. This paper embodies

amalgamation of deep learning applications to the different

facets of agricultural engineering. Literature search

revealed that deep learning has been applied to a wide

range of issues related to subject of this paper, the selection

and rejection was methodologically (Fig. 1) carried out to

enthrall the readers with a comprehensive and a totalitarian

read that elucidates the application of deep learning algo-

rithms for the engineering interventions in agriculture.

Highlighted also in this paper are ways and means

for extraction of spatio-temporal features to overcome the

limitations of conventional approaches and how deep

learning will obliviate the hindrances that have been pull-

ing down the widespread realistic adoption of intelligent,

smart, IoT-based engineering applications in agriculture.

The paper culminates with putting forward the challenges

that contemporary deep learning approaches need to

address to enable wider effective application and

acceptance.

2 Deep learning versus contemporary
chemometrics

Near-InfraRed (NIR) spectrum spreading across

780–2500 nm has been widely used to register the changes

in agri-food system before harvest, in terms of plant attri-

butes, stresses, diseases, yield attributes, weed detection

[43]; and after harvest, in terms of varietal differences of

the produce, food quality, food contamination, etc. [27].

Excellent results have been demonstrated during the esti-

mation of a range of soil properties in the visible and NIR

range; this includes soil moisture as well [44]. In fact, there

is an entire gambit of precision agriculture outcomes that

can be addressed by deep learning techniques (Fig. 2).

Plants undergo various changes in colour and shape

followed by various physiological and biochemical chan-

ges as a response to attack by pathogens, such attacks often

culminate to onset of diseases. Stress induced by disease,

water, light or pests have a direct bearing on the tran-

scription factors (abscisic acid, auxin and cytokines) which

can be deciphered directly by molecular and serological

methods only for high throughput analysis; and indirectly

by thermography, fluorescence, spectroscopy or hyper-

spectral imaging (HSI) and the associated chemometrics.

However, susceptibility to ambient environmental condi-

tions and the absence of steady light during imaging

restricts the exhaustive use of this technique.

In postharvest agriculture the absorption spectra gener-

ally record changes by means of the hydrogen containing

groups (e.g. S–H, C–H, N–H, O–H) which are directly

related to proximate composition of agro-products in terms

of sugar, protein, fat, acid and water contents. Therefore,

the spectrum is loaded with information in terms of related

bio-molecules and other chemical substances. The under-

lying principle is explained by Beer-Lambert law, which

expresses that a liner relationship exists between the

absorbance spectra that entails changes in chemical com-

position of the substrate. Variations in the basic biochem-

ical matrix of agro produce can be effectively reflected by

different linear and nonlinear chemometric methods. Often

the linear models fail to register subtle changes in the

chemical composition and nonlinear models are always

associated with the risk of over-fitting. Acquiral of spectral

data can never be bereft of spectral noise. While spectral

pre-processing algorithms can handle the noise arising due

to biological anomalies of chemical compositions and

noise arising due to the changes in environmental condi-

tions; the introduction of noise due to physical state of

spectrophotometer drifts the relevance of spectral data far

and away.

It has been widely reported that assigning specific fea-

tures to soil spectra is difficult for it being a heterogeneous

complex mixture of materials [45]. Traditional regression

models are not suitable to model soil moisture content

because of the associated nonlinearity and non-stationarity

with parameters which are difficult to measure in the field.

The limitations of traditional modelling techniques can be

minimized by using soft computing based data driven

techniques (machine learning and deep learning) to esti-

mate the components of hydrologic cycle (such as, ET0,

runoff and soil moisture) as a function of time and space.

The accuracy rendered by these techniques for estimation

of ET0 and soil moisture (SM) is more or less in the

acceptable range. However, the effective use of these

techniques is limited by quality and period of time series

data. It is therefore well understood that performance of

empirical and ensemble models for prediction of short term

daily ET0 is dependent on the choice of model and relia-

bility of input variables. The suitability of these techniques

for predicting short term (1–7 days) ET0 for real time

irrigation scheduling based on actual water requirement is

questionable. There is dire need for such models and

techniques which can fill this gap.

Deep learning algorithms focus on learning features

progressively from the data at several levels [46, 47]. As

deep learning models learn from data, a clear understand-

ing and representation of data are vital for building an

intelligent system that can make complex predictions.

Proper model selection is also crucial as each architecture

has multiple unique features and processes the data in
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different ways. The deep learning architectures applied to

the agricultural engineering domain have been mainly

based on Artificial Neural Networks (ANN), Convolutional

Neural Networks (CNN), Recurrent Neural Networks

(RNN) and Auto Encoders (AE) [48, 49]. A succinct

description of the above said architecture is as follows:

ANN architecture comprises multiple perceptrons or

neurons at each layer and the neurons in different layers are

linked by weighted synaptic connections. The architecture

of ANN consists of an input layer, one or more hidden

layer(s) and an output layer (Fig. 3a). ANN uses a training

algorithm to learn patterns by modifying the weights based

on error rate between actual and predicted output. ANN

uses back propagation algorithm as a training algorithm to

discover hidden patterns inside the dataset. The universal

approximation capability and flexible architecture allows

ANN models to capture complex nonlinear behaviours in

the dataset [50].

CNN is extensively used in computer vision-based sys-

tems that can automatically extract features and perform

various tasks such as image classification and semantic

segmentation. It has been successfully utilized over several

challenging visual analysis tasks in agriculture, such as pest-

disease identification, stress detection and weed identifica-

tion; achieved tremendous performance in tasks involving

visual image analysis, which were previously considered to

be purely within the human realm [51]. Applying various

convolutional filters, the models can extract high-level rep-

resentation of data making it more versatile for tasks such as

image classification (Fig. 3b). CNN has three main types of

layers namely convolutional, pooling and fully

convolutional layers. The convolutional layer generates the

feature map capturing all essential features. The pre-trained

CNNmodels such asLeNet [52], AlexNet [53], VGG16 [54],

InceptionV3 [55], GoogleNet [56], ResNet [57], MobileNet

[58], Xception [59], DenseNet [60] and Darknet53 [61] have

been successfully deployed in several computer vision

applications [62]. RNN is a class of artificial neural network

that address time-series problems involving sequential data

(Fig. 3c). Unlike feed-forward neural networks, RNNs can

make use of their internalmemory to process sequential data.

The distinctive feature of RNNs is their capability to send

data and process over time steps, the recurrent nature of RNN

allows the same function of each input data, while output for

present input is based on past computation. After generating

the output, it is copied and transferred back to recurrent

network. Thus, for decision-making process, it considers the

current input and output learnt from previous input [63].

AE is a special type of artificial neural network used to

learn data encoders in an unsupervised manner (Fig. 3d).

The input is compressed by the AE into a lower-dimensional

code and then reconstructs the final output from this repre-

sentation. The encoder part of AE is used for encoding and

data compression purposes and has a decreasing number of

hidden units. The latent space in the network has compact or

compressed form of input. The decoding part attempts to

regenerate the input from encoded data and has an increasing

number of hidden units [64].

3 Production agriculture

Understanding plant phenotyping assumes prominence as it

is an important aspect having direct association with all the

efforts for increasing food production of the world to meet

ever-rising demand. The quantitative study of parameters

bFig. 1 Methodology adopted for collection and inclusion of relevant

literature pertinent to this review paper

Fig. 2 Figurative representation of the broad scope of application of deep learning techniques in precision agriculture approaches for pre and

postharvest operations
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related to plant traits such as plant growth, stress and yield

using rapid and non-destructive sensing technique is an

important aspect of high-throughput phenotyping [65–67].

Infield measurement of crop parameters can also be

accelerated with advances in vision-based technology in

agriculture. Abiotic stress phenotyping of plant growth

[68], canopy coverage [69], leaf structure [70], weed den-

sity, root growth status [71] etc. successfully demonstrated

an increasingly important as a way to explore the deep

learning based smart stress management system. Plant

stress occurs when abnormal environmental conditions

arise as a result of biotic (insects, pests, fungus, viruses and

weeds) and abiotic (water, temperature, nutrients and tox-

icity) elements during plant development. These plant

stresses are capable of threatening global food security.

Plant disease outbreaks are a persistent hazard that is

widespread as a result of complicated ecological dynamics

and the standard state-of-the-art mechanisms are not able

to cope up with this challenge. Using image-based stress

datasets holds promise and is perceived to be a possible

step in the right direction to handle plant stress manage-

ment. Significant advances in image processing and

machine learning techniques have been made over the last

decade. Deep learning based models have high accuracy

and can detect plant stress quickly. This method of stress

identification is non-contact type, takes less time and out-

put can be used in real time crop health management. The

standardization of visual assessments, deployment of

imaging techniques and application of big data analytics

may overcome or improve reliability and accuracy of stress

assessment in comparison with unaided visual measure-

ment [72, 73]. Compared to traditional computer vision

engineering, deep learning assists traditional computer

vision techniques to achieve higher accuracy in crop

for image detection, stress identification, classification,

prediction, quantification and segmentation [72]. Method-

ology adopted in the recent studies deploying deep learning

approaches in production agriculture for measurement of

plant characteristics, weed detection, biotic and abiotic

stress assessment and yield parameters has been summa-

rized and presented schematically in Fig. 4. The essence of

these studies is discussed in subsequent sections.

3.1 Measurement of plant attributes

Precise seedling counting, plant stand, panicle count are

vital vectors for assessing seedling vigour, estimate crop

density and uniformity of emergence rate for field and

plantation crops. Tassel detection and flower counting

offers a new opportunity for yield estimation and optimize

fruit production in plant; all this, without using automatic

yield monitoring system and facilitating site-specific crop

management [74, 75]. Deep convolutional neural network

(DCNN) (Faster Region Convolutional Neural Networks

(FR-CNN) and Convolutional Neural Networks

(CNN) ? support vector machine (SVM)) algorithm sig-

nificantly facilitated advanced approaches for apple flower

detection [74]. Wu et al. [76] in their study captured a

dataset comprising 147 images under natural and uncon-

trolled field condition and validated appropriately with

Fig. 3 Schematic representation of the various DL architectures a ANN b CNN c RNN d AE
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respect to a previously unseen data set. A rice seedling

dataset consisting of 40 high-resolution aerial images

captured and collected in situ by red green blue (RGB)

camera perched in unmanned aerial vehicle (UAV); man-

ually-dotted annotations for rice seedling counting was

analysed through deep CNN-based technique. Good per-

formance accuracy ([ 93%) between manual and auto-

mated rice seedling counting (UAV image-based) heralds a

new opportunity for yield estimation with high accuracy.

Labourious and subjective scoring systems of cotton

flowering patterns recognition and bloom detections have

been replaced by deep learning approaches [77]. The

promising results for characterization of flowering patterns

among genetic classes and genotypes has been adopted to

predict reproductive improvements and was found to be of

pivotal importance for crop yield forecasting. Higher

classification accuracy ([ 90%) of DCNN for paddy tiller

counting [78], faster R-CNN for characterization of flow-

ering patterns for cotton plants [79], MobileNet for cotton

plant detection using UAV system [77] and CNN ? SVM

for flower detection in apple [74] show the potential of

deployment of these technique into an online embedded

system for electronically connected yield estimation. Tas-

selNetV2 ? outperformed TasselNetV2 for counting of

wheat (R2 = 0.92), maize (R2 = 0.89) and sorghum

(R2 = 0.68) plants using high-resolution field images

(1980 9 1080) in less time [80]. Further, it was reported in

the study that compared to Faster R-CNN; Tas-

selNetV2 ? indicates its effectiveness and robustness in

different plant dataset like wheat ears (R2 = 0.92), maize

tassels (R2 = 0.89) and sorghum heads (R2 = 0.67) count-

ing. This feature of TasselNetV2 ? can be attributed to its

inherent ability for encoding sufficiently good appearance

features even at low image resolution and not counting

repetitive visual patterns like Faster R-CNN [81, 82].

TasselNetV2, TasselNetV2 ? performs better than Faster

R-CNN [61] whereas Faster R-CNN performs better than

TasselNet for detecting maize tassels [80, 82]. ResNet

demonstrated far better results than the VGGNet when it

came to detecting and counting maize tassels from original

high resolution UAVs images [82]. The application of

LSTM model to simulate the effect of extreme climate

Fig. 4 Schematic representation of precision input application measures for pre-harvest agriculture in a deep learning work environment
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change, plant phenology, meteorology indices and remote

sensing data across the nine states of Corn Belt of USA

could predict 76 per cent of corn yield variations [83].

Considering the extreme weather conditions, the LSTM

model proved to be more robust as compared to other

machine learning models, like–least absolute shrinkage and

selection operator (LASSO) and random forest (RF)

[84, 85].

3.2 Abiotic stress assessment

Spectroscopic and imaging are noninvasive abiotic stress

identification methods used for discovering deficiency

(nutrient, water, seed vitality, etc.) that affect the vigour of

plants. Identification of abiotic stress includes extraction of

biophysical parameters of plants through canopy water

content, leaf pigments, canopy nitrogen and light use effi-

ciency from the spectral data. Digital imaging is a simple

and low-cost measurement technology which will act as a

power full tool when it is used along with deep learning

technique for stress monitoring applications in precision

agriculture. Deep learning has introduced a paradigm shift

in 2D RGB image-based plant stress phenotyping [72]. A

broad range of deep learning techniques have been used in

crop abiotic stress phenotyping, including DCNN [86],

AlexNet [87], Faster R-CNN [88], GoogLeNet [87],

ResNet [89], RootNav [71], SegNet [90], SW-SVM [91],

VGGNet [88, 92] and UNet [71]. Deep learning architec-

tures have been successful on a vast range of plant abiotic

stress phenotyping work, such as crop identification/

recognition based on leaf vein morphology patterns

[70, 93], leaf counting and tassel detection in maize and

sorghum [75, 94–96], stalk count and width of plant [97],

panicle segmentation in sorghum [98], root localization and

feature detection [71, 99], bloom detection, emerging

counting, flowering characterization in cotton and apple

[74, 77] and soil moisture estimation using thermal image

[86].

Deep learning technique has been used for identification

of abiotic stresses in field crops (paddy, maize, soybean

sorghum, and wheat) as well as horticulture crops (tomato

potato, okra). VGG-16 architectures were found to be a

capable system for recognition and classification of various

abiotic stresses in different varieties of paddy crop using

the 30,000 RGB images with an accuracy of 92.13 and

95.08 per cent, respectively [92]. Non-destructive imaging,

such as proximal and remote sense were used for deep

learning-based abiotic stress identification under field

conditions with different illuminations, background, col-

our, size and shape crop. It was concluded that the accuracy

of object detection is based on the right selection of deep

learning tools, optimum number of high-resolution images

and image dimensions [79]. Across all the studies it was a

common observation that the deep learning-based object

detectors like AlexNet, Faster region convolutional neural

network (Faster RCNN), GoogLeNet, Inception V3, SW-

SVM with VGG-16, RestNet, SegNet performed far better

as compared to other architectures in identifying plant

abiotic stresses.

In a visual assisted precision agriculture application, a

DCNN model was developed to identify water stress in

maize and soybean using deep learning models. Three

novel frameworks, i.e. AlexNet, GoogLeNet and Inception

V3 were used as an unsupervised technique to precisely

separate the visual cues representing water stress on the

leaf of plants. GoogleNet was found to be superior with an

accuracy of 98.3 and 94.1 per cent for maize and soybean

plant, respectively. It was inferred that, the digital RGB

images cues contribute to the deep learning model maxi-

mally for decision management [87]. Unsupervised local-

ization of RGB image cues is used to identify the abiotic

stress level [16]. To identify and visualize abiotic stresses

in horticultural crop (tomato, potato and okra) images of

various nutrient (excess or deficiency), soil moisture (ex-

cess or deficient water), and canopy temperature (low or

high) stress were not obtained/available from the public

database. AlexNet and GoogLeNet architectures were used

in most of the stress identification studies in vegetable crop

and GoogLeNet outperformed AlexNet in terms of accu-

racy [87, 100]. All told, recent studies indicate the growing

potential of deep learning applications for plant stress

identification and classification pattern; perhaps, this

evades the comprehensive and extravagant stress region

judgment by field specialists and opens up the scope for

utilization of image-based plant phenotyping leading to the

development of user-friendly PA tools.

3.3 Detection and classification of plant disease

Plant health monitoring and disease diagnosis are essential

in the early stages of plant growth to prevent disease

transmission. It helps in effective crop management prior to

significant crop damage. Plant disease identification is

traditionally done manually, either by visual observation or

by using a microscope. These methods are time-consuming

and labour-intensive; it involves a substantial risk of

misidentification due to subjective perception of the human

mind. The task of plant disease identification can be

accelerated by adoption of advanced technologies which

are based on image processing and artificial intelligence.

Deep learning, which uses good quality images as source

data is gaining popularity now-a-days for crop health

monitoring and management; this is in line with developing

an artificially intelligent system. Deep learning architec-

tures such as AlexNet, GoogLeNet, ResNet, VGG and

DenseNet have been successfully used to identify and
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classify various plant diseases in food crops such as wheat

[101], maize [102], rice [103] and millets [104], cash crops

such as sugarcane [105], tobacco [106], cotton [107], jute

[108], plantation crops such as coffee [109], coconut [110],

tea [111] and horticulture crops such as tomato [112],

ladyfingers [113], apple [114] and grape [115].

Many researchers have used the images of diseased

plant from a public database for training the deep learning

architectures. Mohanty et al. [39] trained the deep convo-

lution neural network with 54,306 images of healthy and

diseased plants available from public database and identi-

fied 14 diseases of 26 different crops using GoogLeNet

architecture with an accuracy of 99.35 per cent. An open

database of 87,848 images of 25 types of crop with 58

distinct classes of plant and disease was used by Ferentinos

[116]. The dataset was split into an 80/20 training/testing

ratio, the most commonly used for neural network appli-

cations. Deep learning architectures AlexNet, AlexNe-

tOWTBn, GoogLeNet, Overfeat and VGG were utilized for

identification of various classes. The success rate of VGG

architecture was 99.53 per cent with an inaccuracy of 0.47

per cent. Too et al. [117] achieved an accuracy of 99.75 per

cent with DenseNets architecture using the same database

as used by Mohanty et al. [39]. Deep CNN was deployed

on 70,295 images of same database and obtained an

accuracy of 99.78 per cent with ResNet [118]. The accu-

racy of disease detection and classification was reportedly

increased with the evolution of the architectures of DCNN.

The black sigatoka and speckle diseases were identified

and classified in banana [100]. The images were obtained

from the open source, trained using the LeNet architecture

and features extracted using convolution and pooling lay-

ers. Deep learning technique was able to identify and

classify both diseases with 99.72 per cent accuracy.

Tomatoes are susceptible to diseases such as late blight,

two-spotted spider mite, target spot, leaf mould, mosaic

virus and yellow leaf curl virus that reduce production and

impair quality. A collection of 13,262 diseased tomato leaf

images was obtained from the PlantVillage dataset to train

AlexNet and VGG16 deep learning architectures for non-

destructive estimation of the extent of diseases [112].

AlexNet showed a good accuracy in classification (97.49

per cent) at minimum runtime as compared with VGG16

(97.26 per cent). Ji et al. [115] proposed a UnitedModel for

grape leaf disease detection based on InceptionV3 and

ResNet50; and compared it with VGGNet, GoogLeNet,

DenseNet, and ResNet architectures. The leaf images

(1619 numbers) of black rot, esca and isariopsis leaf spot

diseases were taken from the PlantVillage dataset. The

UnitedModel extracts more representative features using

the width of InceptionV3 and the depth of ResNet50,

resulting in 98.57 and 99.17 per cent test and validation

accuracy, respectively, for grape leaf disease detection.

Several researchers used a camera and a smartphone to

capture digital images of diseased plant leaves and trained

deep learning based algorithms for disease detection and

classification. Rangarajan and Raja [113] collected 2554

digital images to classify ten major diseases that affect the

leaves of eggplant, hyacinth beans, lime and lady finger

plants. Six pre-trained CNN models viz. AlexNet, VGG16,

VGG19, GoogLeNet, ResNet101 and DenseNet201were

used for identification and classification of different dis-

eases. Among all the architectures tested, GoogLeNet

performed better, with a validation accuracy of 97.3 per

cent. Prune crops such as peach, cherry and apricot are

widely grown in temperate and subtropical region. Virus-

infected prune trees have a growth depleted by 10–30 per

cent which results in a decrease in yield by over 20–60 per

cent as compared to the healthy trees [120]. Deep learning

approach was used for plant disease and pest detection in

prunes [121]. A total of 1995 images of eight different

diseases and pest-affected plant leaves were collected for

the experiment. The transfer learning based pre trained

deep learning models GoogleNet, AlexNet, VGG16,

VGG19, ResNet50, ResNet101, Inception-V3, Incep-

tionResNetv2 and SqueezeNet were used for feature

extraction. The performance of the various extracted fea-

tures was measured by SVM, Extreme Learning Machine

(ELM) and K-Nearest Neighbours (kNN) classifiers. The

maximum accuracy of disease detection was achieved at

97.86 per cent in ResNet50 with the SVM classifier.

Plantation crops such as cotton, coffee, tea and sugarcane

are widely cultivated and have high economic value.

Infestation of such crops with diseases brings forth a huge

economic shock for the farmers. Deep learning-based

techniques have been used by researchers for precise dis-

ease management and improvement in quality by mini-

mizing yield loss. Manually captured 13,842 images of

diseased plants were used to train and test a DCNN model

for the recognition of smut, grassy shoot, rust and yellow

leaf diseases in sugarcane crop [105]. The sugarcane dis-

eases were successfully identified and classified with an

accuracy of 95 per cent. Esgario et al. [109] used smart-

phones to collect images of coffee leaves (1747 numbers)

infected with leaf miner, rust, brown leaf spot and cer-

cospora leaf spot diseases. The AlexNet, GoogLeNet,

VGG19 and ResNet50 architectures were used for classi-

fication and estimation of disease severity. It was observed

that the performance of ResNet50 was better than the rest

with an accuracy of 95.63 per cent. Hu et al. [111] col-

lected 144 images of diseased tea plant leaves, such as leaf

blight, bud blight and red scab, to improve the performance

of CIFAR10 model for disease identification with a small

number of images. The number of model parameters was

reduced in the proposed deep learning architecture to

improve the detection process. The improved CIFAR10
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model correctly identified tea leaf diseases with 92.5 per

cent accuracy. Detection of diseases (cercospora, bacterial

blight, aschocyta blight and target spot) in cotton leaves

could be achieved with 96 per cent accuracy after training

DCNN on 500 manually collected images [107]. The rice,

wheat, maize and soybean are cultivated on large scale

worldwide and are considered as important food and feed

grains. Diseases can spread easily in these crops resulting

in significant yield losses. Numerous studies have been

conducted for the identification and classification of dis-

eases in food grain crops using deep learning based tech-

niques. A deep CNN based algorithm has been used to

classify blast, bakanae, false smut, brown spot, sheath

blight, bacterial leaf blight, sheath rot, bacterial sheath rot,

bacterial wilt, seeding blight diseases in rice crop [103].

Model was trained by the images of diseased plants cap-

tured with a camera and some images gathered from public

sources (a total of 500). The accuracy of DCNN for disease

classification was found to be 95.48 per cent. Again, Lu

et al. [101] used 9230 wheat plant images from a public

database to train deep learning architectures for recogniz-

ing powdery mildew, stripe rust, smut, leaf blotch, black

chaff and leaf rust diseases in wheat plants. VGG-FCN-

VD16 and VGG-FCN-S were found to have recognition

accuracy of 97.95 and 95.12 per cent, respectively. Wu

et al. [122] identified the bacterial rot, downy mildew, pest

and spider mite diseases in soybean after training deep

learning models with 1470 leaf images. ResNet outper-

formed other architectures such as AlexNet and GoogLe-

Net demonstrating an accuracy of 94.29 per cent. Deep

learning based approaches for disease detection and clas-

sification have been employed by numerous researchers in

a variety of crop. In addition, the deep learning architec-

tures have been updated to improve accuracy and make

better predictions in challenging environments. Plant

pathologists and farmers will be able to diagnose plant

diseases early and take necessary precautions with on-the-

go application of deep learning based technologies.

3.4 Yield attributes and harvesting

Detection, counting and size estimation are critical tasks

for fruit harvesting and yield estimation. Research is pro-

gressing in the direction of vision-based systems for

autonomous fruit harvesting. In a robotic fruit picking

harvester, vision system and manipulator system are the

two distinct components. Fruits attached to plants between

the leaves, stems and branches are identified primarily

through the vision system. Numerous researchers have

used the feature extraction characteristics and autonomous

learning ability of deep learning in the vision system for an

effective detection, counting and harvesting of fruits.

LedNet is a deep learning based framework for real-time

apple detection reported to be useful in orchard harvesting

[123]. The developed framework was robust and efficient,

performing detection tasks with a recall and an accuracy of

0.82 and 0.85, respectively. Onishi et al. [124] imple-

mented the VGG16 architecture for detection of apple after

receiving the image from a stereo camera. Sa et al. [125]

proposed a deep learning based technique for fruit detec-

tion after fine-tuning the VGG16 network with a pre-

trained ImageNet model. The output thus obtained could be

used for fruit yield estimation and for automatic harvesting.

The F1 score for rock melon, sweet pepper, apple, avocado,

orange and mango were 0.85, 0.84, 0.94, 0.93, 0.92 and

0.94, respectively. It was observed during the course of this

study that scores were affected by the complexity of fruit

shape and similarity of colour with plant canopy. ResNet50

combined with Feature Pyramid Network architecture

along with Mask R-CNN was used for the detection of

strawberry [126]. This approach could overcome all the

limitations of strawberry fruit identification under typical

field condition, like multi-fruit adhesion, overlapping, field

obstacles and varying light conditions around the plants.

The detection by the trained model with precision, recall

and mean intersection over union was 95.78, 95.42 and

89.95 per cent, respectively. Afonso et al. [127] used the

Mask R-CNN algorithm for detection of tomato in a

greenhouse. The performance of Mask-RCNN for tomato

detection was found superior than machine learning

approaches used by Yamamoto et al. [128] and the

Inception-ResNet based architecture of Rahnemoonfar and

Sheppard [129]. Estimating the size of broccoli is crucial

for determining its harvestability and yield. Blok et al.

[130] used a deep learning algorithm called the occlusion

region-based convolution neural network (ORCNN) for

dealing with occlusions and assessed the size of broccoli.

The ORCNN outperformed the Mask R-CNN with 487

broccoli images, a mean sizing error of 6.4 mm was

recorded instead of 10.7 mm as in case of Mask R-CNN.

Integration of vision-based systems and deep learning

approaches for fruit detection, counting and yield estima-

tion has sped up automation in harvesting [131]. It will be

easier to cope up with labour—intensive operations by

adopting deep learning-based technology in the harvesting

of agricultural produce.

3.5 Weed detection

Weed infestation in crops is one of the most serious issues

confronting modern agriculture. Weed control is currently

carried out by manual hand tools, with the use of weedi-

cides and modern weeding machinery. Various ground-

based weed identification and management techniques

including artificial neural networks [132], image process-

ing [133], Internet of Things [134] and spectral reflectance

20548 Neural Computing and Applications (2022) 34:20539–20573

123



[135] have been studied for weed management in crops.

The use of a deep learning approach for selective weeding

has been reported to be an effective weed control method

[136]. The CNN technique was used to detect weeds in

spinach and bean crops using an unsupervised training

dataset [137]. The proposed system detected crop rows

automatically, identified inter-row weeds, created a train-

ing dataset and used CNNs to build a model for detecting

crop and weeds from a repository of UAV collected ima-

ges. Ferreira et al. [138] used a UAV to capture field

images (400 numbers) and applied machine learning and

deep learning techniques to detect weeds in 15,336 seg-

mented images of soil, soybean, grass and broadleaf weeds.

The ConvNets detected weeds more precisely and achieved

higher accuracy ([ 99 per cent) as compared to SVM,

Adaboost–C4.5 and RF. The VGGNet, GoogLeNet and

DetectNet architectures were used for detection of weeds in

bermuda grass. It was observed that VGGNet performed

better in the identification of dollar weed, old world dia-

mond-flower and Florida pusley with an F1 score of more

than 0.95, whereas, DetectNet had a high F1 score of[
0.99 in detecting bluegrass [139]. Deep learning tech-

niques were deployed on 17,509 captured images for

classification of eight different weed species [140]. A

classification accuracy of 95.1 and 95.7 per cent was

obtained in Inception-V3 and ResNet-50, respectively. The

ResNet-50 architecture was implemented in real time,

yielding an inference time of 53.4 ms per image. Osorio

et al. [141] used machine learning and deep learning

techniques to detect weeds in lettuce crops from drone

collected field images. The F1 scores of SVM, YOLOV3

and Mask R-CNN were 88, 94 and 94 per cent, respec-

tively. Faster R-CNN and Single Shot Detector were used

to detect weeds in mid to late season soybeans [142]. Faster

R-CNN performed better in terms of precision, recall, F1

score, Intersection over Union and inference time. The

ground ivy, dandelion and spotted spurge weeds were

successfully detected in ryegrass using deep learning

models on a dataset that included 15,486 negative images

(no target weeds) and 17,600 positive images (target

weeds) [143]. The VGGNet outperformed AlexNet and

GoogLeNet in detection of weeds with an F1 score of 0.93

and recall values of 0.99.

The distribution of weeds in the field is usually in pat-

ches, but weedicides are sprayed evenly throughout the

field, irrespective of the actual requirement. Hence,

acquisition of images of the entire field with weed local-

ization using deep learning techniques will be of great help

for site specific weed management.

4 Water management

Modelling of hydrologic cycle components such as pre-

cipitation, runoff, evapotranspiration (ET) and change in

soil moisture is essential for quantification of water balance

for sustainable water resource management and planning of

irrigation and drainage systems [144]. Estimation of ref-

erence evapotranspiration (ET0) for irrigation water man-

agement requires a number of climatic parameters such as

temperature, wind speed, relative humidity and solar radi-

ation. However, under limited data availability, empirical

methods based on temperature or humidity or radiation can

give a good approximation of ET0. Such empirical methods

give reliable estimates at a particular region only or may

overestimate/underestimate values [145–147]. Soil mois-

ture prediction/estimation is challenging task due its spatio-

temporal variability across the field. Number of sensor

based, empirical and statistical techniques are in vogue for

indirect estimation of soil moisture at local or regional

scale. Several studies are conducted highlighting the

importance of pedotransfer function (PTF) in the estima-

tion of different soil moisture regimes, especially for the

estimation of field capacity and permanent wilting point, as

an important indicator for the estimation of soil moisture

content (SMC). [148–150], but for the development of such

PTF, different soil physical properties such as soil texture

(particle size distribution), bulk density and organic matter

content (OMC), are required, which makes the estimation

of SMC a tedious task and prone to lesser accuracy, when

considered a larger scale. With the advent of high com-

putation power, and with the increased capabilities to

handle big data even accumulated over several decades and

widely approved capacity of handling such data by the

deep learning modelling techniques, these models are being

realized tremendously by the virtue of their well proven

capability to extract information for prediction and better

realization of land atmosphere interaction without going

into deep of the complex mechanism associated with the

physics involved in the process under consideration

[151, 152]. The following section elaborates the estimation

of ET0 and soil moisture using different deep learning

techniques with respect to data availability, lead time,

interval, etc.

4.1 Estimation of evapotranspiration

Evapotranspiration is considered as one of the most

important components of hydrologic cycle which governs

irrigation water management, water resources manage-

ment, and hydrologic studies [153–155, 157]. The ET0 is

derived using number of climatic variables and in combi-

nation of crop coefficient (Kc) is applied for the estimation
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of crop water requirement of a particular crop [156]. Dif-

ferent techniques based on artificial intelligence such as

machine learning and deep learning using the limited

weather data have the great potential for indirect estimation

of ET0 with the development of associated robust models

[145, 157].

Machine learning (ML) and deep learning (DL) models

for estimation of ET0 from limited hourly data of few

climatic parameters has been successfully applied by Fer-

reira and Da Cunha [157]. In this study, CNN model was

applied to estimate daily ET0 using limited meteorological

data such as temperature, relative humidity, and terrestrial

radiation, and compared the results with those obtained

using traditional ML models (i.e. RF, XGBoost and ANN).

Performance of ANN models were found slightly better

than other traditional models, but CNN model outper-

formed in comparison with the remaining models for all the

combinations of inputs. Overall, the results stated that

CNN developed using 24 h hourly data and hourly radia-

tion applied to sequential data reduced root mean squared

error (RMSE) by 15.9–21 per cent, increased Nash–Sut-

cliffe efficiency (NSE) by 4.6–8.8 per cent and improved

R2 compared to machine learning models at regional and

local scales. Besides agriculture and forest dominant

locations, estimation of ET0 in urban areas have their own

importance in greenery management and dealing with the

climate change. Even though such studies are limited, one

of such studies reported similar performance of 1D CNN

deep learning model and random forest (RF) for prediction

of urban ET at half hourly scale by Vulova et al. [158]. In

another study dealing with the estimation of ET0 in urban

areas, deep learning multilayer perceptron models were

applied to estimate the daily ET0 in the Indian cities of

Hoshiarpur and Patiala, and their performance were com-

pared with the Generalized Linear Model (GLM), Random

Forest (RF), and Gradient-Boosting Machine (GBM). The

performance of deep learning models was superior (NSE,

R2, mean squared error (MSE) and RMSE) for estimating

ET0 over traditional models like RF, GBM and GLM [159].

Roy [160] evaluated the performance of LSTM and bi-

LSTM network for predicting one step ahead ET0. Bi-

LSTM resulted in highest R2, NS, IOA along with the

lower RMSE, relative root mean squared error (RRMSE),

and mean absolute error (MAE) compared to other soft

computing techniques such as Sequence-to-Sequence

Regression LSTM (SSR-LSTM) and Adaptive Neuro

Fuzzy Inference System (ANFIS) models. Better perfor-

mance of Bi-LSTM compared to LSTM for the estimation

of ET0 and SM was also reported by Alibabaei et al. [161].

In another study by Yin et al. [162] a single-layer Bi-LSTM

model with 512 nodes was applied to forecast short-term

daily ET0 for 1–7 day lead times. The hyperparameters

such as learning rate decay, batch size and dropout size

were determined using the Bayesian optimization method

and the training, validation and testing of the developed

model was done at three different locations in semi-arid

region of China. The performance of bi-LSTM model was

evaluated using the Penman–Monteith based daily ET0 to

forecast short-term daily ET0. Among several meteoro-

logical input dataset, bi-LSTM model with only three

inputs (i.e. maximum temperature, minimum temperature

and sunshine duration) performed the best to forecast short-

term daily ET0 at all the meteorological stations. In another

study by Afzaal et al. [163], the highest contributing cli-

matic variables for predicting ET0, namely maximum air

temperature and relative humidity, were selected as input

variables to the LSTM and bi-LSTM models and were

trained and tested using the data for the years of 2011–2015

and evaluated 2016–2017, respectively. The results stated

that both the models, i.e. LSTM and bi-LSTM were suit-

able for estimating ET0 with lower RMSE

(0.38–0.58 mm/day) for all sites during the testing period.

Overall, no significant differences in accuracy of LSTM

and Bi-LSTM compared to FAO 56 method for prediction

of ET0 was observed. Proias et al. [164] applied time

lagged RNN to predict near future ET0 in Greece. Higher

values of R2 and lower RMSE were recorded for prediction

of ET0 which were in good association with FAO-56

Penman Monteith method. A performance comparison of

ET0 estimation using deep neural network (DNN), tem-

poral convolution neural network (TCN), LSTM with other

machine learning models such as RF and SVM and also

models based on empirical relationships using different

climatic dataset such as temperature, humidity, radiation

revealed that temperature-based TCN had higher R2 and

lower RMSE as compared to other machine learning and

empirical models [165].

Geographical bearings in deep learning was observed

when it was found that LSTM performed better in arid

regions whereas nonlinear autoregressive network with

exogenous inputs (NARX) in semi-arid region of US while

predicting ET0 of 1–7 days [166]. However, the accuracy

of the models reduced once the period of prediction

exceeded 7 days. Monthly average data of climatic

parameters were used as an input for support vector

regression (SVR), Gaussian Process Regression (GPR),

BFGS-ANN and LSTM models for predicting ET0 in arid

and semi-arid climates of Turkey [167]. Among different

models, Broyden–Fletcher–Goldfarb–Shanno artificial

neural network model performed superior for estimation of

ET0.

4.2 Soil moisture estimation

The soil moisture plays an essential role and is an impor-

tant variable in different studies related to water balance,
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hydro-climatological and ecological systems and dominate

its influence on the exchange of water and energy fluxes in

understanding different environmental processes juxta-

posed with land surface states [168]. The determination of

point soil moisture in terms of field capacity (FC), per-

manent wilting point (PWP), etc. often are carried out for a

smaller area or with limited areal extent which itself

requires detailed analysis of soil sample in laboratory that

are generally labourious and time consuming and difficult

to replicate the observation and analyses due to the high

variability of SMC in respect to time and space [169, 170].

Further, retrieving precise soil moisture at local, regional

and global scales have a significant role in addressing many

practical applications, including weather forecasts

[171–173], drought and flood potential assessment

[174–176], biogeochemical process characterizations

[158], best agricultural and irrigation practices [178]. It

shows that accurate and precise prediction of SMC has

major contribution in providing estimates for taking

effective disaster response, better estimation of crop water

requirement and irrigation scheduling and other applica-

tions [179]. Estimation of soil moisture through process-

based models is plagued by the under representation of key

processes, excessive human influence and computationally

exhaustive [180]. Deep learning has tremendous capabili-

ties for soil moisture estimation as an alternative to con-

ventional physically based models using satellite data.

Song et al. [181] presented a deep belief network coupled

with -macroscopic cellular automata (DBN-MCA) model

by combining DBN and MCA model for the prediction of

SMC corn field located in the Zhangye oasis. It was

observed through the cross validation results that inclusion

of the static and dynamic variables as inputs, DBN-MCA

model performed better by showing 18 per cent reduction

in RMSE as compared to that of MLP-MCA model. Tseng

et al. [182] presented a simulation system for generating

synthetic aerial images and for learning from it to simulate

local SMCs using traditional as well as deep learning

techniques. It was presented in the study that for most of

the experiments, performance of CNN correlated field

(CNNCF) method was the better with its test error as

compared to the other methods such as (a) constant pre-

diction baseline, (b) linear Support Vector Machines

(SVM), (c) Random Forests, Uncorrelated Plant (RFUP),

(d) Random Forests Correlated Field (RFCF), (e) two-layer

Neural Networks (NN), (f) Deep Convolutional Neural

Networks Uncorrelated Plant (CNNUP). In another study

[86], CNN-based regression models were applied to esti-

mate soil moisture integrating the temperature of plant

(represented through the thermal infrared images obtained

through drone-based sensors), and in situ measurements of

soil moisture in the experimental farm. Three different

machine learning techniques including deep learning, ANN

and kNN was applied to estimate FC and PWP using PTF

for the combinations of four soil dataset located in Konya-

Çumra plain, Turkey [183]. It was observed that the deep

learning modelling techniques using inputs of soil physical

properties including the aggregate stability presented the

best performances in the estimation of FC for samples of

calcareous soils. In another pioneering study Yu et al. [184]

modelled soil moisture using hybrid deep learning tech-

niques at four different depths using SMC, climatological

data, SWC and crop growth stage data from seven maize

monitoring stations (during the 2016–2018), located in

Hebei Province, China. It was presented in the study that

hybrid modelling technique comprised a CNN-based

ResNet and bi-LSTM model performed better than the

traditional ML-based techniques such as MLP, SVR, and

RF. In continuation to establish the further improved

capabilities of deep learning modelling technique, Yu et al.

[185] proposed a hybrid modelling technique combining

capabilities of CNN and gated recurrent unit GRU (CNN-

GRU) model developed using the SMC and climatologic

data obtained from five representative sites, located in

Shandong Province, China. Better performance was

reported with the proposed hybrid CNN-GRU modelling

techniques in comparison with the stand alone CNN or

GRU model in terms of different performance indicators.

Further, deep learning has been proposed as an alter-

native to conventional physically based models for soil

moisture estimation using satellite data. In the past decade,

the estimation of SMC capabilities of remote sensing

images including the advanced microwave scanning

radiometer (AMSR) [186], the Advanced Scatterometer

[187], the soil moisture and ocean salinity (SMOS) [188],

the soil moisture active passive (SMAP) [189], among

others, coupled with GIS techniques have widely been

explored, and it has also tremendously improved the

measurement accuracy and efficacy of SMCs [188]. Fur-

ther, Microwave remote sensing having the capability to

penetrate through the clouds and up to certain depth into

the soil surface, provides estimate of SMC by using the soil

dielectric properties with good consistency over a large

spatial scale [190]. In estimation of SMC using satellite

imagery, vegetation over the land surface is found as a

major constraint for detecting signals of stored water

within soil profile as vegetation attenuates soil emissions

and also adds its own emissions to the microwave signal

causing further error on actual emission from the soil

profile [191]. Fang et al. [192] in a novel effort applied

combination of RS and deep learning modelling techniques

to developed a CONUS-scale LSTM network for the pre-

diction of SMAP data and showed that the proposed

modelling framework exhibits better generalization capa-

bility, both in space and time, Overall it was observed in

this study that the proposed approach of using deep
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learning techniques for modelling soil moisture dynamics

and for projecting SMAP is very efficient even by using

shorter length of dataset. Zhang et al. [193] proposed a

deep learning model for the estimation of SMC in China

using Visible Infrared Imaging Radiometer Suite (VIIRS)

remote sensing imagery as inputs. The study demonstrated

the capabilities of deep learning modelling technique to

capture in situ surface SMC using the VIIRS imagery in

terms of better coefficient of determination (R2 = 0.99) and

lower root mean squared error (RMSE = 0.0084). These

results were found to be better than the soil moisture

products obtained from SMAP and the Global Land Data

Assimilation System (GLDAS) (0–100 mm). Lee et al.

[194] employed deep learning modelling technique to

estimate soil moisture over the Korean peninsula observed

and thermal products from satellite. They also compared

performance of the proposed modelling technique with the

soil moisture products of AMSR2 and GLDAS. Wang et al.

[195] developed a soil moisture inversion model (SM-

DBN) by using a DBN to extract soil moisture data from

Fengyun-3D (FY-3D) Medium Resolution Spectral Ima-

ger-II imagery in China. The developed model outper-

formed the other conventional models of linear regression

(LR) and ANN, in terms of different performance indica-

tors based on simulated and the actual ground measurement

data. Masrur Ahmed et al. [196] applied deep learning

hybrid models (i.e. complete ensemble empirical mode

decomposition with adaptive noise (CEEMDAN), (convo-

lutional neural network-gated recurrent unit) CNN-GRU)

for prediction of daily time-step surface SMC and

demonstrated the prediction capability of the hybrid

CEEMDAN-CNN-GRU model. The hybrid CEEMDAN-

CNN-GRU model was built by integrating MODIS sensors

(satellite-derived data), ground-based observations, and

climate indices tested at important stations in the Aus-

tralian Murray Darling Basin.

5 Post production interventions

Postharvest loss of food crops is not only the loss of food,

but in a wider perspective is a loss of the natural resources,

agricultural inputs and most importantly loss of hunger.

The gargantuan volume of these losses has prompted

researcher, policy makers and funding agencies alike to

time and again rethink the actions and approaches that

could possibly reduce if not eliminate this malaise. Besides

the postharvest losses which by all generous estimate

hovers around 20–23 per cent [21], there is another com-

ponent termed as ‘‘food waste’’, this amounts to 30 per cent

loss of agricultural produce at the retailer and consumer

end combined [197]. While postharvest losses are quanti-

tative in nature and are mainly caused as a result of

paralyzed managerial and technical competencies, the food

waste is primarily associated with unconsumed food due

to consumer behaviour, regulations and quality standards.

Rapid quality evaluation of agricultural produce is

widely carried out by infrared spectroscopy combined with

appropriate chemometrics [198]. Quality of the food pro-

duct is generally ascertained by its moisture, protein and fat

content or by the variations in it [199]. Interaction of the

incident light and its subsequent scattering upon the

chemical molecules express the characteristics of a

food sample. The information about the quality of the food

sample is obtained by the linear and nonlinear chemometric

methods to provide rapid information about the internal

and external quality of the agro-produce [200]. All said,

generalization of sequential chemometric methods are a

distant possibility due to the inherent heterogeneity of the

samples owing to their biological nature. This introduces

spectral variability, redundant data and optical noise all this

hindering the feature extraction by the chemometric

methods. Thus, there is widespread divergence between the

calibration and target datasets creating enough limitations

for spectral analysis.

It is well established that deep learning models are

capable of demonstrating powerful capabilities of solving

complex problems rapidly. This is attributed to the

robustness of the models bolstered by deep neural network

architectures. The automatic learning feature of deep

learning models makes it a very suitable approach in the

area of postharvest quality of agricultural produce, in terms

of it’s geographical origin, identification, morphological

features, composition, texture, soluble solid content, etc.

[49, 201, 202]. Deep learning approaches facilitating

image-based applications with improved accuracy and

resilience for various postharvest intervention of agro-

produce is figuratively explained in Fig. 5 and discussed in

the following sub-sections.

5.1 Identification of varietal variability

Geographical origins have noteworthy bearings on the

various attributes of agricultural products. Environmental

variations entail introduction of varietal differences on the

basis of composition, morphology and economic value.

Deep learning models working with infrared spectra have

demonstrated adequate instances of success in the identi-

fication of geographical origins of many agro products

(Table 1). While flavour causing chemicals determines the

success with coffee beans [203, 204], the colour and

variations in the ratio of the fatty acids proved deep

learning effective for olive oils [203]. For apples it is the

variations in the cellular structure and related external/in-

ternal features (e.g. soluble solid content) that helped in

successful application of deep learning models [205]. Pure
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seeds form the basis of a sustainable agricultural ecosys-

tem. Varietal identification of seeds assumes critical

importance for the growers, as well as for the breeders to

ensure desired productivity and product quality. During the

literature search it was observed that CNN models can be

successfully used to predict the purity of rice seeds [206],

hybrid loofah and okra seeds [207] and oat seeds [208].

Difficult to visually recognize herbal medicinal plant seeds

were also found to be successfully classified by deep

learning models [204]. It has been reported that effectivity

of deep learning classification is way beyond a two-level

classification. Deep learning approaches with CNN models

powered with increased number of trainings can perform

far better than kNN and SVM models [206]. Citing the

need for a rapid and efficient means for selection/classifi-

cation of loofa (Luffa aegyptiaca) seeds of intended pro-

geny, an NIR-HSI (975–1648 nm) combined with deep

learning approach was developed with 6136 hybrid okra

and 4128 loofa seeds of six varieties [207]. The Deep

Convolutional Neural Network (DCNN) discriminant

analysis model had an accuracy of more than 95 per cent

and can be adopted for automated selection of cross bred

progeny. Oat seeds were discriminated based on their

varieties by using HSI (874–1734 nm) and DCNN. It was

concluded that HSI combined with an end-to-end DCNN

could be a potent rapid tool for visualization of accurate

(99.2 per cent) variety classification for oat seeds [208].

The same approach reaped similar results while handling

seven varieties of Chrysanthemum comprising 11,038

samples. Here, the DCNN was based on spectra obtained

from the full wavelengths to give results with an accuracy

of 100 per cent for training and testing set [209]. The

superiority of deep learning approach based on CNN model

over the conventional methods (partial least squares-linear

discriminant analysis and PCA with logistic regression)

was achieved while handling NIR dataset for grapevine

classification [210]. Considering the decrease in the num-

ber of experts for grape variety identification, deep learning

techniques were employed for digitization in viticulture

[211]. The models were trained with multiple features of a

grape plant, e.g. leaves, fruits, etc.; eventually the models

were combined into a single model for grape variety (five)

identification. The accuracy achieved by the single model

which was called ExtRestnet (99 per cent) was far superior

to the accuracy achieved individually by the Kernelwise

Soft Mask (KSM) (47 per cent) and Restnet (89 per cent)

models. These findings hold the key to the future of

Fig. 5 A general work flow of deep learning applications for postharvest quality control of agro produce
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Table 1 A comprehensive tabulation of the application of deep learning based techniques in various aspects of agriculture in relation to farm,

water and postharvest management

Subject Basis of classification Input Deep learning

technique

Model performance References

Weed detection

Soybean Soil, soybean, broadleaf

and grass weeds

400 images captured by

UAV and segmented

in 15,336 images of

soil, soybean, grass

and broadleaf weeds

ConvNets Accuracy was 98% [138]

Spinach and

bean

Not specified 673 field images of

weeds and 4861 field

images of crop

captured with drone

ResNet18, SVM,

Random Forest

Accuracy difference was

1.5% (spinach) and 6%

(bean) in ResNet18

[137]

Bermudagrass Dollar weed, old world

diamond-flower, Florida

pusley

Manually collected

digital images

VGGNet,

GoogLeNet,

DetectNet

F1 scores[ 0.99 (DetectNet)

and[ 0.95 (VGGNet)

[139]

DeepWeeds

dataset

Chinee apple, lantana,

parkinsonia, parthenium,

prickly acacia, rubber

vine, siam weed and

snake weed

DeepWeeds dataset

consists

of 17,509 labelled

images of eight weed

species

Inception-v3 and

ResNet-50

Accuracy was 95.1%

(Inception-v3) and 95.7%

(ResNet-50)

[140]

Lettuce Not specified 100 images of field

captured with drone

SVM (metrics),

YOLOV3 (Machine

learning),

Mask R-CNN

F1-scores was 88% (SVM),

94% (YOLOV3), and 94%

(Mask R-CNN), Precision

was 98% (RCNN)

[141]

Soybean Amaranthustuberculatus,

amaranthus palmeri,

chenopodiam album,

abutilon theophrasti,

foxtail species

Various field images

were captured with

drone and 450 sub-

images were used

Faster RCNN and

the Single Shot

Detector (SSD)

Precision (0.65), recall

(0.68), F1 score (0.66) and

IoU (0.85) in Faster RCNN

[142]

Ryegrass Dandelion, ground ivy,

spotted spurge

15,486 negative (images

contained perennial

ryegrass with no target

weeds) and 17,600

positive images

(images contained

target weeds)

VGG Net, Alex Net,

GoogLe Net

F1 scores(C 0.9278), Recall

(C 0.9952) in VGGNet

[143]

Disease identification

14 different

crops

26 multiple diseases Leaf images (54,306

nos) obtained from

public database

AlexNet, GoogLeNet Accuracy was 99.35%

(GoogLeNet)

[39]

25 different

crops

58 distinct classes of plant

and disease

87,848 images,

containing 25 different

plants in a set of 58

distinct classes

AlexNet,

AlexNetOWTBn,

GoogLeNet,

Overfeat and VGG

Accuracy was 99.53%

(VGG)

[116]

14 different

crops

26 multiple diseases Leaf images (54,306

nos) obtained from

public database

VGG 16, Inception

V4, ResNet,

DenseNets

Accuracy was 99.75%

(DenseNets)

[117]

14 different

crops

26 multiple diseases Leaf images (70,295

nos) obtained from

public database

ResNet, deep CNN Accuracy was 99.78%

(ResNet)

[118]
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Table 1 (continued)

Subject Basis of classification Input Deep learning

technique

Model performance References

Apricot, Peach,

Cherry,

Walnut

Coryneum, beijerinckii,

monilialaxa, leaf mite ga,

sphaerolecaniumprunastri,

monilialaxa, myzuscerasi,

xanthomonasarboricola,

erwiniaamylovora

Plant and pest images

(1965 nos) collected

for experiment

AlexNet, VGG16,

VGG19,

GoogLeNet,

ResNet50,

ResNet101,

Inceptionv3,

InceptionResNetv2,

SqueezeNet

Accuracy was 97.86%

(ResNet50 model and SVM

classifier)

[121]

Eggplant,

Hyacinth beans,

Lime, Ladies

finger

Tobacco mosaic virus, little

leaf disease, epilachna

beetle, two-spotted spider

mite, cercosopora leaf

spot, brown spot, citrus

hindu mite, citrus canker,

yellow vein mosaic virus,

leaf hopper

Leaf images (2554 nos)

captured with digital

camera

AlexNet,

VGG16, VGG19,

GoogLeNet,

ResNet101,

DenseNet201

Accuracy was 97.3%

(GoogLeNet)

[113]

Tomato Late blight, leaf mold, two-

spotted spider mite, target

spot, yellow leaf curl

virus, mosaic virus

PlantVillage dataset

(13,262 images)

AlexNet and

VGG16

Accuracy was 97.49%

(AlexNet)

[112]

Banana Black sigatoka, Banana

speckle

3700 images obtained

from open source

LeNet Accuracy was 99.72% [119]

Apple Alternaria leaf spot,

Mosaic, Rust and Brown

spot

13,689 images of

diseased apple leaves

AlexNet Accuracy was 97.62% [114]

Coffee Leaf miner, rust, brown leaf

spot, cercospora leaf spot

1747 images of coffee

leaves obtained using

different smartphones

AlexNet, GoogLeNet,

VGG19, ResNet50

Accuracy was 95.63%

(ResNet50)

[109]

Cucumber Downy mildew,

anthracnose, grey mould,

angular leaf spot,

black spot, powdery mildew

700 diseased leaf image

captured with digital

camera

DCNNs, AlexNet,

GPDCNN

Accuracy was 95.18%

(GPDCNN)

[268]

Grape Black rot, Esca, isariopsis

leaf spot

1619 leaf images

obtained from public

database, PlantVillage

VGGNet,

GoogLeNet,

DenseNet, ResNet,

UnitedModel

Test accuracy was 98.57%

and validation accuracy

was 99.17% of

UnitedModel

[115]

Walnut Anthracnose 4491 images of leaves Inception V3,

VGG16, ResNet50,

DenseNet121,

Proposed CNN

Accuracy was 99.37%

(Inception V3)

[269]

Rice Blast, false smut, brown

spot, bakanae disease,

sheath blight, sheath rot,

bacterial leaf blight,

bacterial sheath rot,

seeding blight, bacterial

wilt

500 images of plants

captured with digital

camera and some

images collected from

public source

Deep CNN Accuracy was 95.48% [103]

Wheat Powdery mildew, smut,

black chaff, stripe rust,

leaf blotch, leaf rust

9230 plant images

obtained from public

database

VGG-FCN-VD16,

VGG-FCN-S

Accuracy was 97.95%

(VGG-FCN-VD16) and

95.12% (VGG-FCN-S)

[101]

Soybean Bacterial, downy mildew,

pest, spider mite, virus

1470 leaf images AlexNet, GoogLeNet

and ResNet

Accuracy was 94.29%

(ResNet)

[122]

Sugarcane Smut, grassy shoot, rust,

yellow leaf

13,842 sugarcane image

dataset manually

captured through a

camera

Deep CNN (ReLu) Accuracy was 95% [106]
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Table 1 (continued)

Subject Basis of classification Input Deep learning

technique

Model performance References

Tea Leaf blight, bud blight and

red scab

144 diseased leaf images

captured with camera

VGG16, AlexNet,

LeNet, CIFAR10,

CIFAR10 (improved)

Accuracy was 92.5%

(CIFAR10, improved)

[111]

Cotton Cercospora, bacterial

blight, aschocyta blight,

target spot

500 leaf images Deep CNN Accuracy was 96% [107]

Yield attributes and harvesting

Apple Fruit detection 800 images collected for

the experiment

LedNet Recall and accuracy were

0.821 and 0.853,

respectively

[123]

Apple Fruit detection 200 images collected for

the experiment

VGG16 Precision was100% and

Recall was 92.31%

[124]

Sweet pepper,

rock melon,

apple,

avocado,

mango and

orange

Fruit detection and yield

estimation

Sweet pepper (122

images), Rock melon

(135 images), Apple

(64 images), Avocado

(54 images), Mango

(170 images), Orange

(57 images),

VGG16 network

using a pre-trained

ImageNet model

F1 score for sweet pepper,

rock melon, apple,

avocado, mango and

orange were 0.838, 0.848,

0.938, 0.932, 0.942 and

0.915, respectively

[125]

Strawberry Fruit detection 1900 images were

acquired from

different orchard

ResNet50 combined

with Feature

Pyramid Network

(FPN)

Detection precision rate was

95.78%, recall rate was

95.41% and mean

intersection over union

(MIoU) rate for instance

segmentation was 89.85%

[126]

Tomato Detection of tomato in

greenhouse

123 images were

collected with digital

camera

Mask RCNN,

ResNet50,

ResNext101

Precision (0.97), Recall

(0.92), IoU (0.71), and F1

(0.94)

[127]

Broccoli Size of broccoli 487 broccoli images Occlusion Region-

based Convolutional

Neural Network

(ORCNN),

Mask RCNN

Mean sizing error was

6.4 mm (ORCNN) and of

10.7 mm (Mask RCNN)

[130]

Crop water stress assessment

Farm area Soil moisture estimation Thermal images

captured by the

sensors mounted on

drones

CNN-based

regression model

and Deep Neural

Network (DNN)

Accuracy was 0.95–0.99

(CNN)

[86]

Paddy Biotic and abiotic stresses 30,000 RGB image of

different variety

collected from field

VGG-16 CNN Accuracy ranged from

92.13–95.08% for

automatic recognition and

classification

[92]

Maize Drought stress 3461 RGB images

collected at seedling

and jointing stages

RestNet 50 and

ResNet 152,

Gradient

Accuracy was 95.9–98.1% [89]

Tomato Crop stress Remarkable moving

objects detected by

adjacent optical flow

(ROAF)

Multimodal sliding

window–based

SVM (SW-SVM)

MAE was 35–41% [91]
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Table 1 (continued)

Subject Basis of classification Input Deep learning

technique

Model performance References

Tomato plants Biotic (diseases and pests

detection) and abiotic

(temperature and

nutritional excess or

deficiency)

5000 images collected

from farms

Faster RCNN with

VGG-16, AlexNet,

ZFNet, GoogLeNet,

ResNet-50 and

ResNet-101

Precision was 89.71% [88]

Maize, okra and

soybean

Water stress identification 1200 RGB images

collected for each crop

AlexNet, GoogLeNet,

Inception V3

Accuracy of GoogLeNet was

98.3% (Maize), 97.5%

(okra) and 94.1% (soybean)

[87]

Potato plants Water stress 300 images collected

and augmented

training set of 1,500

images

Retina-UNet-Ag,

Mask R-CNN,

RetinaNet, Faster

R-CNN, Yolo v3

Precision was 65.9%( Retina-

UNet-Ag) and Dice score

coefficient was 0.74

[270]

Sorghum Nitrogen plant stress 27,264 image of for

different nitrogen

fertilizer level

CNN, ResNet-18 and

NasNet, SVM,

KNN, DT

Accuracy was 82–87%

(CNN)

[68]

Plant stress phenotyping

Wheat Root phenotyping 3,630 images of root

using aNikon D5100

DSLR camera

RootNav 2.0,

RootNav 1.0

r2 values ranged from 0.64 to

1. 99.6 (RootNav 2.0)

[71]

Rice Root phenotyping 234 trench profile

images

U-Net (CNN) Accuracy was 0.74–0.77 [99]

White bean, red

bean, soybean

Vein morphological

patterns

866 leaf images CNN,

PDA

Accuracy ranged from 93 to

96.9%

[93]

Sorghum Panicle counting 462 image of sorghum

panicles, foliage and

exposed ground

SegNet Accuracy was 94–98% [98]

Water management

Semi-arid

region of

central

Ningxia,

China

Daily reference

evapotranspiration and

forecasting 1–7 day lead

time

Meteorological

parameters for period

2006–2018

Bi-LSTM MAE:0.159–0.323 mm/day,

RMSE:0.039–0.089 mm/day,

NSE:0.98

[162]

Northeast plain,

China

Daily reference

evapotranspiration

Meteorological

parameters 1951–2018

DNN, TCN, LSTM LSTM: R2: 0.779–0.924,

RMSE:

0.493–0.842 mm/day

[145]

Maize

(Liaoning,

China)

Crop evapotranspiration Lysimeter and

meteorological data

LSTM, DNN LSTM: R2: 0.80–0.83

MSE: 0.54–0.87 mm/day,

DNN: MSE:

0.33–0.58 mm/day, R2:

0.80–0.89

[165]

Northeast plain,

China

Soil moisture Soil moisture and

meteorological data

DNNR MAE: 0.57–1.33

R2: 0.96–0.98

[174]

Maize (Eastern

China)

Soil moisture Soil moisture,

hyperspectral data

1D-CNN, LSTM 1D-CNN: R2: 0.83–0.91,

MSE: 4.87–6.60%, LSTM:

R2: 0.80–0.90, RMSE:

5.07- 7.04%

[271]

Konya-Çumra

Plain in

Turkey

Soil moisture Soil physic-chemical

properties

Deep learning MAE: 0.027

R2:0.829

[183]

Cypress

Swamp,

southern

Florida, and

Kobeh Valley,

central

Nevada

1 and 7 day ahead

prediction of actual

evapotranspiration

Daily meteorological

data, eddy covariance

technique

LSTM R2: 0.899–0.915

RMSE: 0.38–0.41 mm/day

[166]
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Table 1 (continued)

Subject Basis of classification Input Deep learning

technique

Model performance References

Minas Gerais,

Brazil

Multistep ahead forecasting

of daily reference

evapotranspiration

Daily meteorological

data

LSTM, CNN, CNN-

LSTM

RMSE: 0.87–0.95 mm/day

(LSTM)

[157]

Gazipur Sadar

Upazilla,

Bangladesh

Forecasting of one step

ahead daily reference

evapotranspiration

Daily meteorological

data

LSTM, Bi-LSTM RMSE:0.055 mm/day, R:

0.999 (Bi-LSTM)

[160]

Portugal Reference

evapotranspiration and

soil water content (Sandy

and loamy soils)

Daily meteorological

data and hydrological

data

LSTM R2: 0.90–0.99, RMSE:

0.006–0.021%

[161]

Corum

Province,

Turkey

Monthly reference

evapotranspiration

Meteorological data LSTM R2: 0.86–0.97, RMSE:

8.5–19.4 mm/month

[167]

Wheat, Egypt Crop evapotranspiration RCP 4.5 and 8.5

scenario data

(1970–2035)

DNN RMSE: 4.3–12.56 mm/

season, Accuracy:

0.8–0.94, NSE: 0.73–0.93

[272]

South Korea Soil moisture AMSR2 satellite data Feed forward network

and error back

propagation

RMSE: 3.825%, Bias:

0.039%

[194]

Cropped land of

China

Surface soil moisture

(0–10 cm)

Visible Infrared Imaging

Radiometer Suite

(VIIRS) raw data

records (RDR)

Deep feedforward

neural network

(DFNN)

R2: 0.89–0.98, RMSE:

0.0118–0.0294

[193]

Continental

United States,

including the

forested

southeast

Soil moisture

(Prediction of SMAP level-

3 moisture product)

Atmospheric forcing

time series, LSTM-

simulated surface soil

moisture, static

physiographic

variables

LSTM RMSE:\ 0.035

R:[ 0.87

[192]

Australian

Murray

Darling Basin

Daily time step surface soil

moisture prediction

MODIS satellite-derived

data, climate

indices, and ground-

based variables

CEEMDAN-CNN-

GRU

r: 0.703–0.996, NSE:
0.462–0.995, RMSE:

0.021–0.435

[196]

South

Louisiana,

United States

Hourly prediction of soil

moisture

High-resolution rapid

refresh data, multi-

radar/multi-sensor

radar rainfall product,

NLCD land use/land

cover (LULC) dataset

ConvLSTM NRMSE:4.8–5.4%

R: 0.71–0.77

[273]

China Prediction of top soil

moisture for 3,5, 7 days

lead time

ERA-5 land data, Soil

Moisture Active

Passive (SMAP) L4

product

ConvLSTM R2: 0.909–0.916

RMSE: 0.0239–0.0247

[151]

Post production applications of deep learning

Loofa seeds Classification of seeds NIR-HSI

(975–1648 nm)

DCNN Accuracy was 95% [207]

Oat seeds Variety classification HSI (874–1734 nm) DCNN Accuracy was 99.2% [208]

Chrysanthemum Seven varieties HSI (874–1734 nm) DCNN Accuracy was 100% [209]

Grapevine Classification NIR CNN (fully connected

dual layered) model

Not mentioned [210]

Grape Variety identification NIR ExtRestnet Accuracy was 99% [211]
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Table 1 (continued)

Subject Basis of classification Input Deep learning

technique

Model performance References

Korla fragrant

pear

Soluble solid content (SSC)

and firmness

VIS and NIR spectral

data

SAE-FNN model Firmness: R2
P = 0.890

RMSEP = 1.81 N

RPDP = 3.05, SSC:

R2
P = 0.921

RMSEP = 0.22%

RPDP = 3.68

[212]

Black dry goji

berries

Predicting the phenolics,

flavonoids and

anthocyanin content of

juice

NIR-HIS

(975–1646 nm)

DAE, LS-SVM model Phenolics: R2
P = 0.862,

RMSEP = 287.19,

RPDP = 2.769,

Flavonoids: R2
P = 0.834,

RMSEP = 44.41,

RPDP = 2.48,

Anthocyanin: R2
P = 0.897,

RMSEP = 119.308,

RPDP = 3.026

[214]

Winter jujubes Bruising (4 varieties) NIR and Vis–NIR

spectra

SVM-CNN Accuracy was 99% (NIR)

and 32–74% (Vis–NIR)

[215]

Strawberry Bruising Hyperspectral images

(1000–1600 nm)

2B-CNN Accuracy was 99.1% [204]

Strawberry Ripeness Hyperspectral images AlexNet–CNN Accuracy was 98.6% [216]

Cucumber Classification of damaged

cucumbers

Hyperspectral images CNN and SSAE-CNN Accuracy was 91.1% [221]

Okra Grading on the basis of

length of the pod

3200 images AlexNet, GoogLeNet

and ResNet50

Accuracy 63.5, 69.0 and

99.0%, respectively

[222]

Potato Infected with virus Y Hyperspectral images CNN Not mentioned [223]

Tomato Seven selected species 3950 RGB images 4 CNN’s Accuracy was 93% [224]

Tomato Exterior surface defects 43,843 RGB images Deep residual neural

network (ResNet)

classifiers

Not mentioned [225]

Tomato Nutrition disorders in 11

kinds tomatoes

2000 RGB images Enhanced deep super-

resolution network

Accuracy was 81.11% [226]

Oil palm Identify mature and young

oil palms

Satellite images

exported to a GIS

software

2 CNN’s Accuracy was 95.11%

(young) and 92.96%

(mature)

[227]

Dates Identify healthy and

imperfect dates (Khalal,

Rutab, Tamar and

defective dates)

37,056 RGB images CNN technique build

from VGG-16

architecture

Accuracy was 96.98% [228]

Dates Mature and premature dates 8000 RGB images AlexNet and VGGNet Type of date, maturity and

harvesting decision with an

accuracy of 99.01, 97.25

and 98.59%, respectively

[229]

Processed food 227 contaminants in 119

types of widely consumed

foods

The dataset is from four

counties in central

China collected

between

August 2015 and July

2016, and thus the

number of data tuples

is 200

Deep Denoising Auto

Encoder (DDAE)

Accuracy was 58.5% [233]

Neural Computing and Applications (2022) 34:20539–20573 20559

123



identifying type-dependent diseases or any special fungal

disease in grape.

5.2 Qualitative analysis of agro produce

As has been mentioned in the above section that one of the

major causes of food waste is rejection or non-consumption

of fruits due to poor quality. For most of the fruits, quality

means the existence of adequate amount of desired taste

and exact tautness all across the fruit surface. While taste

can be demonstrated by soluble solid content (SSC), the

texture of the fruit is essentially indicated by firmness

which in turn depends on the right amount of moisture,

uniform ripening and a puncture-less or bruise-free outer

skin. Deep learning based spectral analysis demonstrated

considerable success in predicting the SSC and firmness for

Korla fragrant pear analysis while applying SAE-FNN

model using VIS and NIR spectral data [212]. Sweetness of

orange juice was accurately predicted in terms of the sac-

charose concentration by using a three-layer CNN while

adopting a deep learning approach [213] as compared with

conventional chemometric methods. Black goji berries are

a store house of bioactive components with high medicinal

value, deep learning approach achieved very good results

in predicting the phenolics, flavonoids and anthocyanin

content of juice as well as the dried berries [214]. Mis-

handling of the fruits during harvest and transportation

results in cuts, bruises and fissures on the outer skin and

cellular damage deep inside the skin. These injuries cause

the fruits to go under stress, resulting in an enhanced res-

piration rate and rate of senescence. All this translates into

a change in the biochemical properties of the fruits which

can be captured by NIR spectra, a deep learning based

qualitative analysis for winter jujubes was carried out by

Feng et al. [215]. A 2B-CNN model was found to be highly

robust for feature selection in detecting bruising of straw-

berry when the input dataset was a fusion of spectral and

spatial data [204]. Attempt has been made to estimate the

stages of ripeness in strawberry using a combination of HSI

and deep learning [216]. Feature wavelengths were selec-

ted using a sequential feature selection algorithm and

530 nm was found to be the most important wavelength for

field conditions. AlexNet (a popular deep learning model)

CNN was observed to have a prediction accuracy of 98.6

per cent for detection of ripeness in strawberries. Findings

of these types can be utilized for the development of real-

time precision strawberry harvesting systems. There are

some other instances of fruit classification based on colour,

shape and texture [217–219] wherein absence of deep

learning like models restricted the capability of the models

for similar fruits of a particular species only. However, the

same classification factors could be more accurately used

with k-NN algorithm [220]. Evidences and instances dis-

cussed above indicate the strategic superiority of deep

learning methods over the traditional data analysis meth-

ods, it would therefore be pertinent to conclude that further

studies can be conducted in the future for quality detection

of fruits.

Table 1 (continued)

Subject Basis of classification Input Deep learning

technique

Model performance References

Juglans Detection of adhering

foreign objects (leaf

debris, paper scraps,

plastic scraps and metal

parts)

RGB (1280 9 960)

images

Multiscale residual

fully convolutional

network

Accuracy was 96.5% [234]

Stored food

samples

Detection of pest (elytra)

fragments

6900 microscopic

images

CNN Accuracy was 83.8% [122]

Apple Pesticide (chlorpyrifos,

carbendazim and two

mixed pesticides) residues

at a concentration of

100 ppm

Hyperspectral images

(4608 for each

category)

CNN Accuracy was 99.09% [235]

Milk Binary classification of

(un)adulterated samples

Spectral data from

infrared spectroscopy

CNN model with

Fourier transformed

data

Accuracy was 98.76% [236]

Meat Adulteration (chicken,

turkey and pork)

MIR spectral data

truncated to

1000–1800–1 cm

CNN-VS Accuracy was 100% [203]

Strawberry

juices

Binary classification of

strawberry and non-

strawberry juices samples

MIR spectral data

truncated to

899–1802–1 cm

CNN-VS Accuracy was 97% [203]

20560 Neural Computing and Applications (2022) 34:20539–20573

123



There are a few instances where deep learning has been

initiated for quality related evaluation of vegetables.

Cucumbers are subjected to damage caused due to pests,

insects, transportation induced surface discolouration, etc.

Stacked sparse autoencoder (SSAE) in isolation and cou-

pled with CNN has been attempted for deep feature rep-

resentation and classification of damaged cucumbers based

on the HSI [221]; defected region was screened out by

CNN model based on the RGB channels, while the mean

spectra of this defected area was used for SSAE-CNN

classification. An accuracy of 91.1 per cent was achieved

by this classification method. A very simple basis of

grading for okra can be the length of pod. Deep learning

models were used upon a dataset of 3200 images [222].

The accuracy exhibited by the models, AlexNet, GoogLe-

Net and ResNet50, was 63.5, 69.0 and 99.0 per cent,

respectively. Potatoes are one of the most popular food

crops, but they are prone to be infected with viruses. Deep

learning with HSI using fully convolutional network was

successfully applied for the detection of Potato virus Y

[223]. Classification of tomatoes on the basis of seven

selected species was attempted by using deep learning

[224]. A network comprising four CNNs was trained to

forecast the tomato species with an accuracy of 93 per cent.

Tomato was classified on the basis of exterior surface

defects by using 43,843 images as dataset for deep learning

[225]. Feature extraction was carried out by trained ResNet

classifiers, which was found competent to identify surface

abnormalities issues with tomatoes. Deep learning based

rapid recognitions system for identifying nutrition disor-

ders in 11 kinds tomatoes was developed by pre-processing

the dataset by a pre-trained Enhanced Deep Super-Reso-

lution Network technique [226]. This deep learning-based

technique could attain an accuracy of 81.11 per cent, much

more than the existing techniques with the same objective.

Predicting the actual oil yield from an oil palm plantation is

tricky as in no way it can be judged that what can be the

number of mature oil-bearing crowns. Deep learning with

two different CNNs was applied to identify and forecast the

quanta of mature and young oil palms by using the satellite

images [227]. The forecasting outcomes were exported to a

geographic information system software for mapping the

grown and young palms, accuracies were 92.96 and 95.11

per cent for mature and young oil palm, respectively. Some

work in deep learning has been carried out with dates;

distinction of healthy dates from the imperfect ones and

date yield. The difference in the growing phases between

the healthy and imperfect dates formed the basis of mod-

elling [228]. The study was conducted across four classes

of dates, Khalal, Rutab, Tamar and defective dates, using a

CNN technique with VGG-16 architecture. This study

yielded results with 96.98 per cent accuracy. Mature and

premature date images (8000) formed the dataset for deep

learning-based tool for prediction of the type of date,

maturity and harvesting decision with an accuracy of

99.01, 97.25 and 98.59 per cent, respectively [229].

5.3 Detection of food contamination

Contamination of agro produce with foreign materials can

be caused due to poor agricultural inputs (polluted water,

inconsistent fertilizers, etc.), improper handling (field dirt,

crop residues, etc.) and wrong storage conditions (fungi,

beetles, pesticide residues, etc.). Ingestion of such foods

may result in detrimental changes to the physiological

conditions of humans leading to onset of various co-mor-

bidities. A brief account of the work carried out in the area

of determination of contaminants in food by applying deep

learning tools is reported in this section. Published work

which embodies the usage of traditional machine learning

algorithms for detection of food contaminants is existent

[230–232]; however, the application of deep learning with

similar objective is sparse. Perhaps desperate attempts are

required to fully utilize the potential of deep learning to

replace traditional machine learning methods [200]. Pre-

diction of morbidity arisen due to gastrointestinal infec-

tions caused as a result of contaminated food has been

attempted by using DNN [233]. A target region in China

was the locale of this study comprising 227 contaminants

in 119 types of widely consumed foods. The features of the

contamination indexes were extracted by DDAE which is

structurally similar to SAE with multiple hidden layers.

Deep denoising auto encoder (DDAE) model was found to

perform better (success rate 58.5 per cent) than conven-

tional ANN algorithms. Manual detection of foreign

objects perched in the different locations over juglans is

tough and inconsistent. Complex shape of juglans results in

improper image segmentation resulting in an inefficient

machine vision approach. However, a deep learning

approach comprising multiscale residual fully convolu-

tional network was found to be efficient in image seg-

mentation (99.4 per cent) and feature extraction of juglans

[234]. The proposed method could detect and correctly

(96.5 per cent) classify, leaf debris, paper scraps, plastic

scraps and metal parts, clinging to juglans. A complete

cycle of segmentation and detection took a time of less

than 60 ms. Occurrence of pest fragments in stored food

samples is obvious and rampant, human interventions are

time-consuming and prone to errors. Deep learning

approach was applied for rapid identification of 15 stored

food products which are frequently contaminated with

beetle species [122]. Convolutional neural network was

trained on a dataset comprising 6900 microscopic images

of elytra fragments. The model performed with an overall

accuracy of 83.8 per cent. Pesticide residues are a common

contaminant for fruits, its presence poses a serious threat
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for the fact that fruits are consumed as a table food. Apples

with four pesticides (chlorpyrifos, carbendazim and two

mixed pesticides) at a concentration of 100 ppm were

imaged using a hyperspectral camera, in all making a

dataset of 4608 images of each category [235]. The nor-

malized (227 9 227 9 3 pixels) images were used as

input to the CNN network for detection of pesticide resi-

due. At a training epoch of 10, the accuracy of detection for

test set was 99.09 per cent. Thus, this method demonstrated

an effective non-contact technique for detection of pesti-

cide residue in harvested apples. Adulteration of foods for

eliciting enhanced monetary returns is a malpractice spread

all across the globe. Milk is adulterated by a variety of

substances that threatens well-being of humans. Spectral

data from infrared spectroscopy was used for binary clas-

sification of (un)adulterated samples using a CNN model

with Fourier transformed data [236]. The model was found

to be 98.76 per cent accurate, far better than gradient

boosting and random forest machine methods. Again, CNN

models were found to be very accurate in determining the

adulteration of different meats, chicken, turkey and pork

[237]. Equipped with mid infrared spectral data, CNN

models were found to be very accurate in classifying

strawberry and non-strawberry purees [203]. It can hence

be understood that deep learning has touched almost all

aspects of food contamination successfully. This technique

therefore poses to be a potent tool for rapid, non-contact

and effective means of contamination detection in agro

produce.

5.4 Food quality sensors

Precise non-invasive discrimination in terms of quality of

foods has been made possible by the advent of electronic

and multi-sensor technology applications. Human vision

and gustatory system can be effectively mimicked with

reasonable accuracy by electronic eye (EE) and voltametric

electronic tongue (VET), respectively. These instruments

can provide comprehensive information about the subject,

rapidly. While the EE captures the colour and optical

texture of the samples and compiles the result as overall

appearance of the subject, the VET has an array of sensors

which are titillated to send signals by the dissociative ions

of a liquid sample [238, 239]. Instrumentation requirement

for rapid detection of food quality has had a paradigm shift

with the advent of EE and VET [240]. A deep learning

algorithm was used to extract the feature and to non-de-

structively discriminate pu-erh tea based on its storage time

(0, 2, 4, 6 and 8 years) with the help of data fusion strategy

applied to the signals from an EE and VET combine [241].

The main parts of EE system were: an eyepiece, a stand, an

LED lamp with adaptor. The eye piece was adjusted to

capture a clear image of the pu-erh tea to gather all the

relevant information. The VET employed in this study

[242] comprised: a signal-conditioning circuit; an array of

sensors (glassy carbon, tungsten, nickel, palladium, tita-

nium, gold, silver and platinum, auxiliary electrode) with a

standard three-electrode system for all the eight electrodes.

There was a reference electrode of Ag/AgCl; the response

signals from sensors were collected by a DAQ card (NI

USB-6002, National Instruments, USA); LabVIEW soft-

ware was used to control the DAQ card and analyse the

collected signals. Deep learning was introduced to elimi-

nate the manual intervention for feature extraction from the

EE and VET signals. In-turn, 1-D CNN and 2-D CNN were

used on behalf of the deep learning algorithm which leads

to an overall improvement in the recognition of the data

patterns as compared to the conventional techniques. This

was followed by application of Bayesian optimization for

selection of the optimal hyper parameters of the CNN

model. The supreme novelty of this study lies in the fact

that instead of individual data feeding, EE-CNN or VET-

CNN, the data from the hardware was fused and fed to the

deep learning algorithm in such a way that led to a more

accurate and robust classification. This study opens a new

window of opportunity for employing deep learning to

intelligent sensory analysis which shall lead to a reliable,

intelligent and non-destructive quality control tool open to

be used for products other the pu-erh tea as well.

6 Dataset resources

Chemical and physical features of the fruits in terms of

shape, nutrient content, maturity, firmness, damage, dis-

ease, etc., is reflected by the RGB images or in the spectral

information which can be interpreted and classified using

deep learning models. Breakthrough results in deep learn-

ing application for quality evaluation of agro produce shall

require good input data as well. A dynamic dataset of high-

quality fruit images called Fruit-360 [131] was developed

with the sole purpose of creating deep learning models,

care has been taken to capture images with uniform

background and with measures to minimize noise. A col-

lection of 87,848 expertly annotated images in the data-

base, divided into 58 classes, each of which is defined as a

pair of plant and a related disease, with some classes

including healthy plants can be found in PlantVillage cre-

ated by Hughes and Salathe [243]. There are 25 different

healthy and diseased plants among the 58 classes. More

than a third of the images (37.3 per cent) were taken in the

field under actual conditions. Wheat Disease Database

2017 is a collection of 9230 wheat crop images with 6

diseases of wheat crop (smut, powdery mildew, stripe rust,

black chaff, leaf rust and leaf blotch) and a healthy class,

which are annotated in image level by agricultural experts
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[101]. Multi-class Pest Dataset (2018) is a collection of

88,670 images with 582,170 pest objects divided into 16

categories [244]. A large multiclass dataset called Deep-

Weeds [140] which comprises 17,509 images of eight

different weed species (Chinese apple, parthenium, rubber

vine, prickly acacia, lantana, parkinsonia, siam and snake

weed) and various off-target (or negative) plant life native

to Australia has been developed for deep learning appli-

cations. CropDeep is a collection of 31,147 images of

vegetables and fruits under laboratorial greenhouse condi-

tions as well as over 49,000 annotated instances from 31

different classes developed exclusively for deep learning-

based classification and detection of species [29].

Multiple data sources will make the models robust and

possibilities for data fusion will surely bolster the per-

spectives of future research. Data from different sources

can be combined to improve the overall quality of the data,

thus ensuring high quality representations [245], in this line

an instance of combining spectral and spatial data from

HSI was found to exhibit an improved performance [204].

Success of a deep learning model shall increase for the

better if the input data originates from a variety of

dependent factors; in case of agricultural produce, it can be

variety, origin, size or temperature. This type of model

training is called multi-task learning, where simultaneous

learning from several tasks of common knowledge takes

place for a single model and each task is labelled as an

original task [246]. The inbuilt structure of multi-task

learning allows for a general understanding for the feature

patterns across various tasks, all this while ignoring the

noisy and irrelevant data. Another machine learning

approach is transfer learning where the information picked

up while learning the source tasks can be applied for target

tasks, this approach improves the performance of the model

as the recalibration part is avoided [35, 247].

7 Deep learning model performance
and causal analysis

The deep learning model validation quantifies the expected

performance from the model based on how well the model

responds to unseen data. For this reason, many times,

model validation is done on a data other than training data.

Different approaches for generating datasets for the deep

learning model development include train/validate/test

percentage split, k-fold cross-validation, and time-based

splits [248]. The effectiveness of deep learning algorithm is

measured using a defined metric on this unseen data and is

used for comparison among different models on their

predictive power. In particular, for image classification

using CNN architectures, the metrics like precision, accu-

racy, recall, F1-score along with Receiver Operating

Characteristic (ROC) curve are quite useful [249]. When it

comes to the object detection models, Intersection over

Union (IoU), mean Average precision (mAP), Average

Precision, etc., [250] are most commonly preferred for

comparing the effectiveness of the models. These valida-

tion approaches and metrics are recursively applied over

the data to make feature selection and optimize the

hyperparameters. The learning curves of CNN models

assist in identifying if the model is following the right

learning trajectory, with a bias-variance trade-off. Ana-

lysing the learning curve for different models reveals the

performances of each model. For example, a model with

stable learning curves across the training and validation

data will perform well on the unseen data. Model’s gen-

eralization, probability of overfitting, and underfitting are

some key observations from the learning curves [251, 252].

Performance is an important criterion for identifying the

right architecture. A model that effectively makes use of

memory resources can generate quick predictions and often

favour the real-time processing of data. Easier retraining is

also an important criterion that helps in accommodating

changes to existing models.

DL models have managed to address various complex

agricultural engineering problems; but they often fail to

make human-level inferences. Especially in deep neural

networks with a large number of layers, causality remains a

challenge, it has been observed that the model performs

poorly in generalizing beyond the training data. There are

limitations of reliable decision making and robust predic-

tions with ML based on correlational pattern recognition

[253–255], e.g. in the case of a plant stress detection or

disease identification, the model gets trained on a huge

volume of data assuming that it will help the model to

generalize the distribution and learn suitable parameters.

But in reality, the distribution often changes drastically

beyond the training data. The CNN model, trained to

identify plant stress in RGB images may fail to identify the

stress in a new environment with different lighting condi-

tions. The same is applicable to object detection algorithms

as well. A YOLO or Faster-RCNN object detector trained

to detect fruits may detect a wrong object at a slightly

different angle or against new backgrounds [250, 256]. As

there is uncertainty in the actual environment, it is often

impossible to train model to cover all possible scenarios.

This is highly relevant in agricultural engineering appli-

cations as the deep learning models directly interact with

the environment. If the model does not possess causal

understanding, the model fails in dealing with new

situations.

A general approach for solving a real-world problem

includes collection of a large pool of data, split the data

into training, testing and validation and evaluate its per-

formance by measuring the accuracy. The process is
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recursively performed until desired level of accuracy is

reached. Even the benchmark datasets above-cited, like

Fruit-360 [257], plant village [258] also fall onto same

category. The deep learning models transfer learning using

CNN architectures such as VGG16, AlexNet and Goo-

gLeNet that are widely used in agricultural research are

fine-tuned image classifiers that can identify new types of

patterns. These models may also respond poorly with

respect to changes in the environment. The main objective

should be to adapt as much knowledge as possible with

fewer training examples, and the model should be able to

reuse the knowledge gained without continuous training in

a new environment. It is worth noting that often an accurate

model may not be sufficient to make informed decisions as

they had been trained on statistical regularities instead of

causal relations. The causal model is capable of responding

to situations that the model has not encountered before.

8 Concluding remarks and way forward

This review paper is an ensemble of a wide range of

applications of deep learning techniques towards inducing

precision in agricultural mechanization, water management

and postharvest operations. The key findings of this

mammoth review work are presented in an easily referable

tabular format structured around the different aspects of

deep learning application for the engineering aspects of

precision agriculture (Table 1). Although there are instan-

ces galore about the application of deep learning in precise

pre agricultural and postharvest agricultural operations;

there is enough evidences to indicate and inspire

researchers for developing more creative and computa-

tionally sound deep learning models for some of the

identified associated challenges.

The size of dataset is a vital parameter that gives sta-

tistical strength to the deep learning models. Collection of

quality data is difficult and challenging. Complexity arises

from the fact that the challenges are multi-dimensional.

The data acquiring tool needs to be consistent during the

course of data collection. Else, even a large dataset would

not assure a robust model and predictions would be listless.

This propels us to think of some effective data clean-up

tools or in other words the models should be capable of

handling uncertainties with concepts of, say Bayesian

inference [259]. Development of efficient tools will boost

the supply of quality data to the model and remove all the

noise and redundancy. Overcoming quality data collection

and data cleaning will lead us to the challenge of data

labelling, it is an activity of considerable monotony and has

direct bearing on model efficacy. Deep learning models

need to learn from labelled data while, as has been men-

tioned earlier in this paper that public datasets are an option

for deep learning modelling, but the variability in agri-

cultural inputs and outputs arguably limits the use of these

datasets for global precision agriculture purposes.

Data augmentation is a potent tool for overcoming the

limitation of public dataset. This tools not only helps in

increasing the volume of the data set but also ensures

consistency of quality and dimension. The techniques

involved in data augmentation range from simple flipping,

rotating, overturning, etc., of the images [260], to ampli-

tude and frequency deformation [261] to utilizing Gaussian

noise [262]. Compilation of advantageous performance of

these techniques for agricultural data is absent, although

desirable.

Another way of alleviating the data dependence of deep

learning models is by training it with data generated from

numerical simulation by employing laws governing the

physical phenomenon [263]. Such data needs to be cap-

tured for the precision pre and post agriculture operations

as well; care must be observed to stifle extrapolation and

observational biases [180] so as to comprehensibly exploit

the advantages of deep learning. Representation of data to

be used for deep learning modelling has to be consistent in

format [264], besides being smooth, temporal, spatially

coherent, etc. [265]. This consideration has to be kept in

mind while collecting data from the precision agriculture

domain.

It is foreseen that in the future there will be a dramatic

proliferation of deep learning application in the field of pre

and postharvest agricultural engineering operations. Inter-

facing the results of deep learning models with application

based hardware will require understanding and efficient

interpretation of the statistically outstanding performance

of these models, especially for the occasions where it

outperforms the human experts [180]. Failure of deep

learning network has been attributed to the unease of

conclusive interpretation [266]; research needs to be

focused in eliminating such instances and strive to achieve

self-explanatory models. Deep learning frameworks fail to

encompass weather or environmental conditions while

predicting parameters in the agri-ecosystem domain. It is

well understood that weather is a stochastic parameter

riding on complex nonlinear relationships with multiple

components [240]. There is an immediate requirement of

including weather information during data collection for

taking full advantage of the deep learning models. There

are 3D models representing the architectural traits of soil,

crop and agricultural commodities across different origins

and varieties, couplings of these models to a deep learning

framework would substantially bolster the parameter pre-

diction capabilities while giving due weightage to the

subject traits. Effective deep learning modelling for

addressing soil–water issues and yield estimation concerns

can be fulfilled once the deep learning framework unites
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with multi modal data streams from aerial as well as

ground level sensing. Hopefully approaches will continue

to evolve rapidly in near future which will result in real-

ization of the amazing possibilities that deep learning

modelling beholds; wherein, computer systems shall be

able to identify, classify, quantify and predict in scenarios

leading us to an era of autonomous precision agricultural

engineering operations.
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agriculture: a survey. Comput Electron Agric 147:70–90

36. Chen X, Xie L, He Y, Guan T, Zhou X, Wang B, Feng G, Yu H,

Ji Y (2019) Fast and accurate decoding of Raman spectra-en-

coded suspension arrays using deep learning. Analyst

144:4312–4319. https://doi.org/10.1039/C9AN00913B

37. Ubbens J, Cieslak M, Prusinkiewicz P, Stavness I (2018) The

use of plant models in deep learning: an application to leaf

counting in rosette plants. Plant Methods 14:6. https://doi.org/

10.1186/s13007-018-0273-z

38. Ubbens JR, Stavness I (2017) Deep plant phenomics: a deep

learning platform for complex plant phenotyping tasks. Front

Plant Sci 8:1190. https://doi.org/10.3389/fpls.2017.01190

39. Mohanty SP, Hughes DP, Salathé M (2016) Using deep learning
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183. Yamaç SS, Şeker C, Negiş H (2020) Evaluation of machine

learning methods to predict soil moisture constants with dif-

ferent combinations of soil input data for calcareous soils in a

semi arid area. Agric Water Manag 234:106121. https://doi.org/

10.1016/j.agwat.2020.106121

184. Yu J, Tang S, Zhangzhong L, Zheng W, Wang L, Wong A, Xu L

(2020) A deep learning approach for multi-depth soil water

content prediction in summer maize growth period. IEEE

Access 8:199097–199110. https://doi.org/10.1109/ACCESS.

2020.3034984

185. Yu J, Zhang X, Xu L, Dong J, Zhangzhong L (2021) A hybrid

CNN-GRU model for predicting soil moisture in maize root

zone. Agric Water Manag 245:106649. https://doi.org/10.1016/j.

agwat.2020.106649

186. Njoku EG, Jackson TJ, Lakshmi V, Member S, Chan TK,

Nghiem SV (2003) Soil moisture retrieval from AMSR-E. IEEE

Trans Geosci Remote Sens 41(2):215–229. https://doi.org/10.

1109/TGRS.2002.808243

187. Wagner W, Lemoine G, Rott H (1999) A method for estimating

soil moisture from ers scatterometer and soil data. RSEnv
70(2):191–207. https://doi.org/10.1016/S0034-4257(99)00036-

X

188. Kerr YH, Waldteufel P, Wigneron JP, Delwart S, Cabot F,

Boutin J, Escorihuela MJ, Font J, Reul N, Gruhier C, Juglea SE,

Drinkwater MR, Hahne A, Martin-Neira M, Mecklenburg S

(2010) The SMOS L: New tool for monitoring key elements

ofthe global water cycle. Proc IEEE 98(5):666–687. https://doi.

org/10.1109/JPROC.2010.2043032

189. Entekhabi D, Njoku EG, O’Neill PE, Kellogg KH, Crow WT,

Edelstein WN, Entin JK, Goodman SD, Jackson TJ, Johnson J,

Kimball J, Piepmeier JR, Koster RD, Martin N, McDonald KC,

Moghaddam M, Moran S, Reichle R, Shi JC, Spencer MW,

Thurman SW, Tsang L, Van Zyl J (2010) The soil moisture

active passive (SMAP) mission. Proc IEEE 98(5):704–716.

https://doi.org/10.1109/JPROC.2010.2043918

190. Liang S, Wang J (2019) Advanced remote sensing: terrestrial

information extraction and applications. Adv Remote Sens Terr

Inf Extr Appl 1–986

191. Liou YA, Liu SF, Wang WJ (2001) Retrieving soil moisture

from simulated brightness temperatures by a neural network.

IEEE Trans Geosci Remote Sens 39(8):1662–1672. https://doi.

org/10.1109/36.942544

192. Fang K, Shen C, Kifer D, Yang X (2017) Prolongation of SMAP

to spatiotemporally seamless coverage of continental U.S. using

a deep learning neural network. Geophys Res Lett

44:11030–11039. https://doi.org/10.1002/2017GL075619

193. Zhang D, Zhang W, Huang W, Hong Z, Meng L (2017)

Upscaling of surface soil moisture using a deep learning model

with VIIRS RDR. ISPRS Int J Geo-Inf 6(5):130. https://doi.org/

10.3390/ijgi6050130

194. Lee CS, Sohn E, Park JD, Jang JD (2019) Estimation of soil

moisture using deep learning based on satellite data: a case study

of South Korea. GISci Remote Sens 56(1):43–67. https://doi.

org/10.1080/15481603.2018.1489943

195. Wang W, Zhang C, Li F, Song J, Li P, Zhang Y (2020)

Extracting soil moisture from fengyun-3D medium resolution

spectral imager-II imagery by using a deep belief network.

J Meteorol Res 344(34):748–759. https://doi.org/10.1007/

s13351-020-9191-x

20570 Neural Computing and Applications (2022) 34:20539–20573

123

https://doi.org/10.5194/hess-25-603-2021
https://doi.org/10.5194/hess-25-603-2021
https://doi.org/10.1016/0022-1694(95)02965-6
https://doi.org/10.1016/0022-1694(95)02965-6
https://doi.org/10.1016/j.agwat.2012.04.006
https://doi.org/10.1007/s40009-015-0358-4
https://doi.org/10.1029/2006JD007478
https://doi.org/10.1126/science.1100217
https://doi.org/10.1016/j.earscirev.2010.02.004
https://doi.org/10.1016/j.earscirev.2010.02.004
https://doi.org/10.1029/2009GL040334
https://doi.org/10.1016/j.jhydrol.2008.08.023
https://doi.org/10.1016/j.jhydrol.2008.08.023
https://doi.org/10.5194/hess-18-2343-2014
https://doi.org/10.1007/BF02186962
https://doi.org/10.1109/JSTARS.2009.2037163
https://doi.org/10.1109/JSTARS.2009.2037163
https://doi.org/10.1175/JHM-D-12-079.1
https://doi.org/10.1175/JHM-D-12-079.1
https://doi.org/10.1038/s41586-019-0912-1
https://doi.org/10.1007/s40333-016-0049-0
https://doi.org/10.1007/s40333-016-0049-0
https://doi.org/10.1109/COASE.2018.8560431
https://doi.org/10.1109/COASE.2018.8560431
https://doi.org/10.1016/j.agwat.2020.106121
https://doi.org/10.1016/j.agwat.2020.106121
https://doi.org/10.1109/ACCESS.2020.3034984
https://doi.org/10.1109/ACCESS.2020.3034984
https://doi.org/10.1016/j.agwat.2020.106649
https://doi.org/10.1016/j.agwat.2020.106649
https://doi.org/10.1109/TGRS.2002.808243
https://doi.org/10.1109/TGRS.2002.808243
https://doi.org/10.1016/S0034-4257(99)00036-X
https://doi.org/10.1016/S0034-4257(99)00036-X
https://doi.org/10.1109/JPROC.2010.2043032
https://doi.org/10.1109/JPROC.2010.2043032
https://doi.org/10.1109/JPROC.2010.2043918
https://doi.org/10.1109/36.942544
https://doi.org/10.1109/36.942544
https://doi.org/10.1002/2017GL075619
https://doi.org/10.3390/ijgi6050130
https://doi.org/10.3390/ijgi6050130
https://doi.org/10.1080/15481603.2018.1489943
https://doi.org/10.1080/15481603.2018.1489943
https://doi.org/10.1007/s13351-020-9191-x
https://doi.org/10.1007/s13351-020-9191-x


196. Masrur Ahmed AA, Deo RC, Raj N, Ghahramani A, Feng Q,

Yin Z, Yang L (2021) Deep learning forecasts of soil moisture:

convolutional neural network and gated recurrent unit models

coupled with satellite-derived MODIS, observations and syn-

optic-scale climate index data. Remote Sens 13(4):554. https://

doi.org/10.3390/rs13040554

197. Porat R, Lichter A, Terry LA, Harker R, Buzby J (2018)

Postharvest losses of fruit and vegetables during retail and in

consumers’ homes: quantifications, causes, and means of pre-

vention. Postharvest Biol Technol 139:135–149

198. Chakraborty SK, Mahanti NK, Mansoori SM, Tripathi MK,

Kotwaliwale N, Jayas DS (2021) Non-destructive classification

and prediction of aflatoxin-B1 concentration in maize kernels

using Vis-NIR (400–1000 nm) hyperspectral imaging. J Food

Sci Technol 58:437–450

199. Bureau S, Cozzolino D, Clark CJ (2019) Contributions of

Fourier-transform mid infrared (FT-MIR) spectroscopy to the

study of fruit and vegetables: a review. Postharvest Biol Technol

148:1–14

200. Li L, Peng Y, Li Y, Chao K, Dhakal S (2020, April) Online

detection of tomato internal and external quality attributes by an

optical sensing system. In sensing for agriculture and food

quality and safety XII (Vol. 11421, p. 114210T). International

society for optics and photonics

201. Ni C, Wang D, Tao Y (2019) Variable weighted convolutional

neural network for the nitrogen content quantization of Masson

pine seedling leaves with near-infrared spectroscopy. Spec-

trochim Acta A Mol Biomol Spectrosc Spectrochim Acta A

209:32–39

202. Rong D, Wang H, Ying Y, Zhang Z, Zhang Y (2020) Peach

variety detection using VIS-NIR spectroscopy and deep learn-

ing. Comput Electron Agric 175:105553

203. Acquarelli J, Van Laarhoven T, Gerretzen J, Tran TN, Buydens

LMC, Marchiori E (2017) Convolutional neural networks for

vibrational spectroscopic data analysis. Anal Chim Acta

954:22–31

204. Liu Y, Zhou S, Han W, Liu W, Qiu Z, Li C (2019) Convolu-

tional neural network for hyperspectral data analysis and

effective wavelengths selection. Anal Chim Acta 1086:46–54

205. Bai Y, Xiong Y, Huang J, Zhou J, Zhang B (2019) Accurate

prediction of soluble solid content of apples from multiple

geographical regions by combining deep learning with spectral

fingerprint features. Postharvest Biol Technol 156:110943

206. Qiu Z, Chen J, Zhao Y, Zhu S, He Y, Zhang C (2018) Variety

identification of single rice seed using hyperspectral imaging

combined with convolutional neural network. Appl Sci 8(2):212

207. Nie P, Zhang J, Feng X, Yu C, He Y (2019) Classification of

hybrid seeds using near-infrared hyperspectral imaging tech-

nology combined with deep learning. Sens Actuators B Chem

296:126630

208. Wu N, Zhang Y, Na R, Mi C, Zhu S, He Y (2019) Variety

identification of oat seeds using hyperspectral imaging: Inves-

tigating the representation ability of deep convolutional neural

network. RSC Adv 9(22):12635–12644

209. Wu N, Zhang C, Bai X, Du X, He Y (2018) Discrimination of

Chrysanthemum varieties using hyperspectral imaging com-

bined with a deep convolutional neural network. Molecules

23:2831

210. Zhang X, Xu J, Lin T, Ying Y (2018) Convolutional neural

network based classification analysis for near infrared spectro-

scopic sensing. In: 2018 ASABE international meeting (pp.

1–6). ASABE

211. Franczyk B, Hernes M, Kozierkiewicz A, Kozina A, Pietranik

M, Roemer I, Schieck M (2020) Deep learning for grape variety

recognition. Proc Comput Sci 176:1211–1220

212. Yu X, Lu H, Wu D (2018) Development of deep learning

method for predicting firmness and soluble solid content of

postharvest Korla fragrant pear using Vis/NIR hyperspectral

reflectance imaging. Postharvest Biol Technol 141:39–49

213. Malek S, Melgani F, Bazi Y (2018) One-dimensional convolu-

tional neural networks for spectroscopic signal regression.

J Chemom 32(5):e2977

214. Zhang C, Wu W, Zhou L, Cheng H, Ye X, He Y (2020)

Developing deep learning based regression approaches for

determination of chemical compositions in dry black goji berries

(Lycium ruthenicum Murr.) using near-infrared hyperspectral

imaging. Food Chem 319:126536

215. Feng L, Zhu S, Zhou L, Zhao Y, Bao Y, Zhang C (2019)

Detection of subtle bruises on winter jujube using hyperspectral

imaging with pixel-wise deep learning method. IEEE Access

7:64494–64505

216. Gao Z, Yuanyuan Shao Y, Xuan G, Wang Y, Liu Y, Han X

(2020) Real-time hyperspectral imaging for the in-field estima-

tion of strawberry ripeness with deep learning. Artif Intell Agric

4:31–38

217. Arivazhagan S, Shebiah N, Nidhyanandhan S, Ganesan L (2010)

Fruit recognition using color and texture features. J Emerg

Trends Comput Inf Sci 1:90–94

218. Zawbaa HM, Abbass M, Hazman M, Hassenian AE (2014)

Automatic fruit image recognition system based on shape and

color features. In: Advanced Machine Learning Technologies

and Applications. (eds.: Hassanien, AE, Tolba, MF, and Taher

Azar A) AMLTA. Series: Commun Comput 488: 278–290.

https://doi.org/10.1007/978-3-319-13461-1_27

219. Li D, Zhao H, Zhao X, Gao Q, Xu L (2017) Cucumber detection

based on texture and color in greenhouse. Intern J Pattern

Recognit Artif Intell 31(1754016):17

220. Ninawe P, Pandey S (2014) A completion on fruit recognition

system using k-nearest neighbours algorithm. Int J Adv Res

3:2352–2356

221. Liu Z, He Y, Cen H, Lu R (2018) Deep feature representation

with stacked sparse auto-encoder and convolutional neural net-

work for hyperspectral imaging-based detection of cucumber

defects. Trans ASABE 61:425–436

222. Raikar MM, Meena SM, Kuchanur C, Girraddi S, Benagi P

(2020) Classification and grading of okra-ladies finger using

deep learning. Proc Comput Sci 171:2380–2389

223. Polder G, Blok PM, de Villiers HA, van der Wolf JM, Kamp J

(2019) Potato virus y detection in seed potatoes using deep

learning on hyperspectral images. Front Plant Sci 10:209

224. Alajrami MA, Abu-Naser SS (2020) Type of tomato classifi-

cation using deep learning. Int J Acad Pedagog Res 3:21–25

225. Da Costa AZ, Figueroa HE, Fracarolli JA (2020) Computer

vision based detection of external defects on tomatoes using

deep learning. Biosyst Eng 190:131–144

226. Zhang L, Jia J, Li Y, Gao W, Wang M (2019) Deep learning

based rapid diagnosis system for identifying tomato nutrition

disorders. KSII T Internet Info 13:4

227. Mubin NA, Nadarajoo E, Shafri HZM, Hamedianfar A (2019)

Young and mature oil palm tree detection and counting using

convolutional neural network deep learning method. Int J

Remote Sens 40:7500–7515. https://doi.org/10.1080/01431161.

2019.1569282

228. Nasiri A, Taheri-Garavand A, Zhang YD (2019) Image-based

deep learning automated sorting of date fruit. Postharvest Biol

Technol 153:133–141

229. Altaheri H, Alsulaiman M, Muhammad G (2019) Date fruit

classification for robotic harvesting in a natural environment

using deep learning. IEEE Access 7:117115–117133

230. Bisgin H, Bera T, Ding HJ, Semey HG, Wu LH, Xu J (2018)

Comparing SVM and ANN based machine learning methods for

Neural Computing and Applications (2022) 34:20539–20573 20571

123

https://doi.org/10.3390/rs13040554
https://doi.org/10.3390/rs13040554
https://doi.org/10.1007/978-3-319-13461-1_27
https://doi.org/10.1080/01431161.2019.1569282
https://doi.org/10.1080/01431161.2019.1569282


species identification of food contaminating beetles. Sci Rep

8:12. https://doi.org/10.1038/s41598-018-24926-7

231. Ravikanth L, Jayas DS, White NDG, Fields PG, Sun DW (2017)

Extraction of spectral information from hyperspectral data and

application of hyperspectral imaging for food and agricultural

products. Food Bioproc Tech 10(1):1–33

232. Ropodi AI, Panagou EZ, Nychas GJE (2016) Data mining

derived from food analyses using non-invasive/non-destructive

analytical techniques; determination of food authenticity, quality

& safety in tandem with computer science disciplines. Trends

Food Sci Technol 50:11–25. https://doi.org/10.1016/j.tifs.2016.

01.011

233. Song Q, Zheng YJ, Xue Y, Sheng WG, Zhao MR (2017) An

evolutionary deep neural network for predicting morbidity of

gastrointestinal infections by food contamination. Neurocom-

puting 226:16–22

234. Rong D, Wang H, Xie L, Ying Y, Zhang Y (2020) Impurity

detection of juglans using deep learning and machine vision.

Comput Electron Agric 178:105764

235. Jiang B, He J, Yang S, Fu H, Li T, Song H, He D (2019) Fusion

of machine vision technology and AlexNet-CNNs deep learning

network for the detection of postharvest apple pesticide residues.

Artif Intell Agric 1:1–8

236. Neto HA, Tavares WLF, Ribeiro DCSZ, Alves RCO, Fonseca

LM, Campos SVA (2019) On the utilization of deep and

ensemble learning to detect milk adulteration. BioData Min

12(1):13

237. Zheng M, Zhang Y, Gu J, Bai Z, Zhu R (2021) Classification

and quantification of minced mutton adulteration with pork

using thermal imaging and convolutional neural network. Food

Control 126:108044. https://doi.org/10.1016/j.foodcont.2021.

108044

238. Wei Z, Yang Y, Wang J, Zhang W, Ren Q (2018) The mea-

surement principles, working parameters and configurations of

voltammetric electronic tongues and its applications for food-

stuff analysis. J Food Eng 217:75–92

239. Kiranmayee AH, Panchariya PC, Sharma AL (2012) New data

reduction algorithm for voltammetric signals of electronic ton-

gue for discrimination of liquids. Sens Actuators A 187:154–161

240. Taheri-Garavand A, Fatahi S, Omid M, Makino Y (2019) Meat

quality evaluation based on computer vision technique: a

review. Meat Sci 156:183–195

241. Yang Z, Gao J, Wang S, Wang Z, Li C, Lan Y, Sun X, Shengxi

Li S (2021) Synergetic application of E-tongue and E-eye based

on deep learning to discrimination of Pu-erh tea storage time.

Comput Electron Agric 187:106297

242. Shi Q, Guo T, Yin T, Wang Z, Li C, Sun X, Guo Y, Yuan W

(2018) Classification of Pericarpium Citri Reticulatae of dif-

ferent ages by using a voltammetric electronic tongue system.

Int J Electrochem Sci 13:11359–11374. https://doi.org/10.

20964/2018.12.45
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