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Abstract
Early diagnosis of brain tumor using magnetic resonance imaging (MRI) is vital for timely medication and effective

treatment. But, most people living in remote areas do not have access to medical experts and diagnosis facilities. Nev-

ertheless, recent advancement in the Internet of Thing and artificial intelligence is transforming the healthcare system and

has led to the development of the Internet of Medical Things (IoMT). An automated brain tumor classification system

integrated with the IoMT framework can aid in remotely diagnosing brain tumors. However, the existing methods for brain

tumor classification in MRI based on traditional machine learning and deep learning are compute-intensive. Deployment of

these methods in the real-world clinical setup poses a serious challenge. Therefore, there is a requirement for robust and

compute-efficient techniques for brain tumor classification. To this end, this paper presents a novel lightweight attention-

guided convolutional neural network (AG-CNN) for brain tumor classification in magnetic resonance (MR) images. The

designed architecture uses channel-attention blocks to focus on relevant regions of the image for tumor classification.

Besides, AG-CNN uses skip connections via global-average pooling to fuse features from different stages. This approach

helps the network extract enhanced features essential to differentiate tumor and normal brain MR images. To access the

efficacy of the designed neural network, we evaluated it on four benchmark brain tumor MRI datasets. The comparison

results with the existing state-of-the-art methods revealed the robustness and computational efficiency of the proposed AG-

CNN model. The designed brain tumor classification pipeline can be easily deployed on a resource-constrained embedded

platform and used in real-world clinical settings to quickly classify brain tumors in MR images.

Keywords Brain tumor classification � Channel-attention � Convolutional neural network � Magnetic resonance image

(MRI)

1 Introduction

Cancer results in one of the highest number of deaths

across the globe. According to the world health organiza-

tion (WHO) report, cancer was responsible for 10 million

deaths in 2020 alone [1]. Of several tumors, the brain

tumor is one of the most terrible diseases [2]. Therefore,

early diagnosis and detection of brain tumors are extremely

important. Manual detection and classification of brain

tumors are challenging and prone to errors and thus require

an expert radiologist to classify these tumors. Therefore,

over the years, various machine learning and deep learning

methods have been extensively studied and deployed to

classify brain tumors from MRI automatically. Computer-

aided diagnoses (CAD) of brain tumors using machine

learning and deep learning methods have contributed
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immensely and may assist medical experts in detecting and

classifying brain tumors. These techniques are highly

reliable for their higher accuracy and consume less time.

One can define a brain tumor as an intracranial neo-

plasm within the brain or the central spinal canal caused

due to the breakdown of the cell division control mecha-

nism in a group of cells in the brain. Depending on their

location, the brain tumors are classified broadly into

meningioma, pituitary, and glioma. Meningioma occurs

most often within the skull and outside the cell tissue and is

mostly benign. Benign brain tumors can be fatal, and these

tumors have a very low probability of turning into a

malignant tumor-like meningioma [3]. The pituitary ade-

noma occurs at the pituitary’s location and is not malignant

but can cause serious damage to the body’s control of

hormones. It can lead to a lack of hormones in the body and

vision loss. Glioma is a very common brain tumor in the

supportive cells to the nerve cells, often known as the glial

cells. It is one of the more common types of brain cancer

and accounts for 30% of all primary tumors, and 80% of all

malignant ones [4]. WHO divides gliomas into grades from

1 to 4, 1 being benign and 4 being malignant [5]. This

classification system is one of the most accepted ones [6].

Grade 1 is the least dangerous tumor and can be cured,

while grade 2 tumors tend to spread to areas other than

their original location. Grade 3 and grade 4 tumors have

varying appearances and need more sophisticated medical

interventions to cure them.

Based on the learning scheme, the existing techniques

for brain tumor classification can be classified broadly into

handcrafted feature-based and deep learning-based meth-

ods. Handcrafted feature-based methods require extracting

efficient handcrafted features by the experts [7]. These

features, once extracted, are classified by traditional clas-

sifiers such as the support vector machine (SVM), the

K-nearest neighbor (KNN), etc. Traditional machine

learning-based brain tumor classification techniques have

achieved satisfactory results, but they are time-consuming

and require huge computational costs. On the other hand,

the deep learning-based techniques using convolutional

neural networks (CNNs) are end-to-end trainable and do

not require handcrafted features. These methods are com-

paratively faster and more robust than the machine learn-

ing-based methods. Given the labeled images of normal

and abnormal brain MR images, the CNNs can learn

complex features and classify them directly without man-

ual intervention. Such a scheme drastically reduces the

time required to craft features and also helps to boost the

accuracy of the model [8].

Training parameter-intensive deep CNN (DCNN) with

high generalization requires large-scale brain tumor MRI

datasets. However, the existing benchmark tumor MRI

datasets are insufficient in size. Therefore, instead of

training the CNNs from scratch, researchers have

employed transfer learning techniques for brain tumor

classification from small-scale MR images [9, 10].

Depending on their mode of operation, one can categorize

the existing transfer learning-based scheme for brain tumor

classification into feature extraction-based and fine-tuning-

based methods. The former uses a pre-trained CNN such as

DenseNet-121 initially trained on the large-scale ImageNet

dataset to derive attributes from the brain MRI. The fea-

tures thus obtained are classified using traditional machine

learning classifiers such as the SVM, KNN, etc. [9]. The

fine-tuning scheme, too, uses a seed CNN pre-trained on a

large-scale source dataset. The scheme removes the soft-

max classifier layer from the off-the-self available seed

model and appends a new softmax classifier to obtain the

target CNN. In the next step, the framework transfers the

learned parameters of the seed CNN to the target CNN.

Finally, the framework fine-tunes the target CNN on the

target brain MRI dataset [10]. Some existing works have

also utilized the fine-tuned CNN as a feature extractor.

These methods extract features from the CNN fine-tuned

on the brain MRI dataset. Once extracted, these features are

classified using the conventional machine-learning classi-

fiers [2].

This work aims to classify MR images of brains into

normal and tumor classes. To this end, we designed and

implemented an attention-guided lightweight CNN named

AG-CNN. We trained the designed AG-CNN from scratch

on four benchmark MRI datasets. The designed CNN being

lightweight is computationally efficient and requires less

memory to load the model weights. We assessed the pro-

posed CNN using five evaluation metrics: accuracy, pre-

cision, recall, specificity, and F1-score. The proposed

model achieved competitive results on all the datasets with

multi-fold improvement in the execution time due to fewer

model parameters (floating-point operations) than the

existing state-of-the-art models. In essence, the major

contributions of this work are as follows:

• Design and implement a novel lightweight attention-

guided convolutional neural network (AG-CNN) for

brain tumor classification in MR images. AG-CNN uses

channel-attention blocks to focus on relevant regions of

the MR images for tumor classification.

• Extensive experimentation on four (BT-large-3c, BT-

small-2c, BT-large-2c, and BT-large-4c) benchmark

brain tumor MRI datasets. BT-small-2c and BT-large-

2c consist of MR images of normal and tumor brain,

BT-large-3c consists of MR images of meningioma,

glioma, and pituitary brain tumor, and BT-large-4c

consists of MR images of normal and three (menin-

gioma, glioma, and pituitary) brain tumors.
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• Performance evaluation of the proposed AG-CNN

model using precision, recall, specificity, and F1-score.

Benchmarking the performance of the proposed brain

tumor classification scheme against several state-of-the-

art techniques.

• The proposed scheme for brain tumor classification

integrated with the IoMT framework may assist the

medical practitioners and nursing staff in identifying

the correct type of brain tumor in MR images and thus

provide the patient with the best treatment.

In the subsequent sections of this paper, we briefly examine

some related works on brain tumor classification, details of

the existing publicly available brain tumor MRI datasets,

proposed methodology, and performance evaluation out-

comes. Section 2 reviews the existing state-of-the-art

works on brain tumor classification in MR images. Sec-

tion 3 describes the proposed methodology, including

details of the image pre-processing step and neural network

architecture. Details of the brain tumor MRI datasets,

procedures used for training the proposed neural network,

and the evaluation results of the model on four brain tumor

MRI datasets form the content of Sect. 4. We provide

results of comparing the designed CNN with the existing

models and related discussions in Sect. 5. Finally, Sect. 6

concludes the paper with conclusive remarks.

2 Related work

There has been vast research done in machine learning and

deep learning to develop methods for successfully classi-

fying brain MR images into tumorous and normal. Con-

volutional neural networks (CNNs) have been used

independently or in combination with other classification

techniques to achieve high accuracy on various MRI

datasets. The main hurdle is finding the right combination

of CNN for feature extraction and classifiers to achieve

maximum accuracy.

Researchers developed numerous techniques for brain

tumor classification in the past several years using tradi-

tional machine learning. For instance, Jafari and Kasaei

[11] presented a six-stage pipeline for automatic classifi-

cation of brain MR images into normal, lesion benign, and

malignant types. At first, the pipeline uses an image

enhancement and restoration stage to enhance and restore

the MR images. In the subsequent step, the pipeline par-

titions the image into meaningful regions using the seed

region growing segmentation algorithm. In the third stage,

the pipeline uses connected component labeling (CCL) to

label each pixel according to its assigned component. The

discrete wavelet transform (DWT) is employed in the

fourth stage to derive useful attributes from the meaningful

regions of the brain MRI. The principal component anal-

ysis (PCA) is used in the fifth stage to reduce the dimension

of DWT features and obtain relevant features. The final

stage of the pipeline employs the neural network classifier

to classify the subjects as normal or abnormal (benign or

malignant). In another related work, El-Dahshan et al. [12]

introduced a three-stage hybrid technique to classify brain

tumors in MR images. In the first stage, the pipeline

employs DWT to derive features from the brain MR ima-

ges. In the subsequent stage, the pipeline reduces the

dimensions of the DWT features obtained in the previous

step through PCA. The pipeline classifies the PCA-reduced

features using the artificial neural network (ANN) and the

K-nearest neighbor (K-NN) into normal or abnormal MR

images in the third stage. Zacharaki et al. [13] also pro-

posed a machine learning technique to classify and grade

brain tumors in MR images. Their proposed pipeline has

used shape, statistical characteristics of the tumor, the

mean and variance of image intensities, and texture feature

calculated using a bank of 40 Gabor filters with eight ori-

entation and five frequency scales. Relevant features are

selected using the forward selection method based on a

ranking criterion from the high-dimensional feature vector.

Subsequently, the important subset of features is selected

using the SVM recursive feature elimination (SVM-RFE)

feature selection algorithm from the reduced feature vec-

tors. Finally, the framework classifies the selected features

using the SVM classifier with the Gaussian kernel. Besides,

the technique introduced by Saritha et al. [14] has

employed wavelet entropy-based spider web plots for

feature extraction and a probabilistic neural network to

classify tumors in brain MR images. Ismael and Abdel-

Qader [15] introduced a framework for brain tumor clas-

sification in MR images that uses a hybrid method com-

prising statistical methods for feature extraction and neural

network algorithms. Initially, the framework uses DWT

and Gabor filters to extract features from the brain tumor

segments. The framework extracts and fuses statistical

features derived from the DWT and Gabor convolved

images in the subsequent step. Finally, the fused features

are classified using the neural network classifier. The brain

tumor classification scheme proposed by Mohsen et al. [16]

has also used the DWT to extract features from the brain

MR images and the PCA to lower the dimensions of the

features. Once reduced, the PCA-reduced DWT features

were classified using the deep neural network (DNN) into

normal, glioblastoma, sarcoma, and metastatic bron-

chogenic carcinoma tumors. Ayadi et al. [17] introduced a

hybrid feature extraction scheme using DWT and bag-of-

words (BoW) to distinguish between normal and unhealthy

brain MR images. Once extracted, the features were clas-

sified using different classifiers: SVM, KNN, random forest

(RF), and AdaBoost. In their other work [18], the authors
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employed a hybrid of dense speeded-up robust features

(DSURF) and histogram of oriented gradients (HoG) for

feature extraction from the brain MR images. The features

extracted from the brain MR images are classified into

meningioma, pituitary, and glioma tumors, using the SVM

classifier. The scheme proposed by Anjum et al. [19] has

introduced a novel feature extractor named the recon-

struction independent component analysis (RICA) for

multi-class (pituitary, meningioma, and glioma) brain

tumor detection in MR images. Once extracted from the

brain MR images, the features were classified using the

linear and nonlinear SVM and linear discriminant analysis

(LDA) classifier. The computer-aided diagnosis (CAD)

system for the classification of brain tumors in MRI pro-

posed by Ghahfarrokhi and Khodadadi [20] has utilized

chaos theory to estimate the complexity measures such as

Lyapunov exponent (LE), approximate entropy (ApEn),

and fractal dimension (FD). The framework has employed

the gray-level co-occurrence matrix (GLCM) and DWT for

feature extraction and the SVM, K-NN, and pattern net for

feature classification. In their recent work, Amin et al. [21]

analyzed the performance of the local binary pattern

(LBP), and Gabor wavelet transform (GWT) feature

extractor coupled with the SVM, K-NN, decision tree

(DT), random forest (RF), and naı̈ve Bayes (NB) classifier

for the classification of brain tumors in MR images.

Due to their widespread popularity in numerous com-

puter vision tasks, researchers developed several deep

learning algorithms for brain tumor classification in MRI.

In one of such works, Kokkalla et al. [22] introduced dense

inception residual network for multi-class brain tumor

classification. The network replaces the final classifier layer

of Inception ResNet v2 CNN with a dense network for

enhanced feature extraction and a softmax layer for the

multi-class brain tumor classification. In another work, Ma

and Zhang [23] introduced a novel lightweight neural

network for brain tumor detection. The designed network

achieved a better trade-off between accuracy and efficiency

than the traditional parameter-intensive neural network. In

one of the works [24], the authors introduced a convolu-

tional auto-encoder neural network (CANN) to obtain and

learn deep features to classify three brain tumor classes.

Masood et al. [25] proposed a custom Mask Region-based

convolution neural network (Mask RCNN) with DenseNet-

41 backbone for automatic segmentation and classification

of brain tumors in MR images, while Isunuri and Kakarla

[26] proposed a seven-layer CNN to classify three-class

brain MR images. Their designed CNN employed separa-

ble convolution to optimize computation time. Abiwinanda

et al. [27] also introduced a lightweight CNN to detect

three types of brain tumors, namely glioma, meningioma,

and pituitary, in MRI. Besides, Kakarla et al. [28] proposed

a lightweight eight-layer average-pooling CNN for three-

class brain tumor classification. The designed architecture

trained using the N-Adam optimizer with a sparse-cate-

gorical cross-entropy loss function takes lesser computa-

tion time and attains competitive performance. The brain

tumor classification scheme introduced by Alhassan and

Zainon [29] has used an image pre-processing step and a

CNN with a hard swish-based rectified linear unit (ReLU)

activation function to improve the robustness and the

learning speed of the pipeline. Essentially, the pipeline first

uses the normalization technique and histogram of oriented

gradients (HoG) to enhance the raw MR images. Once

available, the pipeline passes the HoG processed MR

images as input to the designed CNN that classifies them

into three tumor classes: meningiomas, gliomas, and pitu-

itary. Sultan et al. [30] proposed a 16-layer CNN to classify

different brain tumor types (meningioma, glioma, and

pituitary) and grades (Grade II, Grade III, and Grade IV). A

cross-channel normalization layer is used in the designed

CNN to normalize the input layer by scaling and adjusting

the related activations. In their recent work, Wozniak et al.

[31] proposed a novel correlation learning mechanism

(CLM) for deep neural network architectures that combines

CNN with classic architecture. Their proposed CLM

scheme helps the CNN obtain the right set of filters for

pooling and convolution layers and helps the main neural

network classifier converge faster with better accuracy. In

[32], the authors proposed a highly generalizable two-

channel deep neural network architecture for tumor clas-

sification. Besides, the neural network uses a novel pooling

method to extract local features from convolution blocks of

InceptionResNetV2 and Xception networks. Also, the

attention mechanism in their proposed network helps it

focus on tumor regions and thus better classify the type of

tumor present in the images. The deep learning algorithm

introduced by Kumar et al. [33] has used the ResNet-50

CNN and global average pooling to resolve the vanishing

gradient and overfitting problems when training parameter-

intensive CNN on a small-scale brain tumor MRI dataset.

The techniques introduced by Irmak [34] have used a CNN

for multi-classification of brain tumors for their early

diagnosis. The authors proposed three different CNNs for

brain tumor detection, brain tumor type (normal, glioma,

meningioma, pituitary, and metastatic) classification, and

tumor grade (Grade II, Grade III, and Grade IV) classifi-

cation. Diaz-Pernas et al. [35] presented a multi-scale

DCNN for automatic segmentation and classification of

brain tumors in MRI. Inspired by the human visual system,

the designed model processes the input image in three

spatial scales along different processing pathways and

classifies the MRIs into meningioma, glioma, and pituitary

tumor. Liu et al. [36] introduced a novel neural network

named global average pooling residual network (G-

ResNet) to classify brain tumor images. The G-ResNet uses
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the ResNet34 CNN as the backbone classifier. However,

instead of the flatten layer, the G-ResNet uses the global

average pooling layer that reduces the model parameters

and thus helps it mitigate over-fitting. Also, the G-ResNet

concatenates features from the different layers of the

backbone ResNet34 CNN to obtain enhanced features for

better classification. Besides, to increase the penalty for

misclassification, the framework used the sum of interval

and cross-entropy loss to optimize the loss during

G-ResNet training. The deep learning framework for

automated classification of brain tumors from MRI pro-

posed by Deepak and Ameer [37] has employed a light-

weight CNN for feature extraction and the conventional

support vector machine (SVM) for classification. Gu et al.

[38] proposed a method for brain tumor classification in

MR images using convolutional dictionary learning with

local constraint (CDLLC). CDLLC integrates multilayer

dictionary learning into a CNN structure to explore the

discriminative information for enhanced tumor

classification.

Training parameter-intensive CNN on small-scale brain

tumor MRI datasets leads to over-fitting; therefore,

researchers have extensively used deep learning transfer-

learning for brain tumor classification in MRI. For

instance, Panwar et al. [39] utilized the deep learning

transfer learning scheme using ImageNet pre-trained

AlexNet CNN to classify three types of brain tumors in MR

images. Though the framework achieved competitive

accuracy, the AlexNet CNN with 120 million (M) param-

eters and 120 megabytes (MB) of memory footprint is

compute-intensive and thus restricts the use of the frame-

work in real-world brain tumor diagnosis. The scheme in-

troduced by Anjum et al. [40] has suggested using deep

features extracted from the ImageNet pre-trained ResNet-

101 CNN and the traditional machine learning classifiers

such as KNN and SVM for the classification of the brain

tumor in MR images. Tandel et al. [41] proposed an MRI-

based noninvasive brain tumor grading method using deep

learning and machine learning techniques. Their proposed

framework used five CNNs, namely AlexNet, VGG16,

ResNet18, GoogleNet, and ResNet50, for feature extrac-

tion from the brain MR images. The features once

extracted were classified using five traditional machine

learning classifiers, namely the support vector machine

(SVM), K-nearest neighbors (K-NN), naı̈ve Bayes (NB),

decision tree (DT), and linear discriminant analysis (LDA)

using fivefold cross-validation. In one of the studies, Polat

and Gungen [42] also proposed a solution to classify brain

tumors in MR images using transfer learning. The brain

tumor classification scheme introduced by Lu et al. [43]

has employed transfer-learning-based feature extraction

using ImageNet pre-trained MobileNetV2 and three feed-

forward network classifiers, namely the extreme learning

machine (ELM), Schmidt neural network, and random

vector functional-link net for classification. The framework

utilized the chaotic bat algorithm to optimize the weights

and biases of the three feed-forward network classifiers and

boost their recognition accuracy. Noreen et al. [44]

employed the deep learning fine-tuning scheme using the

ImageNet pre-trained Inception-v3 and DenseNet201 CNN

for three-class brain tumor classification. The brain tumor

classification method introduced by Kaur and Gandhi [45]

has utilized the transfer-learning scheme using ImageNet

pre-trained DCNNs, namely AlexNet, Resnet50, GoogLe-

Net, VGG-16, Resnet101, VGG-19, Inceptionv3, and

InceptionResNetV2. Khan et al. [46] introduced an auto-

mated multi-modal scheme using deep learning for brain

tumor type classification. The framework initially uses

edge-based histogram equalization and discrete cosine

transform (DCT) techniques to enhance MR images. In the

subsequent step, the framework utilized the transfer-

learning-based feature extraction scheme using the Ima-

geNet pre-trained VGG16 and VGG19 CNN. The frame-

work selects relevant features from the high-dimensional

deep features using the correntropy-based joint learning

approach with the extreme learning machine (ELM).

Finally, the selected features are classified using the ELM

classifier. In another work, Kang et al. [9] also adopted the

transfer-learning-based feature extraction scheme to extract

features from the brain MR images using several ImageNet

pre-trained deep CNNs. Various machine learning classi-

fiers then evaluate the extracted deep features. Once eval-

uated, the framework concatenates the deep features from

the top three CNNs and feeds the features to several

machine learning classifiers. Mehrotra et al. [47] investi-

gated the transfer-learning-based fine-tuning scheme using

five ImageNet pre-trained CNN, namely AlexNet, Goo-

gLeNet, ResNet50, ResNet101, and SqueezeNet, to clas-

sify brain tumors in MR images into malignant and benign.

The brain tumor classification pipeline introduced by

Pashaei et al. [48] has utilized deep features extracted from

the MR images using CNN and a kernel ELM (KELM) to

classify the deep features into meningioma, glioma, and

pituitary tumor in T1-weighted contrast-enhanced MRI

(CE-MRI) images. Deepak and Ameer [10] employed the

deep learning transfer learning-based scheme using Ima-

geNet pre-trained GoogLeNet for brain tumor classification

in MR images. The proposed scheme prunes the softmax

classifier layer and appends a new softmax classifier layer.

It subsequently transfers the learned parameters of pre-

trained GoogLeNet to the target CNN and fine-tunes the

target CNN on the target brain MRI dataset. Sekhar et al.

[2] introduced a brain tumor classification scheme that

employed fine-tuned GoogLeNet features classified using

the SVM and the K-NN classifier.
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Numerous works also exist in the literature that has

utilized advanced neural networks and optimization tech-

niques for brain tumor classification in MRI. For instance,

Anaraki et al. [49] combined CNNs and the genetic algo-

rithm (GA) to classify different grades of Glioma using

MRI. Unlike existing trial and error-based methods of

selecting a deep neural network architecture, the GA in

their proposed framework automatically identifies the

optimal CNN architecture. Rammurthy and Mahesh [50]

proposed the Whale Harris Hawks optimization (WHHO)

for brain tumor detection using MRI. Huang et al. [51]

introduced an innovative differential feature map (DFM)

block that magnifies tumor regions. Besides, DFM blocks

combined with squeeze-and-excitation (SE) blocks form a

differential feature neural network (DFNN). In the initial

step, the proposed framework applies an automatic image

rectification method to align the symmetric axes of the

brain MR images parallel to the perpendicular axis. In the

subsequent step, the framework classifies the aligned brain

MR images using DFNN into abnormal and normal classes.

Sert et al. [52] employed an image super-resolution algo-

rithm first to increase the resolution of the MR images. The

maximum fuzzy entropy segmentation (MFES) is subse-

quently employed to segment the brain tumor from the MR

image. Finally, the framework utilized the ImageNet pre-

trained ResNet CNN for feature extraction and the SVM

classifier to classify the MR images into benign and

malignant brain tumors. Abd-Ellah et al. [53] proposed a

novel two-phase multi-model automatic diagnosis system

for brain tumor detection and localization. In the first

phase, the system classifies the brain MRIs into normal and

abnormal classes using deep features extracted using a

CNN and the error-correcting output codes support vector

machine (ECOC-SVM) classifier. While in the second

phase, the system localizes the tumor within the abnormal

MRIs using a fully designed five-layer region-based CNN

(R-CNN). Finally, compared to the conventional CNN,

Afshar et al. [54] adopted the capsule network (CapsNets)

for brain tumor classification.

3 Proposed methodology

We aim to design a CNN that can automatically classify a

brain MR image either into two classes (normal and

tumor), three classes (meningioma, glioma, and pituitary

tumor), or four classes (normal, meningioma, glioma, and

pituitary tumor). The classification of MR images into

normal or tumor class comes under binary classification

tasks. In contrast, classifying brain MR images into three

tumor classes or normal & three tumor classes are a multi-

class classification task. The training pipeline of the pro-

posed framework for brain MR image classification starts

with pre-processing. From the original brain MR images, as

shown in Fig. 1, the pre-processing operation crops the

relevant image pixels removing the redundant black pixels.

In the subsequent step, the cropped image is resized to 128

� 128 � 1-pixels dimension and passed to the proposed

AG-CNN model. The proposed AG-CNN consists of

multiple convolutional and max-pooling layers. These

layers help the model extract discriminative features from

the input MR images. Besides, the channel-attention blocks

in the proposed AG-CNN help the network focus only on

the relevant area of the brain for better classification. Also,

in addition to the traditional CNN, the proposed AG-CNN

uses high-level feature concatenation via skip-connections

using the global average pooling (GAP) layer. High-level

feature concatenation helps the network learn enhanced

features leading to better classification of different brain

tumors and normal brain MR images. The fully connected

layers in the design CNN transform the concatenated fea-

tures into high-level features using the nonlinear rectified

linear unit (ReLU) activation function. Finally, the

designed CNN passes the transformed features through a

3-way softmax classifier, classifying the input MR image

into meningioma, glioma, and pituitary tumor classes. It is

worth mentioning that in the case of the binary classifica-

tion task (tumor or normal), the network uses a 2-way

softmax classifier, and in the case of the four-class multi-

classification task (meningioma tumor, glioma tumor,

pituitary tumor, and normal), the network uses 4-way

softmax classifier after the fully connected layer. Once

trained, the designed AG-CNN can make predictions on the

unseen brain MR images. The subsequent sections provide

details of various steps employed in the proposed

scheme for brain tumor classification.

3.1 Image pre-processing

As shown in Fig. 1, the raw brain MR image contains

undesired spaces and areas that lead to poor classification

performance of the CNN trained on these images. Thus,

removing the unwanted regions and cropping the images

becomes essential for retaining only useful information. In

this work, we used the extreme point calculation

scheme initially introduced by Kang et al. [9] to segment

the useful areas from the original brain MR images. Fig-

ure 2 shows the sequence of steps to crop the MR images

using the extreme point calculation method. Initially, on

the original brain MR images, we apply Gaussian

smoothing using filters of kernel size 7 � 7 to eliminate the

noisy pixels from the input image. Next, the smoothed MR

image is passed through the Otsu threshold operation to

convert them into binary images. The subsequent step of

pre-processing detects the outer edge contours. Using the

largest contour, we calculate the four extreme points
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(extreme top, extreme bottom, extreme right, and extreme

left) of the binary image. Finally, we crop the images based

on the four points. The cropped MR image, as shown in

Fig. 2 contains only useful regions, removing the redun-

dant black regions in the original image. It is important to

note that before passing the cropped images to the AG-

CNN model, they are resized to 128 � 128 � 1-pixels.

Once cropped and resized, the brain MR images are

standard normalized before being utilized for training the

proposed AG-CNN model. The data normalization process

follows a three-step procedure, wherein the first step

divides the images by 255. This step brings the pixel

intensities in the range of 0 to 1. Subsequently, the pre-

processing step normalizes the scaled images by subtract-

ing the pixel intensities from the mean pixel intensities

computed on the complete dataset. The step eliminates

individual image differences and facilitates better network

convergence during training. Once mean-normalized, we

divide the pixel intensities of the mean-normalized images

by the standard deviation computed on the complete

dataset. Furthermore, we used different on-the-fly data

augmentation strategies (horizontal flip, random rotation,

zooming, shearing, and horizontal and vertical shift) to

overcome overfitting limitations when training the CNN on

small-scale brain MRI datasets.

3.2 Neural network architecture

Figure 3 shows the architectural details of the proposed

lightweight AG-CNN model. The proposed model consists

of seven convolutional layers (Conv_1, Conv_2, Conv_3,

Conv_4, Conv_5, Conv_6, and Conv_7), four max-pooling

layers (MP_1, MP_2, MP_3, and MP_4), two channel-at-

tention blocks (CAB_1 and CAB_2), two global-average

pooling layers (GAP_1 and GAP_2), followed by an

additional layer, fully connected layer, and a softmax

classifier layer at the end. From the brain tumor MR ima-

ges, the convolutional layer in the initial and the later

stages of the designed CNN hierarchically extracts low and

high-level details, respectively. On the other hand, the

Fig. 1 Block diagram representation of the proposed methodology used for brain tumor classification

Fig. 2 Sequence of steps utilized to crop the brain magnetic resonance (MR) images (left to right): Load original MR image, apply thresholding,

find the outer contour, find the edge points, and crop the image based on edge points
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max-pooling layers in the designed model reduce the spa-

tial dimensions of the feature maps obtained from the

convolutional layers. The channel-attention blocks perform

the selection of relevant feature maps. Finally, the feature

vector addition obtained by skip connections via GAP

enhances the feature extraction capability of the network.

The softmax classifier subsequently classifies the aggre-

gated one-dimensional enhanced feature vector into three

tumorous classes. Table 1 depicts the configuration details

of the designed AG-CNN model. The designed lightweight

model has 1.31 million parameters and thus can be

deployed on low-cost portable embedded platforms.

The first convolutional layer (Conv_1) has utilized 32

filters of kernel size 7 � 7. We initialized the filters with

weights computed using 32 real Gabor filters of kernel size

7 � 7. Intuitively, a 2D Gabor filter is a Gaussian wave

modulated sinusoidal signal of a particular frequency and

orientation [55], and defined as:

Fig. 3 Schematic representation of the proposed AG-CNN model (Conv: Convolutional layer, MP: Max-pooling layer, CAB: Channel-attention

block, GAP: Global-average pooling layer, and FC: Fully connected layer)

Table 1 Configuration details of the proposed AG-CNN model

Layer Output size Filter size Stride Border mode No. of parameters (W ? B ? BN)

Input 128 � 128 � 1 – – – 0

Conv_1 128 � 128 � 32 7 � 7 1 � 1 Same 1568 ? 32 ? 128

Conv_2 124 � 124 � 96 5 � 5 1 � 1 Valid 76800 ? 96 ? 384

MP_1 62 � 62 � 96 2 � 2 2 � 2 Same 0

Conv_3 62 � 62 � 96 3 � 3 1 � 1 Same 82944 ? 96 ? 384

Conv_4 60 � 60 � 128 3 � 3 1 � 1 Valid 110592 ? 128 ? 512

MP_2 30 � 30 � 128 2 � 2 2 � 2 Same 0

Conv_5 30 � 30 � 128 3 � 3 1 � 1 Same 147456 ? 128 ? 512

Conv_6 28 � 28 � 192 3 � 3 1 � 1 Valid 221184 ? 192 ? 768

MP_3 14 � 14 � 192 2 � 2 2 � 2 Same 0

Conv_7 12 � 12 � 192 3 � 3 1 � 1 Valid 331776 ? 192 ? 768

MP_4 6 � 6 � 192 2 � 2 2 � 2 Same 0

CAB_1 14 � 14 � 192 – – – 148240

CAB_2 6 � 6 � 192 – – – 148240

GAP_1 1 � 192 – – – 0

GAP_2 1 � 192 – – – 0

Add 1 � 192 – – – 0

FC 1 � 192 – – – 36864 ? 192 ? 768

Output (Softmax) 1 � 4 – – – 768 ? 4 ? 0
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Gðx;y;k;h;w;r;cÞ¼exp �x02þc2y02

2r2

� �
exp i 2px

0
kþwð Þð Þ ð1Þ

where

x0 ¼ xcoshþ ysinh ð2Þ

and

y0 ¼ �xsinhþ ycosh ð3Þ

Equation (1) can further decomposed into real and imagi-

nary components, expressed by Eqs. (4) and (5),

respectively.

Rðx;y;k;h;w;r;cÞ¼exp �x02þc2y02

2r2

� �
cos 2px

0
kþwð Þ ð4Þ

Iðx;y;k;h;w;r;cÞ¼exp �x02þc2y02

2r2

� �
sin 2px

0
kþwð Þ ð5Þ

We used filter coefficients of 32 real Gabor filters of kernel

size 7 � 7 generated using Eq. (4) by varying the hyper-

parameters. The convolutional layer (Conv_2), on the other

hand, has utilized He_uniform initialized 96 filters of

kernel size 5 � 5. The remaining five convolutional layers

viz. Conv_3, Conv_4, Conv_5, Conv_6, and Conv_7 have

utilized He_uniform initialized filters of kernel size 3 � 3.

After each convolutional layer, the combination of con-

volutional and max-pooling layer, and the fully connected

layer, the proposed AG-CNN has utilized batch-normal-

ization to accelerate training and faster convergence.

The convolutional and fully connected layers in the

designed AG-CNN model utilized the rectified linear unit

(ReLU) activation function for the nonlinear transforma-

tion of the features. In contrast to other activation func-

tions, ReLU is compute-efficient and does not require any

sophisticated mathematical operations. Besides, the

designed model has used a dropout regularization layer

with a probability of 0.2 after each batch-normalization

layer. The dropout regularization helps the model learn

more robust features by dropping out arbitrary neurons.

The feature maps in the traditional CNNs have three

dimensions: channel, height, and width. Intuitively, many

channels in the feature map lead to information redun-

dancy. Redundant channels in the feature maps may impact

the performance of CNNs. Therefore, the designed AG-

CNN has used the channel attention block (CAB). The

CAB generates a channel attention matrix that highlights

the inter-channel relationships among the channels of the

feature maps and assigns higher weights to the important

channels and vice-versa. Assigning higher weights to sig-

nificant channels helps the AG-CNN model focus more on

the selected channels of the feature maps.

In the literature, numerous techniques exist to compute

the channel attention efficiently. For channel computation,

most existing works use pooling strategies that squeeze the

spatial dimension of the input feature. For instance, the

CAB proposed by Hu et al. [56] has used global average

pooling, while the technique introduced by Zhou et al. [57]

has suggested using the average pooling. Also, the CAB

proposed by Ling et al. [58] has used both global average

pooling and global max-pooling layers to squeeze the

spatial dimensions of the input feature maps parallelly.

Besides, to directly learn the attention masks, the tech-

niques suggested by Hu et al. [56] and Woo et al. [59] have

used the fully connected layer with the sigmoid activation

function after pooling layers. Such operations do not con-

sider the inter-channel relationship and thus may not be

useful for brain tumor classification. Therefore, following

the strategy suggested by Ling et al. [58], this work has

adopted a cross-matrix multiplication to obtain the channel

relationship matrix for the attention mask, as shown in

Fig. 4.

Given an input feature map FI 2 RC�H�W , the CAB, as

shown in Fig. 4, first compresses the feature map along the

spatial axis simultaneously using both global-average

pooling (GAP) and global-max pooling (GMP) to get C �
1 � 1-dimensional feature vector FC

avg and FC
max, respec-

tively. The feature vectors FC
avg and FC

max are subsequently

passed through a convolutional layer with kernel size 1 � 1

and ReLU activation, followed by batch-normalization

(BN), and another convolutional layer with kernel size 1 �
1 and ReLU activation to obtain the intermediate feature

maps FC
conv avg and FC

conv max, respectively. Finally, we

summed up the feature maps FC
conv avg and FC

conv max ele-

ment-wise to obtain the aggregated feature FC
sum, mathe-

matically expressed as:

FC
sum ¼ FC

conv avg � FC
conv max ð6Þ

where FC
sum 2 RC�1�1 and � means element-wise sum-

mation. After that, we first reshape and subsequently

transpose the aggregated feature vector FC
sum to get another

feature vector with dimension 1 � 1 � C. The aggregated

feature vector and its transposed is then multiplied and

passed through the softmax activation function to get the

channel attention matrix AC as mathematically expressed in

Eq. (7).

AC ¼ SoftmaxðFC
sum � ðFC

sumÞ
TÞ ð7Þ

In Eq. (7), AC 2 RC�C is a two-dimensional matrix repre-

senting the inter-channel relationship among the channels

of the input feature maps and � means matrix multiplica-

tion. Once the channel attention matrix is available, we

multiplied it first with the input feature map FI . In the

subsequent step, the multiplied feature map is reshaped and

added to the input feature map to get the channel-refined

feature map FC 2 RC�H�W , as mathematically expressed

below:

Neural Computing and Applications (2023) 35:2541–2560 2549

123



FC ¼ FI � ðAC � FIÞ ð8Þ

where � means element-wise summation and � means

matrix multiplication.

4 Experiments and results

In this section, we report the experimental analysis results

of the proposed framework on four brain tumor MRI

datasets. At first, we provide details of the four benchmark

brain tumor datasets, namely BT-large-3c, BT-small-2c,

BT-large-2c, and BT-large-4c. The section also provides

strategies for training the neural network and details of

different performance evaluation metrics.

4.1 Dataset details

Brain tumor datasets consisting of MR images are not as

common. Besides, the number of images is less for suc-

cessfully training and testing deep learning models for

multi-class brain tumor classification. The experiments in

this work consider four different types of brain tumor MRI

datasets. These datasets are open source, and several

researchers have utilized them to validate the efficiency of

the brain tumor classification pipeline. For ease in refer-

encing, we have named the datasets BT-large-3c, BT-

small-2c, BT-large-2c, and BT-large-4c.

In the BT-large-3c dataset, there are 3064 T1-weighted

contrast-enhanced (CE) MRI slices of 233 different

patients [60]. The imbalanced dataset contains 708, 930,

and 1426 tumor images of meningioma, pituitary, and

glioma, respectively, in .mat file format. Also, the dimen-

sion of the images in the dataset is 512 � 512, and the pixel

size is 49mm � 49mm. Table 2 provides details of the

dataset, and Fig. 5 shows sample MR images of different

tumor classes from the dataset. We followed the standard

fivefold cross-validation testing protocol to validate the

proposed model on the BT-large-3c dataset for a fair

comparison with the existing works in the literature.

The BT-small-2c dataset contains 253 MR images and

comes pre-divided into two categories: tumor and normal

MR images [61]. There are 155 tumor MR images in the

dataset, while the remaining 98 are normal MR images of

the brain. Following the procedure adopted by Kang et al.

[9], we randomly divided the dataset into an 80:20 train-

test ratio. We trained the model with 202 MR images and

tested it on 51 MR images. Like BT-small-2c, the BT-

large-2c dataset contains MR images of normal and

tumorous brain [62]. There are 3000 images in the dataset

containing 1500 images with tumors and the remaining

1500 images without tumors. To evaluate the proposed

model’s performance on the BT-large-2c dataset, we

divided it into 80:20 ratio, where 80% of the total dataset

(2400 MR images) were used for training and the

remaining 20% of the total dataset (600 MR images) to test

the model. In contrast to the BT-small-2c and BT-large-2c,

the BT-large-4c dataset contains MR images of normal and

three different types of brain tumors (meningioma,

Fig. 4 Sequence of steps used in the channel attention block (CAB)

Table 2 Details of the BT-large-3c dataset

Tumor type No. of patients No. of images

Meningioma 82 708

Glioma 89 1426

Pituitary 62 930
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pituitary, and glioma) [63]. The dataset contains 3264 T1-

weighted MR images. Like BT-large-2c, to evaluate the

proposed CNN, we divided the BT-large-4c dataset into a

training set containing 80% of the total images and a test

set containing 20% of the total images in the dataset.

Table 3 presents the details of the BT-small-2c, BT-large-

2c, and BT-large-4c datasets. Figures 6, 7, and 8 show

samples images from the BT-large-4c, BT-small-2c, and

BT-large-2c dataset, respectively.

4.2 Neural network training

This work aims to classify brain MR images into normal

and tumor classes. To this end, on the MR images, we first

apply an input-pre-processing step to crop the region of

interest (ROI). The input to the designed AG-CNN model

is cropped MR image resized to 128 � 128 � 1-pixels.

Given the input images, the model automatically extracts

essential attributes that can discriminate between normal

and tumorous brain MR images during training. Besides,

Fig. 5 Sample brain MR images

from the BT-large-3c dataset

(left to right): meningioma,

glioma, and pituitary

Table 3 Details of the BT-

small-2c, BT-large-2c, and BT-

large-4c datasets

Dataset No. of classes No. of images in train set No. of images in test set

BT-small-2c 2 202 51

BT-large-4c 4 2611 653

BT-large-2c 2 2400 600

Fig. 6 Sample brain MR images from the BT-large-4c dataset (left to right): meningioma, glioma, pituitary, and normal

Fig. 7 Sample brain MR images from the BT-small-2c dataset (left to

right): normal and tumor

Fig. 8 Sample brain MR images from the BT-large-2c dataset (left to

right): normal and tumor
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the CAB in the designed network helps the AG-CNN

model select the most suitable filters to focus on the

important spatial regions in the brain MR images.

We used the Keras functional API with the TensorFlow

backend to design and compile the proposed neural net-

work. The model is trained using the Adam optimizer with

the categorical cross-entropy loss function for network

parameter optimization. We started network training with

an initial learning rate of 0.001 and subsequently reduced

the learning rate by a factor of 0.5 using the step-decay

learning rate scheduler after every 25 epochs. On each of

the four brain tumor MRI datasets, the model is trained for

200 epochs using training MR images in batches of 16. The

model takes around 38 seconds to complete one epoch and

thus confirms the structural simplicity and compute-effi-

ciency of the designed AG-CNN model. Model training

and testing have been carried out on the Ubuntu desktop

machine with Nvidia GeForce GTX 1080Ti GPU with

3584 CUDA cores and 11GB GDDR5 VRAM.

4.3 Performance evaluation

We evaluated the proposed AG-CNN model using five

performance metrics: classification accuracy, precision,

recall, specificity, and F1-score. The expressions for cal-

culating the metrics are as follows:

Accuracy ¼ TP þ TN

TP þ FP þ FN þ TN
ð9Þ

Precision ¼ TP

TP þ FP
ð10Þ

Recall ¼ TP

TP þ FN
ð11Þ

Specificity ¼ TN

TN þ FP
ð12Þ

F1 � score ¼ 2 � Precision � Recall

Precision þ Recall
ð13Þ

In Eqs. (9)–(13), TP stands for the number of true positive

samples while FP is the number of false-positive samples

in the confusion matrix. TN represents the number of true

negatives, and FN stands for false-negative samples in the

confusion matrix.

4.3.1 Performance evaluation on the BT-large-3c dataset

On the BT-large-3c dataset, following the fivefold cross-

validation scheme, the AG-CNN model achieved a mean

recognition accuracy of 97.23%. Besides, the classification

report of the AG-CNN model as summarized in Table 4

shows that the model attained an average precision, recall,

specificity, and F1-score of 97.07%, 96.95%, 98.57%, and

97.00%, respectively. Figure 9 shows the normalized

confusion matrix of the proposed AG-CNN model on the

BT-large-3c dataset. The trained AG-CNN model correctly

classified most of the glioma (98% accuracy) and pituitary

(98% accuracy) brain tumor MR images. However, the

model correctly classified only 95% of the samples from

the meningioma tumor. Out of the 5% misclassified brain

MR image samples from the meningioma tumor, the model

classified 2% samples into the glioma tumor and the

remaining 3% into the pituitary tumor. Low classification

accuracy for the meningioma class may be due to class

imbalance in the dataset as it contains 1426, 930, and 708

brain MR image samples from the glioma, pituitary, and

meningioma tumor. The AG-CNN model trained on the

BT-large-3c dataset tends to be more biased towards the

majority glioma class, causing bad classification of the

minority meningioma class. Finally, the receiver operating

Table 4 Classification report of

the proposed AG-CNN model

on the BT-large-3c dataset

Category Precision (%) Recall (%) Specificity (%) F1-score (%) Support

Meningioma 97.53 94.77 99.27 96.13 708

Glioma 98.38 97.69 98.57 98.03 1426

Pituitary 95.31 98.39 97.87 96.83 930

Avg./Total 97.07 96.95 98.57 97.00 3064

Fig. 9 Confusion matrix of the proposed AG-CNN model on the BT-

large-3c dataset
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characteristic (ROC) curve shown in Fig. 10 shows that on

the BT-large-3c dataset, the trained AG-CNN model

attained an AUC (Area under the ROC curve) of 0.996,

0.996, and 0.995 corresponding to meningioma, glioma,

and pituitary brain tumor class, respectively.

4.3.2 Performance evaluation on the BT-large-4c dataset

On the BT-large-4c dataset, following the 80:20 train-test

validation scheme, the AG-CNN model achieved a test

recognition accuracy of 95.71%. Table 5 summarizes the

classification report of the proposed AG-CNN model on the

BT-large-4c brain tumor MRI dataset. On the 20% of the

randomly selected test MR images from the dataset, the

trained AG-CNN model achieved an average precision,

recall, specificity, and F1-score of 95.77%, 96.33%,

98.52%, and 95.98%, respectively. Upon closely examin-

ing the confusion matrix results of the AG-CNN model on

the BT-large-4c dataset, as shown in Fig. 11, one can find

that the proposed model correctly classified all the sample

brain tumor MR images from the pituitary class. Also, the

model correctly classified 99%, 95%, and 91% of the brain

tumor images from the normal, meningioma, and glioma

Fig. 10 Receiver operating characteristic (ROC) curve on the BT-

large-3c dataset

Table 5 Classification report of

the proposed AG-CNN model

on the BT-large-4c dataset

Category Precision (%) Recall (%) Specificity (%) F1-score (%) Support

Meningioma 93.57 95.24 97.69 94.40 168

Glioma 98.98 91.12 99.54 94.89 214

Pituitary 93.51 100.00 97.41 96.65 173

Normal 97.00 98.98 99.43 97.98 98

Avg./Total 95.77 96.33 98.52 95.98 653

Fig. 11 Confusion matrix of the proposed AG-CNN model on the BT-

large-4c dataset

Fig. 12 Receiver operating characteristic (ROC) curve on the test set

of the BT-large-4c dataset
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classes, respectively. Out of 5% misclassified brain tumor

MR images from the meningioma class, the model classi-

fied 4% samples into the pituitary class and the remaining

1% samples into the glioma class. Besides, out of the 9%

misclassified samples from the glioma class, the trained

AG-CNN model classified 5% images into meningioma,

2% images into pituitary, and the remaining 1% into the

normal class. Finally, the receiver operating characteristic

(ROC) curve shown in Fig. 12 shows that on the BT-large-

4c dataset, the trained AG-CNN model attained a very

good AUC (Area under the ROC curve) of 0.990, 0.959,

0.991, and 0.993 corresponding to meningioma, glioma,

pituitary, and normal brain MR image class, respectively.

4.3.3 Performance evaluation on the BT-small-2c dataset

We performed the next set of experiments on the BT-small-

2c dataset. For a fair comparison, we followed the evalu-

ation procedure adopted by Kang et al. [9] and trained and

tested the AG-CNN model on an 80:20 train-test split. On

the randomly selected 20% test brain MR images from the

BT-small-2c dataset, the proposed AG-CNN model

achieved a recognition accuracy of 96.08%. Besides, the

classification report of the AG-CNN model as summarized

in Table 6 shows that the trained CNN model attained an

average precision, recall, specificity, and F1-score of

95.89%, 95.89%, 95.89%, and 95.89%, respectively. Fig-

ure 13 shows the normalized confusion matrix of the pro-

posed AG-CNN model on the BT-small-2c dataset. A

closer look at the results of Fig. 13 shows that the trained

model correctly classified 97% of the brain tumor MR

images while misclassifying the remaining 3% samples

into the normal class. Besides, the model classified 95% of

the normal brain MR images into the normal class and the

remaining 5% into the tumor class. Also, on the BT-small-

2c dataset, the receiver operating characteristic (ROC)

curve shown in Fig. 14 shows that the trained AG-CNN

model attained an AUC (Area under the ROC curve) of

0.969.

4.3.4 Performance evaluation on the BT-large-2c dataset

We performed the final set of experiments on the BT-large-

2c dataset. For training and testing the proposed model on

this dataset, we followed the evaluation procedure adopted

by Kang et al. [9] and trained and tested the AG-CNN

model on an 80:20 train-test split. On the randomly

selected 20% test brain MR images from the BT-large-2c

dataset, the proposed AG-CNN model achieved a recog-

nition accuracy of 99.83%. Besides, the classification

report of the AG-CNN model as summarized in Table 7

Table 6 Classification report of

the proposed AG-CNN model

on the BT-small-2c dataset

Category Precision (%) Recall (%) Specificity (%) F1-score (%) Support

Normal 95.00 95.00 96.77 95.00 20

Tumor 96.77 96.77 95.00 96.77 31

Avg./Total 95.89 95.89 95.89 95.89 51

Fig. 13 Confusion matrix of the proposed AG-CNN model on the BT-

small-2c dataset

Fig. 14 Receiver operating characteristic (ROC) curve on the test set

of the BT-small-2c dataset
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shows that the trained CNN attained an average precision,

recall, specificity, and F1-score of 99.84%. Figure 15

shows the normalized confusion matrix of the proposed

AG-CNN model on the BT-large-2c dataset. The trained

model correctly classified all the brain MR images from the

tumor class and misclassified one MR image from the

normal class into the tumor class. The classification results

reflect the high generalization ability of the proposed AG-

CNN model. The good performance of the trained AG-

CNN model on the BT-large-2c dataset is also confirmed

by the shape of the ROC curve (in Fig. 16), with an area

under the curve (AUC) equal to 1.00.

5 Comparison with state-of-the-art methods
and discussions

We compared the performance of the proposed method

with several existing state-of-the-art methods for brain

tumor classification on all four MRI datasets, namely BT-

large-3c, BT-large-4c, BT-small-2c, and BT-large-2c.

Table 8 reports the comparison results of the proposed AG-

CNN model with several state-of-the-art deep learning

models on the BT-large-3c dataset. Among the state-of-the-

art models listed in Table 8, the deep learning technique

introduced by Sekhar et al. [2] using the fine-tuned Goo-

gLeNet CNN from the MR images and classified using the

K-NN classifier attained the highest mean fivefold cross-

validation accuracy of 98.30%. Also, the fine-tuned Goo-

gLeNet attained a fivefold cross-validation accuracy of

94.90%, while the deep features classified using the SVM

classifier achieved a mean classification score of 97.60%.

Meanwhile, the lightweight CNN introduced by Deepak

and Ameer [37] has attained a mean fivefold cross-vali-

dation accuracy of 94.26% when trained from scratch. In

Table 7 Classification report of

the proposed AG-CNN model

on the BT-large-2c dataset

Category Precision (%) Recall (%) Specificity (%) F1-score (%) Support

Normal 100.00 99.68 100.00 99.84 313

Tumor 99.65 100.00 99.68 99.83 287

Avg./Total 99.83 99.84 99.84 99.83 600

Fig. 15 Confusion matrix of the proposed AG-CNN model on the BT-

large-2c dataset

Fig. 16 Receiver operating characteristic (ROC) curve on the test set

of the BT-large-2c dataset

Table 8 Comparison results of the proposed AG-CNN model with the

state-of-the-art models on the BT-large-3c dataset (Bold: best result,

Italic: second best)

Work Features Classifier Accuracy (%)

Sekhar et al. [2] CNN Softmax 94.90

Sekhar et al. [2] CNN SVM 97.60

Sekhar et al. [2] CNN K-NN 98.30

Deepak and Ameer [37] CNN Softmax 94.26

Deepak and Ameer [37] CNN SVM 95.82

Afshar et al. [54] CapsNet Softmax 86.56

Afshar et al. [54] CapsNet Softmax 90.89

Abiwinanda et al. [27] CNN Softmax 84.19

Kakarla et al. [28] CNN Softmax 97.42

Bodapati et al. [32] CNN Softmax 95.23

Kumar et al. [33] CNN Softmax 97.48

Proposed (Ours) CNN Softmax 97.23

Neural Computing and Applications (2023) 35:2541–2560 2555

123



contrast, the deep features extracted from the pre-trained

CNN and classified using the SVM classifier achieved a

mean fivefold cross-validation accuracy of 95.82%. The

brain tumor classification scheme introduced by Afshar

et al. [54] has achieved mean recognition accuracy of

90.89% using the CapsNet neural network. Also, the

lightweight eight-layer average-pooling CNN introduced

by Kakarla et al. [28] has attained a competitive recogni-

tion accuracy of 97.42%. Besides, the deep learning

scheme using ResNet-50 CNN and global average pooling

introduced by Kumar et al. [33] has attained a mean five-

fold cross-validation accuracy of 97.48% on the small-

scale BT-large-3c brain tumor MRI dataset. Nevertheless,

the proposed AG-CNN model with a mean fivefold cross-

validation accuracy of 97.23% also achieved competitive

performance. Also, compared to the existing models, the

proposed AG-CNN is lightweight and can be deployed for

the real-time classification of brain tumors in MR images

on low-cost embedded devices.

Table 9 details the results of comparing the accuracy of

the AG-CNN model with the related works in the literature

on the BT-large-4c dataset. On this dataset, the ensemble of

DenseNet-169 ? MnasNet CNN features classified using

the SVM classifier with radial basis function (RBF) kernel

has reported a test recognition accuracy of 93.72% [9].

However, on the BT-large-4c dataset, the proposed AG-

CNN model achieved a state-of-the-art test recognition

accuracy of 95.71%. The results demonstrate the usefulness

of the proposed AG-CNN model trained from scratch

compared to the existing transfer learning scheme. Besides

the technique using deep features extracted from the

ensemble of several parameter-intensive CNN classified

using the softmax and the traditional machine learning

classifiers such as Gaussian naı̈ve Bayes (NB), AdaBoost,

K-NN, RF, ELM, and SVM with linear, sigmoid, and RBF

kernel requires high classification time than the proposed

lightweight AG-CNN model. The overall classification

time of the proposed brain tumor classification pipeline is

comparatively lesser than the existing method.

We also compared the performance of the proposed AG-

CNN model with several brain tumor classification

schemes on the BT-small-2c dataset. On the BT-small-2c

dataset, as illustrated in Table 10, the deep features

extracted from the brain MRI images using the ImageNet

pre-trained DenseNet-169 CNN and classified using the

SVM with RBF kernel achieved the highest test recogni-

tion accuracy of 98.04% [9]. Besides, the fine-tuned Den-

seNet-169 achieved a test recognition accuracy of 96.08%.

On this dataset, the proposed AG-CNN model, too,

achieved a test recognition accuracy of 96.08%. A

Table 9 Comparison results of

the proposed AG-CNN model

with the state-of-the-art models

on the BT-large-4c dataset

(Bold: best result, Italic: second

best)

Work Features Classifier Accuracy (%)

Kang et al. [9] DenseNet-169 ? Shufflenet ? MnasNet Softmax 91.58

Kang et al. [9] DenseNet-169 ? Shufflenet Gaussian NB 75.04

Kang et al. [9] DenseNet-169 ? Shufflenet ? MnasNet AdaBoost 75.34

Kang et al. [9] DenseNet-169 ? MnasNet K-NN 90.96

Kang et al. [9] Shufflenet ? MnasNet RF 87.90

Kang et al. [9] DenseNet-169 ? MnasNet SVM (Linear) 90.20

Kang et al. [9] DenseNet-169 ? MnasNet SVM (Sigmoid) 90.96

Kang et al. [9] DenseNet-169 ? MnasNet SVM (RBF) 93.72

Kang et al. [9] DenseNet-169 ? Shufflenet ? MnasNet ELM 88.51

Proposed (Ours) CNN Softmax 95.71

Table 10 Comparison results of

the proposed AG-CNN model

with the state-of-the-art models

on the BT-small-2c dataset

(Bold: best result, Italic: second

best)

Work Features Classifier Accuracy (%)

Kang et al. [9] DenseNet-169 Softmax 96.08

Kang et al. [9] ResNeXt-50 Gaussian NB 90.20

Kang et al. [9] DenseNet-169 ? ResNeXt-50 AdaBoost 92.16

Kang et al. [9] Inception V3 ? ResNeXt-50 K-NN 94.12

Kang et al. [9] DenseNet-169 RF 94.12

Kang et al. [9] DenseNet-169 SVM (Linear) 96.08

Kang et al. [9] DenseNet-169 SVM (Sigmoid) 96.08

Kang et al. [9] DenseNet-169 SVM (RBF) 98.04

Kang et al. [9] DenseNet-169 ELM 94.12

Proposed (Ours) CNN Softmax 96.08
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reduction in the recognition accuracy of the proposed

model on the BT-small-2c dataset may be due to its small

size. The dataset has just 253 brain MR images, and thus,

the model might have over-fitted the dataset when trained

from scratch.

Analyzing the comparison results of Table 11, one can

find that on the BT-large-2c brain MRI dataset, the

designed AG-CNN model with a test recognition accuracy

of 99.83% sets the new state-of-the-art. The previous best

technique using fine-tuned ensembled of DenseNet-121 ?

ResNeXt-101 ? MnasNet introduced by Kang et al. [9] has

attained a test recognition accuracy of 98.83%. Besides, the

deep features extracted using the ensemble of DenseNet-

121 and MnasNet and classified using the K-NN and SVM

classifier with the linear, sigmoid, and RBF kernel

achieved a test recognition accuracy of 98.50%. Also, deep

features extracted from the brain tumor MR images using

the ImageNet pre-trained DenseNet-121, ResNeXt-101,

and MnasNet CNN and classified using the extreme

learning machine (ELM) classifier achieved a test recog-

nition accuracy of 98.67%. The results demonstrate the

advantage of the AG-CNN model over the deep-learning-

based feature extraction scheme.

The designed lightweight attention-guided CNN (AG-

CNN) presented in this work is more efficient in recogni-

tion accuracy and computational efficiency than the other

related methods available in the literature. The channel-

attention block and high-level feature concatenation via

global average pooling (GAP) helped the designed AG-

CNN model achieve competitive performance on the BT-

large-3c and BT-small-2c brain tumor MRI dataset. On the

BT-large-4c and BT-large-2c brain MRI datasets, the

proposed AG-CNN model sets the new state-of-the-art

accuracy. Also, the designed model, compared to the

popular CNN such as GoogLeNet, DenseNet-169, Alex-

Net, VGG-16, etc., is compute-efficient and requires a low

memory footprint. One can easily deploy the designed

model on a low-cost portable embedded platform for the

real-time classification of brain tumors in MR images.

In summary, the CNNs have demonstrated excellent

performance in the brain tumor classification in MR ima-

ges. There are still several problems encountered by CNNs,

such as the loss of spatial information due to max-pooling

operations in the CNNs and poor generalization when used

with input data from different machines (different vendors,

models, etc.). The use of max-pooling layers in CNN fol-

lowing the convolution layer progressively reduces the

spatial dimensions of the feature maps as only the most

active neurons are chosen to move to the next layer.

Reduction in the spatial dimensions of the feature maps

reduces the number of parameters in the network and

consequently reduces the network’s computational com-

plexity and memory requirements. Additionally, the max-

pooling operation may also help to reduce over-fitting and

can help CNN to learn invariant features. However, for

medical images encoding spatial information is necessary.

Therefore, there is a requirement for an efficient pooling

scheme that can capture spatial information in medical

images. Over the years, researchers have developed several

pooling methods for different approaches [64]. Among

them, the spatial pyramid pooling and its variants have

proved to capture spatial or structural information in ima-

ges. Thus, one can use these pooling methods with CNN in

the medical image classification task. Alternatively, one

can use advanced neural networks such as CapsNet, which

uses routing-by-agreement to retain valuable spatial infor-

mation [65]. The CapsNet have shown promising results in

several medical image classification task [54, 66].

6 Conclusions

This work presented the design and implementation of a

robust and compute-efficient pipeline for classifying brain

tumors in magnetic resonance (MR) images. The proposed

pipeline has utilized an input pre-processing to crop rele-

vant regions from the brain MR images and a novel

lightweight channel-attention guided convolutional neural

Table 11 Comparison results of

the proposed AG-CNN model

with the state-of-the-art models

on the BT-large-2c dataset

(Bold: best result, Italic: second

best)

Work Features Classifier Accuracy (%)

Kang et al. [9] DenseNet-121 ? ResNeXt-101 ? MnasNet Softmax 98.83

Kang et al. [9] DenseNet-121 ? ResNeXt-101 ? MnasNet Gaussian NB 88.00

Kang et al. [9] DenseNet-121 ? ResNeXt-101 ? MnasNet AdaBoost 97.50

Kang et al. [9] DenseNet-121 ? MnasNet K-NN 98.50

Kang et al. [9] DenseNet-121 ? ResNeXt-101 ? MnasNet RF 97.17

Kang et al. [9] DenseNet-121 ? MnasNet SVM (Linear) 98.50

Kang et al. [9] DenseNet-121 ? MnasNet SVM (Sigmoid) 98.50

Kang et al. [9] DenseNet-121 ? MnasNet SVM (RBF) 98.50

Kang et al. [9] DenseNet-121 ? ResNeXt-101 ? MnasNet ELM 98.67

Proposed (Ours) CNN Softmax 99.83
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network named AG-CNN to classify the cropped brain MR

images into normal and tumor classes. The designed AG-

CNN has employed a channel-attention block and feature

fusion using skip-connection via global average-pooling

(GAP) to select relevant feature maps and enhanced fea-

tures, respectively, for better classification of brain tumors

in MR images. The proposed AG-CNN model evaluated on

four brain MRI datasets using different performance met-

rics has attained competitive accuracy. Besides, the

designed lightweight model is compute-efficient and has a

low memory footprint. Overall, the designed classification

pipeline is robust and efficient. It can be deployed on a

low-cost embedded device to quickly classify brain MR

images in real-world clinical settings. Future research in

this domain shall deal with designing a deep-learning-

based integrated framework for brain tumor segmentation

and classification in MR images.
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