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Abstract
In the present paper, a hybrid deep learning diagonal recurrent neural network controller (HDL-DRNNC) is proposed for

nonlinear systems. The proposed HDL-DRNNC structure consists of a diagonal recurrent neural network (DRNN), whose

initial values can be obtained through deep learning (DL). The DL algorithm, which is used in this study, is a hybrid

algorithm that is based on a self-organizing map of the Kohonen procedure and restricted Boltzmann machine. The

updating weights of the DRNN of the proposed algorithm are developed using the Lyapunov stability criterion. In this

concern, simulation tasks such as disturbance signals and parameter variations are performed on mathematical and physical

systems to improve the performance and the robustness of the proposed controller. It is clear from the results that the

performance of the proposed controller is better than other existent controllers.

Keywords Hybrid deep learning � Diagonal recurrent neural network � Nonlinear system � Lyapunov stability

1 Introduction

Since many real-time implementations of nonlinear sys-

tems involve nonlinearity, nonlinear systems play an

important role in engineering research that are defined as

systems whose manner is not proportional to their inputs

[1]. These systems suffer inherent uncertainty, time-vary-

ing parameters and nonlinear dynamic behavioral. In this

concern, non-optimal control suffers from some limitations

due to the assumptions made for the control system such as

linearity and time-invariance. Therefore, the non-optimal

control methods are not suitable for controlling nonlinear

systems in practical applications [2, 3]. These problems can

be overcome by optimal control techniques. Artificial

intelligence (AI)-based controllers are one of these tech-

niques, which have many advantages, such as [4, 5]: (1) it

can lead to better performance when properly tuned. (2) It

requires less tuning effort than non-optimal controllers. (3)

It can be designed based on data from the real system or

plant if an expert knowledge is not available. (4) It can be

designed using a combination of linguistic and response-

based information. [6–9]. The neural networks (NNs) are

considered as one of AI, which are a series of algorithms to

recognize underlying relationships in a set of data through

a process, which like the operation of human brain [10].

In this concern, there are various structures of NNs such

as recurrent neural networks (RNNs) [11–14] and multi-

layer feed-forward neural networks (MLFFNNs) [15, 16].

MLFFNN is called static network, where there are not

tapped delay lines. Several MLFFNN models from obser-

vational data were created for predicting the groundwater

levels [17]. The NN controller was designed as a direct

adaptive inverse control based on MLFFNN to control and

estimate the model of nonlinear plants [18]. In [19], the

researchers designed MLFFNN for classification of non-

linear mappings based on input and output samples.
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However, there are tapped delay lines in RNN, and this

is called a dynamic network. The RNN is more robust than

MLFFNN because it contains the MLFNN framework with

tapped delay lines [20]. Various RNN structures exist in

this regard, including Elman NNs; the feedback connec-

tions from the output to the input of the hidden layer are

performed via a context layer. Another RNN is Jordan

NNs; the feedback connections from the output to the input

layer are performed via a state layer. [21–23]. Recently, the

fully connected RNN (FCRNN) was modified to provide a

diagonal RNN (DRNN). In the hidden layer, the DRNN

contains self-recurrent neurons that feed only their output

back into themselves, not to other neurons in the same

layer. [24–26]. In [27], in order to achieve high perfor-

mance of the shunt active power filter, researchers designed

a controller based on RNN. A self-organizing RNN for the

nonlinear model predictive controller was designed to

foresee the nonlinear systems behavior [28]. In [29], a

flexible manipulator was designed with a DRNN controller

to limit backward vibration, which is performed based on a

shaking control signal generator and an online identifica-

tion system. The DRNN was introduced as a controller and

an observer for estimating the anonymous dynamics of the

nonlinear system [30]. DRNN was developed to determine

the optimal parameters of the PID controller for controlling

induction motors [31]. In [32], based on the control inputs

and current quadrotor states, researchers developed the PID

controller using virtual sensing based on DRNNs and

Kalman filters to predict the immeasurable cases of the

quadrotor system.

Machine learning (ML) is one of the applications of AI

that can automatically learn from experience without

explicit programming. ML focuses on the development of

programs that can access data and use it to learn them [33].

In this significance, the deep learning (DL) is a part of a

wider family of ML based on ANN’s that learn represen-

tations either supervised, unsupervised, or semi-supervised

[34]. In this concern, there are various applications of DL

exist as follows: (1) In automation systems, an approach for

detecting and assessing food waste trays based on hierar-

chical DL algorithm was presented [35], (2) in medicine

field, a DL algorithm was used to classify and predict

mutations from non-small cell lung cancer histopathology

images [36], (3) in agriculture field, a DL algorithm was

introduced to locate paddy fields at the pixel level for a

whole year long and for each temporal instance based on

real imagery datasets of different landscapes from 2016 to

2018 [37], and (4) in recognition, a DL algorithm was used

for real-time modeling of the human activity recognition

with smartphones [38]. According to definitions [39, 40],

the DL of NN’s includes two steps: firstly is the unsuper-

vised training and secondly is using the weights from the

unsupervised training for initializing the multilayer NNs.

This is considered as the main advantage of DL because the

initializing weights process is very critical issue.

1.1 Literature review

In [41], the parameters of the classical PID controller were

tuned based on DL for controlling maglev train, which is a

new type of the ground transports. The deep NNs (DNN)

were introduced for dynamical systems modeling based on

complex manner [42]. Three DNN structures are trained on

successive data for studying validation of these networks in

modeling of dynamical systems. In [43], DL was designed

for analyzing the performance of a nonlinear continuous

stirred tank reactor, which trained its weights tuned by

hybrid algorithm. The DL was introduced as a hybrid

algorithm with the fuzzy system for tuning the parameters

of the PID controller [44], which was used for controlling

the speed of brushless DC motor. In [45], DL controller

was introduced, which is performed based on the MLFFNN

and the RBM. It is used for initializing the weights values

of a network for the nonlinear systems. In [46], DL was

introduced for modeling the nonlinear systems based on

Elman RNN and restricted Boltzmann machine (ERNN-

RBM), which is considered as an unsupervised method for

initializing only the first layer.

1.2 Motivation

It is evident from the literature review that DL applications

are widely used for modeling systems and it does not cover

the control research. Since nonlinear systems suffer from

external disturbances and uncertainties, the main purpose

of the present paper is to shed further light on the design of

stable controllers for overcoming nonlinear system prob-

lems. In this concern, self-organizing map (SOM) is an

unsupervised learning algorithm trained using dimension-

ality reduction (typically two-dimensional), discretized

representation of input space of the training samples, and

called a map. It differs from other ANN as it depends on

the competitive learning and not the error-correction

learning (like backpropagation with gradient descent). It

uses a neighborhood function to preserve the topological

properties of the input space to reduce data by creating a

spatially organized representation, and also, it helps to

discover the correlation between data [47–50]. On the other

hand, the RBM is an unsupervised learning algorithm that

makes inferences from input data without labeled respon-

ses. The controllers and models based on NNs are always

stuck with the initialized weights. If the initialized weights

are not appropriate, the network gets stuck in local minima

and leads the training process to a wrong ending and the

network becomes infeasible to train therefore. Therefore,

RBM is used to overcome this problem [46, 51]. Hence, a
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merge utilizing the features of SOM and RBM is proposed

to improve the learning performance of the proposed net-

work. To control the nonlinear systems, the hybrid deep

learning DRNN controller (HDL-DRNNC) based on SOM

and RBM is proposed. Initial weights for the DRNN are

obtained using a hybrid deep learning (HDL) procedure,

which is regarded as an unsupervised learning procedure.

The HDL is performed based on RBM and self-organizing

map (SOM) of the Kohonen procedure.

To ensure the stability of the adaptation parameters

laws, the Lyapunov procedure is applied. The proposed

HDL-DRNNC is trained quickly for keeping the trajectory

and overcoming the system parameters variations and

external disturbances. As shown in the simulation results,

these features of the proposed HDL-DRNNC make it more

robust than those of other controllers under the same

conditions.

1.3 Novelties and contributions

The main contributions of the paper are summarized as:

• A new HDL for DRNN controller is proposed for

nonlinear systems.

• Developing the updating weights law for the DRNN of

the proposed algorithm using Lyapunov theory to

achieve stability.

• Compared to other existing controllers, the HDL-

DRNNC can handle problems of system uncertainties

in both a mathematical system and a physical system.

The organization of the paper is as follows: the DRNN

structure is exhibited in Sect. 2. The proposed HDL-

DRNNC is introduced in Sect. 3. The weights updating

based on Lyapunov stability criterion is introduced in Sect.

4. The HDL-DRNNC pseudocode is explained in Sect. 5.

The simulation results for the mathematical and physical

nonlinear systems are introduced in Sect. 6. At final, Sect. 7

exhibits the conclusion, which followed by the references.

2 Diagonal recurrent neural network
structure

As shown in Fig. 1, the structure of DRNN consists of four

layers, namely two hidden layers, an input layer, and an

output layer.

Input layer: the external input vector is represented by

E jð Þ ¼ ex1½ jð Þ � � � exn jð Þ�T and < 1ð Þ jð Þ is the input

weight matrix, which links the input vector to the hidden

layer (1) neurons and it is represented as:

<ð1Þ jð Þ ¼
<ð1Þ

11 jð Þ � � � <ð1Þ
1n jð Þ

..

. . .
. ..

.

<ð1Þ
J1 jð Þ � � � <ð1Þ

Jn jð Þ

2
64

3
75 ð1Þ

Generally, < 1ð Þ
Jn jð Þ denote the input weight between

input neuron n and the hidden layer (1) neuron J.

Hidden layer (1): the output of each node is denoted by

vð1Þj jð Þ, which is specified as:

Kð1Þ
j jð Þ ¼ vð1Þj j� 1ð Þ<D1

j jð Þ þ
Xn
i¼1

<ð1Þ

ji jð Þexi jð Þ

þ Tj jð Þ ;
j ¼ 1; . . .; J

ð2Þ

vð1Þj jð Þ ¼ f Kð1Þ
j jð Þ

� �
; j ¼ 1; . . .; J ð3Þ

where <D1 jð Þ ¼ <D1
1 jð Þ

�
� � � <D1

J jð Þ�T denotes the diag-

onal weight vector at the hidden layer (1), J is the nodes

number, Tj jð Þ denotes the threshold value for every node,

and f ðÞ denotes hyperbolic tangent function, which is

defined as:

f tð Þ ¼ tanh tð Þ ð4Þ

and its derivative can be defined by f 0 tð Þ ¼ 1� f 2 tð Þ.
Hidden layer (2): the output of each node is denoted by

vð2Þm jð Þ, which is specified as:

Kð2Þ
m jð Þ ¼ vð2Þm j� 1ð Þ <D2

m jð Þ þ
XJ
j¼1

<ð2Þ

mj jð Þ vð1Þj jð Þ

þ Tm jð Þ ;
m ¼ 1; ::; M

ð5Þ

vð2Þm jð Þ ¼ f Kð2Þ
m jð Þ

� �
; m ¼ 1; ::; M ð6Þ

where <D2 jð Þ ¼ <D2
1 jð Þ

�
� � � <D2

M jð Þ�T denotes the

diagonal weight vector at the hidden layer (2), M denotes

the nodes number, Tm jð Þ denotes the threshold value for

each node and <ð2Þ
jð Þ denotes the weights matrix between

the hidden layer (1) and the hidden layer (2), which is

defined as:

<ð2Þ
jð Þ ¼

<ð2Þ
11 jð Þ � � � <ð2Þ

1J jð Þ
..
. . .

. ..
.

<ð2Þ
M1 jð Þ � � � <ð2Þ

MJ jð Þ

2
64

3
75 ð7Þ

Generally, < 2ð Þ
MJ jð Þ denote the weight between the hid-

den layer (1) neuron J and the hidden layer (2) neuron M.

Output layer: its output is denoted by u jð Þ, which is

calculated as:
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u jð Þ ¼
XM
m¼1

<ð3Þ

m jð Þ vð2Þm jð Þ þ T jð Þ ð8Þ

where T jð Þ denotes the threshold value and <ð3Þ
jð Þ ¼

<ð3Þ
1 jð Þ � � � <ð3Þ

M jð Þ
h iT

denotes the weight vector

between the hidden layer (2) and the output layer.

3 Hybrid deep learning diagonal recurrent
neural network controller

The initializing weights process for DRNN controllers is

very critical issue. Where, if this process is zero or not

suitable, then the DRNN will stumble in local minimum

and it will lead to wrong network termination as learning

due to the initial layers learning of a network will become

impossible [46]. This issue may be leading the controller to

become unstable. For this reason, DL is proposed. In this

regard, any NN with more than one hidden layer is referred

to as a deep network, which can be learned by DL. The

proposed HDL-DRNNC consists of DRNN that can be

trained by DL. The DL algorithm based on SOM and RBM

is considered as an unsupervised learning for initializing

the weights values of the DRNN. DRNN’s two hidden

layers, which are described in the previous section, are

trained using SOM algorithm. On the other hand, the RBM

algorithm is used for training the DRNN output layer. The

proposed HDL-DRNNC structure is shown in Fig. 2.

3.1 SOM of the Kohonen learning procedure

The initializing weights values for the hidden layers of the

DRNN, which is introduced in Sect. 2, are the main pur-

pose of this section. The NN, which is used to initialize the

weights of the hidden layers of the DRNN, is shown in

Fig. 3. The weights of the NN are trained based on SOM of

the Kohonen process [52]. The training is performed based

on the hypothesis that one of the layer neurons responds

most to the input, which is called the winner neuron.

For training the hidden layer (1) of the DRNN, the

number of neurons in the input layer of the NN (Fig. 3),

which is used to initialize the weights of the hidden layers,

is equal to the number of input neurons of the hidden layer

(1) of the DRNN where their values are If jð Þ ¼ exi jð Þ;
f ¼ i ¼ 1; ::; nð Þ. f denotes the number of neurons in the

input layer of the NN (Fig. 3) and i denotes the number of

the input neurons of the hidden layer (1) of the DRNN. The

number of neurons in the output layer of the NN (Fig. 3) is

equal to the number of output neurons of the hidden layer

(1) of the DRNN and the weights number for the hidden

layer (1) of the DRNN are equal to the weights number for

the NN. After the training of NN is completed, the values

of the hidden layer (1) weights of the DRNN <ð1Þ

ji jð Þ will be
equal to the values of NN weights, -ð1Þ

lf jð Þ;
l ¼ j ¼ 1; :::; Jð Þ.
For training the hidden layer (2) of the DRNN, the

number of neurons in the input layer of NN (Fig. 3) are

Fig. 1 Structure of DRNN
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equal to the number of input neurons of the hidden layer (2)

of the DRNN where their values are If jð Þ ¼ vð1Þj jð Þ;
f ¼ j ¼ 1; :::; Jð Þ. The number of the input neurons of the

hidden layer (2) are denoted by j, where f is defined

previously. The number of neurons in the output layer of

the NN (Fig. 3) is equal to the number of output neurons of

the hidden layer (2) of the DRNN and the number of

weights for the hidden layer (2) of the DRNN are equal to

the number of weights for the NN. After the training of NN

is completed, the values of the hidden layer (2) weights of

the DRNN <ð2Þ
mj jð Þ will be equal to the values of NN

weights, -ð2Þ
lf jð Þ; l ¼ m ¼ 1; :::;Mð Þ.

The SOM of the Kohonen (SOMK) procedure is sum-

marized as:

Step 1: All the weights -ðQÞ
lf

; Q ¼ 1 ; 2 of the NN,

which is shown in Fig. 3, are initialized at zero values.

Step 2: Enter the values of E jð Þ to the NN.

Step 3: The winner neuron x is selected using the

Euclidean distance between the input and the neuron

weights -ðQÞ
x

as:

Fig. 2 Structure of HDL-

DRNNC

Fig. 3 NN based on SOMK unsupervised learning
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ex � -ðQÞ
x

�� �� ¼ min
l

ex � -ðQÞ
x

�� �� ð9Þ

where Q, l and x are the number of the NN layer, the

index of any neuron and the index of the winner neuron,

respectively.

Step 4: Calculate the Gaussian neighborhood function

as:

q Qð Þ
xl jð Þ ¼ ‘ exp �ðx� lÞ2

2f

 !
; 0\q Qð Þ

xl jð Þ� 1 ð10Þ

where ‘ and f are constants.

Step 5: The updating law of the weights of the NN

-ðQÞ
lf ðjÞ, where Q ¼ 1, is obtained as:

D-ð1Þ
lf ðjÞ ¼ q

ð1Þ

xl jð ÞðexðjÞ � -ð1Þ
lf ðjÞÞ ð11Þ

-ð1Þ
lf ðjþ 1Þ ¼ -ð1Þ

lf ðjÞ þ D-ð1Þ
lf ðjÞ;

l ¼ j ¼ 1; :::; Jð Þ and f ¼ i ¼ 1; :::; nð Þ
ð12Þ

The updating law of the weights of the NN -ðQÞ
lg ðjÞ,

where Q ¼ 2, is obtained as:

-ð2Þ
lf ðjþ 1Þ ¼ -ð2Þ

lf ðjÞ þ q
ð2Þ

xl jð ÞðexðjÞ � -ð2Þ
lf ðjÞÞ;

l ¼ m ¼ 1; :::;Mð Þ and f ¼ j ¼ 1; :::; Jð Þ
ð13Þ

3.2 Restricted Boltzmann machine

Initializing the weights values for the output layer of the

DRNN is performed based on RBM [45, 53]. The RBM

that is used in this section is illustrated in Fig. 4. Where all

the weights of the output layer are equal to zero, RBM

contains two main layers: firstly, the visible layer, which

contains a visible nodes group S and secondly, the hidden

layers, which contains a hidden nodes group D [46, 54].

For training the DRNN output layer, the number of

neurons in the input layer of the RBM is equal to the

number of input neurons of the output layer of the DRNN

where their values are Si jð Þ ¼ vð2Þm jð Þ; i ¼ m ¼ 1; ::;Mð Þ.
The number of neurons in the output layer of the RBM is

equal to the number of neurons in the output layer of the

DRNN and the weights number of the output layer of the

DRNN equals to the weights number of the RBM. After the

training of RBM is completed, the values of the output

layer weights of the DRNN < 3ð Þ
m jð Þ will be equal to the

RBM weights values, Xji jð Þ; j ¼ 1; :::;Pð Þ and

i ¼ m ¼ 1; ::;Mð Þ. In this paper, P ¼ 1.

Based on the approach in [53, 55], Hinton introduced

contrastive divergence (CD) for training RBM. The RBM

input is Sðr � 1Þ, which shifts to the visible layer at time

ðr � 1Þ. Then, the hidden layer output is obtained as:

Dj r � 1ð Þ ¼ F
XN
i

XjiSi r � 1ð Þ þ Bj

 !
; r ¼ 1; :::::;<;

j ¼ 1; ::; P and i ¼ 1; ::; N

ð14Þ

where Xji represents the weight between a visible node i

and a hidden node j and Si represents the binary state of the

visible node. P and N are the hidden nodes number and the

visible nodes number, respectively. B ¼ B1 � � � BP½ �T
represents the hidden nodes biases and F denotes sigmoid

activation function F zð Þ ¼ 1= 1þ exp �zð Þð Þ.
The inverse layer reconstructs the data from the hidden

layer. As a result, S rð Þ is obtained at r as follows:

Si rð Þ ¼ F Qi rð Þð Þ ¼ F
XP
j¼1

XijDj r � 1ð Þ þ Ai

 !
ð15Þ

where Xij represents the weight between a hidden node j

and a visible node i, Dj represents the binary state of a

hidden node and A ¼ A1 � � � AN½ �T represents the

Fig. 5 HDL-DRNNC block

diagram with nonlinear system

Fig. 4 Structure of RBM
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visible nodes biases. Subsequently, S rð Þ transfers to the

visible layer and the hidden layer output is obtained as:

Dj rð Þ ¼ F Qj rð Þ
� �

¼ F
XN
i¼1

XjiSi rð Þ þ Bj

 !
ð16Þ

CD� < case: The parameters learning rules for the

weights and biases of nonlinear RBM are clarified as [55]:

Xji jþ 1ð Þ ¼ Xji jð Þ þ e

X<
r¼1

Dj rð Þ � Dj r � 1ð Þ
� �

Si rð ÞF0 Qj rð Þ
� � 

þ Si rð Þ � Si r � 1ð Þð ÞDjðr � 1ÞF0 Qi rð Þð Þ
! ð17Þ

Bj jþ 1ð Þ ¼ Bj jð Þ

þ e
X<
r¼1

Dj rð Þ � Dj r � 1ð Þ
� �

F0 Qj rð Þ
� � !

ð18Þ

Ai jþ 1ð Þ ¼ Ai jð Þ

þ e
X<
r¼1

Si rð Þ � Si r � 1ð Þð ÞF0 Qi rð Þð Þ
 !

ð19Þ

where e is the RBM learning rate and j is the iteration

number. When the parameters of RBM are learned, hence

the output layer of the DRNN can be initialized based on

the weights of RBM Xji jþ 1ð Þ.

4 Weights updating based on Lyapunov
stability

The performance function is denoted by El jð Þ, which is

defined as:

El jð Þ ¼ 1

2
!d jð Þ � !a jð Þð Þ2¼ 1

2
e2x jð Þ ð20Þ

where !dðjÞ and !aðjÞ denote the reference input and the

actual output, respectively. The DRNN is trained to mini-

mize the error signal [56].

To achieve stability, the updating weights of DRNN of

the proposed HDL-DRNNC are developed using Lyapunov

stability criteria. Two conditions must be met in order to

the system to be asymptotically stable, as outlined in

Eqs. (21 and 22)

Rx jð Þ[ 0 for all j except j ¼ 0 ð21Þ
DRx jð Þ ¼ Rx jþ 1ð Þ � RxðjÞ� 0 ð22Þ

where Rx jð Þ is a positive definite function. The updating

weight equation can be expressed as a common form:

Ul jþ 1ð Þ ¼ UlðjÞ � gDUlðjÞ ð23Þ

where Ul jð Þ and DUl jð Þ denote a generalized weight

vector and its desired modification and the learning rate is

denoted by g.

Theorem 1 To achieve the stability of the controlled

process, the updating equation for the DRNN weights of the

proposed scheme is obtained as the following:

Ul jþ 1ð Þ

¼ Ul jð Þ þ g
b Ul jð Þ 1þ r

b e2x jð Þ
� �

þ r
b ex jð ÞU2

l jð Þ oex jð Þ
oUl jð Þ

� �

2k

ð24Þ

where b ; r and k are positive constants.

Fig. 6 Output response for the mathematical system (Task 1)
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Fig. 8 Output response for the mathematical system (Task 2)

Fig. 7 Control signal (Task 1)

Fig. 9 Control signal (Task 2)

22374 Neural Computing and Applications (2022) 34:22367–22386

123



Fig. 12 Output response for the mathematical system (Task 4)

Fig. 10 Output response for the mathematical system (Task 3)

Fig. 11 Control signal (Task 3)
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Proof Suppose the next Lyapunov function:

Rx jð Þ ¼ Ra jð Þ þ RbðjÞ þ Rc jð Þ ð25Þ

where Ra jð Þ ¼ r
2
ex jð ÞUl jð Þð Þ2,Rb jð Þ ¼ b

2
Ul jð Þð Þ2,

Rc jð Þ ¼ k
2
DUl jð Þð Þ2, DRa jð Þ, DRb jð Þ and DRc jð Þ are

defined as:

DRa jð Þ ¼Ra jþ 1ð Þ � RaðjÞ

¼ r
2

ex jþ 1ð ÞUl jþ 1ð Þð Þ2� r
2

ex jð ÞUl jð Þð Þ2

ð26Þ

Fig. 15 Output response for the EVS (Task 1)

Fig. 13 Control signal (Task 4)

Fig. 14 EVS schematic diagram
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Fig. 17 Output response for the EVS (Task 2)

Fig. 18 The EVS control signal (Task 2)
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Fig. 16 The EVS control signal (Task 1)
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DRb jð Þ ¼Rb jþ 1ð Þ � RbðjÞ

¼ b
2

Ul jþ 1ð Þð Þ2� b
2

Ul jð Þð Þ2
ð27Þ

DRc jð Þ ¼ Rc jþ 1ð Þ � RcðjÞ

¼ k
2

DUl jþ 1ð Þð Þ2� k
2

DUl jð Þð Þ2
ð28Þ

The term r
2
ex jþ 1ð ÞUl jþ 1ð Þð Þ2 can be defined based

on Taylor series in the linear form as [24]:

r
2

ex jþ 1ð ÞUl jþ 1ð Þð Þ2 ¼ r
2

ex jð ÞUl jð Þð Þ2

þ
o r

2
ex jð ÞUl jð Þð Þ2

� �

oUl jð Þ DUl jð Þ

þ HOT

ð29Þ

where HOT denotes to the higher order term, which can be

ignored. Therefore, Eq. (29) can be rewritten as:

r
2

ex jþ 1ð ÞUl jþ 1ð Þð Þ2� r
2

ex jð ÞUl jð Þð Þ2

¼ r
2

o ex jð ÞUl jð Þð Þ2
� �

oUl jð Þ DUl jð Þ ð30Þ

The right side of the previous equation is rewritten as

follows:

r
2

o ex jð ÞUl jð Þð Þ2
� �

oUl jð Þ DUl jð Þ ¼r ex jð ÞU2
l jð Þ oex jð Þ

oUl jð ÞDUl jð Þ

þ r e2x jð ÞUl jð ÞDUl jð Þ
ð31Þ

Similarity,

ex jþ 1ð Þ ¼ ex jð Þ þ oex jð Þ
oUl jð ÞDUl jð Þ ð32Þ

Equation (32) can be rewritten as:

ex jþ 1ð Þ � ex jð Þ ¼ Dex jð Þ ¼ oex jð Þ
oUl jð ÞDUl jð Þ ð33Þ

Then, by replacing the term
oex jð Þ
oUl jð ÞDU jð Þ in Eq. (31), we

obtain the following:

DRa jð Þ ¼ r
2

ex jþ 1ð ÞUl jþ 1ð Þð Þ2� r
2

ex jð ÞUl jð Þð Þ2

¼r ex jð ÞU2
l jð ÞDex jð Þ þ r e2x jð ÞUl jð ÞDUl jð Þ

ð34Þ

Similarity,

DRb jð Þ ¼ bUl jð ÞDUl jð Þ and DRc ¼ k DUl jð Þð Þ2:

The second condition for stability is determined as:

Fig. 19 Output response for the EVS (Task 3)

Table 1 The mathematical system MAE values

Task 1 Task 2 Task 3 Task 4

DRNNC 0.5802 0.6603 0.6732 0.6385

FCRNNC [62] 0.5891 0.6686 0.6800 0.6471

ERNN-RBM [46] 0.2513 0.2869 0.2915 0.2813

DRNNC-SOM 0.0306 0.0518 0.0386 0.0386

FFNNHLC [61] 0.1057 0.1455 0.1537 0.1133

AIT2-TSK-FLC-RL [63] 0.07203 0.1038 0.1241 0.0728

FFNN-RBM [45] 0.04478 0.0655 0.0770 0.0475

HDL-DRNNC 0.0107 0.0164 0.0191 0.0154
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DRx jð Þ ¼ r ex jð ÞU2
l jð ÞDex jð Þ þ r e2x jð ÞUl jð ÞDUl jð Þ

þ bUl jð ÞDUl jð Þ þ k DUl jð Þð Þ2 � 0

ð35Þ

Equation (35) can be rewritten as:

DRx jð Þ ¼ r ex jð ÞU2
l jð ÞDex jð Þ þ r e2x jð ÞUl jð ÞDUl jð Þ

þ bUl jð ÞDUl jð Þ þ k DUl jð Þð Þ2¼ �n

ð36Þ

where n� 0, so as to guarantee the condition, DRx jð Þ� 0,

the following equation is obtained:

k DUl jð Þð Þ2þDUl jð Þ r ex jð ÞU2
l jð Þ Dex jð Þ

DUl jð Þ

�

þr e2x jð ÞUl jð Þ þ bUl jð Þ
	

þ n ¼ 0

ð37Þ

The general quadratic equation is determined as:

c v2 þ b vþ a ¼ 0 ð38Þ

The roots of Eq. (38) are calculated as:

v1;2 ¼
�b�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � 4ca

p

2c
ð39Þ

From Eqs. (37) and (38), obviously, DUl kð Þ acts as v in

Eq. (38) and the values of c; b and a in Eq. (37) are

obtained as:

c ¼ k; b ¼ b
r
b
ex jð ÞU2

l jð Þ Dex jð Þ
DUl jð Þ

�

þ 1þ r
b
e2x jð Þ

� 	
Ul jð Þ

	
and a ¼ n

ð40Þ

There is a single unique solution for Eq. (38), ifffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � 4ca

p
¼ 0. Therefore,

b
r
b
ex jð ÞU2

l jð Þ Dex jð Þ
DUl jð Þ

��

þ 1þ r
b
e2x jð Þ

� 	
Ul jð Þ

		2

�4k n ¼ 0

ð41Þ

Fig. 20 The EVS control signal (Task 3)

Table 3 EVS parameters
Symbol and abbreviation Value Symbol and abbreviation Value

m (kg) 800 A (m2) 1.8

Caf (mH) 1.776 q (kg/m3) 1.25

J (kgm2) 0.05 Cd 0.3

re (m) 0.25 lrr 0.015

Ca þ Cf (mH) 6.008 G 11

<a þ <f (X) 0.2 B (NMs) 0.0002

Table 2 The mathematical system RMSE values

Task 1 Task 2 Task 3 Task 4

DRNNC 1.94485 2.0513 2.0525 2.0500

FCRNNC [62] 1.94556 2.0521 2.0533 2.0506

ERNN-RBM [46] 0.90912 0.9589 0.9590 0.9584

DRNNC-SOM 0.17832 0.2117 0.1893 0.1885

FFNNHLC [61] 0.41366 0.4446 0.4480 0.4361

AIT2-TSK-FLC-RL [63] 0.12039 0.1595 0.1847 0.12489

FFNN-RBM [45] 0.13242 0.1528 0.1634 0.1397

HDL-DRNNC 0.03797 0.0461 0.0495 0.0427
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and, n can be calculated as:

n ¼
b r

b ex jð ÞU2
l jð Þ Dex jð Þ

DUl jð Þ þ 1þ r
b e2x jð Þ

� �
Ul jð Þ

� �� �2

4k
ð42Þ

Since n� 0, which means

b r
b ex jð ÞU2

l jð Þ Dex jð Þ
DUl jð Þ þ 1þ r

b e2x jð Þ
� �

Ul jð Þ
� �� �2

4k
� 0

ð43Þ

So, the unique root of Eq. (37) is v1;2 ¼ �b
2c , similarly,

DUl jð Þ ¼ �
b Ul jð Þ 1þ r

b e2x jð Þ
� �

þ r
b ex jð ÞU2

l jð Þ oex jð Þ
oUl jð Þ

� �

2k
ð44Þ

Equation (44) can be reformulated as:

DUl jð Þ ¼ �
b r

b ex jð ÞU2
l jð Þ oex jð Þ

oUl jð Þ þ 1þ r
b e

2
x jð Þ

� �
Ul jð Þ

� �

2k
ð45Þ

So, by replacing DUl jð Þ in Eq. (23), the updating

equation for the parameters of the DRNN of the HDL-

DRNNC can be given as in Eq. (24).

5 Steps of the proposed HDL-DRNNC

The system block diagram with the proposed HDL-

DRNNC is shown in Fig. 5. The error signal ex jð Þ is the

difference between the reference input !dðjÞ and the

actual output of the nonlinear system !aðjÞ. The proposed
controller input is ex jð Þ and its output is the control signal

u jð Þ, which forward to the nonlinear system.

As shown in Figs. 1 and 2, the first layer of the HDL-

DRNNC contains three inputs, which are the error signal

ex1 jð Þ ¼ ex jð Þ, the change of error signal ex2 jð Þ ¼ ex jð Þ �
ex j� 1ð Þ and the change of the change of error signal

ex3 jð Þ ¼ ex jð Þ � 2ex j� 1ð Þ þ ex j� 2ð Þ. The output layer

contains one output u jð Þ. Algorithm 1 summarizes the

proposed HDL-DRNNC pseudocode for reader’s

convenience.

6 Simulation results

A comparison of the proposed HDL-DRNNC and DRNNC

is performed under the same conditions with zero initial

weights to show the performance of the hybrid learning

algorithm. In the present paper, assign

J ¼ M ¼ l ¼ 10; n ¼ 3, R ¼ 10, N ¼ 10, < ¼ 1 and

P ¼ 1. In order to evaluate the performance and demon-

strate the robustness of the proposed controller, the mean

absolute error (MAE) and the root-mean-square error

(RMSE) are used. MAE and RMSE are clarified as

[57, 58]:

MAE ¼ 1

KL

XKL

j¼1

ex jð Þj j ð46Þ

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

KL

XKL

j¼1
ex jð Þð Þ2

� 	s
ð47Þ

Table 5 MAE values for the EVS

Task 1 Task 2 Task 3

DRNNC 0.56730 1.17533 0.97630

FCRNNC [62] 0.50638 1.51069 1.31162

ERNN-RBM [46] 0.45990 0.95267 0.74690

DRNNC-SOM 0.43245 0.40114 0.16700

FFNNHLC [61] 0.47226 1.04951 0.86402

AIT2-TSK-FLC-RL [63] 0.28022 0.39834 0.29394

FFNN-RBM [45] 0.22735 0.21747 0.14997

HDL-DRNNC 0.07896 0.11124 0.06934

Table 6 RMSE values for the EVS

Task 1 Task 2 Task 3

DRNNC 1.23253 2.61144 2.50004

FCRNNC [61] 1.16820 2.51704 2.40280

ERNN-RBM [46] 1.13236 2.05436 1.96370

DRNNC-SOM 1.08478 0.85328 0.6678

FFNNHLC [62] 1.14823 2.44867 2.33094

AIT2-TSK-FLC-RL [63] 0.73576 1.24810 1.12558

FFNN-RBM [45] 0.66215 1.03518 0.89828

HDL-DRNNC 0.39100 0.63858 0.53724

Table 4 EVS parameters variation values

Symbol and abbreviation Value

m 900

Cd 0.2

J 0.04

re 0.3

Ca þ Cf 4.008

Ra þ Rf 0.25

lrr 0.025
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where KL denotes iterations number.
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6.1 Case1: mathematical system

A non-affine nonlinear system is used to test the perfor-

mance of the proposed controller, which is given as

[59, 60]:

G1 jþ 1ð Þ ¼ a1 jð ÞG2 jð Þ þ a2 jð Þ sin G1 jð Þð Þ ð48Þ

G2 jþ 1ð Þ ¼ a3 jð Þ cos G2 jð Þð Þ sin G1 jð Þð Þ þ a4 jð Þ u jð Þ
þ a5 jð Þ tanh u jð Þð Þ

ð49Þ
!a jþ 1ð Þ ¼ G1 jþ 1ð Þ ð50Þ

where a1 jð Þ ¼ 0:5; a2 jð Þ ¼ �0:3; a3 jð Þ ¼ �1; a4 jð Þ ¼
2 and a5 jð Þ ¼ �2.

6.1.1 Task 1: tracking the reference signal trajectory

The reference signal in this task is defined as:

!d jð Þ ¼ 1þ 0:5 sin 0:05jTð Þ ð51Þ

where T denotes the sampling period.

Figures 6 and 7 exhibit the system response and the

control signal for the proposed HDL-DRNNC and

DRNNC. It is clear that there is an error between the set-

point and the system output under using the DRNNC at the

beginning of simulation task. However, the proposed

controller using hybrid learning algorithm based on SOM

and RBM is able to track the set-point without a steady-

state error.

6.1.2 Task 2: uncertainty due to disturbance

To evaluate the robustness of the proposed HDL-DRNNC,

a disturbance value of 50% of its desired output is added to

the system output at j ¼ 2950. Figure 8 illustrates that the

system output tracks the set-point without a steady-state

error after adding a disturbance value to the measured

output for the proposed HDL-DRNNC. After adding a

disturbance value for the DRNNC, there is still a steady-

state error. Figure 9 exhibits the control signal of the sys-

tem for both controllers. In contrast with the DRNNC, the

proposed HDL-DRNNC clearly responds to disturbance

effects.

6.1.3 Task 3: Uncertainty due to disturbance
with parameters variation

At j ¼ 2950 instant and after the system output reaches the

reference input, the system parameters are varied as fol-

lows: a1 jð Þ ¼ 0:35; a2 jð Þ ¼ �0:35; a3 jð Þ ¼ �
1:5; a4 jð Þ ¼ 2 :5 and a5 jð Þ ¼ 1 with an effect 40% dis-

turbance. The output response and the control signal of the

system are shown in Figs. 10 and 11, respectively, for both

controllers. It is evident that the proposed HDL-DRNNC is

capable of responding to the uncertainty effects (the

parameters variation and disturbance) as compared to the

DRNNC.

6.1.4 Task 4: uncertainty due to noise

A random noise signal is added at j ¼ 2950 instant. The

output response and the control signal of the system are

shown in Figs. 12 and 13, respectively. In contrast to the

output response based on DRNNC, the proposed HDL-

DRNNC has the ability to recover from the impact of

random noise more quickly. The proposed HDL-DRNNC

is more robust than the DRNNC.

Tables 1 and 2 illustrate the values of MAE and RMSE

for the proposed HDL-DRNNC, the DRNNC and other

schemes, that are published previously such as feed-for-

ward neural network based on RBM (FFNN-RBM) [45],

ERNN-RBM [46], feed-forward neural network with

hybrid learning controller (FFNNHLC) [61], FCRNNC

[62] and adaptive interval type-2 Takagi–Sugeno–Kang

fuzzy logic controller based on reinforcement learning

(AIT2-TSK-FLC-RL) [63]. On the other hand, the pro-

posed HDL-DRNNC is compared with DRNNC based on

SOM (DRNNC-SOM) to show the benefits of hybrid

learning.

The MAE and RMSE values for the proposed HDL-

DRNNC scheme are clearly smaller than those obtained for

other schemes. Due to use of DL to initialize the weight

values of the proposed HDL-DRNNC, it can reduce the

impact of the system uncertainties caused by external dis-

turbance, parameter variations, and random noise com-

pared with other schemes. The hybrid algorithm is used

because it gave better results than the DRNNC-based SOM

algorithm as shown in Tables 1 and 2.

6.2 Case 2: physical system

In this section, the proposed controller is used for con-

trolling a physical system, which is the electrical vehicle

system (EVS). Nowadays, EVSs are increasingly advanc-

ing because of the importance of environmental protection

and lack of energy sources [64]. The control of EVSs is

important role in order to determine a high-performance

EVS with an optimal balance of travelling range per

charge, maximum speed and acceleration performance

[64]. EVSs are basically time-variant (e.g. the EVS

parameters and the road condition are consistently varying)

nonlinear system, which making the control of an EVS

quite cumbersome [64]. Therefore, the control of EVS

should be designed robustly and adaptively to improve the

system in both dynamic and steady performance states.
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Figure 14 shows the schematic diagram of an EVS and

the mathematical model is given as [63–66]:

_�h ¼V �hð Þ þ q �hð Þu;
!a ¼Z �hð Þ

ð52Þ

where �h ¼ i
x

� �
¼ �h1

�h2

� �
, V �hð Þ; q �hð Þ and Z �hð Þ are defined

as:

V �hð Þ ¼

�1

Ca þ Cf

� 	
C1

1

J þ m
re
G

� �2

0
B@

1
CA Caf �h

2
1 � B �h2 �

re
G

� �
C2

� �

2
666664

3
777775

ð53Þ

q �hð Þ ¼
1

Ca þ Cf

� 	

0

2
4

3
5 and Z �hð Þ ¼ �h2 ð54Þ

C1 ¼ <a þ <f

� �
�h1 þ Caf �h1 �h2 ð55Þ

C2 ¼ 0:5 qACd
re
G

� �2
�h22 þ lrr m g tanh �h2ð Þ ð56Þ

where x and i denote to angular speed and angular speed

of the motor. Cf ; Ca;<f and <a denote the field inductance,

armature inductance, the field resistance and armature

resistance, respectively.J denotes the inertia of the motor,

re denotes the tire radius of the EVS, which includes the

tires with gearing system, Caf is the mutual inductance

between the armature and the field windings, and q, A and

m denote the air density, the frontal area of the vehicle and

the mass of the EVS, respectively. lrr ,B,G and Cd denote

the rolling resistance coefficient, the viscous coefficient,

the gearing ratio and the drag coefficient, respectively. The

values of EVS parameters are listed in Table 3.

6.2.1 Task 1: tracking the reference signal trajectory

Figures 15 and 16 exhibit the EVS response and its control

signal when the desired input is given as:

!d ¼

0:02t 0\t� 210

10 210\t� 420

15 420\t� 630

�0:0237t þ 30 630\t� 840

2 840\t� 1050

8>>>><
>>>>:

ð57Þ

In this task, the set-point changing is carried for testing

the proposed HDL-DRNNC, which is compared with the

DRNNC. It is clear that the EVS response using the pro-

posed HDL-DRNNC reaches the set-point faster than the

DRNNC.

6.2.2 Task 2: uncertainty due to parameters variation
with disturbance

In this task, the EVS parameters are varied as in Table 4

with an effect 40% disturbance after the system output

reaches the reference input at t ¼ 240 sec. The system

response and its control signal for both controllers are

exhibited as in Figs. 17 and 18. It is clear that the robust-

ness of the proposed HDL-DRNNC is better than the

DRNNC due to its ability of reducing the effect of system

uncertainties.

6.2.3 Task 3: uncertainty due to random noise

A random noise signal is added at t ¼ 240 sec. The EVS

response and its control signal are shown in Figs. 19 and

20. It is clear that the EVS response for the proposed HDL-

DRNNC is quickly recovering from the impact of random

noise as compared to the output response based on

DRNNC. The robustness of the proposed HDL-DRNNC is

better than that compared with DRNNC.

The analyses of the MAE and RMSE values for the

proposed HDL-DRNNC, the DRNNC and other schemes

are presented in Tables 5 and 6. It is clear that the MAE

and RMSE values for the proposed HDL-DRNNC are

smaller than those obtained for other schemes. Compared

with other schemes, HDL-DRNNC has the ability to reduce

the impact of system uncertainties.

The main features of the proposed HDL-DRNNC are

gathered as follows: (1) It has a swift learning control due

to its use of hybrid DL, which uses SOM and RBM to

initialize the weights values, (2) the controller is stable as it

uses the Lyapunov stability method to update the weight

values and it guarantees the stability, and (3) it is suc-

cessful for reducing the system uncertainties and tracking

the performance output for both mathematical system and

physical system.

7 Conclusion

In the present paper, the HDL-DRNNC is proposed for

nonlinear systems. The HDL-DRNNC uses the DRNN,

which can be learned from HDL. In order to guarantee the

stability of the proposed controller, the updating weights of

the DRNN are derived using the Lyapunov stability crite-

rion. Two nonlinear systems, namely mathematical and

physical, are used to estimate the performance of the pro-

posed controller. According to the obtained results, the

proposed HDL-DRNNC can overcome uncertainty and

track the performance of the controlled systems. By com-

paring MAE and RMSE indicators, it is evident that the

response of mathematical and physical systems based on
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HDL-DRNNC is able to recover fast from the effects of

uncertainties as compared with the response of mathe-

matical and physical systems based on DRNNC and other

existing controllers. As conclusion, HDL-DRNNC robust-

ness has superior performance and a faster ability to

recover from uncertainty as compared to DRNNC and

other controllers. In the future work, the authors will try to

implement practically the proposed algorithm using

microcontrollers for controlling a real system.
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