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Abstract
The echo state network (ESN) has been widely applied for nonlinear system modeling. However, the too large reservoir

size of ESN will lead to overfitting problem and reduce generalization performance. To balance reservoir size and training

performance, the multi-objective sparse echo state network (MOS-ESN) is proposed. Firstly, the ESN design problem is

formulated as a two-objective optimization problem, which is solved by the decomposition-based multi-objective opti-

mization algorithm (MOEA/D). Secondly, to accelerate algorithm convergence, the local search strategy is designed,

which combines the l1 or l0 norm regularization and coordinate descent algorithm, respectively. Thirdly, to produce more

solutions around the knee point, an adaptive weight vectors updating method is proposed, which is based on decision maker

interest. Experimental results show that the MOS-ESN outperforms other methods in terms of network sparseness and

prediction accuracy.
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1 Introduction

Time series prediction is widely existed in all aspects of

life [1–4], such as forecasting the number daily discharged

inpatients of hospital, wind power prediction, global

financial situation prediction, and so on. Typical methods

include statistical regression [5], gray prediction [6] and

machine learning [7]. The autoregressive moving average

[8] is a commonly used statistical regression method, but it

cannot solve nonlinear problems. Gray prediction [9] is

suitable for time series prediction with uncertain partial

information, but it is not suitable for the static dataset.

Therefore, the prediction method based on machine

learning [10] has been widely concerned, which requires no

assumptions about the data or model.

In the field of machine learning, the commonly used

methods include decision tree (DT) [11], support vector

machine (SVM) [12] and artificial neural networks

(ANN) [13–17], among which the ANN has drawn many

attentions due to its nonlinear approximation ability. The

most classical ANN is feed-forward neural network

(FNN) [16], which can simulate any nonlinear system.

However, it is difficult for FNN to capture the hidden

sequence information of time series data. Therefore, the

recurrent neural network (RNN) [17] is proposed to solve

complex time series problems. However, its network

structure and training method may lead to low training

efficiency and memory loss. Therefore, Jaeger has pro-

posed a new type of RNN, named as echo state network

(ESN) [18].

Nowadays, ESN has been successfully applied in the

field of time series prediction [18–25]. Unlike the tradi-

tional RNN, the ESN uses a reservoir to store and manage

information. The input weights and internal weights of

ESN are generated randomly and remain unchanged, only

the output weights (also called readout) should be trained.

In [21], the generation of reservoirs and training of read-

outs are reviewed. In [22], the hierarchical ESN is pro-

posed, which is trained by stochastic gradient descent. In

[23], the ESN with leaky integrator neurons is designed,

which can easily adapt to time characteristics.
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In reservoir initialization phase, hundreds of sparsely

connected neurons are generated, and some neurons may

have little influence on training performance. If all reser-

voir nodes are connected with network outputs, the ESN

will perform very well on training data, but not good on

testing data, leading to the overfitting problem. Hence, how

to design a suitable reservoir size to improve the perfor-

mance of ESN has always been the focus of research. In

[24], the singular value decomposition-based growing ESN

is proposed, which can weaken the coupling among

reservoir neurons. In [25], the reservoir pruning method is

designed, in which the mutual information between reser-

voir states is used to delete nodes. However, the pruning

method may destroy the echo state characteristics of ESN

[26].

To avoid overfitting problem, the regularization tech-

niques are widely applied to sparse the readout of ESN,

rather than control the size of reservoir directly [27, 28].

In [29], the reservoir nodes are dynamically added or

deleted according to their importance to network perfor-

mance, the l2 regularization is used to update the output

weights. However, the l2 regularization is not able to

generate the sparse ESN. In [30], the l1 penalty term is

added into the objective function to shrink some irrele-

vant output weights as small values, such that the readout

is sparse. In [31], the l0 regularization is used for sparse

signal recovery, which is able to reduce computation

complexity and improve classification ability, simultane-

ously. In [32], the online sparse ESN is designed, in

which the l1 and l0 norms are respectively used as penalty

terms to control the network size, the sparse recursive

least squares and sub-gradient algorithm are combined to

estimate output weights. This method has shown superior

performance than other ESNs in prediction accuracy and

network sparseness. Hence, the l0 and l1 regularization are

the focus of this paper.

In traditional regularization approaches [27–32], the

regularization coefficient is used to introduce the penalty

term into the objective function,

F Woutð Þ ¼ T �HWoutk k22þl Woutk kp ð1Þ

where the first term and the second term are the training

error and penalty term, respectively,l is regularization

coefficient, Wout is the output weight of ESN, p = 0,1

represent the l0-norm or l1-norm, respectively. The regu-

larization coefficient is used to balance training error and

sparseness of Wout. Different l will lead to different

optimal solutions [33], and a small change of the regular-

ization coefficient will have a great influence on the

training results. Thus, it is important to choose an appro-

priate regularization coefficient.

To avoid choosing regularization coefficient, in this

paper, the optimization of Eq. (1) is formulated as a multi-

objective optimization problem (MOP), in which the two

conflicting objectives can be optimized [34]. From the view

point of optimization, many Pareto-optimal solutions can

be obtained by multi-objective optimization algorithms,

and thus it is difficult to determine which solution can

obtain the best network structure and training error. To

select the appreciate solution, the preferences of decision

maker should be considered [35]. The knee point is pro-

posed in [36], in which a small change of one objective will

generate a big change on the other [37–39]. Although the

solutions in knee points does not provide the best result for

some problems, they still be Pareto solutions which has the

optimal performance for MOP.

In this paper, the multi-objective sparse ESN (MOS-

ESN) is proposed, in which the training error and network

size are treated as two optimization objectives. The main

contribution is as follows. Firstly, the MOEA/D-based

multi-objective optimization algorithm is designed to

optimize network structure and network performance.

Secondly, to improve algorithm convergence, the l1 or l0
regularization and coordinate descent algorithm-based

local search strategy is designed. Thirdly, the preference

information of knee point is integrated into weight vectors

updating method, which guides the evolution of population

toward knee region. Simulation results prove that MOS-

ESN can improve the training accuracy and network

sparseness without involving any regularization

parameters.

The paper organization is as follows. Section 2 intro-

duces the basic description of ESN, MOP and MOEA/D.

The proposed MOS-ESN is given in Sect. 3. The simula-

tions are discussed in Sect. 4. The paper is summarized in

Sect. 5

Input layer Output layerReservoir
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Fig. 1 Description of OESN
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2 Background

2.1 Original ESN

The original ESN (OESN) in Fig. 1 is constructed with an

input layer, a reservoir and an output layer. The OESN has

n input neurons in input layer, N nodes in reservoir and one

output node. The input layer and reservoir are connected by

the input weight matrix Win [ RN�N the elements in

reservoir are tied by the internal weight matrix W [ RN�N

while the input layer and reservoir are related with the

output layer through the output weight matrix Wout [
R Nþnð Þ�1. Consider L distinct samples {u(k), t(k)}, where

u(k) = [u1(k), u2(k), …, un(k)]
T [ R Nþnð Þ�1 and t(k) are

input and target, respectively, and the reservoir state x(k) is

updated as below,

xðkÞ ¼ gðWxðk � 1Þ þWinuðkÞÞ ð2Þ

where g (�) = [g1(�), …, gN (�)T are the activation functions.

The output y(k) is equal to (Wout)T[x(k); u(k)], where [x(k);

u(k)] [ $$ \mathbb{R}^{{1 \times \left( {1 ? n} \right)}}

$$ is the concatenation of reservoir states and input matrix.

Denote T = [t(1), t(2),…, t(L)]T as target data matrix

and represent H = [X(1), X(2), …, X(L)]T as internal state

matrix as below

H ¼

XTð1Þ
XTð2Þ
..
.

XTðLÞ

2
6664

3
7775 ¼

X11 X12 � � � X1Nþn

X21 X22 � � � X2Nþn

..

. ..
. . .

. ..
.

XL1 XL2 � � � XLNþn

2
6664

3
7775 ð3Þ

The output weight matrix Wout can be calculated by

Wout ¼ HyT ð4Þ

where H� is the Moore–Penrose pseudoinverse of H. H�

can be computed by orthogonal projection methods [40],

single-value decomposition, and so on. However, if the

input data contain unknown random noise, the inverse

calculation of H may lead to an ill-posed problem, i.e., an

unstable solution is obtained.

2.2 MOPs

MOPs contain many conflicting objective functions that

should be optimized at the same time. Generally speaking,

the minimized MOPs can be expressed as below:

MinF Wð Þ ¼ f1 Wð Þ; f2 Wð Þ; :::; fm Wð Þ½ �T ð5Þ

subject to W [ Xwhere W is the decision variable, m is the

number of objective functions, X is the decision space, F:

X ? Rm is consisted of m objective functions, and Rm is

named as the objective space.

For two solutions W1 and W2, W1 is said to dominate

W2 (denoted as W1 � W2), if and only if fi(W1) B fi(W2)

for each objective i [ {1,…,m}, and fj(W1)\ fj(W2) for at

least one value j [ {1,…,m} [40].

Furthermore, the solution W* [ X is defined as Pareto-

optimal if there is no other feasible solution W � W*.

Particularly, the set of W* is named as Pareto-optimal set

(PS) and the union of all PS is called the Pareto-optimal

front (PF) [34].

2.3 MOEA/D

MOEA/D decomposes a MOP into several single-objective

subproblems by multiple weight vectors, and all the sub-

problems can be optimized at the same time [40]. The main

steps of MOEA/D are given:

Step 1: Generate the initial population, x1, x2,…, xP, and

a group of uniformly weight vectors k = (k1, …, kP),
where P is the population size.

Step 2: Compute the Euclidean distance between any

two weight vectors, find the nearest T vectors of each

vector, which are denoted the neighborhood of ki and

represented as B(i) = {i1, i2, …, iT}.

Step 3: Choose two index k,l from B(i) randomly. Apply

genetic operators on xk and xl to generate a new individual

y.

Step 4: Update neighboring solutions. When the aggre-

gate function value of y is smaller or equal to xj, update

xj = y, where j [ B(i).

Step 5: Determine the non-dominated solutions of pop-

ulation and update the external population (EP), which

saves the non-dominated solutions.

The main feature of MOEA/D is its decomposition

method [40], such as the weighted sum approach,

Tchebycheff approach and boundary intersection approach.

In the following, the form of weighted sum approach is

shown

Mingws Wkið Þ¼
Xm
k¼1

ki;kfk Wð Þ ð6Þ

where ki = {ki,1, ki,2, …, ki,m} represents the weight vector

corresponding to each objective function, and it is noted

that
Pm

k¼1 ki;k ¼ 1.

3 MOS-ESN

To optimize the network size and training error simulta-

neously, the MOS-ESN is proposed. Firstly, the design of

ESN is formulated as a bi-objective optimization problem,

which is solved by MOEA/D. Secondly, to improve algo-

rithm convergence, the l1 and l0 regularization-based local
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search strategy is designed. Furthermore, to find more

solutions around the knee point, the decision maker pref-

erence-based weight vectors updating method is proposed.

3.1 Problem Formulation

The network size of ESN is closely related to training

performance. To prove their relationship, a simple experi-

ment is designed. Firstly, an ESN with 200 nodes is ran-

domly initialized. Then, several sparse output weights are

generated, and the corresponding training errors are

recorded. Finally, the training error (denoted as f1) and the

number of nonzero elements of output weights (denoted as

f2) are drawn in Fig. 2. Obviously, the training error

decreases as the network size increases, the too large net-

work will lead to overfitting problem. However, if the

network is too small, the training of ESN will be insuffi-

cient. Hence, how to achieve a balance between network

size and training error becomes the key to research.

To solve this problem, the regularization methods are

introduced by using the l1 or l0 norm penalty term, and then

the design of ESN is realized by optimizing the following

objective function

min F Woutð Þ W
outð Þ ¼ min T�HWoutk k22þl Woutk k0=1

� �

ð7Þ

where l is regularization parameters. Actually, the selec-

tion of regularization parameters is a difficult problem,

because the large l means a small reservoir with large

training error, while the small l has the opposite effect

[33].

To avoid choosing regularization coefficient, the prob-

lem in Eq. (9) is treated as a multi-objective optimization

problem,

min
Wout

F Woutð Þ ¼ min T�HWoutk k22; Woutk k0=1
� �

ð8Þ

where the first term is training error and the second is

network size. To minimize the training error and network

size simultaneously, the MOEA/D is used, in which the

weighted sum approach is applied to generate a set of

subproblems

min
Wout

gwsðWoutkÞ ¼ k1f1ðWoutÞ þ k2f2ðWoutÞ ð9Þ

where k1 and k2 represent the weight of f1 and f2, respec-

tively, and k1 ? k2 = 1.

3.2 Local Search Method

To accelerate the convergence speed of MOEA/D, the local

search strategy is proposed, in which the l1 or l0 regular-

ization term is applied to ensure network sparsity, and the

coordinate descent algorithm is introduced to update the

elements of Wout.

3.2.1 The l1 regularization-based local search method

By using the l1 regularization, the problem in Eq. (8) is

formulated as below:

min
Wout

F Woutð Þ ¼ min T�HWoutk k22þl Woutk k1
� �

ð10Þ

where kWoutk1=
PNþn

i¼1 jwij represent the l1-norm of Wout.

The subproblem in Eq. (9) is described as

E Woutð Þ ¼ k1
2

T�HWoutk k22þk2 Woutk k1 ð11Þ

To facilitate computational analysis, k1=2 is applied in

Eq. (11) instead of k1. Because the two objectives in

Eq. (11) are differentiable, the coordinate descent algo-

rithm is selected to calculate the value of Wout, which has

shown strong local search ability. Under the framework of

coordinate descent algorithm, in each iteration, the ith

variable wi (i = 1, 2, …, N ? n)of Wout is updated, while

the other elements remain the same. Thus, Eq. (11)

becomes

E Wout wið Þð Þ ¼ k1
2

XL
k¼1

tðkÞ � Xkiwi �
XNþn

j 6¼i

Xkjwj

" #( )2

þ k2
XNþn

i¼1

jwij

¼ k1
2

XL
k¼1

Xkiwið Þ2

� k1
XL
k¼1

t kð Þ �
XNþn

j6¼i

Xkjwj

 !
Xki

" #
� wi

( )

þ k1
2

XL
k¼1

t kð ÞÞ �
XNþn

j 6¼i

Xkjwj

 !2
2
4

3
5

þ
XNþn

i¼1

k2jwij

ð12Þ

It can be found that

k1
2

XL

k¼1
t kð Þ �

XNþn

j 6¼i

Xkjwj

 !2
2
4

3
5

is irrelevant to wi, thus minimizing E(Wout( wi)) in

Eq. (12) is equal to minimizing Z(Wout( wi)),
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Z Wout wið Þð Þ ¼ k1
2

XL
k¼1

Xkiwið Þ2

� k1
XL
k¼1

ðtðkÞ �
XNþn

j6¼i

XkjwjÞXki

" #
� wi

( )

þ
XNþn

i¼1

k2jwij

ð13Þ

The sub-gradient of l1-norm is shown as below

o wik kð Þ ¼
1; if wi [ 0

�1; if wi\0

a 2 �1; 1½ �; if wi ¼ 0

8<
: ð14Þ

When the derivative of Z(Wout( wi)) respect to wi is

equal to zero, the minimize of Z(Wout( wi)) can be

obtained. The derivative of Z(Wout( wi)) is given as

oZ Wout wið Þð Þ
owi

¼ k1
XL
k¼1

X2
kiwi

� �
�
XL
k¼1

t kð Þ �
XNþn

j 6¼i

Xkjwj

 !
ÞXki

" #

þ k2
o wik k1
owi

ð15Þ

To simplify the calculation, two parameters D and C are

introduced

D ¼
XL
k¼1

X2
ki ð16Þ

C ¼
XL
k¼1

t kð Þ �
XNþn

j 6¼i

XkjwjXki

" #
ð17Þ

Thus, the derivative of Z(Wout( wi)) is given,

oZðWoutðwiÞÞ
owi

¼
k1 Dwi � Cð Þ þ k2; if wi [ 0

k1 Dwi � Cð Þ � k2; if wi\0

�k1C � k2;�k1C þ k2½ �; if wi ¼ 0

8<
:

ð18Þ

By setting
oZ(Wout( wi))

owi
¼ 0, the update equation of wi

is shown in Eq. (19), the corresponding threshold function

is shown in Fig. 3a.

wi ¼

C � k2
k1

D
; if C[

k2
k1

C þ k2
k1

D
if C � k2

k1

0; if � k2
k1

�C� k2
k1

8>>>>>>>>>><
>>>>>>>>>>:

ð19Þ

In Eq. (19), wi is related to, k1=k2 which is a fixed value

and not related to wi-1. Therefore, an adjustment is made on

Eq. (19)

wi ¼
C � sgn Cð Þ k2

k1
ðeþ wi�1j jÞþ

D
if Cj j k2

k1
eþ wi�1j jð Þþ

0; if Cj j � k2
k1

ðeþ wi�1j jÞþ

8>>>><
>>>>:

ð20Þ

where wi-1 represents the weight at last iteration, e is a

small positive value and located in (0,1), and (x)? equals 1/

x when x B 1 and is 1 otherwise.

The advantage of above method is its modifiable

threshold k2
k1

eþ wi�1j jð Þþ. When wi-1 is small, C has a higher

probability between � k2
k1

eþ wi�1j jð Þþ and k2
k1

eþ wi�1j jð Þþ.
Therefore, wi is attracted to zero with a higher possibility

(show as Fig. 3b), while the increased threshold can reduce

||Wout||1 effectively. To the contrary, if wi-1 is large, the

threshold will decrease to avoid becoming to zero.

3.2.2 The smoothed l0 regularization-based local search
method

Actually, the l1 regularization always generates many

components that are close but not equal to zero. To gen-

erate more sparse solution, the l0 regularization is

considered

min
Wout

F Woutð Þ ¼ min T�HWoutk k22; Woutk k0
� �

ð21Þ

However, the minimization of Eq. (21) is NP-hard. To

solve it, the ||Wout||0 is approximated by

jjWoutjj0 = g Woutð Þ =
XNþn

i¼1
1� e�Qjwij
� �

Fig. 2 Relationship between training error and network size
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where Q is an appropriate positive constant. The subdif-

ferential of g Woutð Þ is as below
ogðwiÞ
owi

¼ sgnðwiÞ � Q � e�Qjwij ð22Þ

Transform e-Q|wi| by the first-order Taylor series

expansion

e�Qjwij � 1� Qjwij; jwij �
1

Q
0; others

(
ð23Þ

Similar with l1 regularization, the subdifferential of

objective function can be described as:

oZ Wout wið Þð Þ
owi

¼

k1 Dwi � Cð Þ � k2 Qþ Q2wið Þ;� 1

Q
�wi\0

k1 Dwi � Cð Þ þ k2 Q� Q2wið Þ; 0\wi �
1

Q

�k1C � k2Q;�k1C þ k2Q½ �;wi ¼ 0

k1 Dwi � Cð Þ;wi\� 1

Q
wi\� 1

Q
orwi [

1

Q

8>>>>>>>>><
>>>>>>>>>:

ð24Þ

By setting
oZ Wout wið Þð Þ

owi
¼ 0, wi can be obtained by

Eq. (25), and the threshold function is shown in Fig. 3(c).

wi ¼

k1C þ k2Q
k1D� k2Q2

; D[
k2Q2

k1
and � D

Q
�C\� k2Q

k1
k1C � k2Q
k1D� k2Q2

; D[
k2Q2

k1
and

k2Q
k1

\C� D

Q

0; � k2Q
k1

�C� k2Q
k1

C

D
; others

8>>>>>>>>>><
>>>>>>>>>>:

ð25Þ

To improve the zero-attraction effect, the modified l0
regularization method is proposed

which can modify the threshold based on the previous

value of wi so that the small components are attracted to

zeros with a higher probability (Fig. 3d).

3.3 Weight Vectors Updating Algorithm

By using MOEA/D, many non-dominated solutions can be

obtained. However, only one solution is chosen to realize

the nonlinear modeling problem. Generally speaking, the

ESN with too large training error (k1 is too small) or with

too large network size (k2 is too small) will not be chosen.

As described in [41], the knee point is able to make a

tradeoff between two objects. Thus, the knee point is

selected as the final solution. In order to generate more

solutions around the knee point, the weight vectors

updating method is proposed, in which the information of

knee point is incorporated.

3.3.1 Knee point

In this part, the distance-based method is introduced to find

the knee point [41]. For a bi-objective optimization prob-

lem, a line L can be defined as ax ? by ? c = 0, where a,

b, and c are determined by the two solutions that has

minimize f1 and f2, respectively. Then, the distances d

between solutions in PF and L can be calculated as

d ¼ axþ byþ cj jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

p ð27Þ

Considering the minimization problem in this paper,

only the solutions in the convex region are of interesting.

Thus, the above equation can be modified as

d ¼

axþ byþ cj jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

p ; axþ byþ c\0

� axþ byþ cj jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

p ; others

8>><
>>:

ð28Þ

According to Eq. (28), the solution farthest from L is

defined as knee point. For example, in Fig. 4, points A and

B can determine the line L. By calculating the distance

d between each point and L, the point E is the knee point

obviously.

wi ¼

k1C � sgn Cð Þ � k2Q
k1D� k2Q2

; D[
k2Q2

k1
and

k2Q e + wi�1j jð Þþ
k1

\ Cj j � D

Q

0;
k2Q e + wi�1j jð Þþ

k1
C

D
; others

8>>>>><
>>>>>:

ð26Þ
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3.3.2 Weight Vectors Updating Method

The weight vectors are updated according to the informa-

tion of knee point and decision maker preference. As

shown in Fig. 5, the red point K is the projection of the

knee point on the line Lw and A and B are the boundary

points where the updated weight vectors should be located,

i.e., the line AB is divided into two subintervals by K.

Then, the same number of weight vectors P
2
will be gen-

erated in each subinterval. The distance between two

weight vectors is called step size, which is calculated as

d1 ¼
ffiffiffi
2

p 1
a x� x1

1a þ 2a þ :::þ P
2

� �a
 !1

a

ð29Þ

d2 ¼
ffiffiffi
2

p 1
a x2 � x

1a þ 2a þ :::þ P
2

	 
a
 !1

a

ð30Þ

where d1 is the step size in line KA, d2 is the step size in

line KB, and a[ 0 is the step size parameter. The value of

weight vector ki in line KA is,

(a) (b)

(d)(c)

Fig. 3 The soft thresholding function and the modified one

E

L

A

B 1f

2f

d

Fig. 4 Example of knee point

1λ

2λ

K(x,y)

1 1A(x , y )

2 2B(x , y )

Di

D j

1D

α
1(2d )

α
1d

Lw

Fig. 5 The weight vectors updating method

Neural Computing and Applications (2023) 35:2867–2882 2873

123



ki;1 ¼ x� da1 � 2d1ð Þa�. . .� ðid1Þa

ki;2 ¼ 1� ki:;1
ð31Þ

Similarly, the value of weight vector kj in line KB is

kj;1 ¼ x� da2 2d2ð Þa�:::� jd2ð Þa

kj;2 ¼ 1� kj;1
ð32Þ

In the above weight vectors updating method, the weight

vectors have a denser distribution near the knee point and

are sparser at the boundary. Hence, more weight vectors

will be generated near the knee point, and fewer at the

boundary. Moreover, the determination of points A and B

can be made by decision maker preference, which makes

the algorithm converge to the region of interest.

The weight vectors updating algorithm is presented in

Algorithm 1. Firstly, the two solutions which minimize f1

and f2 are selected and the line L can be calculated. Then,

the distance between each solution to L is computed to find

the knee point, and the weight vectors corresponding to

knee point are chosen. Finally, the weight vectors are

updated according to Eqs. (31) and (32).

3.4 Framework of MOS-ESN

The pseudo code of MOS-ESN is described in Algorithm 2.

In Step 1, the population is randomly initialized. In Steps 2

and 3, two individuals are randomly chosen to generate the

offspring, the uniform crossover operation and polynomial

mutation operator are applied. In Step 4, the neighborhoods

of each weight vector are updated. In Step 5, the local

search is operated loca iterations to improve algorithm

convergence. In Step 6, the knee point is selected from EP.

In Step 7, the weight vectors are updated by the weight

vectors updating method.
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4 4 Simulation

In this section, the proposed MOS-ESN models are tested

on two simulated benchmark problems and one practical

system modeling problem, including the Rossler chaotic

time series prediction [29], the nonlinear system modeling

problem [42] and the effluent ammonia nitrogen (NH4-N)

prediction in wastewater treatment process (WWTP) [28].

It is noted that the MOS-ESN with l0 regularization is

named as MOS-ESN-l0, while the MOS-ESN with l1

regularization is termed as MOS-ESN-l1.The MOS-ESN

models are compared with OESN [29], the OESN with l1

norm regularization (OESN-l1) [33], the OESN with l0

norm regularization (OESN-l0) [32], the OESN whose

output weight is updated by coordinate descent and l1 or l0

norm (CD-ESN-l1 [43], CD-ESN-l0), as well as the OESN

whose output weights are directly calculated by MOEA/D

(OESN-MOEA/D). For each algorithm, 50 independent

runs are carried out in the MATLAB 2018b environment

on a personal computer with i7 core 8.0 GB memory.

The training and testing RMSE values are applied to

evaluate the learning and testing performance of ESNs.

Furthermore, the sparsity degree (SP) of the output weight

matrix [28] is also introduced. The SP and RMSE are

defined as follows:

SP ¼ Woutk k0
N þ n

� 100% ð33Þ

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XL
k¼1

y kð Þ � t kð Þ½ �2

L

vuut ð34Þ

where Wout is the output weights matrix and y(k) and

t(k) stand for actual and target output, respectively. A

smaller RMSE means a better training or testing accuracy.

Meanwhile, the smaller SP means, the ESN has the sparser

structure.

To evaluate the searching ability of a multi-objective

optimization, the C-matrix [45] is introduced, which can

measure the ration of the non-dominated solutions in P that

are not dominated by any other solutions in P*,

C P;P	ð Þ ¼ size P� x 2 Pj9y 2 P	 : y � xf gð Þ
size Pð Þ ð35Þ

The larger C(P, P*) value means a better non-dominated

solution set P.

The parameters setting of MOS-ESN-l0 and MOS-ESN-

l1 are as below: the reservoir size, the population size, and

the neighborhood size are set as 1000, 200, 15 in each test

instance, which is suggested in [44]. The optimal value of

loca, a is selected by the grid search method, the number of

local search operations local is varied from 0 to 5 by the step

of 1, and the step size a is set from 0 to 3 by the step of 1.

For other algorithms, their corresponding parameter set-

tings are described in Appendix.

4.1 Rossler chaotic time series prediction

To study the performance of MOS-ESN, the Rossler

chaotic time series [29], a typical chaotic dynamical time

series, is introduced as below:

dx

dt
¼ �y� z

dy

dt
¼ xþ ay

dz

dt
¼ bþ z x� cð Þ

ð36Þ

where a = 0.2, b = 0.4, c = 5.7. There are 2000 samples in

the experiment, in which 1400 are used for training and the

Fig. 6 The prediction outputs for Rossler chaotic time series

prediction

Fig. 7 The prediction errors for Rossler chaotic time series prediction
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rest 600 are applied for testing. The White Gaussian noise,

which has the signal-to-noise ratio (SNR) of 20 dB, is

added into the original training and testing datasets.

The testing outputs and prediction error of MOS-ESN-

l0, MOS-ESN-l1, OESN are illustrated in Figs. 6 and 7,

respectively, in which the red, blue, black and cyan lines

are the trends of MOS-ESN-l0, MOS-ESN-l1, target and

OESN, respectively. It is easily found that both MOS-ESN-

l0 and MOS-ESN-l1 can predict the trends of testing output,

while the OESN shows missing outputs in a partial

enlargement. Furthermore, the RMSE values of MOS-

ESN-l0 are concentrated in [- 0.3,0.3], which is smaller

than other methods, demonstrating its stable performance.

Simulation results of all methods are presented in

Table 1, including sparsity, CUP running time for one

operation, the mean RMSE and standard deviation (Std. for

short) RMSE of training and testing of 50 independent

runs. It is easily found that the OESN has the smallest

running time, while it has the largest testing RMSE,

implying its poor generalization ability. Both OESN-l1 and

OESN-l0 have smaller SP, which implies the regularization

method could generate the sparse output weight matrix.

Besides, the proposed MOS-ESN-l0 has the smallest testing

RMSE and SP among all ESN models, which proves its

effectiveness in terms of network sparseness and prediction

accuracy.

4.1.1 Effect of loca

As introduced in Sect. 3.4, loca decides how many local

search operators are conducted on each individual. The

effects of loca on network performance are investigated

through 50 independent experiments. By setting loca = 0,

loca = 1 and loca = 3, the obtained non-dominated solutions

of MOS-ESN-l1 and MOS-ESN-l0 are plotted in Figs. 8 and

9, respectively. The x-coordinate and y-coordinate are the

objective function f2 ¼ kWoutk1=0 and

f1 ¼ kT� HWoutk22, respectively. Obviously, the algo-

rithm with loca = 3 can always generate more non-domi-

nated solutions than the algorithms with loca = 0 or

Table 1 Simulation results for Rossler chaotic series prediction

Approaches SP Time(s) Mean RMSE of training Std. RMSE of training Mean RMSE of testing Std. RMSE of testing

OESN 100% 6.27 0.0612 0.0031 0.3347 0.0239

OESN-l1 69.32% 19.28 0.1556 0.0112 0.1573 0.0115

OESN-l0 60.01% 20.12 0.1780 0.0205 0.1785 0.0215

OESN-MOEA/D 60.83% 421.58 0.1932 0.0194 0.2005 0.0209

CD-ESN-l1 58.76% 128.47 0.1488 0.0190 0.1501 0.0202

CD-ESN-l0 55.34% 196.19 0.1395 0.0185 0.1404 0.0199

MOS-ESN-l1 51.88% 832.77 0.1302 0.0218 0.1311 0.0224

MOS-ESN-l0 46.87% 856.81 0.1285 0.0202 0.1296 0.0211

The best results are marked in bold

Fig. 8 Effect of loca on MOS-ESN-l1 Fig. 9 Effect of loca on MOS-ESN-l0
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loca = 1, which implies that the local search algorithm can

accelerate the algorithm convergence speed.

By setting loca = {1, 2, 3, 4, 5} and a = 2, the statistics

results of training time, training and testing RMSE values,

C-matrix and SP of MOS-ESN-l1 and MOS-ESN-l0 are

reported in Tables 2 and 3, respectively. It is noted that

during the calculation process of C-matrix, P* = (P1, P2,

…, Pn), where Pi is the non-dominated solution set by the

algorithm with loca = i (i = 1, …, 5). It is easily found that

when loca is set as a small value, such as 0 or 1, the small

value of C-matrix is obtained, which means the worse non-

dominated solutions is obtained. When loca is set as a

moderate value (loca = 3), the larger value of C-matrix,

lower SP and testing RMSE values can be obtained. On the

contrary, if loca is set as a too large value (loca = 5), the

training and testing RMSE values are not best among all

the models, because the too large value of loca may have a

risk of converging to local regain. Furthermore, the too

large loca will increase the computational complexity or

training time.

Table 2 Simulation results of different value of loca on MOS-ESN-l1

Parameter C-metrix SP Time(s) Mean RMSE

of training

Std. RMSE

of training

Mean RMSE

of testing

Std. RMSE of

testing

MOS-ESN-l1 (loca = 0) 0 68.12% 400.81 0.1941 0.0142 0.1961 0.0163

MOS-ESN-l1 (loca = 1) 0.25 57.29% 522.81 0.1805 0.0203 0.1857 0.0259

MOS-ESN-l1 (loca = 2) 0.50 54.36% 637.44 0.1432 0.0174 0.1476 0.0181

MOS-ESN-l1 (loca = 3) 0.85 50.12% 867.26 0.1311 0.0198 0.1329 0.0205

MOS-ESN-l1 (loca = 4) 0.91 51.87% 979.73 0.1458 0.0196 0.1462 0.0210

MOS-ESN-l1 (loca = 5) 0.86 51.99% 1082.01 0.1599 0.0189 0.1605 0.0192

The best results are marked in bold

Table 3 Simulation results of different value of loca on MOS-ESN-l0

Parameter C-metrix SP Time(s) Mean RMSE

of training

Std RMSE

of training

Mean RMSE

of testing

Std RMSE

of testing

MOS-ESN-l0 (loca = 0) 0 56.62% 398.69 0.1942 0.0169 0.1953 0.0161

MOS-ESN-l0 (loca = 1) 0.53 48.69% 482.20 0.1889 0.0202 0.1894 0.0259

MOS-ESN-l0 (loca = 2) 0.62 48.13% 610.24 0.1492 0.0183 0.1507 0.0197

MOS-ESN-l0 (loca = 3) 0.84 46.21% 869.01 0.1231 0.0187 0.1239 0.0159

MOS-ESN-l0 (loca = 4) 0.84 46.53% 973.18 0.1401 0.0174 0.1428 0.0181

MOS-ESN-l0 (loca = 5) 0.82 46.99% 1082.76 0.1437 0.0191 0.1511 0.0202

The best results are marked in bold

Fig. 10 Effect of a on MOS-ESN-l1 Fig. 11 Effect of a on MOS-ESN-l0
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4.1.2 Effect of a

For ESN design, the network with too small training error

or too small network sparseness is not preferred, while the

solution at the knee point maybe a good choice, which is a

tradeoff between two objects. To help the algorithm con-

verge to the knee point, the weight vectors updating

algorithm is proposed, in which the weight updating step a
is applied. A larger a implies that the updated weight

vector is closer to the corresponding weight vector of knee

point.

To show the influence of a on network performance, by

setting a = {0, 1, 2}, the obtained non-dominated solution

sets of MOS-ESN-l1 and MOS-ESN-l0 are compared in

Figs. 10 and 11, respectively, and the x-coordinate and y-

coordinate are the objective function f2= kWoutk1=0 and

f1=kT� HWoutk22, respectively. It is easily found that the

non-dominated solutions sets with a = 1 or a = 2 are better

than that with a = 0, which implies the effectiveness of

weight vectors updating algorithm in terms of algorithm

convergence.

With a = {0, 1, 2, 3} and loca = 3, the statistic results of

50 independent experiments of MOS-ESN-l1 and MOS-

ESN-l0 are listed in Tables 4 and 5, respectively. Obvi-

ously, when a = 2, the obtained ESN has the most sparse

network structure and the best testing RMSE values.

However, when a = 3, the corresponding testing RMSE

values become larger. Hence, the too large or too small

value of a is not preferred.

4.2 Nonlinear dynamic system modeling

The proposed method is performed on the nonlinear

dynamic system as below

yðk þ 1Þ ¼ 0:72yðkÞ þ 0:025yðk � 1Þuðk � 1Þ
þ 0:01u2ðk � 2Þ þ 0:2uðk � 3Þ

ð37Þ

where u(k) and y(k) are input and output, respectively.

y(k ? 1) is predicted by y(k), y(k - 1), u(k - 1),

u(k - 2), u(k - 3). In the training phase, u(k) is 1.05sin(k/

45). In the testing phase, u(k) is given as

Table 4 Simulation results of different value of a on MOS-ESN-l1

Parameter C-matrix SP Time(s) Mean RMSE

of training

Std. RMSE

of training

Mean RMSE

of testing

Std. RMSE

of testing

MOS-ESN-l1 (a = 0) 0 43.86% 860.11 0.1848 0.0181 0.1851 0.0230

MOS-ESN-l1 (a = 1) 0.54 45.11% 862.13 0.1727 0.0204 0.1730 0.0199

MOS-ESN-l1 (a = 2) 0.75 48.39% 863.09 0.1402 0.0197 0.1422 0.0201

MOS-ESN-l1 (a = 3) 0.74 47.12% 860.61 0.1589 0.0201 0.1601 0.0192

The best results are marked in bold

Table 5 Simulation results of different value of a on MOS-ESN-l0

Parameter C-matrix SP Time(s) Mean RMSE

of training

Std. RMSE

of training

Mean RMSE

of testing

Std. RMSE

of testing

MOS-ESN-l1 (a = 0) 0 38.77% 858.32 0.1901 0.0175 0.1914 0.0183

MOS-ESN-l1 (a = 1) 0.41 57.75% 860.01 0.1856 0.0202 0.1860 0.0210

MOS-ESN-l1 (a = 2) 0.68 40.34% 859.18 0.1378 0.0216 0.1402 0.0189

MOS-ESN-l1 (a = 3) 0.66 42.33% 861.26 0.1749 0.0230 0.1755 0.0216

The best results are marked in bold

Fig. 12 The prediction outputs for nonlinear dynamic system
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uðkÞ ¼

sin
pk
25

; 0\k� 250

1:0; 250\k� 500

�1:0; 500\k� 750

0:3 sin
pk
25

þ 0:1
pk
32

0:6 sin
pk
10

; 750\k� 1000

8>>>>>>>><
>>>>>>>>:

ð38Þ

In this experiment, 2000 samples are generated by

Eq. (38). The first 1400 points are used in training stage,

and the remaining 600 are used in testing phase. In addi-

tion, the 20-dB Gaussian noise is added to generate the

noisy environment.

The prediction output and testing error of the resulted

MOS-ESN-l1, MOS-ESN-l0 and OESN are plotted in

Figs. 12 and 13, respectively. Actually, all the algorithms

show similar predictive trend on nonlinear dynamic sys-

tem. However, the prediction error of MOS-ESN-l0 is

limited in [-0.4,0.4], which is smaller than other methods.

Thus, the proposed MOS-ESN-l0 has the best prediction

effect among all compared algorithms.

The statistic results of 50 independent runs of compared

algorithms are summarized in Table 6. Obviously, the

OESN has shortest training time and smallest training

Fig. 13 The prediction errors for nonlinear dynamic system

Table 6 Simulation results for nonlinear dynamic system modeling

Approaches SP Time(s) Mean RMSE of training Std. RMSE of training Mean RMSE of testing Std. RMSE of testing

OESN 100% 6.65 0.0464 0.0058 0.1799 0.0191

OESN-l1 72.35% 26.09 0.1438 0.0104 0.1451 0.0117

OESN-l0 70.68% 28.32 0.0915 0.0141 0.1068 0.0144

OESN-MOEA/D 71.92% 260.01 0.1579 0.0137 0.1585 0.0140

CD-ESN-l1 68.12% 106.99 0.1238 0.0127 0.1243 0.0138

CD-ESN-l0 66.76% 121.47 0.1227 0.0130 0.1235 0.0135

MOS-ESN-l1 59.17% 633.15 0.1179 0.0134 0.1183 0.0128

MOS-ESN-l0 50.01% 654.31 0.0913 0.0150 0.1027 0.0158

The best results are marked in bold

Fig. 14 Prediction output of effluent NH4-N

Fig. 15 Prediction errors of effluent NH4-N model
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error, but its testing error is largest, which indicates over-

fitting problem. Furthermore, the MOS-ESN-l0 obtains the

smallest testing RMSE and SP values, which means the

MOS-ESN-l0 has better prediction accuracy, sparser

reservoir for nonlinear dynamic system modeling.

4.3 Effluent NH4 2 N model in WWTP

Recently, the discharge of industrial and domestic

wastewater has also increased sharply, and the phe-

nomenon of water quality exceeding standard in the

wastewater treatment process (WWTP) is serious. In

WWTP, the excessive NH4 -N will lead to eutrophication

of water body and affect human health. Thus, predicting

NH4-N accurately is critical. However, the WWTP is a

complex system with nonlinear, uncertainty, it is difficult

to predict NH4-N. To solve this problem, the laboratory

analytical techniques are used. However, these methods

always require long time.

In this section, the proposed MOS-ESN models are

applied to predict NH4-N in WWTP. This experiment

contains 641 sets of data, which are collected from

Chaoyang, Beijing in 2016. The first 400 groups are treated

as training data and the rest 241 are set as testing data. The

inputs of ESN include T, ORP, DO, TSS and pH, which are

described in [29].

The prediction result of effluent NH4-N models of

MOS-ESN-l0, MOS-ESN-l1 and OESN is demonstrated in

Fig. 14, and the corresponding prediction error is shown in

Fig. 15. Obviously, all the algorithms achieve the similar

prediction accuracy. As compared with MOS-ESN-l0 and

MOS-ESN-l1, it can be found that the l0 regularization can

get sparser structure, and thus the MOS-ESN-l0-based

effluent NH4-N model has smaller prediction error.

The comparison results of different models are shown in

Table 7, including the network sparsity SP, training time,

the mean and standard deviation of training and testing

RMSE values of 50 independent experiments. Obviously,

the OESN has small training but large testing RMSE val-

ues, which implies the overfitting problem occurs. Thus,

the OESN has difficulty in predicting NH4-N in WWTP. In

OESN-l1 and OESN-l0, the regularization technique is

applied to make the network structure sparse, but the

testing RMSE value is still large. In CD-ESN-l0 and CD-

ESN-l1, the regularization technique and coordinate des-

cent are used to updates the output weights, which can

obtain better prediction performance than OESN-l1 and

OESN-l0. As compared with OESN-MOEA/D, the local

search and weight vectors updating algorithm are applied

in MOS-ESN-l0 and MOS-ESN-l1, which helps to improve

solution performance. Particularly, the MOS-ESN-l0 has

the smallest testing error and the sparsest network struc-

ture, which can effectively predict NH4-N of WWTP.

5 Conclusion

In this paper, the multi-objective sparse ESN is proposed,

in which the training error and network structure are

optimized simultaneously. Firstly, instead of searching the

regularization parameters, the design of ESN is treated as a

bi-objective optimization problem. Secondly, to improve

algorithm convergence performance, the local search

strategy is designed, which incorporates the l1 or l0 norm

regularization and coordinate descent algorithm. Further-

more, to make the algorithm converge to the region of

interest, the weight vectors updating method is designed,

which applies the information of knee point. The effec-

tiveness and usability of the proposed algorithm are eval-

uated by experimental results. In future work, this method

will be applied in other practical engineering fields, such as

garbage classification and image recognition.

Appendix

The parameters setting of different algorithms is given:

• OESN: The reservoir has 1000 nodes. The reservoir

sparsity s1 is chosen from the set (0.01, 0.015, …, 0.6),

Table 7 Simulation results for Effluent NH4 - N model in WWTP

Approaches SP Time(s) Mean MSE of training Std. MSE of training Mean MSE of testing Std. MSE of testing

OESN 100% 5.65 0.0056 0.0197 0.7134 0.0504

OESN-l1 78.77% 220.56 0.6986 0.0375 0.6998 0.0254

OESN-l0 75.43% 227.99 0.5631 0.0346 0.5687 0.0358

OESN-MOEA/D 64.93% 170.06 0.5532 0.0305 0.5635 0.0314

CD-ESN-l1 63.01% 301.22 0.3698 0.0297 0.3704 0.0302

CD-ESN-l0 60.88% 329.88 0.3682 0.0252 0.3697 0.0288

MOS-ESN-l1 56.48% 772.33 0.3589 0.0232 0.3603 0.0258

MOS-ESN-l0 48.17% 774.87 0.3172 0.0205 0.3181 0.0224
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and the spectral radius of reservoir s2 is chosen from the

set (0.1, 0.15, …, 0.95).

• OESN-l1: The reservoir has same parameters as OESN.

The regularization parameter k1 is selected by (LASSO)

method [33].

• OESN-l0: The reservoir has same parameters as OESN.

The regularization parameter k0 is adaptively calculated

[32].

• CD-ESN-l1: The reservoir has same parameters as

OESN. The regularization parameter k is chosen from

the set (0.05, 0.10, 0.15, …, 0.9) as suggested in [43].

• CD-ESN-l0: The reservoir has same parameters as

OESN. The regularization parameter k is chosen from

the set (0, 0.05, 0.15, …, 0.95).
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