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Abstract
High-resolution remote sensing images have become mainstream remote sensing data, but there is an obvious ‘‘salt and

pepper phenomenon’’ in the existing semantic segmentation methods of high-resolution remote sensing images. The

purpose of this paper is to propose an improved deep convolutional neural network based on HRNet and PSPNet to

segment and realize deep scene analysis and improve the pixel-level semantic segmentation representation of high-

resolution remote sensing images. Based on hierarchical multiscale segmentation technology research, the main method is

multiband segmentation; the vegetation, buildings, roads, waters and bare land rule sets in the experimental area are

established, the classification is extracted, and the category is labeled at each pixel in the image. Using the image

classification network structure, different levels of feature vectors can be used to meet the judgment requirements. The

HRNet and PSPNet algorithms are used to analyze the scene and obtain the category labels of all pixels in an image.

Experiments have shown that artificial intelligence uses the pyramid pooling module in the classification and recognition of

CCF satellite images. In the context of integrating different regions, PSPNet affects the region segmentation accuracy.

FCN, DeepLab and PSPNet are now the best methods and achieve 98% accuracy. However, the PSPNet object recognition

algorithm has better advantages in specific areas. Experiments show that this method has high segmentation accuracy and

good generalization ability and can be used in practical engineering.
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1 Introduction

The characteristics of a large quantity of data, strong

ambiguity and rich semantic details determine the higher

requirements for the segmentation efficiency and segmen-

tation effect of remote sensing images. There are dozens or

even hundreds of bands of hyperspectral image data, and

there is considerable information redundancy [1]. There-

fore, effective band information needs to be extracted for

hyperspectral image data and cannot be fully analyzed

because redundant information leads to low efficiency. By

effectively extracting the band information effect and

efficiency of hyperspectral remote sensing image classifi-

cation, the original band image can be processed by

dimensionality reduction. As an important attribute of

remote sensing images, semantics play a unique role in

image analysis [2]. The classic image semantic analysis

methods are mostly for single-band or color images, but the

semantic analysis methods of multispectral and hyper-

spectral remote sensing images need to be strengthened [3],

including images defined by generalized semantics, two-

dimensional image spatial mapping mode of spatial char-

acteristics (or other), spectral feature point distributions of

image semantic features (or other) or map expression, and

special cases of nonsemantic area and semantic area single-

band images. Visual band image semantics are a special
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case [4]. Extracting two-dimensional images is particularly

good, and single-band image semantics can be used for

analysis, while for multiband images, more sensitive

semantic segmentation technology is required for

identification.

FCNs face many problems. At present, improving FCN

technology is still focused on improving the algorithm, and

there is no overall improvement in the FCN technology.

This paper adopts the following methods to solve the

problem. First, the subspace is used to divide the relevant

frequency bands. Then, the adaptive frequency band

method is adopted in each subspace to select the frequency

band with more information. Finally, the J-M distance

model is introduced to distinguish the spectral separability

of foreign objects in the same spectrum. Finally, deep

convolutional neural networks, FCN, DeepLab, HRNet,

and PSPNet are applied to the semantically classified. The

work can be divided into complete target labeling, label

image coloring, image data enhancement and image edge

extraction on the acquired remote sensing images. The

existing convolutional neural network is referenced, and

the network structure is modified to obtain a complete

network consisting of a convolutional layer and a decon-

volutional layer using three different network training

schemes.

The main contribution of this paper is to propose an

improved HRNet- and PSPNet-based deep convolutional

neural network for segmentation and deep scene analysis to

improve pixel-level semantic segmentation representation

of high-resolution remote sensing images. Compared with

existing research, this paper utilizes the advantages of

HRNet and PSPNet to perform fast and efficient segmen-

tation of high-resolution remote sensing images. The tra-

ditional satellite image algorithm is based on the traditional

semantic segmentation algorithm, which cannot accurately

distinguish the elements in the image. The algorithm in this

paper not only improves segmentation accuracy but also

improves processing efficiency.

The structure of this paper is as follows. Chapter 1

introduces the current application and shortcomings of

semantic segmentation and introduces the current pro-

cessing methods of satellite high-resolution images. Com-

bined with the current background, the significance of this

research is proposed, and the ideas for this paper are

introduced. The second chapter summarizes the research on

remote sensing image analysis and semantic segmentation

algorithms in recent years. Based on previous research, the

innovation of this paper is proposed. The third section

introduces the analysis principle of remote sensing images,

optimizes the semantic segmentation algorithm based on a

neural network, and introduces the optimization process in

detail. The fourth section tests the algorithm proposed in

this paper. The results also prove the effectiveness of the

algorithm in this paper. The fifth chapter is a detailed

discussion of the experimental results, describing the

research results of this paper in detail. Finally, the main

work of this paper is summarized, and the shortcomings

and prospects of the work are presented.

2 Related work

Image processing belongs to the category of remote sens-

ing technology [5]. In other words, a cluster with similar

features is identified as a cluster in feature space. Unsu-

pervised classification has many advantages in image

processing [6]. Commonly used methods include the

K-means algorithm, ISODATA algorithm, and fuzzy

clustering algorithm. Information is transformed into a

series of homogeneous regions based on heterogeneous

references, and the polygon entities obtained after seg-

mentation are the objects that participate in the extraction

and processing of information [7, 8]. Objects include

spectral information, spatial information, and semantic

information. In our country, object-oriented technology

started late, but the technology has been developing

rapidly, and many researchers have joined the object-ori-

ented technology research [9]. The object-oriented method

is used to extract the seismic damage information of the

building, and it is divided into three levels: basic integrity,

damage and complete collapse. The extraction results are

good and meet the requirements of rapid seismic damage

assessment [10, 11].

With the progress in society and the development of

various sciences, remote sensing technology is also

advancing with the times. With the launch of an increasing

number of high-resolution satellites, the resolution of

remote sensing images continues to increase [12]. Image

information processing technology is becoming more

mature as it gradually improves. The research of remote

sensing science is often based on good remote sensing

images, so the quality of remote sensing images greatly

affects the subsequent image information processing [13].

The remote sensing image, as multiband information, is

obtained by multiple different spectral sensors. Generally,

the light images corresponding to each band in the multi-

band image can be processed separately to decompose a

group of multiband images into multigray-scale images for

processing [14]. However, the choice of bands should meet

the requirements of a large amount of information, low

correlation between bands, and good spectral separability.

However, the above methods cannot meet the above three

requirements simultaneously, due to the difficulty of

remote sensing image scene analysis[15], the most

advanced mismatch, confusion and less classification [16].
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3 Multiband semantic segmentation
method of remote sensing images based
on HRNet (PSPNet)

3.1 Multiband remote sensing image semantic
segmentation

Multiband remote sensing, also known as multispectral

remote sensing, is a remote sensing technology that uses

sensors with more than two spectral channels to simulta-

neously image ground objects. It divides the electromag-

netic wave information reflected or radiated by objects into

several spectral bands for reception and recording. The

multiband algorithm is a method and the key to describing

the heterogeneity of two image objects [17]. For the d-

dimensional feature space, assuming that the feature values

of two adjacent objects are f1d and f2d, the heterogeneity is

defined as:

h ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

d

ðf1d � f2dÞ2
r

ð1Þ

The spectral feature and shape feature of the image

target can be regarded as the one-dimensional feature space

[18]. In Formula (2), find the standard deviation of each

Witt and further standardize the characteristic space

distance:

h ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

d

ðf1d � f2dÞrfd
� �2

s

ð2Þ

This process iteratively merges adjacent image objects

into larger image objects. In the segmentation process, the

spectral features and shape features of the image target are

processed simultaneously. First, the segmentation param-

eters, including the band threshold and the weight of each

feature, are set as the termination condition of the image

target merge; then, the segmentation process is started.

During each segmentation, the neighboring image objects

are searched, and the neighboring image objects are

merged into a larger image object according to the prin-

ciple of least heterogeneity. Due to the high variability of

remote sensing images, when searching for adjacent ima-

ges, images with consistent bands are preferentially

selected. In the first segmentation, a single pixel is used as

the smallest image object [19]. In the second and subse-

quent segmentation processes, the image objects generated

in the previous segmentation process are used as the basis

for calculating the heterogeneity to determine the rela-

tionship between the heterogeneity h and the scale

threshold. If h B scale threshold, continue the nth (n[ 2)

segmentation; otherwise, the segmentation will end.

(1) Vector MRF semantic model.

In remote sensing image interpretation, there is a strong

correlation between the category attribute of a point and its

neighborhood attribute, that is, the locality of the image

[20]. MRF has the characteristics of investigating local

features, which is in-line with the objective conditions of

remote sensing images. The definition method of gray

image MRF has become very mature.

Due to the equivalence relationship between the Gibbs

distribution and MRF, the vector Gibbs distribution can be

used to describe the definition of the vector form and the

Markov properties of the image with the vector X:

pðX ¼ xÞ ¼ exp
X

c2C
VcðxÞ=

X

c2o
exp�

X

c2C
VcðxÞ ð3Þ

Among them, C is called a subgroup, which is a col-

lection of pixels or adjacent pixels. C is the set of all

subgroups on l, and the definition of a subgroup is the same

as the scalar Gibbs distribution. Different C subgroups

correspond to different Gibbs parameters, which reflect the

orientation and thickness of the remote sensing image

semantics. Through the size of the parameters, we can

estimate the band peaks and data of the remote sensing

image and deduce the semantic direction and thickness of

the image. If there are too many subgroups, the computa-

tional complexity will greatly increase. The Markov model

generally uses a second-order neighborhood system [21].

Additionally, due to the randomness in semantic direction,

this paper adopts an isotropic second-order neighborhood

system. Vc(x) is a potential function that only depends on

the state of each point in subgroup C.

(2) Hierarchical Markov random field and multiband

image semantic segmentation model.

For multispectral remote sensing images defined on a

grid point L in a finite two-dimensional space, different

semantics represent different objects in the image; they

contain many different types of semantics and form one or

more regions on L. Derin proposed a hierarchical Markov

random field model, which uses a high random field to

represent the coding region mapping and a low random

field to represent a gray image [22].

In this paper, the high level represents the coding area

map random field Y = (Y1,Y2…,YN), and the low level

represents the spectral vector random field X = (X1,X2…,-

XN) [23]. Both X and Y are random fields defined on L (the

definition of X is as described in §1.1), and the image space

range is the same. Y is a scalar random field, y = (y1,-

y2…,yN) is an implementation of random field Y, and X is a

vector random field. Assuming that there are K types of

image semantics, Yi = k (k = 1, 2…,K) denotes that in the

realization y of random field Y, point i corresponds to the k

semantics. The given multispectral remote sensing image

data are an implementation of vector random field X = x0.

Obviously, the segmentation result is unknown in advance,
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and the segmentation process is to estimate Y based on X.

According to the maximum posterior probability estima-

tion (MAP), starting from the random field X, seeking the

best realization of Y y3, the posterior probability distribu-

tion P(Y = y|X = 9 0) should be maximized, and the

semantic segmentation problem is transformed into solving

a problem with image MAP:

pðY ¼ y�jX ¼ x0Þ ¼ max pðY ¼ yjX ¼ x0Þ ð4Þ

According to the Bayes formula:

pðY ¼ yjX ¼ x0Þ ¼ pðX ¼ x0jY ¼ yÞ � pðY ¼ yÞ=pðX
¼ x0Þ ð5Þ

In the formula, for a given multispectral image 9 0,

P(X = 9 0) is a constant. Therefore:

py ¼ pðX ¼ x0jY ¼ yÞ � pðY ¼ yÞ ð6Þ

If Py is the largest, the maximum posterior segmentation

can be performed on the image. In the formula, P(Y = Y)

reflects the probability of any random field segmentation

pattern. Once the segmentation mode is determined,

K groups of Gibbs corresponding parameter vectors are

generated. The parameter vectors of each semantic type are

denoted as K (K = 1,2…). The condition under the Gibbs

parameter is determined by the division method, Y.

(3) Algorithm principle.

To evaluate the accuracy, this paper optimizes the input

and output of the algorithm. The input information is

optimized with the characteristics of the fuzzy matrix, and

finally, high evaluation and classification accuracy is

achieved. According to certain rules and principles, all

subspace bands that meet the conditions are selected for

optimal combination in each subspace [24]. By calculating

the correlation coefficients of adjacent bands and their

transfer correlation vectors, the hyperspectral data space is

divided into appropriate subspaces. Its advantage is that it

fully reflects the local characteristics of the data. The

correlation coefficient of the adjacent bands of the image is

calculated as follows:

Ri;j ¼
Pn

k¼1 ðxik � xÞðyjk � yÞ
ð
Pn

k¼1 ðxik � xÞ2 Pn
k¼1 ðyjk � yÞ2Þ

1
2

ð7Þ

For each band, a mathematical model was established.

The selected band contains more information:

Ii ¼ ri= Ri�1 þ Ri;iþ1

� �

=2
� �

ð8Þ

ri ¼ ð1=ðM � NÞÞ
X

M

x¼1

X

N

y¼1

ðfiðx; yÞ � f iÞ2

" #1
2

ð9Þ

Ri;jðx; yÞ ¼ ðE ðfiðx; yÞ � fiÞðfjðx; yÞ � fjÞ
� �

Þ ð10Þ

Ri;j ¼ E ðfiðx; yÞ � fiÞ
� �2

	 
1
2� E ðfjðx; yÞ � fjÞ

� �2
	 
1

2 ð11Þ

In the formula, Ii is the index image I; I is the standard

deviation I band; Ri-1, I, Ri, I ? 1 are the correlation

coefficients of the two bands before and after the adjacent

bands of the I band; Fi (x, y) denote image I; Fi is the

average pixel value; and E{} is the mathematical expec-

tation of the i image pixel.

3.2 PSP-NET network structure of semantic
segmentation

(1) Construct a hollow convolution residual structure

model.

The remaining network building blocks are shown in

Fig. 1. Set the input as X and the activation function as

ReLU. The residual function F(x) is obtained by fitting and

superimposed with the map x to obtain the output feature

map Y, expressed as:

y ¼ FðxÞ þ x ð12Þ

In the network design, there are three convolutional

layers inside each residual module, and the entire neural

network contains seven residual learning blocks for a total

of 21 convolutional layers. The empty convolution, also

called the unfolded convolution, is shown in Fig. 1.

When the cavity convolution is completed, S is intro-

duced. The loss of network structure may lead to serious

consequences. However, without pools, deep networks are

meaningless. Therefore, the use of empty convolutions can

expand the perceptual space. During our learning process,

zero elements are not adjusted [25].

(2) PPS-NET network structure.

In functional analysis, convolution is a mathematical

operation that generates a third function through two

functions f and g, the integral of the product of the over-

lapped part function value with the translation over the

overlap length. This network has two main parts. The first

part is the global feature extraction and training the image

input network. The size of the convolution kernel is 7 9 7,

and the stride of the convolution is 2 (stride = 2). This

layer performs the same convolution, the output image size

remains unchanged, and the number of channels becomes

64 dimensions. The image output by the convolution layer

is downsampled once so that the convolution kernel is a

(a) S=1 (b) S=2 (c) S=3

Fig. 1 Empty convolution, also called unfolded convolution
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3 9 3 local maximum pool, and the step size of the pool is

also 2. Through pooling, abstract image features are

extracted. After this layer is output, the image size is

reduced to over 12. After the same convolution and pool-

ing, the number of channels (number of dimensions)

becomes 64. After pooling the output image, the remaining

structure is entered with a dashed frame structure. The left

and right residual structures are 1 9 1, 3 9 3, and 1 9 1

convolution kernels, and they all perform the same con-

volution. After three convolutions, the number of channels

is increased to 256 dimensions, but the size of the feature

map does not change (this part is repeated three times). The

next step is to replace the pooling layer with the empty

convolution (s = 2). After this empty convolution layer, the

value is again halved to 14 before the initial input. Then,

the feature map enters the residual structure again, which is

another three-layer convolution kernel. The kernel is

shown in the second remaining structure on the right (the

dashed box). This process is performed four consecutive

times, and the number of channels changes accordingly.

Finally, the network structure on the left is complete.

(3) Network structure diagram.

Figure 2 is a network diagram. The CNN here is not a

simple convolutional neural network but a residual network

of hollow convolution. The input image size is

512 9 512 9 1, and the initial global feature is

64 9 64 9 512. Based on this global feature, the features

extracted from different receptive domains are subjected to

dimensionality reduction processing and pooled into fea-

ture maps of different sizes through the PPM model.

Finally, these dimensionless features are combined with the

existing global features to obtain a more detailed feature

map.

4 Experimental setup

4.1 Experimental dataset

CCF AI’s satellite image classification and recognition data

are from 2015 high-resolution UAV remote sensing images

in southern China, with meter resolution and spectral vis-

ible light bands (R, G, B). The training samples provided

are divided into five categories: vegetation (marked 1),

buildings (marked 2), water bodies (marked 3), roads

(marked 4), others (marked 0), and cultivated land. The

initial training set is composed of two large PNG images of

7,939*7,969, and the prediction set is composed of three

large PNG images of 5,190*5,204. The training set

includes three large PNG images, and the prediction set

includes three PNG images. Compared with data from

other types of competitions, remote sensing image visual-

ization is more convenient, allowing a comprehensive and

intuitive understanding of remote sensing images. Figure 3

shows the initial training prediction set. In this study,

combined with the actual situation of the test area, the

ground features are divided into seven categories according

to the characteristics of remote sensing image data, the

color of the image, and the degree of distinction and con-

trast in the image: lush wheat, sparse wheat, woodland, idle

land, rural roads, residential land and asphalt roads.

4.2 Experimental environment

The server software and hardware configuration server

content used in this experiment, the CPU Intel Xeon E5-

2660 memory 96 GB GPU graphics card NVIDIA GeForce

GTX TITANX operating system Linux Ubuntu16.04

LTSserver Cuda Cuda8.0 with cuDNN data processing

Python2.7, MATLAB2014b, and sklearn. In this experi-

ment, the calculation is based on a GPU to improve the

calculation speed.

Fig. 2 Schematic diagram of network structure
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4.3 Experimental Procedure

The test process is divided into five steps:

(1) Subspace division. Calculate the correlation coeffi-

cient matrix between the frequency bands, divide the

frequency bands with high correlation into a group,

and obtain several subspaces.

(2) In each divided subspace, the adaptive band

selection method is used to calculate the index of

each band, and the band with high information

content and high index is selected. This band can

better capture the semantics of the image and better

segment the image.

(3) Combining the optimal band selected from each

subspace, calculate the J-M distance of each band

combination, and filter out the band combined with

the best separability between rural roads and bare

land and asphalt roads and residential land.

(4) Train the HRNet classifier of semantic segmentation

and input the best band combination of HRNet

classification of semantic segmentation.

(5) Comparative analysis of HRNet (PSPNet) classifi-

cation results without selective semantic

segmentation.

5 Discussion

5.1 Experimental results of remote sensing
image semantic segmentation

To solve the problem of semantic segmentation of remote

sensing images, this paper tested four methods: HRNet and

PSPNet, the mean-shift algorithm, and AlexNet. Semantic

segmentation of remote sensing images is a basic task in

remote sensing image understanding. There is an obvious

‘‘salt and pepper phenomenon’’ in the existing high-reso-

lution remote sensing image semantic segmentation

methods (some pixels in a single feature are identified as

other features), resulting in the main reason for this phe-

nomenon being that remote sensing objects have intraclass

inconsistency (the same object label but different external

Fig. 3 Initial training set

prediction set

Table 1 Semantic segmentation results of PASCAL VOC 2011 test

set

HRNet PSPNet Mean-shift Alexnet

Mean IU 39.8 45.32 56.34 49.6

Forward time 50 ms 54 ms 63 ms 74 ms

Rf.size 355 342 452 453

Max stride 32 32 32 32
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features) and no difference between classes (two adjacent

objects have different labels but similar external features).

Table 1 shows the semantic segmentation results of

these four networks on the standard semantic segmentation

test set PASCAL VOC2011. The observation results show

that, as shown in Fig. 4, the four networks achieved good

segmentation results on the standard test set. Therefore, it

is considered feasible in this paper to use these four

networks.

By comparing the data in the table and combining net-

work training scheme ii with the color label image, the best

semantic segmentation model can be obtained. In addition,

among the three CNN networks, the HRNet has the best

segmentation effect semantic tasks, and three evaluation

indicators, pixel accuracy PA, average accuracy PA and

average matching degree MIOU, are the highest. In addi-

tion to the objective data results, the following is an

example of the results. As an example, the results obtained

by training the HRNet network and color label images

using the network training scheme are given. Image

semantic segmentation results are shown in Fig. 5.

5.2 Classification results and accuracy
evaluation experimental results
and comparison

(1) Based on the above-mentioned multiband segmentation

method, the study is divided into nine categories: shoals,

marsh vegetation, xerophyte vegetation, estuaries, rivers,

fish ponds, salt pans, roads and residential areas. The

classification result is shown in Fig. 6. To evaluate its

accuracy, this study randomly selects test points automat-

ically, establishes a confusion matrix, and evaluates the

accuracy of the classification results. The results are shown

in Table 2.

(2) In this paper, the software adopts the adaptive

threshold processing of the smart image edge detection

operator, and the software’s environmental image and the

original image edge detection registration, edge detection

and image as the original image new band. A new remote

sensing image not only has the original image but also adds

the edge. In image segmentation, edge information can be

added to segmentation parameters to improve the utiliza-

tion of shape features and spatial features. Under the same

parameters, the original image and the image segmentation

results are compared with edge information, as shown in

Fig. 7.

6 Conclusions

The semantic segmentation method cannot describe the

region boundary as clearly as the PSPNet method. This is

because the PSPNet method only divides the spectral

information, and the research object is a single pixel, which

reflects the microscopic characteristics of the spectral dis-

tribution so the boundary is very clear. The semantic fea-

ture is a two-dimensional space feature that directly

depends on the neighborhood and needs to be expressed in

a certain two-dimensional space to reflect the macroscopic

characteristics of the spectral distribution. Combined with

spectral segmentation coding, the result of semantic seg-

mentation coding can be used as effective information for

subsequent image classification and interpretation. In the

HRNet segmentation map with edge detection information,

the original image can segment buildings more accurately.

In the original image, the structure of the object is smaller

than the actual object or irregular polygon, and the rect-

angle of the actual object is added to the image segmen-

tation image edge information, including the structure of

the polygon object, and basically matches the actual object.

The shape of these objects is more similar to the real

object. The house and road are not divided into one object,

which is the segmentation method.

This study uses aerial data sources to classify coastal

wetlands based on multiscale segmentation. It can be seen

from the characteristics of the research field that various

types of wetlands are related to each other and have dif-

ferent degrees of similarity, similar to the feature values of

the metaspectral characteristic spectrum, which are diffi-

cult to distinguish. Through multiscale segmentation, the

entity objects are at different scales. Different levels,

spectral features, shape factors, and texture features are

combined to extract different types of wetland information,

effectively reducing the ‘‘salt and pepper’’ phenomenon in

remote sensing images and achieving better classification

accuracy.

This article only conducts a preliminary study of change

detection in phase remote sensing images, and there are

still many issues that need further research and discussion.
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Fig. 4 Forecast results of different algorithms
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Based on the research work of this article, the following

aspects can be used as the research focus to strengthen

theoretical research and discussion. Although remote

sensing change detection technology has been applied to

and has borrowed some theoretical knowledge and model

methods in disciplines such as mathematics and physics,

remote sensing change detection does not form a system-

atic theoretical system, but is a relatively independent and

complete theoretical system of established development

and popularization image change detection technology. A

combination multiple methods is needed. Although various

change detection methods have been proposed, each

method has advantages and disadvantages, and no one

method is the best. Therefore, combining a variety of

methods with image characteristics and actual require-

ments will effectively improve the change detection per-

formance, and how to complement different detection

methods remains to be further studied. Currently, most

change detection methods only deal with changes in a

single data source. How the various data sources change

requires further research and experimentation.

Fig. 5 Image semantic segmentation results
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Xerophyte River flows into the seaport

river Fish pond

Fig. 6 Accuracy evaluation results of classification results

Table 2 Accuracy evaluation of classification results

Number of

samples

Classification result

1 2 3 4 5 6

1 78 6 0 0 7 0

2 7 84 6 0 0 0

3 0 0 81 0 0 0

4 7 0 0 81 0 0

5 0 0 4 15 1 0

6 0 0 0 0 0 81

Fig. 7 Segmentation results with edge information added
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