
ORIGINAL ARTICLE

GA-SRN: graph attention based text-image semantic reasoning
network for fine-grained image classification and retrieval

Wenhao Li1 • Hongqing Zhu1 • Suyi Yang2 • Pengyu Wang1 • Han Zhang1

Received: 22 December 2021 / Accepted: 4 July 2022 / Published online: 27 July 2022
� The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022

Abstract
In this paper, a new fine-grained image classification (FGIC) network with feature relationship enhancement of multiple

stages is established. After the engaging of scene text in FGIC and retrieval, basic architecture of local, global, text feature

encoders and classifier have been approved. This method retains these portions and expands them into a five-module

architecture. In specific, positional encoding is incorporated to both local and textual feature encoders such that com-

plementary information carried could engage in feature representation. In local and textual feature encoders, intra-modal

semantic relation reasoning is introduced for FGIC by a proposed General Feature Relation Enhancement (GFRE) module.

GFRE is a feature reasoning module applicable to any two inputs of same modality or distinct modalities. GFRE adopts

Graph Attention which represents and infers relationships among graph data. Moreover, latest multi-modal reasoning

module is improved by a proposed Multi-Head Multi-Modal Joint Semantic Reasoning module consisted of cross-modal

GFREs by multi-head fusion. Experimental results on multiple datasets verify the effectiveness of the proposed algorithm.

Keywords Graph attention � Image classification � Positional information � Scene text � Fine-grained � Cross-model fusion

1 Introduction

Fine-Grained Image Classification (FGIC) refers to task

that distinguishes images belonging to multiple sub-cate-

gories within a basic-level category. Compared with con-

ventional image classification problem, FGIC is more

challenging due to the small inter-class similarity and large

intra-class variance. Recent researches use Convolution

Neural Networks (CNNs) to learn global and local features

[1], and combine multi-level feature to locate and encode

the distinguishable areas for FGIC [2]. However, tradi-

tional CNNs often focus on most salient regions while

neglecting other inconspicuous but distinguishable parts.

Also, they treat various features in isolation manner but

ignore the relationships between features. To alleviate

these limitations, attention-based approaches are intro-

duced recently such that other relatively insignificant but

distinguishable parts are also noticed [3]. Although visual

information has been extensively exploited, differences

that are not obvious may not be accurately distinguished by

a typical classification model.

Scene text with additional cues in natural images carries

rich semantic information that may be highly relevant to

object [4]. Recently, localizing and recognizing text in image

has been well explored in many fields [5]. A representative

work proposed by Movshovitz et al. [6] recognizes text

instances and extracts text information for classifying street

store images. However, solely using text information to

conduct classification would be extremely challenging
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especially under blurred text instance circumstance. Later

studies combine visual and textual information, but intrinsic

relation exploration between two modalities becomes an

open question. For example, Bai et al. [7] combined visual

and textual information to train classifier. However, these

methods simply concatenate visual and textual features

without analyzing inter/intra-modal semantic relations.

Also, relations between visual and textual information that

might bring potential improvement to classification accuracy

aren’t fully exploited. Mafla et al. [8] used classical object

detector and text detector to obtain visual and textual infor-

mation with a Graph Convolution Network (GCN)-based

embryonic cross-modal reasoning module. However, intra-

modal relations in textual or visual modality haven’t been

explored.

In this paper, a novel Graph Attention (GAT)-based text-

image Semantic Reasoning Network (GA-SRN) is estab-

lished for FGIC. Considering that the position of the detected

object also provides potential information, the position fea-

tures of each image are obtained by Faster R-CNN. At the

beginning, positional encoding is incorporated to both tex-

tual and visual semantic encoders in which inner-modal

reasoning is also fulfilled. Besides, cross-modal semantic

relation enhancement is further improved. In specific, a plug-

and-play General Feature Relation Enhancement (GFRE)

module widely applicable to semantic relation reasoning of

inner-modal features or cross-modal features is proposed. It

can exploit the relations between any two branches of fea-

tures independent of their sources of either visual, textual or

positional. Fig. 1 illustrates the proposed semantic relation

enhancement model. Although simple concatenation of

visual and textual features from classical CNN and Optical

Character Recognition (OCR) fulfills basic functionality as

well [7], potential improvement could be explored by

employing self-attention mechanism. In GFRE, advanced

GAT [9] is adopted and is firstly introduced to FGIC network

inspired by theGCN that designed specifically for processing

graph data. By GFRE module, discriminative feature rep-

resentation for visually similar categories could be

enhanced. In the proposed GFRE for intra-modal reasoning,

we can obtain position graphs containing indicative class

information which graph generated from images belonging

to similar classes should somehow see some similarities. In

general, the position graph aids text and local encoding in

inner-modal reasoning and ultimately engaged in cross-

modal reasoning which sometimes has a big effect. For

cross-modal semantic relationship reasoning, a Multi-Head

Multi-Modal Joint Semantic Reasoning (M3JSR) module is

proposed which conducts multi-modal feature relationship

enhancement by aGFREand amulti-head fusion. It is used to

reason and fuse features from different modalities to gener-

ate discriminative features that can be used for classification.

Experiments on publicly available datasets demonstrate the

effectiveness of the proposed framework.

The main contributions of this paper are summarized as

follows:

• Intra-modal semantic relationship enhancement is

firstly introduced to FGIC.

• Position information is plugged into textual and visual

encoders for feature representation and intra-modal

relationship reasoning.

• An easily applicable GFRE module independent of

modalities with efficient GAT is proposed. It can reason

both intra-modal positional relations and inter-modal

relations between any two branches of features inde-

pendent of their sources.

• The M3JSR module brings improvement to latest multi-

modal reasoning module. This module fuses different

modality features and generates more discriminative

features for classification by cross-modal GFREs with

multi-head fusion strategy.

This paper is organized as follows. Section 2 presents the

related works about FGIC and scene text recognition. The

methodology is introduced in Sect. 3. Experimental results

and comparison are illustrated in Sect. 4. Discussion and

conclusion are drawn in Sect. 5.

2 Related works

2.1 Fine-grained image classification

Recently, fine-grained image analysis with CNN has

received extensive attention in computer vision communities

[10]. FGIC requires algorithms to gain discriminative visual

regions and classify objects through detailed regional fea-

tures. Sun et al. [11] introduced a Searching Discriminative

Regions (SDR) andLearningDiscriminative Regions (LDR)

based method using attention mechanism to search for high-
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Fig. 1 Traditional mode of scene text based FGIC (top) in comparison

to the proposed method with semantic reasoning modules (bottom).

Instead of concatenation between features, relationship enhancement

is operated both within and across modalities
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response regions in images and take them as clues to locate

local discriminative regions. Zhang et al. [12] designed Intra-

class Part Swapping (InPS) which avoids inter-class mixing,

and thus alleviates label noise in the mixing process for

FGIC. Since these studies solely classified based on visual

features, later studies raised the idea of combining textual

and visual features to improve classification. For example,

He et al. [13] introduced a two-stream model Combining

Vision and Language (CVL) for learning latent semantic

representations. As vision stream and language stream are

complementary classification accuracy can be achieved.

Karaoglu et al. [14] utilized pre-trained GoogLeNet to

extract text instances in scene images and build a word

directory along with visual feature extraction. Bai et al. [7]

used Textboxes as text instance detector and gained visual

features with CNN-based network. Recent work by Mafla

et al. [4] used pyramidal histogram of characters with Fisher

Vector to obtain text instances which resulted in improving

OCR accuracy. In general, fundamental structure for text

detection in FGIC has just been verified effective and further

interaction between features hasn’t been explored.

2.2 Scene text detection and recognition

Most methods for scene text recognition are divided into

two stages, detection and recognition. Jaderberg et al. [5]

obtained text region proposals with CNN-based network

and used a classifier to classify text instances into words.

Current studies tended to seek for better designed

detector for text identification. For example, recent

studies employed improved Faster R-CNN [15] as text

detector to construct an end-to-end trainable scene text

detection. Borisyuk et al. [16] proposed a Rosetta system

with Faster R-CNN as text detector. He et al. [17] used a

Long-Short Term Memory (LSTM) [18] to refine

bounding boxes for recognition. Later, attention mecha-

nism widely proved effective in many fields is also

introduced to text recognition. Zhang et al. [19] applied

an attention unit between CNN-based encoder and GRU

[20]-based decoder to adapt location of character. In

addition, other approaches such as PHOC [21] have also

been used in querying text instances in natural scene

images [22]. However, mainstream scene text detection

adopted in FGIC only uses OCR to have the model

complexity within control.

2.3 Graph attention networks

Graph Neural Network (GNN) [23] was recently proposed

to process graph data directly by message passing between

nodes. Gao et al. [24] for example used GNN to exploit

relations of textual and visual instances. Li et al. [25]

employed GCN to reason salient regions in images and text

words for image-text matching. However, due to same

weight to adjacent nodes in same neighborhood order,

capture on spatial information correlation is restricted.

GAT [9] that strengthen information of crucial nodes by

updating attentional weights could better integrate corre-

lation of features into model. For instance, Li et al. [26]

used GAT to exploit relations of visual regions and

bounding boxes for VQA. Wen et al. [27] proposed a dual

semantic relation model based on GAT for text-image

matching. Zeng et al. [28] generated a graph of all sub-

sentences with a strong connection by using sentence-level

GAT. Chen et al. [29] proposed a Hierarchical Graph

Reasoning (HGR) model that employed attention-based

graph reasoning to generate hierarchical textual embedding

for fine-grained video-text matching. In this paper, we

employ GAT to reason different concept information and

enhance representation of image features.

2.4 Multi-modal fusion and relation

Since FGIC places high interaction to features between

modalities, multi-modal feature fusion strategies such as

Multi-modal Low-rank Bilinear Attention Network (MLB)

[30], Block [31] and Visual-Semantic Aggregator [24] are

also explored. Previously, Anderson et al. [32] proposed a

bottom-up-attention for VQA that established relationship

between regions and words. Kazemi et al. [33] concate-

nated image and text features to compute multiple attention

distributions. Also, LSTM reasoning textual and visual

semantic relations is proposed [34]. Later, GCN is dis-

covered more suitable for exploiting semantic relations

between textual and visual instances. Recently, GAT is

applied to feature reasoning in text-image matching task

[27]. To our best knowledge, it is the first attempt by this

paper that GAT is used in the task of FGIC as well as

exploiting relations between positional information and

visual regions/text instances.

3 Methodology

As shown in Fig. 2, the proposed GA-SRN consists of five

parts, Global Feature Encoder, Local Feature Encoder,

Text Encoder, Multi-Head Multi-Modal Joint Semantic

Reasoning Module and Classifier. The most similar com-

bination of these modules was by latest FGIC method [8].

The proposed method follows the same structure while

pattern of positional encoding is changed, inner-modal

relationship exploitation is added, and cross-modal rea-

soning is enhanced. Specifically, retrieval image is deliv-

ered to a global feature encoder unit same as majority

previous designs, along with the modified local feature

encoder and text encoder with the proposed GFRE module.
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In this architecture, GFRE is applied to exploit semantic

and positional relationship in local feature encoder and text

feature encoder as well as semantic relationships between

text and visual features in M3JSR. M3JSR is a new

designed multi-modal reasoning module combining GFRE

and multi-head fusion to generate more discriminative

features for classifier. At the same time, M3JSR with

GFRE adopts GAT which is regarded more effectively than

GCN adopted earlier [8] in final cross-modal fusion.

3.1 Global feature encoder

We use ResNet-152 [16] pre-trained on ImageNet as

global feature extractor. For example, after input image

goes through ResNet-152, we get the original global

image feature defined as VG. Afterwards, a self-attention

mechanism is used to obtain more discriminative fea-

tures. By this attention mechanism, we obtain an atten-

tion mask attnmask which pays different attention to

different regions. The attention weights are learned in an

end-to-end way by utilizing convolution of 1 � 1 kernel

with a Softmax function followed by. To obtain the

complete global feature, we multiply attnmask with orig-

inal global feature VG and add it to the latter. The result

is fed into a Fully Connected (FC) layer to get the final

feature V�
G:

V�
G ¼ FCðVG þ ðVG � attnmaskÞÞ: ð1Þ

3.2 General feature relationship enhancement
module

Inspired by image-text matching study [27] that exploits

regional relations with GAT, we designed GFRE module

to reason relations of different features. Since GFRE can

exploit the relationship between any two branches of

features independent of their sources, input types I and II

are used to denote these particular inputs. As shown in

Fig. 3, input features VS from type I are processed by

Relation Unit I to obtain feature graph GS ¼ VS;ESð Þ,
where ES is an edge set denoted as the affinity matrix

obtained by calculating affinity edge of each group of

feature vs
i and vs

j

ES vs
i; vs

j
� �

¼ vs
i

� �T
vs

j; ð2Þ

where i and j represent the i-th and the j-th feature pair. In

fact, edges of semantically relevant features of input fea-

ture I would have high affinity scores. Then, with a GAT

module, the relation-enhanced feature of vis can be defined

as vi�s
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Fig. 2 Overall flowchart of the proposed model. Five modules are

distinguished by dotted-line boxes in different colors. GFRE exploit-

ing intra-modal or inter-modal feature relations is inserted. M3JSR

strengthen relations of the relevant image regions and text words to

generate discriminative features for classification
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vi�s ¼ BN ReLU
X

j2Ni
s

WokHh¼1 head1s ; . . .; head
h
s

� �
0

@

1

A

0

@

1

A;

ð3Þ

where k represents concatenation.

headhs ¼ Softmax Wh
sqv

i
s Wh

slv
j
s

� �T
=

ffiffiffiffiffi
Ds

p� �
Wh

svv
j
s: ð4Þ

where Wh
sq 2 RDs�d, Wh

sl 2 RDs�d, Wh
sv 2 RDs�d and Wo 2

RDs�d are learnable parameters, Ds is vector dimension, Ni
s

is the neighborhood of node i in graph GS. Following

parameter selection in [27], we employ H ¼ 8 and d ¼
Ds=8 in this model.

Similarly, Relation Unit II extracts input features VB

from type II to construct graph GB ¼ VB;EBð Þ, where EB is

the edge set defined by an affinity matrix calculating the

affinity edge of each group of feature vb
i and vb

j.

EB vb
i; vb

j
� �

¼ vb
i

� �T
vb

j: ð5Þ

In fact, edges of semantically relevant features in input

feature II would gain high affinity score. Then, GAT is

used to obtain relation-enhanced features vi�b by

vi�b ¼ BN ReLU
X

j2Ni
b

WokHh¼1 head1b; . . .; head
h
b

� �
0

@

1

A

0

@

1

A;

ð6Þ

where

headhb ¼ Softmax Wh
bqv

i
b Wh

blv
j
b

� �T
=

ffiffiffiffiffiffi
Db

p� �
Wh

bvv
j
b; ð7Þ

where Wh
bq 2 RDb�d, Wh

bl 2 RDb�d, Wh
bv 2 RDb�d and Wo 2

RDb�d are learnable parameters. Ni
b is the neighborhood of

node i in graph GB. Same as in Unit I, H ¼ 8 and d ¼ Db=8

is taken. By Relation Unit I and II, intrinsic relations of

features from each type could be found individually.

Finally, relation-enhanced feature V�
S ¼

fv1�s ; v2�s ; . . .; vn�s g from feature type I and V�
B ¼

fv1�b ; v2�b ; . . .; vm�b g from feature type II are concatenated to

obtain feature VSB ¼ fv1sb; v2sb; . . .; vnsbg, visb 2 RDsb , where

Dsb ¼ Ds þ Db. Aggregation was proved to explore rela-

tionship between two features well [24], but we testify that

directly concatenation between two features followed by

another relationship unit seems to be more effective and

thus is adopted in our GFRE module. After that, we con-

struct graph GSB ¼ ðVSB;ESBÞ, where VSB contains crucial

information from feature I and feature II as well as their

relations. Specifically, we use feature visb to initial node i of

GSB, then we compute the affinity matrix ESB of feature visb
and vjsb to initial edge between nodes i and j in GSB. The

affinity matrix ESB of edge set can be expressed as:

ESB vsb
i; vsb

j
� �

¼ vsb
i

� �T
vsb

j: ð8Þ

where visb and vjsb are features which are obtained from VS

and VB, respectively.

Another graph attention module (Relation Unit III) is

used to process relation-enhanced fused graph GSB and

exploit relations between features from Relation Unit I and

Unit II. The relation-enhanced feature vi�sb is obtained by

vi�sb ¼ BN ReLU
X

j2Ni
sb

WokHh¼1 head1sb; . . .; head
h
sb

� �
0

@

1

A

0

@

1

A;

ð9Þ

where

Fig. 3 Architecture of the proposed GFRE. It contains three relation units with GAT in which Relation Unit I and II are input by two sources of

features (I and II) and their semantic relationship is exploited in Relation Unit III
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headhsb ¼ Softmax Wh
sbqv

i
sb Wh

sblv
j
sb

� �T
=

ffiffiffiffiffiffiffi
Dsb

p� �
Wh

sbvv
j
sb;

ð10Þ

where Wh
sbq 2 RDsb�d, Wh

sbl 2 RDsb�d, Wh
sbv 2 RDsb�d and

Wo 2 RDsb�d are learnable parameters. Ni
sb is the neigh-

borhood of node i in graph GSB. H ¼ 8 and d ¼ Dsb=8 is

employed in (10). The following pseudo code indicates the

implementation details of GFRE module.

3.3 Local feature encoder

Inspired by works for VQA [26] and text-image matching

task [27], our framework uses local feature encoder to

detect salient image regions and encode these regions into

local features. We employ Faster R-CNN pre-trained with

Visual Genome [35] as the extractor to detect and encode

salient image regions. We set the Intersection over Union

(IoU) threshold at 0.7 and a confidence score threshold at

0.3, and select top n Region Of Interest (ROI) after sorting

the predicted regions. Therefore, we obtain a set of salient

region features R ¼ fr1; r2; . . .; rng, ri 2 RD where

D ¼ 2048 and a set of bounding boxes of salient regions

B ¼ fb1; b2; . . .; bng, bi 2 R4, ri represents the i-th pre-

dicted region and bi ¼ fxi1; yi1; xi2; yi2g denotes the

bounding box of the i-th predicted region. Suggested by

study [36] for image retrieval task, the position of salient

regions would contributes to visual-text joint-embedding

learning. Therefore, to enhance the representation of local

visual embedding, we encode salient region position into

positional features denoted as VB ¼ fv1b; v2b; . . .; vnbg which

is transferred to 64 dimensions by an FC layer. To generate

1024 dimensional relation-enhanced features, we first

employ an FC layer to transform 2048-dimensional

embedding vi obtained from original Faster R-CNN [15]

into VR ¼ fv1r ; v2r . . .:vnrg, vir 2 RDr , where Dr=960 in our

model. Then, we feed them into GFRE and obtain the

semantic positional enhanced local feature represented as

V�
RB ¼ fv1�rb ; . . .:vn�rb g, vi�rb 2 RDrb , where Drb = 1024.

V�
RB ¼ GFREðVR;VBÞ: ð11Þ

3.4 Text feature encoder

To obtain text instance features, we employ the stable text

detection model Google OCR1. By this model, we extract

each word appeared represented as ti and the corresponding

bounding box of each word ti denoted biw ¼
fxi1; yi1; xi2; yi2g. After recognizing the words, we use

FastText [37] to generate word embedding

W ¼ fw1;w2; . . .;wmg;wi 2 RD, where D ¼ 1024. To

embed text positions, same method as obtaining positional

embedding in local feature encoder is used and the text

positional features obtained are denoted as

BW ¼ fb1w; b2w; . . .; bmwg, biw 2 RDb where Db = 64. Then, we

employ FC layer to transform 1024 dimensional wi to 960

dimensional vit. Hence, the set of word embedding can be

described as VT ¼ fv1t ; v2t ; . . .; vmt g, vit 2 RDt , where Dt=

960. Then, we feed positional features Bw and regional

features VT into GFRE module and obtain the semantic

positional enhanced textual feature represented as

V�
TB ¼ fv1�tb ; . . .; vn�tb g, vi�tb 2 RDtb , where Dtb = 1024.

V�
TB ¼ GFREðVT ;BWÞ: ð12Þ

3.5 Multi-head multi-modal joint semantic
reasoning module

Having obtained the relation-enhanced features fused from

local feature encoder and text feature encoder, respectively,

another cross-modal reasoning module would have to be

designed for joint relationship inference before final feature

fusion. In this paper, M3JSR is proposed to exploit rela-

tions between text instances and salient regions as shown in

Fig. 4. The module firstly applies GFRE to cross-modal

semantic relation enhancement with multi-head fusion for

joint feature representation. In fact, the M3JSR with multi-

head fusion provides slightly more competitive results,

while replacing M3JSR with only one GFRE could also

1 https://cloud.google.com/vision/docs/ocr.
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realize basic functionality of relation-enhanced feature

fusion if less computation is appreciated.

In specific, given the output of local feature encoder V�
RB

and the output of text encoder V�
TB, they would be input to

Relation Unit I and II, respectively, of another cross-modal

GFRE model. Then, we concatenate or aggregate the

relation-enhanced visual and textual features to generate

features containing both visual and textual semantic

information where their intrinsic relationship is exploited

by the following Relation Unit III. After applying GFRE

module, we obtain visual textual semantic relation-en-

hanced features which can be represented as V�
RT. The

whole process can be described as:

V�
RT ¼ GFREðV�

RB;V
�
TBÞ: ð13Þ

Then, an average pooling layer is applied to obtain the final

output VRT of one head.

VRT ¼ AvgPoolðV�
RTÞ: ð14Þ

M3JSR contains four heads and thus four textual visual

semantic relations-enhanced features are output. Having

obtained a set of four output features

VRT ¼ V1
RT;V

2
RT;V

3
RT;V

4
RT

� �
, we apply them with a

specifically designed fusion module for M3JSR. This

fusion module contains simpler fusion layer which is

illustrated in the right bottom of Fig. 4. In our proposed

M3JSR, we use multiple GFREs to reason the correspon-

dences in textual and visual patterns to preserve the

diversity of relations, but this approach may generate

redundant information. Therefore, we should extract

important information from the multi-heads generated

features. As shown in Fig. 4, the proposed multi-head

fusion uses multi-layers of Gate Fusion to refine redundant

data. Compared to self-attention strategy, the proposed

multi-head fusion method is more flexible as the number of

heads is selected at its optimal such that the best number of

Gate Fusion layers can be used to refine information. This

fusion layer fuses vectors Vi
RT with Vj

RT, and generates

output Vij
F . We formulate the fusion layer as follow.

Vi
F ¼WiV

i
RT; Vj

F ¼ WjV
j
RT; t ¼ d UiV

i
F þ UjV

j
F

� �

ð15Þ

Vij
F ¼tHVi

F þ ð1� tÞHVj
F; ð16Þ

where Wi, Wj, Ui, Uj are learnable parameters and d rep-

resents the Sigmoid function. In order to fuse the four head

output features from VRT ¼ V1
RT;V

2
RT;V

3
RT;V

4
RT

� �
to gen-

erate terminal feature I, we formulate the fusion process as

follow.

I ¼ F3 F1 V1
RT;V

2
RT

� �
;F2 V3

RT;V
4
RT

� �� �
; ð17Þ

where F1, F2 and F3 represent three simplified fusion

layers. The proposed multi-head fusion scheme is relatively

flexible, because the number of Gate Fusion layers can be

determined by its performance of information refinement.

Relevant experiments of heads are shown in Sect. 4.3.

3.6 Classifier

Finally, outputs of global encoder and M3JSR module are

concatenated to obtain a final 2048 dimensional vector X ¼
VG

�; I½ � which is then input to a FC layer for classification.

After applying a Softmax to the output of final FC layer,

we obtain a probability distribution function indicating

which the probability that input image belongs to each

class. Overall, our model can be trained in end-to-end
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manner and a cross-entropy loss function is used to opti-

mize the model expressed as

JðhÞ ¼ � 1

N

XN

n¼1

XC

i¼1

yni logðpni Þ: ð18Þ

The pseudo code of the proposed GA-SRN can be sum-

marized as follows.

4 Experimental results

4.1 Datasets

(1) Con-Text dataset. This dataset contains 24,255

images of 28 categories and is divided into three-

folds to make up training and test sets. Although text

is appreciated in visually similar scene for better

certainty of FGIC, this dataset for fine-grained scene

classification with many images containing no text

instance is also engaged as a challenge to the

method.

(2) Drink-Bottle dataset. It was firstly provided by Bai

et al. [7] and is composed by 20 sub-categories of

soft drink and alcoholic drink. This dataset contains

18,488 images and is divided into three-folds as well

to construct the training and test sets. Since the

dataset is designed for FGIC, a certain number of

images contain text instances.

(3) CUB-200-2011. It contains 11,788 bird images

spanning 200 sub-categories. The training dataset

has 5994 images, and the test set has 5794 images. It

provides text descriptions of the language modality

for each bird image and part location label for

different parts on body. In experiment, the image

description label is used as text and the part location

label is used as salient region. Half of the images in

this dataset are used for training and the other half

are used for testing.

4.2 Implementation details

To extract salient visual regions of the input image, we get

the top n ¼ 36 ROI following [15] and embed them along

with the positional information into 1024 dimensional

embedding. The recognized words are ranked by confi-

dence score from highest to lowest and the top m ¼ 15

predictions are reserved. Then, the reserved words are

encoded into 300 dimensional embedding using the pre-

trained FastText model. Faster R-CNN in local feature

encoder module and OCR model in text encoder are used

as the feature extractor. Text instances recognizer has been

pre-trained and would not be updated during training stage.

Our model is trained 20 epochs in total and is optimized by

RAdam with batch size 64. At the training stage, initial

learning rate is set as 0.001 which decays by scale of 0.1 on

the 3th, 6th, 12th and 18th epochs. This network is

implemented on PyTorch 1.5.1. We conduct all experi-

ments on a server with AMD Ryzen 7 3700X CPU and

NVIDIA GeForce RTX 2070s GPU.

4.3 Effect of GA-SRN on FGIC

(1) Evaluation on multi-head numbers. The proposed

M3JSR reasoning relations between visual regions

and textual words is composed of cross-modal

GFREs with multi-head fusion. In this subsection,

how the number of GFRE heads K in M3JSR module

affects fusion performance is testified as shown in

Fig. 5. It could be seen that classification accuracy

presents sensitive to head numbers in M3JSR mod-

ule. Classification mean Average Precision (mAP) is

relatively similar when K = 2 on both datasets.

However, setting K = 4 resulted in highest mAPs at

86.57 and 79.96 on Con-Text and Drink-Bottle

datasets, respectively. In general, classification
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Fig. 5 Classification results mAP (%) by K = 1, 2, 4 in multi-head

fusion on Con-Text and Drink-Bottle datasets. K is GFRE head

numbers in M3JSR module
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accuracy rises when number of heads increase since

multi-head graph attention enables each head to

focus on more local-textual relations. However, too

large number of heads would lead to times of

increase in algorithm complexity, so K is set to 4 in

the proposed method.

(2) Qualitative results. Qualitative results of our model

on individual images are shown in Fig. 6. In this

figure, Ground truth and top-2 probability scores

obtained by our model are shown below each image.

It is noticeable that images could be classified to the

correct descriptions in most cases with relatively

high certainty. This might be because of the semantic

relationship in visual features and textual features

that our model discovers to enhance classification

performance. It could also be observed that specific

brand could be easily classified (images in Drink-

Bottle) and images with scene text (such as

‘‘Theatre’’, ‘‘Barber’’ images) could also be well

classified even if the scene texts aren’t very related to

retrieval results. This might be benefited from that

text feature encoder comprehensively exploits

semantic relation with positional feature. Classified

examples such as ‘‘Tea House’’, ‘‘Cafe’’ and ‘‘Din-

ner’’ are visually similar, the proposed model can

distinguish them with relatively high certainty.

However, wrong classification cases still exist such

as the last two samples listed for each dataset. It

could be observed that images without textual words

may suffer from higher probability of misclassifica-

tion. In images with scene text, recognition errors

may still occur when textual words in images are

blurry or distorted.

(3) State-of-the-art comparison. In this section, quanti-

tative performance of the proposed GA-SRN is

compared with latest image classification methods

Karaoglu et al. [38]; [14], Bai et al. [7], Mafla et al.

[4] and Mafla et al. [8]. As shown in Table 1,

classification results on Con-Text and Drink-Bottle

datasets referring to original references are listed.

Bai et al. [7] explores visual and textual relationship

with attention mechanism. This architecture achieves

a satisfied classification accuracy for both single

classifier version (Bai et al. [7]) and the ensemble

model with three classifiers (Bai et al. [7]). Although

[4] is not trained in end-to-end manner, the efficient

off-line estimation of Fisher Vector by training a

Gaussian Mixture Model (GMM) resulted in notice-

able increase in classification accuracy (80.20% and

77.40%). In addition, [8] brings noticeable improve-

ment to previous methods which classification accu-

racy arrives at 85.81% and 79.87%. By comparison,

Fig. 6 Classification results mAP (%) on Con-Text (up) and Drink-Bottle (down). Ground truth and the categories with top-2 probabilities

obtained by our model are shown. Text in red denotes incorrect predictions and text in green represents correct predictions

Table 1 Classification results mAP (%) of GA-SRN and state-of-the-

art methods on Con-Text and Drink-Bottle datasets. The method

labeled with * is established in ensemble mode and the bold contents

represent the best results

Methods Con-text Drink-bottle

Karaoglu et al. [38] 39.00 –

Karaoglu et al. [14] 77.30 –

Bai et al. [7] 78.90 –

Bai et al. [7] 79.60 72.80

Mafla et al. [4] 80.20 77.40

Mafla et al. [8] 85.81 79.87

Ours 86.57 79.96
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the proposed method with inner-modal and cross-

modal reasoning with positional features and GAT

inserted achieves slightly better results at 87.57%
and 79.96% on Con-Text and Drink-Bottle datasets,

respectively.

As a scene-based image classification method, we

can also conduct it on fine-grained content-based

image classification. Results in comparison with He

et al. [13], Zhang et al. [12], Chang et al. [39], Luo

et al. [40] and Sun et al. [11] on CUB-200-2011 are

shown in Fig. 7. The dataset provides images with

single object, image description labels and part

location labels, but each image tends to be content-

focused and there is no scene text. Methods target

specifically at these types of queries mostly use

object localization and exploit the relations between

the sentence for descriptions and local regions. For

comparison, we adjust our text encoder by directly

applying the image description labels as text and part

location labels as salient regions. We noticed that as

content-based images by CUB-200-2011 provide

slightly less perplexing scene, our method still stays

at a good level of classification accuracy. An mAP of

88:72% is received, 1:16% higher than the third but

mildly falls behind than the highest 88:9% by Sun

[11]. This might be because of the specific focus on

locating highly discriminative regions based on high-

response region searching by Sun [11] which is

extremely contributing to content-based image

retrieval.

(4) Images without scene text. As an integrated method

with sematic reasoning, we would still like to

examine its generalization ability on images either

contain a scene text (I ? T) or not (I – T). As shown

in Table 2, it could be seen that all methods on I ? T

have higher classification results, which verifies the

idea that engaging text encoding and imposing

semantic relation reasoning are useful. On the two

datasets, our method receives higher mAP on both

I ? T and I – T. For I ? T images classification, we

achieve 87.52 and 83.53 which are both approxi-

mately 1% higher than Mafla et al. [8] leading at the

second place. On I – T images, the text feature

encoding probability wouldn’t engage in semantic

reasoning, but the essential structure of GFRE with

positional reasoning on local features of purely scene

graph still provides outstanding network perfor-

mance (75.28 and 70.26).

(5) Ablation studies. In this section, GFRE and M3JSR

is ablated on three datasets, and input features of

different types are cut off. As shown in Table 3,

classification results with (w/) or without (w/o)

GFRE and M3JSR is compared to those with same

Fig. 7 Classification accuracy mAP (%) of GA-SRN and state-of-the-

art fine-grained content-based image classification methods on CUB-

200-2011 dataset

Table 2 Classification results mAP (%) on Con-Text and Drink-

Bottle in four subsets which images contain scene text (I ? T) and

not contain scene text (I – T) are seperate

Methods Con-text dataset Drink-bottle dataset

I ? T I – T I ? T I – T

Bai et al. [7] 78.92 71.63 71.61 62.25

Mafla et al. [4] 80.94 72.59 78.57 68.92

Mafla et al. [8] 86.76 74.31 82.75 69.16

Ours 87.52 75.28 83.52 70.26

Table 3 Classification results mAP (%) of ablation studies. VG: global

features, VG
�: global features with self-attention, VR: local features,

VT : textual features, VB: positional features

Features Con-text Drink-bottle CUB-200-2011

VG 62.13 65.64 84.18

VG
� 63.87 66.76 84.92

w/o GFRE and w/o M3JSR

VG
� þ VR 70.56 72.94 85.16

VG
� þ VR þ VT 77.94 74.68 85.89

VG
� þ VR þ VT þ VB 78.43 75.32 –

w/ GFRE and w/o M3JSR

VG
� þ VR 70.56 72.94 85.53

VG
� þ VR þ VT 80.74 76.20 86.94

VG
� þ VR þ VT þ VB 81.67 76.83 –

w/ GFRE and w/ M3JSR

VG
� þ VR þ VT 86.37 79.21 88.72

VG
� þ VR þ VT þ VB 86.57 79.96 –

The bold contents represent the best results
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features concatenated. Results for ablated models

with different input combination: global features

(VG), global features with self-attention (VG
�), local

features (VR), textual features (VT ), positional fea-

tures (VB) are also presented. Encoders w/o GFRE

just concatenate two sources of input features (e.g.

VG
� þ VR þ VT þ VB) or directly deliver the only

feature (e.g. VG
� þ VR and VG

� þ VR þ VT ) to down-

stream modules. It is noted when we conduct the

ablation studies on CUB-200-2011, since each image

in this dataset does not contain scene text, we only

use its image description label as text, so we cannot

perform ablation experiments on bounding box VB,

in Table 3, ‘‘–’’ refers to experiments unavailable. It

could be observed that textual information from

scene text (VT ) significantly improves classification

results for all selections of GFRE and M3JSR. In

addition, incorporating positional features to encoder

provides slightly better results, such as 0:49% and

0:64% increase is achieved when ablating both

GFRE and M3JSR. While all input features are

selected, applying GFRE provides 3.24% and 1.51%

better results on Con-Text and Drink-Bottles. More-

over, the integrated architecture in comparison with

M3JSR ablated structure sees even further improve-

ment from 81.67 to 86.57% on Con-Text and 76.83%

to 79.96% on Drink-Bottles. The proposed GA-SRN

module improves the accuracy by 1:05% and 1:78%

on CUB-200-2011 when ablating GRRE and

M3JSR, respectively. This shows that the proposed

positional reasoning method with GAT would con-

tribute more noticeably when images are relatively

complex. These results indicate that the comprehen-

sive combination of features engaged brings

improvement to some extent. However, the relation-

ship reasoning modules proposed are more deter-

mining in the overall level of classification results.

In Fig. 8, ablation study for GFRE of each

encoder and M3JSR is conducted on three datasets

to verify the effectiveness of semantic reasoning. It

could be observed that applying GFRE in text

encoder is slightly more effective than in local

feature encoder since classification results on Con-

Text falls to 86:19% and 85:90% for w/o visual

GFRE and w/o textual GFRE, respectively. The self-

attention mechanism in feature encoder also resulted

in mild decline. However, M3JSR is still more

crucial as mAP decreases to 81:67% and 86:94% on

Con-Text and CUB-200-2011, respectively, more

significant than any other ablation models of indi-

vidual GFRE. In general, the relationship reasoning

module GFRE is contributing to both visual and

textual feature encoding, whereas applying cross-

modal reasoning with M3JSR achieves overall

optimized results.

Furthermore, we explore different structures of

Graph Fusion Module in GFRE and Feature Fusion

Module that fuses M3JSR module output with global

feature encoder output VG
� as shown in Table 4. In

specific, comparison Graph Fusion Modules are

feature concatenation and the Graph Aggregation

Module proposed by [24]. For Feature Fusion

Module, performance of fusion methods MLB [30],

Block [31] and feature concatenation are compared.

It could be observed that concatenation architecture

in Graph Fusion Module and Feature Fusion Module

get the best results. This might be because that direct

concatenation preserves more information than

aggregation which is contributing to Relation Unit

III.

(6) Comparison on model complexity. To evaluate the

computational cost of this method, parameters,

FLOPs and training time are compared with other

models as shown in Table 5. With the inserted

positional encoding branch in local and text feature

encoding, the GFRE and M3JSR modules, this

method has relatively higher model complexity

(248.4 M parameters and 15.3 G FLOP). However,
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Fig. 8 Classification results mAP (%) of ablation studies on individual GFRE and M3JSR
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model complexity is still comparably lower than

latest method by Mafla et al. [8] where the number of

parameters and FLOP are 405.3 M and 18.8 G,

respectively. This is because [8] contains both

classical CNN and multi-layer GCN in which

dimension of inner features is 2048. In comparison,

the proposed model uses 1024 dimensional inner

features and only uses one layer GAT suppressing

parameter and FLOP to some extent. Bai et al. [7]

achieves a good trade-off between computation and

performance where classic GoogLeNet is used for

image feature extraction. Although slightly larger

storage space is needed, training time of the

proposed method is relatively shorter among all

image methods.

(7) Limitations and discussions. In fact, text encoding is

relatively challenging compared to visual. Structural

improvement of the proposed method that incorpo-

rates positional encoding branch of two encoders

couldn’t bring sufficient improvement to text enco-

der since basic classification error occurs even in

encoding phase by FastText. Downstream GFRE for

intra-modality reasoning couldn’t make any correc-

tion to false embedding but only make further

improvement to appropriate ones by positional

information engaged. In this case, false textual

information is also passed on to cross-modal reason-

ing throughout the classification. However, this

seems to be a general problem for state-of-the-art

methods with scene text encoder. Since it occurs at

the beginning of the stage, future works that could

alleviate this problem might experience a noticeable

improvement on images with scene text.

4.4 Effect of GA-SRN on fine-grained image
retrieval

We also evaluate the retrieval performance of this model

on query image. In practice, the vector before classification

representing image features are taken and Cosine similarity

matrix is used to retrieve the semantically nearest images.

Given an image from the dataset, the model would pick out

images belong to the same class as input in the form of a

ranked list. As shown in Fig. 9, retrieval results of the

proposed method on two datasets are compared with other

approaches who also testify retrieval. Due to extra diffi-

culty of recognizing text instances appeared in images of

Drink-Bottle, results for all methods on Drink-Bottle are

generally lower than on Con-Text. Retrieval mAP of the

proposed method arrives at 76.48% and 67.62% on Con-

Text and Drink-Bottle datasets which surpass previous best

model by 0.98% and 2.23%, respectively. Benefited from

the semantic reasoning modules, the proposed network can

obtain more discriminative features which eventually

improve mAP in both classification and retrieval.

Figure 9 shows the retrieval performance comparison of

our GA-SRN with other content-based image classification

methods Sun et al. [11], Teh et al. [41] and Zeng et al. [42]

on CUB-200-2011 dataset. The proposed method achieves

relatively higher results than current methods, which could

be explained as our better ability to discriminate subtle

differences in recognizing categories. At the same time, the

comparative experiments show that Sun et al. [11] shows

comparatively the best results among all. This might be

because of its specific focus on local discriminative region

location and feature representation based on high-response

Table 4 Classification results

mAP (%) by using different

strategies of concatenation in

Graph Fusion Model and

Feature Fusion Module of the

proposed architecture

Graph fusion modules Feature fusion modules Con-text Drink-bottle CUB-200-2011

Aggregation [24] MLB [30] 84.05 79.16 87.83

Block [31] 84.49 78.78 87.62

Concatenation 85.72 79.22 88.18

Concatenation MLB [30] 84.92 78.78 87.85

Block [31] 85.23 79.10 88.26

Concatenation 86.57 79.96 88.72

The bold contents represent the best results

Table 5 Evaluation on parameters, FLOP and training time on both

datasets

Methods Param. FLOP Training time (min)

(M) (G) Con-text Drink-bottle

Karaoglu et al. [14] 121.5 7.5 93 67

Bai et al. [7] 138.4 8.4 80 49

Mafla et al. [4] 164.8 11.7 72 54

Mafla et al. [8] 405.3 18.8 125 78

Ours 248.4 15.3 83 52
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region searching which is extremely contributing to con-

tent-based image retrieval.

5 Conclusions

In this paper, an end-to-end feature-relationship enhance-

ment concerning network for FGIC is proposed. In specific,

semantic relationship reasoning with positional features is

firstly realized for both local and textual encoding by the

proposed GFRE with efficient GAT. GFRE could provide

feature representation and relation exploitation between

any two input features. M3JSR is established by cross-

modal GFREs with multi-head fusion for re-representing

visual and text encoder outputs. This module enhances

previous multi-modal reasoning with GCN to some extent.

Ablation studies verify the effectiveness of generating

more discriminatively represented features by the proposed

semantic reasoning modules and rearranged positional

encoding. Experimental results show that the proposed

method achieves slightly more surpassing results on Con-

Text, while mistakenly embedded text instances initially on

certain Drink-Bottle images may hinder downstream

structural advance from taking effect. Future studies might

seek for more competent text embedding network in

practice to deal with basic errors caused by recognition on

varying scene text. Also, improvement could be further

made on GAT-based semantic relationship enhancement

structure.
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