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Abstract
Human activity recognition (HAR) is a very active yet challenging and demanding area of computer science. Due to the

articulated nature of human motion, it is not trivial to detect human activity with high accuracy for all applications.

Generally, activities are recognized from a series of actions performed by the human through vision-based sensors or non-

vision-based sensors. HAR’s application areas span from health, sports, smart home-based, and other diverse areas.

Moreover, detecting human activity is also needed to automate systems to monitor ambient and detect suspicious activity

while performing surveillance. Besides, providing appropriate information about individuals is a necessary task in per-

vasive computing. However, identifying human activities and actions is challenging due to the complexity of activities,

speed of action, dynamic recording, and diverse application areas. Besides that, all the actions and activities are performed

in distinct situations and backgrounds. There is a lot of work done in HAR; finding a suitable algorithm and sensors for a

certain application area is still challenging. While some surveys are already conducted in HAR, the comprehensive survey

to investigate algorithms and sensors concerning diverse applications is not done yet. This survey investigates the best and

optimal machine learning algorithms and techniques to recognize human activities in the field of HAR. It provides an in-

depth analysis of which algorithms might be suitable for a certain application area. It also investigates which vision-based

or non-vision-based acquisition devices are mostly employed in the literature and are suitable for a specific HAR

application.
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1 Introduction

Human activity recognition (HAR) aims to recognize the

actions carried out by a particular person based on certain

information about that person and his ambiance. Accord-

ingly, HAR is a study of the interpretation of human body

gestures or motion with sensors, images, and video

sequences [11]. It has been actively investigated for a wide

range of applications and real-world problems, including

healthcare [139, 144], sports training [73], abnormal

behavior detection [77, 145], content-based video analysis

[193], robotics, human–computer interaction [210], visual

surveillance [25, 31, 97, 193], video indexing [122, 177],

smart homes [99, 151, 181, 231] ambient intelligence

[166, 177], and several other areas [134]. In ambient

intelligence, ambient sensors are installed in the human

habitat; these sensors are sensitive to the presence of

humans and can respond to human activity. The sensors

categories include a wide variety of sensors, such as motion

detectors, door sensors, object sensors, pressure sensors,

and temperature sensors. These types of sensors are

deployed in the environment to monitor and record the

actions [51, 74, 90]. Video indexing permits automating the

recognition and isolation of videos efficiently based on

their scenarios and contents. For example, it can identify

and index videos based on different activities and condi-

tions like sports-based videos, shopping malls videos,

home videos, etc.

The interpretation of activity may vary as per the

application area and domains; however, specific activity is

generally a collection of a particular set of actions. For

example, the activity of washing clothes may consist of
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pre-soaking, rinsing, washing, and drying actions. Gener-

ally, these activities are performed in a specific time win-

dow and may be performed in different forms.

Subsequently, activities can be categorized into four major

categories, as shown in Fig. 1. Composite activities are

composed of a set of complex and overlapping activities.

Composite activity is made up of more complex behaviors,

such as cooking or cleaning. It can be seen in Fig. 1;

cooking involves turning on the stove, the addition of

pasta, cooking pasta, and turning the stove off. Similarly,

playing tennis is made up of volleys, smash, service,

dropping the ball, running and so on. On the other hand, the

concurrent activity involves the number of tasks per-

formed simultaneously or concurrently. For example, a

person might eat a snack while watching his favorite

movie. A logical order or sequence is followed in the

involved steps in an operational plan for execution in

another type called sequential activities. For instance,

drinking water from the refrigerator requires opening

action before water can be consumed and logically fol-

lowed by closing the fridge. Finally, interleaved activities

are linked with each other and can be switched back and

forth. For example, a person might read the novel, suspend

it for a while, write its summary, and switch back to

reading. Figure 1 shows composite, concurrent, sequential,

and interleaved activities with examples.

The information or data in the HAR is indexed over time

dimension. Thus, the time intervals are consecutive, non-

overlapping, and non-empty. Generally, the activities are

not simultaneous, i.e., a subject cannot ‘‘sit’’ and ‘‘stand,’’

‘‘run,’’ and ‘‘walk’’ in a single time frame. Noticeably, the

HAR problem is not feasible to be solved deterministically.

It is also possible that the number of combination of input

attributes and activities become very large or even infinite

in some rare cases, and finding the transition points

becomes challenging as the exact duration of each activity

is generally unknown. Subsequently, before feature

extraction and selection, a relaxed version of the problem is

then introduced. In this step, the time series sequential data

is divided into fixed-length time windows and thereby,

filtering the relevant information from the raw signal or

video sequences.

HAR consists of several steps; a typical flow for HAR is

shown in Fig. 2. Initially, actions are recorded using data

acquisition devices such as sensors, and cameras, further

explained in Sects. in 1.1 and 1.2, respectively. The data

obtained from these devices is mostly acquired in raw form

with redundant information; therefore, a preprocessing is

required. Besides, the data may not be in the required shape

for the other steps in the pipeline. The preprocessing

involves different types of filters, transformation, reduc-

tions, and other techniques, further explained in 1.3. Once

data is preprocessed, machine learning techniques are

applied to it to identify or classify different human activ-

ities in the next step. In the following paragraph, data

acquisition using a diverse variety of sensors is discussed

in detail.

1.1 Non-vision-based HAR

If the activity has to be monitored for a brief period,

wearable sensors are preferred. For long-term monitoring

of human activity, implanted and external sensors are

employed. In the case of wearable sensors, the device is

attached to the human body. Additionally, this category

also includes smart devices, for example, smartwatch,

smart glasses for the visual and hearing disabled, and smart

shoes. In some implants, the devices monitor the body’s

internal activity; one particular example could be implan-

ted EMG sensors. Another possible way is external sensors,

where the devices are fixed in predetermined points of

interest. These types of sensors are widely used in traffic

control and management systems. Resulting in involuntary

interaction between the users and sensors. It also includes

objects that constitute the activity environment, namely

dense sensing.

Wearable sensors often utilize inertial measurement

units and radio frequency identification device (RFID) tags

to gather an actor’s behavioral information. This approach

is effective for recognizing physical movements such as

physical exercises. In contrast, dense sensing infers activ-

ities by monitoring human-object interactions through the

usage of multiple multi-modal miniaturized sensors.

Smartphone-based wearable sensors are popular alternative

methods of inferring human activity details. It can be used

to connect a wide range of sensors, i.e., Wi-Fi, Bluetooth,

microphones, accelerometer, gyroscope, magnetometer,

light sensors, and cellular radio sensors. These sensors are

employed to infer human activity details for diverse

applications. Sensors such as accelerometer, gyroscope,

magnetometer, implanted sensors [15, 194] and, global

position system (GPS) can be deployed for coarse grain

and context activity recognition, user location, and social

interaction between users. Motion sensors (Accelerome-

ters, gyroscopes, magnetometers) provide significant

information that facilitates recognition and monitoring of

users’ movements such as walking, standing, or running.

Similarly, proximity and light sensors that are generally

embedded in mobile devices to enhance user experiences

can also be deployed to determine whether the user is in

light or dark. Other sensors such as barometers, ther-

mometers, air humidity, and pedometers have also been

employed to monitor the healthy status of elderly citizens

and for assisted living. For instance, the pedometer found

in the Samsung Galaxy smartphones and exercises tracking

wearable devices is essential for step counts, heart rate, and
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pulse monitoring. These sensors’ measurements could be

noisy because of displacement or other unsuitable condi-

tions. To eliminate noise from the data different types of

thresholding or filtering techniques could be applied [192].

Table 1 summarizes various dataset containing different

types of activities. The activities include Ambient Assisted

Living (AAL), Paroxysmal atrial fibrillation (PAF) detec-

tion, and activity of daily living (ADLs). The activities

range from 2 to 35 activities with different machine

learning techniques applied to them. Moreover, it also

explains how different activities are captured using

numerous sensors, including an accelerometer, gyroscope,

magnetometer, and electrocardiogram (ECG). Each activ-

ity is recorded at a particular sampling rate; a higher

sampling rate means that the activity has more data. The

higher sampling rate translates into finer granularity and

real-time detection of human activities. On the other hand,

low sampling rates mean that fewer snaps shots are avail-

able per minute. It results in faster processing, less storage,

and bandwidth consumption; however, it follows event

recognition limitations and lower resolution. In some cases,

the activities are not immediately trivial and are required to

be extracted from data. For this purpose temporal pattern

extraction and recognition, algorithms are applied to the

data to extract activities [37].

1.2 Vision-based HAR

Vision-based activity recognition is one of the pioneering

approaches. It has been a research focus for a long time due

Fig. 1 Categorization of an Activity based on sequence of operations

Human gestures

Sensors

Deep learning 
algorithm

Human activities 

Data

Pre-Processing

Fig. 2 Human activity

recognition’s Flow diagram
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to its significant role in intelligent video surveillance,

health care, smart home, AAL, human–computer interac-

tion, robot learning, emotion recognition [85] and video

labeling. The primary aim of vision-based HAR is to

investigate and interpret activities from a video (i.e., a

sequence of image frames) or directly from images.

Therefore, vision-based methods utilize video cameras to

identify human actions and gestures from video sequences

or visual data. Due to the prevailing development in

technology, camera devices are upgrading. In response to

this, novel approaches for vision-based HAR are constantly

emerging.

In the recent past, an ample amount of valuable infor-

mation, for instance, three-dimensional structures, can be

obtained using 3D depth cameras compared to traditional

cameras. Literature suggests that a wide variety of

modalities, such as a single or multi-camera, stereo, and

infra-red, are applied to understand and investigate various

HAR applications. Vision-based methods employ cameras

to detect and recognize activities using several different

computer vision techniques, such as object segmentation,

feature extraction, and feature representation. The appro-

priate cameras for capturing the activity greatly impact the

overall functionality of the recognition system. As dis-

cussed earlier, vision-based HAR is a more challenging

problem due to motion and variation in human shape,

occlusions, cluttered backgrounds, stationary or moving

cameras, different illumination conditions, light intensity,

and viewpoint variations. However, the severeness of these

challenges depends upon the kind of HAR application.

Table 2 summarizes many datasets of video having data

related to many human activities. As far as the time domain

decomposition of activity is concerned, the variety of HAR

applications results in a considerably extensive range.

The recognition of video sequences’ actions involves

complex steps, including pre-processing images or space-

Table 1 A comparison of literature on the activity’s dataset for Non-Vision-based human activity recognition

Refs. Year Dataset Types of

activities

Num of

activities

Sensors Method learning Sampling

rate (Hz)

[121] 2020 HAR ADL 3 Single triaxial A, triaxial G SVM and Logistic

Regression

50

[124] 2020 Opportunity AAL 7 Wearable sensors, object sensors, and

ambient sensors

DBN 50

[153] 2018 PAF PAF 2 ECG CNN 128

[127] 2018 PAMAP2 ADL 18 A,G,M CNN 100

[5] 2017 UCI

Smartphone

ADL 6 A,G SAE 50

[62] 2016 Daphnet Gait Gait 2 A CNN 64

[7] 2016 WISDM ADL 6 A RBM 20

[81] 2016 Self ADL 9 Bagged tree model

[142] 2016 Opportunity ADL 16 A, G, M, AM CNN, RNN 32

[159] 2016 ActiveMiles ADL 7 A CNN 50–200

[215] 2015 ActRecTut Gestures 12 A,G CNN 32

[82] 2015 USC-HAD ADL 12 A,G CNN 100

SHO ADL 7 A, G, M CNN 50

[61] 2015 MHEALTH ADL 12 A, C, G CNN 50

[65] 2015 HASC ADL 13 A RBM 200

[227] 2015 DSADS ADL 19 A, G, M DBN 25

[230] 2014 BIDMC Heart failure 2 ECG MC-DCNN 125

[221] 2014 Actitracker ADL 6 A CNN 20

[102] 2012 Self ADL 6 A Additive Logistic

Regression

50

[151] 2011 Ambient

kitchen

Food preparation 2 A RBM 40

2011 Darmstadt

Daily

ADL, Food 35 A RBM 100

Routines preparation,

FACTORY
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time volume video data, feature extraction concerning

actions, and action modeling based on the extracted fea-

tures. Therefore, to acquire accurate and meaningful rep-

resentations as input features for the classifier, some well-

defined ways are categorized as global, local, and depth-

based representations. It is evident from the literature that

initially, studies attempted to model the whole images or

silhouettes and represent human activities globally, where

space-time shapes are generated as the image descriptors.

Subsequently, significant attention was diverted towards

the new local representation view, the evolution of space-

time interest points (STIPs), which focuses on the infor-

mative interest points. Apart from this, other local

descriptors, for example, a histogram of optical flow (HOF)

and histogram of oriented gradients (HOG) from the

domain of object recognition, are widely adopted to 3D in

the HAR area. With the latest camera devices’ latest

advancements, specifically the evolution of RGB-D cam-

eras, currently, depth image-based representations are used.

1.3 Pre-processing of data

After acquiring data from sensors, i.e., images, videos, and

sensors, it is further processed to prepare it for upcoming

blocks in the pipeline. The primary steps are performed to

remove noise from data, extract salient and discriminative

features, remove background or isolation of certain areas of

interest, and resample data to meet specific requirements.

The most primary and commonly used operation in pre-

processing is the removal of unwanted noise. Therefore,

various approaches can be utilized, such as nonlinear fil-

tering, Laplacian, and Gaussian filters. Another frequently

used operation is segmentation; it involves dividing the

signal into small window sizes to extract prominent fea-

tures. The next step is to extract features to reduce com-

putational time and enhance classification accuracy.

Additionally, if these features are still very huge, they are

further reduced by utilizing the dimensionality reduction

method or selecting the most discriminative features to

identify human activity. There are two types of feature

vectors for human activity recognition; the first one

involves statistical features, and the other one is based on

structural features. Common statistical features are mean,

median, standard deviation, time, and frequency domain

representation. These features are based on the qualitative

properties of the acquired data. On the other hand, the

structural features are based on the relationship between

the mobile sensor’s data. To reduce the computational

complexity dimensionality reduction algorithms like prin-

cipal component analysis (PCA), linear discriminate anal-

ysis (LDA), and empirical cumulative distribution

functions (ECDF) are used.

While doing preprocessing on images and videos, the

features can be represented in image space. With videos,

these features represent the pose of human action in image

space and represent the change in the state of that particular

action. Hence with videos-based HAR, the feature repre-

sentation is extended from 2D space to 3D space. In recent

years several methods have been adopted to represent

actions, including local and global features based on tem-

poral and spatial changes [165], trajectory features based

on keypoint tracking [9, 126, 207], motion changes based

on depth information [23, 24, 217] and features based on

human action and pose changes [46, 220]. Deep learning

had been prevalent for image classification and object

detection; many researchers have also applied deep learn-

ing to human action recognition. This approach enables to

automatically generate action features from sensed data

[142, 161, 230]. Human activity recognition is one of the

popular research areas; therefore, several surveys are

already published in this field as shown in Fig. 6 with the

timeline. Then Table 3 demonstrates highlights of exiting

surveys in terms of activities and algorithms discussed.

The works can be broadly classified into surveys related

to vision-based [89, 193, 20, 177, 97] and non-vision-based

HAR [13, 101, 203]. Due to the increasing application and

Table 2 A comparison of

literature on the activity’s

dataset for Vision-based human

activity recognition

Refs. Year Dataset Type Video clip Classes

[96] 2011 HMDB51 Action recognition 7000 51

[175] 2012 UCF101 Sports 13,320 101

[87] 2014 Sports-1M Sports 1,100,000 487

[18] 2015 ActivityNet Human Activities 28,000 203

[172] 2016 Charades Human activities 9848 157

[231] 2018 YouCook2 Cooking videos 2000 15,400

[163] 2018 How2 Instructions videos 13,168 1,84,949

[125] 2019 Moments in Time Action recognition 1,000,000 339

[181] 2019 COIN Instructions videos 11,827 180

[120] 2019 HowTo100M Captioning 1,200,000 120

[45] 2019 Oops Classification 20,723 –
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popularity of deep learning recently, some surveys pro-

vided an in-depth deep learning perspective for HAR [199].

Similarly, other related surveys presented different

machine learning techniques for HAR [157]. Some special

surveys covered narrow areas like group activity recogni-

tion [97, 206], use of context, and domain knowledge

[141], middleware [141], online activity recognition using

mobile phones [171], and use of 3D data [2]. HAR is

applied in various domains, and the existing literature does

not cover application-based surveys for HAR. Though

some works cover specific applications domain such as

health care [203] and sports-based application [13]. How-

ever, to the best of our knowledge, no recent survey covers

datasets, machine learning algorithms, and techniques for

diverse application domains in depth. The literature indi-

cates that State-of-the-art machine learning and deep

learning algorithms are outperforming and providing

excellent results in HAR’s domain.

Although online activity recognition is very beneficial

though challenging, in most of the literature only offline

recognition of activities is covered. Moreover, it has been

analyzed that decision trees, support vector machine

(SVM), Hidden Markov Model (HMM), and K-Nearest-

Neighbor (KNN) are mostly used classifiers for HAR. As

per our analysis, this work not only covered the latest lit-

erature related to machine learning, some advanced learn-

ing-based techniques like reinforcement learning are only

covered in detail in this paper. The primary focus of this

survey is to investigate the best-suited algorithms and

techniques for human activity recognition for diversified

application domains. In the beginning, this paper provides

a brief introduction to HAR with sensors, images, and

videos. It provides an organized review of HAR’s main

techniques and solutions, including various Machine

learning approaches. Moreover, the paper also provides a

comprehensive survey and comparative analysis of HAR’s

applications. Additionally, this study indicates the current

trends, challenges, and applications for HAR.

The remainder of the paper is organized as follows.

Section 2 overviews the main concept of HAR with sen-

sors, images, and videos and categorizes the different

applications. Section 3 refers to a brief description of the

traditional machine learning approaches in terms of dis-

criminative and generative models and their implementa-

tion in HAR. Sections 4 and 5 deal with deep learning

architectures and transfer learning. Section 6 presents

Reinforcement learning. Subsequently, Sect. 7 deals with a

few more machine learning-related techniques. Section 8

provides a discussion on the performance analysis of var-

ious HAR models by comparing a variety of research work

that is recently used by different authors. Besides that

future directions and limitation of HAR-based system is

also presented in the aforementioned section. Section 9

deals with the conclusion of the study.

2 Applications of HAR

HAR finds applications in a wide spectrum of domains

including health-care [139, 144], abnormal behavior and

fall detection [77, 145], exercise and sports training assis-

tance systems [73], smart homes [181, 231], crowd

surveillance and video content analysis [193] are few

examples. Each area has several modalities where HAR is

applied in numerous subareas, for example, health-care

HAR includes patient monitoring of ICU patients [28, 142].

Similarly, smart homes, it is used to assist elderly people,

activity monitoring of children, and help dementia patients.

The recent research on AI has made humans more inclined

to identify objects, actions, and time series analysis. This

section investigates which kind of sensors and videos-

based acquisition devices are mostly used in the literature

and suitable for a specific HAR application, as shown in

Table 4. We summarize many recent works and present a

new research survey on human action recognition tech-

niques, including classic machine learning algorithms and

advanced deep learning architectures over sensor-based,

vision-based HAR and audio-based HAR [33]. For classi-

fication, SVM, neural network (NN), Gaussian Mixture

Model (GMM), HMM, and Kernel extreme learning

machine (KELM) classifier are considered the most pop-

ular in activity recognition. KELM classifier enhanced the

capability of an extreme learning machine (ELM) by

transforming linearly non-separable data in a low dimen-

sional space into a linearly separable one. While GMM is

mostly used in unsupervised learning, where Gaussian

distributed sub-groups are formed within data based on a

specific feature. On the other hand, HMM-based classifi-

cation is still restricted to supervised learning. HMM has

been proven very successful in classifying sequential

events. Therefore if some activities require to get benefited

from sequential information of events like in the online

activity recognition, HMM is very robust.

The number of inertial sensors and their location on the

human body has a significant effect on the type of human

activity to be monitored and classified [12]. Several types

of indoor movement, such as standing, walking, or climb-

ing ascending and descending stairways, are determined in

[84] using support vector machines in conjunction with an

Inertial Measurement Unit (IMU). An IMU is a device that

uses gyroscopes and accelerometers to measure and report

angular rate and specific force. It is demonstrated in [131]

that walking, running, and jogging share similar properties

in terms of angular movement. This could be highly ben-

eficial for discovering irregularities in human actions and
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identifying any outliers. The research conducted in [185]

estimates the body joint angles features by co-registering a

3-D body model to the stereo information from the time-

sequential activity video frames. The aforementioned study

indicates that with 3-D joint angle information, substan-

tially stronger features and attributes may be formed than

depth and binary features, this could significantly enhance

the HAR.

Joint movement recognition is mostly recognized in

sports-related applications; mostly, depth maps are used.

Depth maps are image channel that provides information

about the distance of the targeted object from a viewpoint.

However, the joint activity perception with a depth map

will increase the processing time. To reduce the compu-

tational complexity and to increase speed, data dimension

reduction is essential. For that purpose, data must be

reduced efficiently like it must contain the depth infor-

mation by completely preserving the depth map sequence.

For example, [24] uses PCA for dimensionality reduction

of features, and then classification is performed. In [105]

authors introduces 3D human recognition method from

offline to online. Methods use skeletal sequences

[9, 39, 44, 46, 57, 113, 189, 220], depth maps

[23, 24, 106, 202, 209, 217], both of skeletal sequences and

depth maps [140, 198, 219], or RGB-D sequences [48, 205]

as motion data for action recognition method. Heart rate

monitoring is helpful not only for one’s well-being [192]

but also has some relation with physical activities [182].

Real-time daily and sports activities have been recognized

in [182] with partial information from heart monitoring. It

has been observed that only heart rate monitoring activities

cannot be recognized accurately since it is influenced by

environmental and emotional factors. However, heart rate

has some relation with the energy consumption during

various activities.

For health-based applications, irregular activity can be

recognized by determining motion recognition. Motion

recognition is very challenging, particularly if it contains

the repetition of actions and abnormal activity. The authors

in [187] have utilized smartphone sensors like accelerom-

eter (A), gyroscope (G) proximity, light (L), and magne-

tometer (M) sensors to detect complex joint movements. It

was observed that static states in which a person is in a

steady-state concerning sensors, like lying, sitting, and

standing, are easy to identify. In contrast to that, the

dynamic states in which the person is in constant move-

ment concerning sensors, like fast turn, U-turn, moving

forward and backward, are challenging and difficult to

recognize.

Further, in [139], experimental studies show that these

sensors can be used individually to recognize human

activity. The accelerometer sensor gives better

Table 3 Comparison of activities and algorithm covered in other surveys

Problem considered The existing survey

[13] [20] [177] [97] [101] [206] [141] [171] [2] [203] [89] Our work

Online recognition U U U U

Offline recognition U U U U U U U U U U U

Vision based U U U U U U U U U

Non-vision based U U U U U

Group activity U U U U U U

Daily activity U U U U U U U

Sports activity U U U U U U U U U

Surveillance U U U U U U

Health care U U U U U U

SVM U U U U U U U U

GMM U U U

HMM U U U U U U U U U

LSTM U U U

CNN U U U

RNN U

ANN U U U U

Reinforcement learning U

Bagging U U

Decision tree U U U U

Neural Computing and Applications (2022) 34:18289–18324 18295

123



Table 4 Application wise categorization of HAR

Application Refs. Dataset Type (vision/

non-vision)

ML algorithm Objective

Sports [24] MSRAction3D and MSRGesture3D Video PCA, DMM-LBP-

DF and KELM

Fast game postures

[217] MSR Action3D Video DMM-HOG Track human body

joints

[23] MSRAction3D and MSRGesture3D Video KELM Game postures

[106] MSR Action3D Video GMM Track human body

joints

[232] KTH Actions, UCF Sports, Youtube Actions Video HMM Sports activities

[9] MSR Action-3D, MSR Daily Activity and 3D Action Video SVM Sports activities

[182] self Sensor (A) and

heart rate

monitor

NB classifier Gymnasium

activities

Smart

Home

[99] off-self shore Sensors based ANN Daily activities

recognition

[181] COIN Video Fully and weakly

supervised

approach

Multi-domain daily

activity analysis

[151] Ambient kitchen Sensor (A) RBM Food preparation

[231] YouCook2. Video ProcNets Food preparation

[151] Darmstadt Daily Activities Sensor (A) RBM Food preparation

[198] CMU MoCap dataset, MSR-Action3D dataset , MSR-

DailyActivity3D, Cornell Activity dataset, and Multiview

3D Event

Video SVM Human-object

interactions

[153] Skoda checkpost Sensor( A) RBM Factory, food

preparation

[205] RGB-D Video Unsupervised

Learning

(HMM)

Composite action

recognition

[81] self Mobile sensors ensembled-bagged

tree

Detect ADL

Health care [144] self Sensor Junction Tree

Algorithm

Automated health

care

[139] UCI Sensor (A, G) MLP Chronic diseases

monitoring

[187] self-collected and public Sensors(A, G,

M)

KNN and K-mean Automated

healthcare

[230] BIDMC ECG CNN Heart failure

[61] MHEALTH Sensors (A, C,

G)

CNN ADL

[185] self Video HMM Detect joint angle

features

[62] Daphnet Gait Sensor (A) CNN Abnormal gait

detection

[77] self Video SIFT and HMM Abnormal activity

[218] self Sensor SVM Abnormal activity

[145] DLR German Aerospace Sensor (A,G) Multi-class SVM, Abnormal activity

[153] self Sensor (ECG) CNN PAF detection
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performance than a gyroscope sensor. Although a combi-

nation of the aforementioned sensors gives better perfor-

mance than individually used sensors but at the cost of high

battery consumption.

With the constant use of cameras everywhere nowadays

for surveillance, it becomes challenging and time-con-

suming to manually monitor human activity, especially the

’activity of interest’ manually. There is sufficient research

[48, 57, 88, 125, 126, 135, 140, 202, 209, 219] present on

video comprehension and indexing, which is quite helpful

for surveillance and to detect some suspicious activity.

Group activity recognition is also very challenging and

advantageous. Since it could be helpful in many applica-

tions like counting people, understanding crowd behavior,

and group tracking. In [91] author has considered head-

count in the high-density crowd and utilized the end-to-end

scale-invariant method for headcount. Recognizing group

activities can aid in understanding abnormal crowd

behavior. Although recognizing abnormal activity is quite

challenging in itself because of many reasons. For exam-

ple, an activity may be considered normal in one scenario

and abnormal in another. Secondly, discriminative feature

extraction of such abnormal activity is also not an easy

task. In [154] two convolution layers-based convolution

neural networks (CNN) model has been employed for

detecting abnormal crowd behaviors. To identify an indi-

vidual or group-based behavior, events are recognized from

videos, and then ’activity of interest’ is extracted from

Table 4 (continued)

Application Refs. Dataset Type (vision/

non-vision)

ML algorithm Objective

Video

Indexing

[140] MSR-Action3D Video HOG2 Detect joint angle

features

[105] MSR 3D Online and MSR Daily Activity 3D LBP SVM Online action

recognition

[125] Moments in Time Video SVM Dynamic events

unfolding

[219] ORGBD Video Boosting and

SVM

Orderlets

[88] IXMAS Video Multi-view

activity

recognition

Detect pixels-

based motion

information

[209] MSRAction3D, MSRDailyActivity3D Depth cameras Filtering and

DCSF

Interest point

detection

[126] CROSS Video GMM and HMM Surveillance

subjects

[202] MSRAction3D, MSRAction3DExt, UTKinect-Action and

MSRDailyActivity3D

Video HDMM and

3ConvNets

Object

segmentation

[57] RGB-D 3D depth sensor DMW Motion similarity

[135] KTH dataset Video pLSA and LDA Ontological

Activity

Ambient [34] MIT-pedestrian Images SVM Pedestrian

activities

[207] ARG and APHill Video Particle

trajectories and

SVM,

Object motion

tracking

[213] FPV activity, coupled ego-motion and eye-motion Wearable

cameras

K-mean and

kernel K-mean

SVM,

Multi-task

clustering

[46] ChalearnLAP-2014 Video GMM and multi-

class SVM,

Continuous gesture

recognition

[79] J-HMBD Video SVM and RBM Detect annotated

shapes of human

[220] MSR-Action3D dataset , MSR-DailyActivity3D Video KNN Moving pose

descriptor

[69] Self video recording Video TDNN Pedestrian

activities
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these events. Based on this, annotations are provided,

which can be utilized for search indexing [126]. Mainly

there are two ways of finding ’action of interest’, offline

[9, 23, 24, 39, 44, 106, 113, 140, 189, 198, 202, 217] and

online [46, 48, 57, 205, 216, 219, 220]. In offline evalua-

tion, the processing is done on static and stored data. The

weight changes depending on the complete dataset and thus

defining a global cost function. Contrary to that, in the case

of the online evaluation, all data is not collected a-prior,

data is acquired incessantly and evaluation is done, as the

data is sensed.

The focus of most of the researchers is offline recogni-

tion, which works on segmented sequences. Although, with

offline evaluation, a high level of accuracy can be obtained

if robust classification algorithms are used. Mostly, SVM

and HMM-based classification algorithms are used in the

literature for offline evaluation. On the other hand, online

evaluation is very challenging and practical not only for

detecting suspicious activities but also for sports and

health-based applications. In online evaluation, low latency

and high accuracy are desired [105], but there is always a

trade-off between them, a lot of research is required to

mature online evaluation. Online methods are usually

frame-based or sub-sequence-based, with a short duration

frame in vision-based. As a matter of fact, human actions

always have a temporal correlation. Exploiting such cor-

relation can help recognize human activity accurately,

especially in the online evaluation of the activity.

For temporal pattern recognition, different techniques

such as HMM, DTW, CRF, Fourier Temporal Pyramid,

and actionlet ensembled have been used in literature.

Temporal smoothness aids in online evaluation to enforce

consistency among sub-sequences. Figure 5 explained the

training, testing, and online evaluation of vision and non-

vision-based HAR systems. The available labeled data set

is divided into training and testing data sets. The ten-fold

cross-validation is performed over data to select the

appropriate batch for testing as well as training. For vision-

based data, frames are extracted, while subsequences are

obtained from the given dataset.

After essential application-specific pre-processing and

removing noise, the data is segmented to train the activity

model. Since ground truth is available for the training

dataset, this is used to find the optimal model for the

machine learning algorithm as shown in Fig. 5. Once the

model is obtained, sequence detection is done from the test

dataset. After performing pre-processing, features are

extracted from the test dataset. Finally, machine learning is

performed on the test dataset by employing the model

learned from the training dataset. Once the test dataset

attains the required level of accuracy, online evaluation is

performed over the trained model as shown in Fig. 5.

Smart home-based HAR includes applications like

automatic food preparation and controlling home remotely

by detecting human activity. Sensors are attached to

kitchen utensils, and home objects [151] to determine some

activity.

3 Machine learning approaches

Machine learning-based algorithms used for HAR,

depending on the application, could be classified as dis-

criminative and generative models. The generative models

work on joint probabilities p(x, y); for example, in HAR,

each action collects different poses. Therefore, recognition

of action depends on the joint probability of all poses. On

the other hand, the discriminative models work on condi-

tional probabilities p(y|x). They work on labeled data and

compare it with the action at hand. In general, discrimi-

native models outperform their generative counterparts but

require extensive training, which is difficult in some cases

[58]. Further details of discriminative models are given in

Sect. 3.1 and generative models are provided in Sect. 3.2.

3.1 Discriminative models

Discriminative Methods estimate the posterior probabilities

directly without attempting to model the related probability

distributions. SVM and KNN are well-known algorithms of

the discriminative model. SVM is supervised while KNN is

an unsupervised learning algorithm. In SVM each data

point is represented in space using already extracted fea-

tures, with a particular value in the coordinates [26]. Then

different features are classified by building a hyper-plane to

differentiate them, as shown in Fig. 3. Hence, the more

likely features are labeled in each class.

KNN is based on premise that similar things (data

points) are often in proximity. Therefore, it calculates the

distance between the example in question and the current

example from the data. After sorting, assign them a class

based on distance similarity, as shown in Fig. 4. The lit-

erature indicates that aforementioned algorithms have been

extensively used in HAR

[9, 14, 34, 46, 66, 67, 187, 198, 213, 218, 220].

In [67], Discrete Cosine Transform (DCT) was used to

extract the characteristics from accelerometer data. Sub-

sequently, PCA was applied to reduce the feature dimen-

sion. Finally, the Multi-class SVM was selected and

applied to classify distinct human activities. The

researchers in [34] elaborate that utilizing a locally nor-

malized histogram of gradient orientation features in a

dense overlapping grid provides a perfect result for person

detection. Moreover, it helps in reducing false-positive

rates by more than an order of magnitude. Research work
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[34] have trained linear SVM with SVM light by utilizing

Gaussian kernel SVM. The improved performance is about

3% in their case.

The researchers in [81] have identified HAR by using

data collected via mobile phone sensors. In their research,

several classifiers such as Decision Tree, SVM, and KNN

were trained. It was found that the Decision tree outper-

formed the rest models bearing the lowest error rate. Also,

SVM was attempted with Linear, Polynomial, and RBF

(Gaussian) Kernel, using L1-regulation with various box

constrains where the performance rate of linear SVM

kernel was found better than the other two. The authors

have used a hierarchical approach for analyzing feature

descriptors from videos, where classification was per-

formed by applying a multiclass SVM classifier [79, 195].

They further suggested improving the optical flow and

human detection algorithms by refining the underlying mid

and low-level features. The authors in [117] have demon-

strated that in the case of HAR with less number of

instances, the SVM classifier performs marginally inferior

to the existing results. However, the main focus of their

research was computational time. Thus, in their research, it

was demonstrated that SVM trained on an existing spa-

tiotemporal feature descriptor is computationally cost-ef-

fective in comparison with metric learning. The researchers

in [147] have examined the performance of the KNN

classification algorithm, particularly for an online activity

identification that enables online training and classification

using just accelerometer data. Their study further revealed

that on mobile platforms with limited resources, the clus-

tered KNN technique performed considerably better than

the KNN classifier in terms of accuracy. Research online

approaches are used to reduce the number of training

instances stored in the KNN search space. Even though

KNN is amongst the most examined classifiers for HAR

systems or other applications [17, 112, 148, 164], its

storage and computation needs grow as the number of data

and training examples increase, thus resulting in additional

prototype problems. Consequently, the research in HAR

also introduces basic, computationally intensive, energy-

efficient, and viable economic strategies for keeping a

maximum number of training examples stored by KNN at

runtime to endure the issues related to time and memory

restrictions in the online mode as well [50].

3.2 Generative models

In machine learning, generative modeling is unsupervised

learning which detects and learns regularities or patterns

automatically from the input data distribution. Henceforth,

the model may be used to produce or output new instances

that might have been taken from the original dataset. By

modeling the underlying distribution of classes from the

given feature space, generative techniques increase gener-

alization ability. Although the parameters are not opti-

mized, generative models are flexible because they learn

the structure and relationships between classes by utilizing

previous information, such as Markov assumptions, prior

distributions, and probabilistic reasoning. Generative

models are the preferred approach in case there is any

ambiguity or uncertainty in the data; Nevertheless, these

models require a vast quantity of data for providing accu-

rate estimates [47]. In these models, initially joint proba-

bilities are learned. Then it estimates the conditional

probability using Bayes Theorem [22]. The two most

popular algorithms of the generative model are the HMM

and GMM.

3.2.1 Hidden Markov model

HMM are generative models which follow the Markov

Chain process or rule. The mechanism refers to a series of

potential occurrences in which the likelihood of each event

is determined by the conditions of previously occurring

events. A Markov process is a random process that follows

a property that the probability of the next state depends on

the current state and not on all previous states,

PðFuturejPresentÞ ¼ PðFuturejPresent;PastÞ. It could be

mathematically formulated as in Eq. 1.

Pðxt þ 1jxtÞ ¼ Pðxt þ 1jx1!tÞ ð1Þ
Fig. 3 Support Vector Machine graphical representation

Fig. 4 Graphical representation of KNN
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A discrete variant of the Markov process also known as

discrete-time Markov chain (DTMC) has a discrete set of

times. HMM is a particular case of DTMC consisting of

hidden variables, also called states, and a sequence of

emitted observations. For any given measurement, xk, the

hidden states Z
ðNÞ
k are not directly measurable; however,

their emitted observations can yk could be observed as

shown in Fig. 7. Any HMM is represented as a tuple of

k ¼ ðp;U;EÞ, where p is initial state probabilities as shown

in Eq. 2, U are state transition probabilities Eq. 3, and E are

e Emission Probability Matrix Eq. 4, all symbols are

described in table 5.

p ¼ Pðx1 ¼¼ iÞ ð2Þ

Ui;j ¼ Pðxtþ1 ¼ ijxt ¼ jÞ ð3Þ

Ei;j ¼ Pðyt ¼ jjxt ¼ iÞ ð4Þ

There are three basic problems in HMM.

– Likelihood: Given the HMM k ¼ ðU;EÞ and observed

sequence Y, calculating the likelihood PðY jkÞ.
– Decoding: Having observations Y and k ¼ ðU;EÞ, find

the hidden state sequence Z.

– Learning: Having observation sequence Y and states Z

determined parameters U and E.

HMM are important in HAR since it can encode a sequence

of events which is the fundamental concept in activity

recognition. There is a large volume of published research

describing the role of HMM in HAR [64, 75, 111] and

[226]. The researchers in [162] proposed a user adaptation

technique for improving the HAR system using HMM.

Their system consists of a feature extractor to extract the

significant properties from inertial signals, and a training

module based on six HMMs, i.e., one for each human

activity. Finally, a segmentation module that uses those

models to segment activity sequences. Several researchers

have also proposed the combination of HMM with dis-

criminative model SVM for HAR [38, 53, 214]. A multi-

layer HMM is proposed in [43] to recognize different

levels of abstract Group Activities. Moreover, The research

conducted in [154] demonstrates the use of the Hierarchical

Hidden Markov Model (HHMM) for HAR. HHMM is an

extension of HMM that works with hierarchical and com-

plex data dependencies. The variants of HMM have also

received a lot of attention in the realm of HAR, some

examples are [205, 232, 126, 202] and [205]. Mostly

HMM-based HAR lies in the area of decoding and learning

problems of HMM. For example, [83] used Baum-Welch

(BW) to learn the parameters of HMM. The Markovian

property implicit in the traditional HMM presupposes that

the present state is only a function of the former state.

However, in practice, this assumption frequently fails to

satisfy expectations. Furthermore, the generative property

of HMM, as well as the assumption of independence

between observations and states, limit its performance

[100].

3.2.2 Gaussian Mixture Model (GMM)

As the name GMM implies, it is a mixture of several

Gaussian distributions [156]. A Gaussian distribution is a

Labelled
training data
repository

Pre-Processing Activity 
Models

Sampling/Sub-
sequence

Activity 
analysis

Classification Prediction

Temporal
Smoothness

Pre-Processing
and feature
extraction

Data
segmentation

Frame and
sub-sequence

extraction

Input Data

Training Phase (Offline)

Testing Phase  (Online Evaluation)

Activity
Interface

Fig. 5 General framework of Online Evaluation for Vision/Non-Vision-based HAR
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A review on video-based human
activity recognition.

Shian-Ru Ke, Et Al. 2013

A survey on activity recognition and behavior
understanding in video surveillance

Sarvesh Vishwakarma Et Al 2013

A survey of video datasets for human action
and activity recognition.

Jose M Chaquet Et Al. 2013

A survey on human activity recognition
from videos.

T Subetha Et Al. 2016

Activity recognition using inertial sensing for healthcare,
wellbeing and sports applications: A survey.

Akin Avci Et Al 2010

A survey on human activity recognition
using wearable sensors.

Oscar D Lara Et Al 2012

A survey on wearable sensor modality centered
human activity recognition in health care.

Yan Wang Et Al 2019

Deep learning for sensor-based activity recognition:
A survey.

A survey on human group activity recognition by analysing
person action from video sequences using machine
learning techniques.

 Smita Kulkarni Et Al  2020

Sreenivasan Ramasamy Ramamurthy Et Al 2018

Recent trends in machine learning for human
activity recognition—a survey.

Jindong Wang Et Al 2019

Li-Fang Wu Et Al 2021

A comprehensive review of group activity 
recognition in videos.

 A survey of online activity recognition
using mobile phones

Muhammad Shoaib Et Al 2015

Fig. 6 Timeline for HAR survey
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symmetrical bell-shaped continuous probability distribu-

tion. Each Gaussian is identified by k 2 1; :::K as presented

below in Eq. (5).

XK

k¼1

pK ¼ 1 ð5Þ

Where a specific weight pk represents the probability of the

kth component. Mathematically, a univariate Gaussian

distribution is expressed as in Eq. (6). Whereas, l and r are

scalars representing the mean and standard deviation of the

distribution. Correspondingly, Eq. (7) indicates the multi-

variate Gaussian distribution.

p x j l; r2
� �

¼ N l; r2
� �

¼ 1ffiffiffiffiffiffiffiffiffiffi
2pr2

p exp �ðx� lÞ2

2r2

 !

ð6Þ

Fig. 7 Temporal evolution of a hidden Markov model

Table 5 Terminologies used in HMM

Symbol Definition

Y A set of observed states.

Z A set of Hidden states which cannot be directly observed.

p Initial States of HMM

U States transition probabilities

E Emission probability matrix /observation likelihoods.

Subset-1 of DS

Classifier A

Subset-N of DS

Ensemble/ Majority Voting

Class K

Final Class

Subset-2 of DS Subset-3 of DS

Classifier B Classifier C Classifier N

Class A

Class A

Class L

Data Sets (DS)

Fig. 8 Ensemble algorithms bagging
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ðpðx j l;RÞ ¼ N l;Rð Þ ¼

ð2pÞ�
D
2 jRj�

1
2 exp � 1

2
ðx� lÞ>R�1ðx� lÞ

� �
:

ð7Þ

Where R is a covariance matrix of X. The likelihood pðxjhÞ
is obtained through the marginalization of latent variable z.

It consists on summation of the latent variables from the

joint distribution p(x, z) as shown in Eq. (8). Where h is a

vector of Gaussian parameters.

pðx j hÞ ¼
X

z

pðx j h; zÞpðz j hÞ ð8Þ

This marginalisation may now be linked to the GMM by

considering that pðxjh; zkÞ is a Gaussian distribution, i.e, N

ðxjlk; rkÞ with z comprising of K components as shown in

Eq. 9. A specific weight pk represents the probability of the

kth component so that pðzk ¼ 1jhÞ.

N lk;Rkð Þ ¼
XK

k¼1

pkN x j lk;Rkð Þ ð9Þ

In theory, the GMM is capable of approximating any

probability density function with reasonable precision.

GMM has proven to be an effective algorithm in time

series analysis and modeling. GMM usually works on

frame-based classification, while HMM is mostly focused

on sequence-based classification. The research conducted

in [176] is based on hierarchical recognition which consists

of two phases, initially, activities are classified into two

broad clusters, static and dynamic activity. Subsequently,

within the identified class, activity recognition is carried

out. It is evident from the literature that several researchers

have proposed joint models based on HMM and GMM for

HAR, for example, [29, 150] and [126]. In [126] GMM is

proposed with expectation-maximization to find the point

of interest (POI) in human activity while the evolution of

activities is learned by employing HMM. The researchers

in [149] developed a probabilistic graphical model-based

human daily activity detection system by using an RGB-D

camera. Using only skeleton characteristics provided by an

RGB-D camera, they implemented a GMM-based HMM

for human activity detection. As a collection of multino-

mial Gaussian distributions, Gaussian Mixtures can cluster

data into multiple categories. Human actions are a collec-

tion of how various human body stances transmit consec-

utively at various periods. As a result, each body position

can be modeled as a set of multinomial distributions, with

HMM modeling the intra-slice dependencies between time

periods.

The Bayesian network is based on a graphical model

which establishes probabilistic relationships among vari-

ables of interest [68]. These graphical models work very

well for HAR data analysis, especially when combined

with statistical techniques [42] and [10]. The main reason

for its good performance is its ability to establish depen-

dencies among all variables. Therefore it can immediately

estimate missing data entries as in [200]. In their work,

State-based learning architectures were presented, namely

HMMs and CHMMs. The objective was to model human

behavior and its interaction with others. HMM was par-

ticularly used to model and classify human behavior while

CHMMs (Coupled- Hidden Markov Model) purpose was to

model interaction and coupled generative process.

3.3 Ensemble learning

Ensemble learning is a machine learning paradigm that

combines multiple weak learners to improve their

Fig. 9 Ensemble algorithms

random forest
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performance. During the training phase, the model might

tend to over or underfit and suffer a problem of high bias or

variance. The ensemble learning methods combine multi-

ple weak learners to achieve better performance. There are

three major techniques used in ensemble learning.

– Bagging: In bagging similar weak learners are trained

in parallel. Each one of them either classifies or predicts

independently from other models. The result of all

weak learners is combined using a majority vote or

averaging process.

– Boosting: In boosting weak learners are trained

sequentially while learning from the loss of the

previous stage in each case.

– Stacking: Stacking uses different weak learners and

trains them in parallel. The models are combined to

train a metamodel which is used to predict the output

based on the outputs of multiple predictors.

3.3.1 Bagging

Bagging stands for bootstrap aggregation. In this technique

N homogenous weak learners are trained in parallel as

shown in Fig. 8. Each classifier is tested on a subset of the

dataset and their outputs are combined by using majority

voting or averaging. The dataset is created through random

sampling with replacement over the training dataset. For

DataSet (DS)

Model 1

Model 2

Weighted
Sampling

Model N

Weighted
Sampling

Ensemble / Combine

Final Class

Fig. 10 Ensemble learning boosting

Fig. 11 Gradient boosting

algorithm
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any given dataset of size N, the bagging can be summarized

as in algorithm 1.

Another popular variation of bagging is known as ran-

dom forest (RF), in RF besides sampling the dataset, the

features are also randomly sampled. The homogenous

classifier in the case of RF is a forest tree. Each forest tree

has a subset of the dataset as well as a subset of features as

shown in Fig. 9.

It has been shown in [136, 137] that the RF outscored

other decision tree techniques and machine learning clas-

sifiers in recognizing human activities utilizing the char-

acteristics such as acceleration and jerk. The RF offers

improved activity detection ability because it generates

numerous decision trees and combines them to produce a

more accurate and stable outcome [224, 225]. The research

performed in [32] proposed an ensemble architecture, i.e.,

WiAReS. This integrates a multilayer perception (MLP), a

random forest (RF), and SVM to enhance the recognition

performance of human activities using the features

extracted from convolutional neural networks.

3.3.2 Boosting

Unlike bagging where N classifier operates in parallel the

boosting is a sequential algorithm. Boosting starts with a weak

classifier employing sampling of the input dataset. Once the

classifier is trained it is tested using the dataset. The points

correctly and incorrectly predicted are assigned lower and

higher weights respectively. The weighted sample points are

now assigned to the next version of the model. The process is

repeated for N stages as shown in Fig. 10. To summarize

boosting improves each successive model by correcting the

errors of the previous model. There are two major types of

boosting i.e. Adaboost and gradient boosting. Adaboost or

adaptive boosting adjust the weights based on the performance

of the current iteration. This means that weights are adaptively

recomputed in each iteration, as shown in algorithm 2.

Gradient boosting is a combination of gradient descent

and boosting. It works in the same way as AdaBoost except

the weights are updated on a residual error from the pre-

vious estimator as shown in Fig. 11. The step-by-step

procedure of gradient boosting is given in algorithm 3. Due

to better results of gradient boosting algorithm it is widely

used in human activity literature, [60, 70], and [167] are

some examples of gradient boosting-based human activity

recognition.

Fig. 12 Illustration of Recurrent neural networks (RNN)
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3.3.3 Stacking

Stacking is another type of ensemble learning algorithm. It

uses heterogeneous weak learners as compared to homo-

geneous learners in boosting or bagging. Stacking addres-

ses the question of how to combine the output of multiple

models trained over training data? Stacking uses two levels

of learners known as the base model (BM) and meta-model

(MM). The BM consists of weak learners which are trained

on the part of training data. Once BM is trained the pre-

diction and label from the training dataset are fed into MM.

The stacking method requires careful division of the

training dataset. For this purpose, the training dataset is

split into two further parts using K fold validation where

out-of-fold predictions are fed to the MM. Stacking has

been used for HAR by employing a combination of dif-

ferent machine learning algorithms, a few examples are

[54, 186], and [55].

4 Deep learning approaches

Traditional machine learning approaches have shown

immense progress in HAR by implementing diverse

machine learning algorithms, as discussed in the above

section. Deep learning algorithms enjoy success since they

could automatically extract features using CNN. Besides

Recurrent Neural Networks (RNN) can model sequences in

very efficient ways. Sequences are the primary element of

activity modeling and recognition. Different variants of

RNN such as Long Short-Term Memory (LSTM) and

transformers provide improved performance over tradi-

tional RNN algorithms. Furthermore, a deep learning-based

paradigm called transfer learning allows pre-trained mod-

els to use in related HAR tasks. This reduces training time

as well as improves performance with limited training data.

HAR generates a lot of data since it continuously senses the

environment. Autoencoders provide ways to reduce

dimensions of data by learning efficient encoding repre-

sentation of the data.

Due to the popularity of the internet of things (IoT) and

edge computing distributed machine learning has gained

popularity. HAR is also studied in a distributed setting,

deep learning paradigm known as federated learning pro-

vides a way to work in distributed settings. Another pop-

ular area known as Reinforcement Learning (RL) works in

an environment with limited training data. In RL an agent

learns with evaluative feedback and employs a trial and

error paradigm. RL models such as the actor-critic model,

DQN, and monte Carlo-based models are employed for

HAR. Deep learning has provided state-of-the-art perfor-

mance in the domain of HAR in comparison to classical

machine learning [6, 109, 138, 170].

+

x

x +

+

Last Cell State Next Cell State

Last Cell output Next Cell output

Fig. 13 Illustration of Long short term memory (LSTM)
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4.1 RNN and LSTM

Sequences are an integral part of several applications and

standard neural networks cannot handle sequence data.

This is because standard neural networks do not have

memory and only make decisions based on the current

input. RNN is a special type of neural network that can

handle temporal sequences since it can maintain states

[72]. RNN plays a vital role in HAR since each action

depends on previous actions and sequence-based opera-

tions are vital for HAR pipelines [142]. Figure 12 shows

cascaded RNN cells spanned over time intervals T0 to TN .

Each consecutive cell maintains cell state HTi at ith time

interval. The input, output, and intermediate states are

weighted by WXH , WYH , and WHH . The next state and

output are calculated using the weights as shown in Eqs. 10

and 11 respectively.

HT ¼ TanH½WHHHT�1 þWXHXT � ð10Þ

YT ¼ WYHHT ð11Þ

During the backpropagation phase, each RNN not only

reduces loss function through its cells but also across time

known as backpropagation through time (BPTT). BPTT

suffers the problem of vanishing gradient, the problem gets

more elevated for long-term dependencies. To solve the

problems in RNNs LSTM is proposed. LSTM is a modified

RNN with four stages having forgotten, store, update, and

output mechanism in it as shown in Fig. 13. The FT forget

part decides which information should be removed at a

certain point in time as shown in Eq. 12.
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Accumulation and
normalisation layer

FeedForward

Accumulation and
normalisation layer

xN

Inputs

Output Embedding

Positional
Encoder

Multi-head  
Attention

Accumulation and
normalisation layer

Multi-head  
Attention

Accumulation and
normalisation layer

Outputs

FeedForward

Accumulation and
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Softmax
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Fig. 14 Illustration of transformers
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FT ¼ rðWF:½HT�1;XT � þ BFÞ ð12Þ

The second part called store has two parts, the first part

shown in Eq. 13 has sigmoid while another part shown in

Eq. 14 has tanh. The sigmoid part decides which value to

let through while the tanh gives weightage to the value

based on its importance. The Eq. 16 shows the next cell

output, where OT is given in Eq. 15.

�ST ¼ rðW �S:½HT�1;XT � þ B �SÞ ð13Þ

ST ¼ TanH½WS:½HT�1;XT � þ BS� ð14Þ

OT ¼ rðWO:½HT�1;XT � þ BOÞ ð15Þ

HT ¼ OT � TanHðSTÞ ð16Þ

Another popular variant of LSTM is gated recurrent

units (GRU). It can capture the dependencies of data in a

much better way, besides they are computationally efficient

as compared to LSTM [30]. LSTM and GRU share some

similarities, the major difference is between how both

control memory content sent to the output gate. LSTM has

been recently applied widely for human activity recogni-

tion [142, 229, 28] and [208]. A research work employed

structural RNN for group activity recognition in videos.

They used spatiotemporal attention, as well as a semantic

graph for group activity recognition, [155]. Another work

used deep RNN (DRNN) for HAR, they showed that

DRNN has much better performance than bidirectional and

cascaded RNN architectures [129]. It is also proved in

research that combining LSTM with ensembling learning

can improve the results as compared to a single LSTM

network [59].

LSTM also suffers problems due to the sequential nature

of the operation, each next LSTM unit requires all previous

LSTM units to be activated. This results in slow speed and

requires efficient convolutional network layers to extract

features before LSTM can provide reasonable perfor-

mance. Recently transformers are purposed to solve the

sequential nature of LSTM [188].

4.2 Transformers

Transformers are an extension of LSTM which could take

data in parallel as compared to sequential data input in

LSTM. However, feeding data in parallel is challenging as

it requires efficient position encoding to keep track of the

sequence of data. Moreover, embedding should be per-

formed in a very efficient way. Transformers employ self-

attention mechanisms to weigh a significant part of data

more hence they do not need to process data in order like

RNN or LSTM. The transformer uses an encoder and

decoder to achieve this task as shown in Fig. 14. The

encoder and decoder consist of multi-head attention blocks.

The encoder consists of multiple stages of multi-head

attention blocks each finding the relevant part of informa-

tion. The decoder uses one multi-head attention block to

encode output, while the second to learn encodings of the

inputs. Over a period of training, the decoder adapts to

input embeddings and learns to decoder sequences in the

correct way. The Decoder has a feed-forward network on

the end of the pipeline to perform given machine learning

tasks such as classification.

The transformers have resulted in high accuracies in pre-

trained models such as BERT (Bidirectional Encoder

Representations from Transformers) and GPT (Generative

Pre-trained Transformer) [40]. The original work was ini-

tially proposed for natural language processing (NLP)

problems however, recently variants of transformers for

image processing have shown high accuracy [41]. Subse-

quently, transformers have been recently applied in human

activity recognition resulting in much better and more

accurate results as compared to traditional RNN [119, 56].

In HAR transformers are used for capturing spatiotemporal

relationships between data as well as for data augmenta-

tion. Some research worked used attention models to

extract feature-based spatiotemporal context

[116, 130, 114]. Transformers are also widely used for data

augmentation to improve the accuracy of the trained clas-

sifier [4]. Another work explored transformers for data

augmentation using the self-attention mechanism to track

long-term dependencies [223].

4.3 Deep belief network

A deep belief network (DBN) is a type of DNN, it consists

of multiple hidden layers, and these layers are only visible

to the next layer. To form learning more manageable, the

property is restricted, i.e., there’s no affiliation between

hidden units. DBNs will be divided into two significant

components. The primary one consists of multiple layers of

Restricted Boltzmann Machine (RBMs) to pre-train the

network, whereas the second could be a feed-forward back-

propagation network that may refine the RBM stack results

[71]. The authors in [7] have presented the DBN-based

model; in their work, the model was trained by employing

greedy layer-wise training of RBM. Hence, human activity

recognition accuracy was improved in comparison to

expensive handcrafted features. Then [16] have practiced

RBM-based pipeline for activity recognition and have

shown their approach outperforms other modeling alter-

natives. Deep learning-based algorithms mostly evolve in

HAR using RGB video sequences based on the belief that

every human action is composed of many small actions. A

temporal structure is usually considered to enhance the

classification of human actions/activities. Therefore, DBN

approaches aim to develop a DL structure to the problem; it
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can be perceived as a DL structural architecture. To

manipulate the DL network, the activation functions yield

the hidden variables at every hidden layer [133]. DBN

approach outperforms the methods constructed upon

engineered features since it uses the skeleton coordinates

extracted from depth images. In [211], it is observed that

the DBN approach produces better recognition rates com-

pared to those of other state-of-art methods. In [71] Hinton

introduced the idea of deep belief networks, which were

inspired by the backpropagation network. Although the

multilayer perceptron and DBN are incredibly the same in

terms of network structure, their coaching method is

entirely different. In fact, the distinction in coaching

technique is a vital issue that permits DBN to vanquish this

shallow counterpart.

4.4 Autoencoders

Autoencoders (AE) consist of two units encoding units

used to transform input data into features. And the

decoding unit regenerates input based on learned features.

AE is trained by minimizing the loss between actual data

and regenerated input. AE is quite close to RBM however,

they used deterministic units as compared to stochastic

units. If the sparse constraint is introduced in the autoen-

coder, it could even improve HAR results. However, it is a

very robust tool for feature extraction. The only drawback

of AE is it depends too much on its layers and activation

function, which may sometimes be hard to find, the most

suitable one.

A research work proposed the stacked autoencoder-

based model for optimal recognition accuracy along with

reduced recognition time [5]. In [138], autoencoders per-

formed very well with the Neural network for data

compression using machine learning. The work further

concluded that the autoencoder learns compressed dis-

tributed representation of input data for backpropagation.

Another work used stacked encoders for four types of data

including accelerometer, gyroscope, magnetometer, and

barometer [5]. A similar work used data from four types of

sensors built in a smartphone, including accelerometer,

gyroscope, and magnetometer [201]. Besides mentioned

work, there is rich literature on the use of autoencoders for

dimensionality reduction as well as efficient feature

encoding using AE. Especially in the case of HAR where

data is sensed at very high rates and has high sparsity in its

structures.

4.5 Convolutional neural network

Advancements in computer vision with deep learning have

been established and enhanced through time. CNN is one

of the most popular deep learning architectures and it has

improved state-of-the-art dramatically in processing ima-

ges, video, audio, and speech [103]. It is a neural network

with an input and an output layer and many intermediate

hidden layers. Thus, CNN is similar to regular ANN and is

comprised of neurons that self-optimize through learning

[143]. The primary difference between CNN to other

neural networks is that instead of only using the typical

activation function, convolution and pooling functions are

also computed on hidden layers as indicated in Fig. 17. By

performing a convolution operation on data, the convolu-

tional layer detects distinct features from input. The very

first convolutional layer detects low-level features, while

the subsequent convolutional layers detect higher-level

features. The activation functions used by the convolu-

tional layers then contribute nonlinearities to the model

Dataset 1

Dataset 2

Model 1 Classifier

Model 2 New Classifier

Knowledge transferred 

Transferred features
Fine-tuning 

Fig. 15 Human activity classification by transfer learning
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[132]. The convolutional layers then introduce nonlineari-

ties to the model by using activation functions. In general,

the 1D CNN in HAR is used for signal data [82, 104, 128]

and 2D CNN takes the input data in the form of images

[36, 191]. Alternatively, the 3D CNN fetch the input as 3D

volume or a sequence of 2D frames (e.g. slices in a CT

scan) [3, 80, 86, 92, 196, 233].

A study in [8] demonstrated a detailed overview of the

evolution of DCNN architectures and how they met the

object recognition and detection challenges. They used

DCNN for object/activity detection and recognition from

images. Generally, R-CNNs: is used to locate and classify

the main object by localization. CNN architectures are

capable of learning powerful features from weakly-labeled

data that far surpass feature-based methods in performance

and that these benefits are surprisingly robust to details of

the connectivity of the architectures in time [184]. Authors

in [158] have given energy and memory-efficient solution

to recognize human activity by employing adaptive CNN

architecture.

4.6 Hybrid DL approaches

An increasing number of studies also reveal that

researchers have proposed and developed several various

Deep learning hybrid approaches for HAR. In [115],

authors have proposed a novel LSTM-CNN model com-

bining the merits of LSTM and CNN for collaborative

learning. Furthermore, their work also demonstrates that

the proposed LSTM-CNN model outperforms standalone

LSTM, CNN, and Deep Belief Network. In their research,

the combination of RG?RP and LSTM-CNN provides a

privacy-preserving collaborative learning framework that is

both accurate and privacy-preserving. Similar approach is

proposed in [208] using LSTM-CNN combination. In the

proposed architecture for HAR, sensor-based HAR is

focused where two-layer LSTM is followed by convolu-

tional layers. In addition, a global average pooling layer

(GAP) is applied to replace the fully connected layer after

convolution for reducing model parameters. Many attempts

have been made where initial layers are based on CNN and

upper layers are based on diametrically different models

[1, 173, 222]. For instance, the researchers in [197] a 1D

CNN-LSTM network to learn local features and model the

time dependence between features. In the first step, they

used CNN for extracting features from the data collected

by sensors. Subsequently, the long short-term memory

(LTSM) network is developed over the learned features to

capture long-term dependencies between two actions to

further improve the HAR identification rate. The

researchers have also improved the accuracy of HAR

detection by proposing CNN-LSTM-ELM-based classifier

[178].

5 Transfer learning

The transfer learning approach is used in machine learning

(ML) to learn the model from one problem and use the

same model for other related ML techniques [190].

Recently transfer learning is employed in deep learning,

where a pre-trained model is reused as the starting point for

a model that is under consideration for another task [183].

Thus, previously learned knowledge is utilized to model a

new but relevant background. The learning of a new task

relies on the previously known tasks, as shown in Fig. 15.

For example, in the initial model, task-related in daily lives

have been classified. This learned information is trans-

ferred to another task for sports activity recognition where

the model learned from daily task classification is reused.

Thus, the learning process becomes faster, more accurate,

and requires less amount of data. In this way, Transfer

learning saves huge computation and time resources

required to develop neural network models. Transfer

learning can be classified under three sub-settings, induc-

tive transfer learning, transductive transfer learning, and

unsupervised transfer learning, based on different

Action

Observation/ Reward

State
transition

Agent Environment

Fig. 16 Reinforcement learning
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situations between the source and target domains and tasks

[146].

Mostly HAR yields better performance through super-

vised machine-learning approaches. Although the cost of

gathering and labeling data is high [63] due to the diverse,

interleaved, and dynamic nature of human behavior.

Therefore, transfer learning (TL) can be applied whenever

there is a lack of sufficient labeled training data. In HAR,

TL can use the existing knowledge to identify activities

performed by different types of users, which might be

using different sensor technology and in diverse environ-

mental conditions. In some cases, when the source domain

and target domain are not related to each other, instead of

applying brute-force transfer, it is highly important to

explore whether transfer learning is feasible or not to avoid

the negative transfer. Therefore, there are two important

parts, ’’what to transfer’’ and’’ how to transfer.’’ The part of

knowledge to be transferred across domains or tasks

depends on ’’What to transfer.’’ Once it is clear which

knowledge can be transferred, then the learning algorithms

need to be developed to transfer the knowledge, which

corresponds to the ’’how to transfer’’ issue. Then the next

point is what to transfer across these categories; the fol-

lowing approaches are adopted. Primarily, Feature-repre-

sentation transfer: The advantage of using this approach is

to reduce error rates by identifying good feature repre-

sentations that can be utilized from the source to target

domains. Depending upon the availability of labeled data,

supervised or unsupervised methods may be applied for

feature-representation-based transfers. Secondly, Instance

transfer: Mostly, the source domain data is inadequate and

not suitable to reuse directly. Therefore, instead of select-

ing the whole information, only a few instances are

selected for transfer. Thirdly, Parameter transfer: In this

approach, there is an assumption that the models for related

tasks share some parameters or prior distribution of hyper-

parameters. Lastly, Relational-knowledge transfer: Unlike

the preceding three approaches, it prefers the data, which is

not independent and identically distributed.

TL has been extensively used in video-based activity

recognition, and it is one of the first sensor modalities

where TL was initially applied [108]. The labeling of video

sequences is quite exhausting and time-intensive job due to

the detailed spatial locations and association of time

durations [90]. A huge amount of research indicates the use

of transfer learning with vision-based activity recognition

[160]. Nevertheless, researchers are applying transfer

learning techniques to both activity recognition using

wearable accelerometers as well as activity recognition

using smartphones [161, 174] and Ambient sensors.

6 Reinforcement learning (RL)

Unlike supervised learning algorithms, which has labeled

training data set, or unsupervised algorithm which learn

from the data, RL learns from continuous interaction with

the environment. The problem solver in RL is called an

agent while everything around the agent is known as the

environment. The agent takes actions, against each action

the environment transacts through its state and generates

reward and observation to the agent as shown in Fig. 16.

The reward is positive or negative reinforcement which

tells the agent how good the previous action was. While the

observation is sampled version of the internal state of the

environment.

RL works in two ways, firstly when the environment is

fully observable and secondly if the environment is

unknown. Markov decision process (MDP) is used to

represent a case when the environment is fully observable,

observations, and the state of the environment will be the

same in this case. The memoryless property of MDP means

that the probability of the next state depends on the current

state and action and not on the history of interactions in

past. In Eq. 17 shows probability of next state PðStþ1Þ
given current state St and action At is actually chain of all

states and actions before t þ 1. Equation 18 shows MDP

where PðStþ1 depends only on last state PðStÞ and action At

and not the entire chain of states and actions before time t.

PðStþ1 j St;AtÞ ¼ PðStþ1 j St;At; St�1;At�1; . . .Þ ð17Þ

PðStþ1 j St;AtÞ ¼ PðStþ1 j St;At; . . .Þ ð18Þ

Before proceeding further it is important to formally define

all terminologies

– S : states of the environment, in case the environment

is fully observable, the state of observations becomes

the same.

– A : Defines a set of actions, against each observation,

the agent takes one of the actions.

– r : Reward signal is provided by the environment

against the action taken by the environment.

– c : discount factor defines the worth of reward in the

future.

– pðstþ1jst; atÞ : defines the state transition model, how

the next state will be transacted provided the environ-

ment is in state s and action a is performed.

The major job of the agent is to maximize the overall

reward on average also known as a return. The return is the

sum of all rewards obtained by the agent at the given time

as shown in Eq. 19.

R ¼ rt þ rtþ1 þ rtþ2 þ . . .rtþH ð19Þ

Where H is known as the horizon and defines the total

Neural Computing and Applications (2022) 34:18289–18324 18311

123



number of iterations or episodes. However, this sum might

easily become infinite if the process continues forever.

Therefore, a discount factor c is added into the Eq. 19 to

ensure the convergence as shown in Eq. 20 or in closed

form in Eq. 21.

R ¼ c0 � rt þ c1 � rtþ1 þ c2 � rtþ2 þ . . .cH�1 � rtþH

ð20Þ

R ¼
XH

k¼0

ckrtþk ð21Þ

Equation 21 also reflects the fact the importance of reward

becomes less significant as time passes. The procedure

which is used by the agent to determine its next action is

called policy p. This function maps the current state to the

action which the agent should choose to reach the goal. The

most well-known algorithms to find an optimal policy if the

agent knows the environment is known as policy iteration

(PI) and value iteration (VI). Before presenting VI and PI,

it is important to define the value function (VF). The VF

V(S) defines how good it is for the agent to be in-state S. It

is the average of total rewards if the agent starts from the

state S and performs a certain set of actions chosen from

policy p as shown in Eq. 22. Or in other words average

return is obtained by the agent while being in some state S

as shown in Eq. 23.

VpðSÞ ¼ E
XH

k¼0

ckrtþkjSt

( )
ð22Þ

VpðSÞ ¼ EfGtjStg ð23Þ

Among all possible VF, there is one VF that has the

maximum accumulative rewards and is represented by V�

as shown in Eq. 24. The corresponding optimal policy p�

having V� is shown in 25.

V�ðSÞ ¼ max
p

VpðSÞ 8s 2 S ð24Þ

p� ¼ argmax
p

VpðSÞ 8s 2 S ð25Þ

While VF only determines how good it is for an agent to be

in-state S, the Q-function Q(S, a) also tells the agent how

good it is state S and take action a. The Q�
p is an optimal q-

function under policy p while being in-state S and taking

action a. Since V*(s) is the maximum expected total reward

when starting from state s, it will be the maximum of Q*(s,

a) overall possible actions. Therefore, the relationship

between Q*(s, a) and V*(s) is easily obtained, as shown in

Eqs. 26 and 27.

V�ðSÞ ¼ max
a

Q�ðS; aÞ 8s 2 S ð26Þ

p� ¼ argmax
a

Q�ðS; aÞ 8s 2 S ð27Þ

The Q function can also be expressed as in Eq. 23 for VF,

in this case the value of action a under state s under policy

p is given in Eq. 28.

QpðS; aÞ ¼ E GtjSt;Atf g ¼ E
XH

k¼0

ckrtþkjSt; at

( )
ð28Þ

Computing summation multiple times for VF as in Eq. 22

and Q function as in Eq. 28 is not a simple and efficient

solution. To solve this problem a dynamic programming

(DP)-based solution is employed. Dp breaks the difficult

problem into subproblems and solves them recursively. A

well-known formulation known as the Bellman equation

(BE) is used for DP. The BE breaks down value function

into immediate reward and discounted future values as

shown in Eq. 29.

Rþ cVpðS0Þ ð29Þ

The Bellman equation for VF as shown in Eq. 30 is

weighted with all possible actions given a certain stateP
a pða; sÞ and probability or next state and rewards given

current state and action
P

s0;r pðs0; rjs; aÞ. Similarly, for q

function the Bellman-based solution can be given as 31.

vpðsÞ ¼
X

a

pða; sÞ
X

s0;r

pðs0; rjs; aÞ ½r þ cvpðs0Þ� ð30Þ

qpðs; aÞ ¼
X

s0;r

pðs0; rjs; aÞ ½r þ cvpðs0Þ� ð31Þ

In order to find the optimal policy, two well-known tech-

niques value iteration (VI) and policy iteration (PI) are

presented in subsequent Sects. 6.1 and 6.1.1 respectively

[180].

Generally, an RL agent’s job is to make a policy that

maximizes overall system rewards. While employing RL in

HAR agents are trained in a way that they define the policy

which enhances HAR accuracy. Activity learning with the

mobile robot is challenging, the objective is to learn the

activity with a high level of accuracy and least energy

consumption. In [98] RL-based algorithm is used to control

the motion of the robot which is observing the activities.

Human activity and behavior are considered better

estimated and recognized with RL [168, 228]. For example,

in [168] human arm movement has been recognized with

RL. Commercial sensors have been deployed to sense

human arm acceleration and agents of RL learn the pattern

of motion. Then in [228] human behavior is observed and

predicted with the help of deep-RL in a smart home-based

environment. RL is better than its counterpart supervised

and deterministic algorithms in the sense that agents can

learn and predict the event by themselves, even if the
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suitable action has not been provided to the agent. Because

of this capability, it is very much appropriate for the

applications which expect to have scenarios, never

encountered before.

6.1 Value iteration

VI computes V�ðSÞ recursively to improve the estimated

value of V(S). It uses Eq. 31 until the V(S) converges. The

algorithm for VI is shown in algorithm 4.

6.1.1 Policy iteration

One of the well-known algorithms to find the optimal

policy is called policy iteration, in this algorithm, a random

policy p is selected and is evaluated and improved itera-

tively. The major problem with VI algorithms is that it

keeps on improving the VF until the VF converges. Since

the major goal of the agent is to find the optimal policy,

which in some cases will converge before VF. The PI

redefines policy instead of improving VF at each step as

shown in algorithm 5.

Other popular techniques for reinforcement learning if

the environment is not known and can be observed through

observations are actor-critic methods [95], Monte Carlo

methods [204], Temporal difference (TD) learning-based

RL [179].

RL has been used for a variety of tasks in HAR. For

example, it is used to select appropriate features. A

research work selected features for HAR based on the cost

of feature selection and improving classifier performance

[78]. Another work employed deep RL to drive policy from

two activity recognition. The first one is the motion

predictor using LSTM second vision predictor using CNN

and LSTM [152]. A similar work used RL for feature

selection by finding the right balance between power

consumption and accuracy [212]. Recently robot-assisted

life and HAR have gained attention and RL has been tra-

ditionally used in several areas of robotics. In this sense

RL-based HAR using robots is one of the recent popular

areas of research [107, 19].

7 Other related machine learning
techniques

This section introduces Self-organizing maps (SOMs),

Multiple classifiers systems (MCS), and multiple instance

learning.

7.1 Self-organizing maps (SOMs)

Self-organized Maps (SOM) are unsupervised learning

techniques that are also used in ANN. Unlike traditional

ANNs, they are not trained using backpropagation neural

networks; instead, they utilize competitive learning. SOM

is used in [76] for identifying the basic posture prototypes

of all the actions. The cumulative fuzzy distances from the

SOM are calculated to achieve time-invariant action rep-

resentations. After that, the Bayesian framework is applied

to combine the recognition results produced for each

camera. The solution to the camera viewing angle identi-

fication problem using combined neural networks. Rigor-

ous experiments based on four datasets, KTH, Weizmann,

UT-interaction, and TenthLab were carried out to assess

the performance of the approach proposed in [110]. This

resulted in the accuracy of 98.83%, 99.10%, 99.00%, and

97.00%, respectively for the abovementioned datasets.

7.2 Multiple classifier systems (MCS)

Multiple classifier systems (MCS) employ different pre-

diction/classification algorithms to achieve a more accurate

and reliable decision. There are three main multiple clas-

sifier systems, known as ensemble methods, a committee of

classifiers, and a mixture of experts. Ensemble methods

consist of multiple independent learning models to predict

class labels based on the prediction made by multiple

models as already discussed in Sect. 3.3. This technique is

more popular for reducing total error, including decreased

variance (bagging) and bias (boosting). The random forest

algorithm comes in the category of an ensemble approach.

Thus, a random forest algorithm creates multiple decision

trees on data samples, as shown in Fig. 9. Subsequently, the

prediction from each tree is counted, and the optimal

solution is selected through voting.
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The researchers have also opted for the approach of

information fusion in multimodal biometrics by using pre-

classification. Then they further classified it into sensor

level and feature level extraction, which is helpful in video

surveillance [52]. The well-known examples of classifier

combinations based on resampling strategies are stacking,

bagging, and boosting [169], as already discussed in detail

in Sect. 3.3. The study conducted in [81] also attempted to

train a bagged tree (Random Forest), and Boosted Tree

(Gentle Adaboost), with a different number of trees for

HAR. As mentioned earlier, the authors have also used

SVM and KNN for comparative analysis. Results demon-

strate that bagged trees with 300 trees achieved the lowest

error rate of 4.3%. Apart from this, the multiclass classi-

fication for human activity classification based on micro-

Doppler signatures was implemented using a decision-tree

structure. In this research work, the classification accuracy

based on the six features was achieved at around 90% [94].

7.3 Multiple instance learning

Multiple Instance Learning (MIL) has been used for human

action recognition in video and image sequences. HOG and

T-HOG (HOG-based texture descriptor) model is used for

extracting space-time feature; the optical flow model is

used for extracting motion features which are used to

characterize human action. In action modeling and recog-

nition, MIL is combined with AnyBoost and proposed the

MIL boost for human action recognition [87]. They pro-

pose a novel multiple-instance Markov model to overcome

the disadvantages of the traditional Markov model for

human action recognition. This model’s silent features are:

First, it has a multiple-instance formulation, which makes

this model select elementary actions with stable state

variables. Second, this method gives a novel activity rep-

resentation: a Markov chain bag, which encodes both local

and long-range temporal information among elementary

actions. Finally, this model explores the most discrimina-

tive Markov chain for action representation.

7.4 Spatial temporal pattern

As stated earlier, naturally, there is a temporal correlation

present in human activities. With these temporal correla-

tion properties, the next action can be predicted and rec-

ognized without intensive training. HMM, [31, 185], DTW,

Fourier Temporal Pyramid, and Actionlet Ensemble Model

have been used in the literature to detect a temporal pattern.

HMM is well known for its capability to recognize tem-

poral relations [185], although it requires extensive train-

ing. DTW is applied to find the distance between two

temporal actions, then actions are recognized based on

nearest-neighbor classification. Fourier Temporal Pyramid

is very efficient for noise removal and discriminative for

action recognition. But it is insensitive if there is any

temporal misalignment. In contrast to the Action, let

Ensemble Model is invariant to temporal misalignment and

is also robust to noise. The researchers in [135] presented

an unsupervised learning approach, i.e., a ‘‘bag of spatial-

temporal words’’ model combined with a space-time

interest points detector, for human action categorization

and localization. The algorithm can also localize multiple

actions in complex motion sequences containing multiple

actions, and their results are promising. For similar actions

(e.g., ‘‘running’’ and ‘‘walking’’), the classification may

benefit from a discriminative model. Additionally, few

methods are based on the use of temporal characteristics in

the recognition task. Relatively simple activities such as

walking are typically used as test scenarios; the systems

may use low-level or high-level data [123]. Low-level

recognition is typically based on spatiotemporal data

without much processing. The data are spatiotemporal

templates [222] and motion templates [118]. The goal is

usually to recognize whether a human is walking in the

Table 6 Best dataset for HAR ADL with highest accuracy level

Refs. ML approach Accuracy Dataset Num of ADL

[185] HMM 92.50 % Global silhouette features 6ADL

[135] MLR 93.44 % Self 10 ADL

[88] SVM 94.07% i3DPost and IXMAS 10 ADL

[102] Additive Logistic Regression algorithm 95.7% Dvs dataset 5 ADL

[182] NB classifier 80% Subject dependent Self 30ADL

56% Subject independent

[81] Bagged Tree Model 95.7 % Self 9 ADL

[21] IBK classifier 99.9 % 6 Common ADL MobiAct 6 ADL

96.8 % all ADLs and 4 falls 12 ADL
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scene or not [69]. More high-level methods are usually

based on pose estimated data. These methods includes

correlation, silhouette matching [93], HMMs [185] and

neural networks [69, 169]. The objective is to recognize

actions such as walking, carrying objects, removing and

placing objects, pointing and waving [35], gestures for

control [27], standing vs walking, walking vs jogging,

walking vs running [61], and classifying various aerobic

exercises [9, 182], or ballet dance steps [49].

8 Performance analysis of HAR systems

The current section will discuss the performance, accuracy,

and challenges of HAR-based systems.

8.1 Performance and accuracy

This subsection provides an in-depth analysis of well-

known algorithms for HAR with the particular application

area and boundaries. Indeed, the algorithm selection

depends on many factors, including the nature of the

activity, such as speed of action and its complexity, and the

amount of training data available. When there is insuffi-

cient training data, the training model can not attain a

proper distribution trend and results in overfitting for

decision trees, neural networks, and underfitting for SVM.

Primarily, for detecting activity, probability-based algo-

rithms work well to learn from actions and recognize the

activity. But these probability-based methods are usually

complicated and computationally inefficient. HMM is an

example of such a probability-based algorithm that can

estimate many parameters. Generally, because of its

Markovian property, HMM calculated the conditionally

independent features, but we cannot generalize it for all

applications. Because of the normalization issue, the cur-

rent observation sequence is mostly overlooked and ends in

incorrect detection. Hence, whenever some application has

a series of complex events, HMM is not a good choice. If

these complex events can be decomposed into sub-events

with simpler activities, HMM may work better. Moreover,

if global normalization is applied, we can solve the label

bias problem, in which the current observation has low

entropy, and due to that, it is ignored. Another popular

choice for HAR for different applications is SVM. It works

well for data whose distribution is not known. Once its

decision boundary is determined, it is a robust classifier and

scales well for high-dimensional data.

For health-related applications, mostly deep learning

classifiers are considered the favorite. There are multiple

reasons for this choice; firstly, these classifiers are instantly

capable of learning from raw data. So there is no require-

ment to extract handcrafted input features. Secondly, these

models are capable of exploring and obtaining the advan-

tage of temporal correlation between internal events.

Hence, the model is well fitted; complex activity can be

recognized efficiently due to deep layers; so simple to

complex features is scalable. Further, the accuracy of dif-

ferent ADLs on the dataset obtained from various sources

is shown in Table 6. This table summarizes the best

research work based on model accuracy. It can be observed

from table that bagged tree-based model [81] and logistic

Regression-based [102] are giving same 95.7 % accuracy;

however, [102] is based on fewer activities than [81]. Then

[21] utilized IBK classifier (instance-based learner using 1

nearest neighbor). This research work outperforms all of its

counterparts with 99.9 % accuracy for 6 common activities

and 96.8 % for a bit complex HAR task, including 12 ADL

and 4 falls.

8.2 Challenges and limitations of HAR systems

The following subsections will describe Non-vision-based

and vision-based HAR and their associated challenges in

detail. The vision-based HAR generally has better perfor-

mance as compared to Non-vision-based HAR, though

vision-based techniques are more challenging. Firstly,

vision-based techniques have privacy issues, as not every

person is willing to be observed constantly and recorded by

cameras. Secondly, it is not practically manageable to

record the intended area of interest for certain applications

during the entire recording period. Finally, the vision-based

techniques are generally computationally costly and

require much more preprocessing before HAR can be done.

Non-vision-based sensors used for human activity

recognition also undergo some limitations, such as the

number of sensors employed, which affects the measure-

ment’s granularity. The second limitation involves the

sensor’s location, which influences the readings’ precision

and accuracy, for example, in smart home monitoring

scenarios. The third factor concerns deployment obstacles,

such as in human body implants. In high mobility scenarios

such as sports activity recognition the sensors might move

or get displaced, specially if they are deployed on the body.

Other issues are the environment’s influences affecting

maintenance, such as temperature, humidity, power supply,

etc. In some cases, the cost becomes a bottleneck since

high precision may require sensors that exceed the total

budget of bulk production of the product. Finally, the

sensors used for HAR might hinder or obstruct the sub-

ject’s daily chores or normal life activities, such as in HAR

for elderly persons.

There are several challenges common to both vision and

non vision-based HAR, which can dramatically degrade the

system’s performance. Ideally, the extracted features may

include several variations, including human appearances,
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points of view, and diverse backgrounds. But in reality,

each action could be performed in a different background,

situation, and diverse rotations, illuminations and transla-

tions. Besides, the complexity of recognition may also

depend on the speed of activity, the number of actions for

an activity, the type of device used, and the sensing devi-

ce’s energy consumption. In applications like video

surveillance and fault detection, offline processing

adversely affects the characteristics of surveillance. For

example, in sports event broadcast is a typical case of

dynamic recording.

With the popularity of smart devices such as smart

glasses and smartphones, people tend to record videos with

embedded cameras from wearable devices. Most of these

real-world videos have complex dynamic backgrounds.

Therefore the main challenges include varying back-

grounds, as in realistic cases, videos are broadcasted in

complex backgrounds. Furthermore, these videos may have

occlusions, brightness, and viewpoint variations, which

introduce complications, thus requiring a high level of

signal processing and machine learning algorithms to

detect action in such dynamic conditions. Another signifi-

cant challenge is due to the long-distance and low quality

of videos recorded by surveillance cameras. In most cases,

the cameras are installed at an elevated place; therefore,

they cannot provide high-quality videos comparable to the

offline dataset in which the targeted person is apparent and

obvious.

8.3 Future directions and open issues

8.3.1 Simplification of complex models

Video-based human activity recognition is daunting and

challenging in terms of model and training. One of the key

simplifications can be achieved by using transfer learning

and utilizing image models for video or transferring the

knowledge learned from related video sequences.

8.3.2 Exploring temporal correlations among actions

Human activity recognition is the well-explored area for

sensors and videos-based data. However, besides individ-

ual action recognition, it is critical to understand the cor-

relation between different actions. Besides, various

uncorrected activities might also have a time-based rela-

tionship between them. For example, climbing down the

stairs and opening doors might be a different event; how-

ever, this is related to a person opening a door for his guest.

One of the future directions involves finding a frame of

action in uncorrelated temporal sequences. Consequently,

this results in event recognition using uncorrelated

activities.

Fig. 17 Structure of deep convolutional neural network (DCN)
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8.3.3 Association between environment and human
activity

Various actions occur in a specific space or Environment;

although a lot of work has been done on HAR, very little

attention has been paid to scene integration with human

activities. One of the key future directions involves object

correlation and integration with HAR. For example, in

elderly HAR, the object around which a certain action

occurred plays a vital role in the correct understanding of

the action itself. Besides, the objects around the action

might help understand the action’s potential causes, which

improves HAR.

8.3.4 Multiassociation of actions using big data

Most of the current literature focuses on human activity

recognition from a particular scene. The upcoming 5G

technology enables big data acquisition and processing.

Big data can be applied to HAR by collecting data from

multiple scenes having similar actions and finding spatial

aggregates or filters to this data. This also helps to find

interpolations to missing data or associations among data.

8.3.5 Real-time HAR and online learning

While offline approaches are useful in several application

settings, some applications need real time processing for

HAR. The online and real-time systems are constrained by

power consumption and the short processing time. Never-

theless, some new techniques utilize inertial sensors to

improve the accuracy of online approaches. Model devel-

opment, machine learning, and better accuracy with con-

straint resources for real time systems is a challenging, an

open and developing area of research.

9 Conclusion

HAR is an active area of research in computer science as it

finds applications in numerous domains. The data for HAR

is acquired using vision and non-vision-based sensors. Both

types of sensors are relevant and suitable for certain

application domains. This survey analyzes different appli-

cation domains and certain sensors suitable for each case.

We have provided pros and cons for vision as well as non-

vision-based sensors. Several datasets are available in the

literature and are suitable for different application areas;

each provides a different set of actions, sensors, and data

sampled at different rates. We reviewed available datasets

for various application domains. We concluded that if a

HAR application requires a short time of monitoring

wearable sensors are used on the other hand with

applications requiring long-term monitoring ambiance

sensors are installed.

The survey provides various machine learning approa-

ches to recognize human activities, including SVM, deci-

sion tree and KNN, bagged tree-based model, HMM, and

GMM. After conducting a detailed analysis of traditional

methods, we observed that SVM, decision tree, and KNN

with the bagged tree work best for most application areas.

This survey covers deep learning literature including CNN,

transfer learning, reinforcement learning, RNN, and

autoencoders. We identified that in presence of limited

training dataset reinforcement learning can be used. CNN

is one of the most suited techniques for feature extraction

however, in the case of high dimensional feature space

autoencoders can be used. In case HAR contains sequences

RNN and its variants such as LSTM and GRU can be used.

Another variant called transformers can be used in case the

sequential nature of LSTM could affect the computational

time of the system. We conclude that deep learning

methods have much higher performance and accuracy as

compared to traditional machine learning approaches.

It is advantageous for researchers to get a clearer picture

of the current trends and research techniques in human

activity recognition and know which devices, datasets, and

algorithms are most suitable for the particular application

area. Finally, we provided future directions, limitations,

and openings in the area of HAR. In summary, we have

seen HAR in terms of application areas and analyzed

available datasets, algorithms, and sensors so that it could

help researchers of HAR to choose from state-of-the-art.
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