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Abstract
With the increase of structure complexity, convolutional neural networks (CNNs) take a fair amount of computation cost.

Meanwhile, existing research reveals the salient parameter redundancy in CNNs. The current pruning methods can

compress CNNs with little performance drop, but when the pruning ratio increases, the accuracy loss is more serious and

the compressing rates of parameters and floating-point operations (FLOPs) are unbalanced. Moreover, the existing iterative

pruning methods are difficult to accurately identify and delete unimportant parameters due to the accuracy drop during

pruning. We propose a novel global balanced iterative pruning method (GBIP) for CNNs. Firstly, a global equilibrium

pruning strategy based on feature distribution is proposed. Then the intermediate and output features of original network

are applied to guide the fine-tuning of pruned network. Moreover, we design a shallow fully-connected network to allow

the output of two networks to play an adversarial game, thereby it can quickly recover the pruned accuracy among iterative

pruning intervals. We conduct extensive experiments on the image classification tasks CIFAR-10, CIFAR-100, and

ILSVRC-2012 to verify our pruning method can achieve efficient compression for CNNs even without accuracy loss. On

the ILSVRC-2012, when removing 36.78% parameters and 45.55% FLOPs of ResNet-18, the Top-1 accuracy drop are only

0.66%. Our method is superior to some state-of-the-art pruning schemes in terms of compressing rate and accuracy.

Moreover, we further demonstrate that GBIP has good generalization on the object detection task PASCAL VOC.
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1 Introduction

Since the emergence of deep neural networks (DNNs) [1],

due to the less labeled data, poor hardware storage and

computing power, it has not been able to completely

release the performance. As the number of labeled datasets

keeps springing up, as well as the development of high-

performance hardware such as GPU and TPU, DNNs have

achieved great success in the fields of scientific research

and engineering. As the main component, the CNNs

achieve excellent performance in extracting image features

combined by virtue of the parameter sharing and transla-

tion invariance characteristics. At present, CNNs has

received extensive attention in computer vision tasks such

as image classification, object detection, semantic seg-

mentation, style transfer, and super-resolution images,

moreover its performance is significantly better than the

traditional methods. However, as image and video tasks
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become more and more complex, the scale and classes of

CNNs are gradually increasing. Although this can achieve

better accuracy, it also extends the cost of hardware and

computing power for network deployment, which limits the

application of high-performance CNNs on resource-con-

strained devices. On the other hand, some works [2–4]

have shown that existing CNNs have a certain degree of

parameter redundancy, which provides background support

and a theoretical basis for network compression.

The existing CNNs compressing methods mainly consist

of optimizing the calculation methods of convolution and

designing network compression algorithms. In a nutshell,

the network compressing is committed to reducing the

number of parameters and FLOPs as more as possible in

the case of guaranteeing network performance. Mainstream

algorithms include network pruning, quantification, low-

rank decomposition, and knowledge distillation. Among

them, the network pruning method based on parameter

importance is more convenient and effective. However,

existing pruning methods of this type tend to vary widely in

the compressing rates for parameters and FLOPs. More-

over, during iterative pruning, the performance loss after

each pruning leads to a gradual decrease in the accuracy of

later compressing operations. In response to the above

issues, we consider designing a strategy in the phase of

balanced pruning to efficiently optimize the continuously

compressed network. In this way, it can quickly restore the

accuracy to perform the iterative pruning in a few training

epochs, and it can ensure that the network after pruning has

almost no performance loss. The motivation of our method

is twofold. Firstly, Komodakis and Zagoruyko [5]

demonstrates that feature maps of the large network can

pay more accurate attention to the object than the small

network through extensive experiments. Secondly, Lin

et al. [6] introduces GANs to optimize the network com-

pressing, but it adds a mask for pruning, which increases

the cost of the network pruning, and a separate optimiza-

tion for this parameter is required.

In this paper, we propose a global balanced iterative

pruning method. Firstly, we design a global balanced

pruning scheme which eliminates the unnecessary

parameters via analyzing the magnitude distribution of

channels. Considering that simple magnitude pruning

across different layers or within the same layer may lead

to unbalanced pruning rates of parameters and FLOPs,

we do not perform magnitude analysis across different

layers. Then, we introduce an efficient performance

recovery policy, which define the original network as the

teacher and the pruned network as the student. And

using the intermediate feature maps and the output fea-

tures of the teacher to transfer the information learned by

the original network to the student during fine-tuning.

Moreover, we construct a shallow neural network as a

platform, making the output features of the two networks

conduct an adversarial game. The above strategies act on

the compact network after every pruning step. And

iterative pruning is carried out during the training phase.

To do so, the pruned network can recover accuracy by

training a few epochs after each pruning operation,

which can provide more accurate guidance for the

judgment of the importance of parameters in the next

pruning, and shorten the whole pruning phase. The final

compact network is retrained to restore the experimental

accuracy.

To demonstrate the effectiveness of our GBIP, we

prune VGGNet [7], ResNet [8] and GoogLeNet [9] on

the image classification datasets CIFAR-10, CIFAR-100

[10] and ILSVRC-2012 [11]. Moreover, we further per-

form experiments on the SSD [12] on the object detec-

tion dataset PASCAL VOC [13]. The results manifest

that without harming overall performance it is possible

to compress and accelerate the CNNs using the proposed

pruning method in this paper. On the CIFAR-10, when

removing 97.22% of the parameters and 96.57% of the

FLOPs of the VGG-16, the classification accuracy can

still reach 90.29%. In addition, when the compression

rate of SSD exceeds 50%, the performance loss is still

less than 1.00%.

The proposed GBIP can be applied to many convolu-

tional networks in image classification tasks, and it also

shows good generalization in object detection. The existing

network compressing method can combine with our effi-

cient performance recovery strategy to increase the accu-

racy of the compressed network. What’s more, because no

sparseness was introduced, GBIP does not require the

assistance of additional sparse matrix operations and

acceleration libraries. And the entire pruning process can

be achieved only by controlling one parameter, which

notably reduces labor intervention and can perform auto-

matic compression and acceleration. If adopting the larger

CNN as the teacher network, the efficiency of pruning and

the performance of the compressed network can be further

improved.

The main contributions of our work are as follows:

• This paper proposes a global balanced pruning

scheme for convolutional channels. We analyze the

magnitude distribution of intermediate feature maps

to eliminate the unimportant parameters and

connections.

• We design an efficient performance recovery method.

The abundant knowledge learned in the training process

of the original network is applied to guide the compact

network to quickly recover the accuracy in the iterative

pruning interval.
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• We demonstrate the effectiveness of the method on

CIFAR-10, CIFAR-100, ILSVRC-2012 with extensive

experiments. Moreover, the results on the object

detection dataset PASCAL VOC further verifies our

GBIP has superior generalization in CNNs compressing

and accelerating. The ablation analysis manifests that

the adjustment of hyperparameter can stably control the

pruning rate.

2 Related works

At present, convolutional network compression has

received widespread attention from both academia and

industry. Many methods with significant effects such as

pruning, quantification, low-rank decomposition, and

knowledge distillation have emerged. The related works of

our method are presented as follows:

2.1 Network pruning

Network pruning is to remove the relatively redundant

weights or filters according to the importance of

parameters in the CNN to compress and accelerate the

network based on ensuring the accuracy of the task. The

key of pruning is to determine the evaluation criteria of

the importance of parameters and then design an effec-

tive pruning strategy. Some existing methods are based

on the magnitude of parameters. From 2016, pruning

compression for deep neural networks begins to receive

wide attention from both academia and industry. In

recent years, magnitude pruning, as one of the efficient

methods, still exists in a large amount of works. Han

et al. [2] is typical of unstructured pruning method which

using the value of weight to measure the redundancy of

connections and setting neurons smaller than a threshold

directly to zero. Li et al. [14] deletes the filters with the

smaller L1 norm. The impact of pruning different layers

on the accuracy drop needs to be analyzed before each

pruning. The sensitive layers will be pruned with a

smaller pruning rate or directly skipped without pruning.

Moreover, the specific pruning rate is manually set for

all pruned layers. Polyak and Wolf [15] applies the

variance of channel activation to measure their contri-

bution. The pruning of the entire network is done

sequentially on the network layers: from lower layers to

the top ones, pruning is followed by fine-tuning, which is

followed by pruning of the next layer. The pruning in

this paper is carried out independently at each layer

simultaneously. He et al. [16] prunes networks according

to the L2 norm of filters. Molchanov et al. [17] uses the

change of accuracy loss after deleting a parameter as the

importance evaluation criterion for the parameter. The

pruning is constructed as an optimization problem which

is approximated using a first-order Taylor expansion.

Ultimately, the parameter importance is transformed into

the product of the activation and its gradient. In contrast,

our method uses the maximum regularization of the L1

norm of the activation as the evaluation criterion of the

parameter importance. Moreover, it uses the traditional

fine-tuning method to recover the accuracy in iterative

pruning intervals. Liu et al. [18] uses the scaling factor

of the batch normalization layers as the evaluation

standard of parameter importance. Lin et al. [19] utilizes

the rank of the feature map matrix to judge how much

information it contains. Li et al. [20] slims CNN through

the diversity and similarity of feature maps. Tang

et al. [21] fits the input complexity and feature similarity

to the pruned network space to dynamically discard

redundant filters. Wu et al. [22] uses the product of filter

sparsity and feature dispersion to measure their impor-

tance. Chin et al. [23] learns different parameter pairs for

all layers and performs affine transformation on L2 form

of filters in the layer to get their importance ranking.

Finally, the less important filters are removed according

to the preset amount of floating point operations. Some

pruning strategies are based on the impact of deleted

parameters on performance drop. For example, Yu

et al. [24] measures the importance of pruning neurons

by minimizing the reconstruction error of the second-to-

last layer in front of the final classification layer. Lee

et al. [25] introduces connection sensitivity to evaluate

the importance of structure, and the pruning is imple-

mented in the parameter initialization stage before

training. Guo et al. [26] samples the channel pruning as

a Markov process that is optimized using standard reg-

ularization loss and model parameters or FLOPs budget

regularization. You et al. [27] multiplies the intermediate

feature map with a scale factor, and then estimates the

accuracy loss caused by the scale factor set to zero to

determine the importance of the relevant filters. Guo

et al. [28] reconstructs the cropped feature and observe

its impact on the classification loss to carry out layer-by-

layer channel pruning. Other pruning approaches com-

bine existing advanced algorithms to compress the net-

work, such as [29] using reinforcement learning to

search for better pruning strategies. Liu et al. [30]

combines meta-learning to find compact networks with

better performance. Lin et al. [31] formulates the search

of optimal pruned structure as an optimization problem

and integrate the ABC algorithm to solve it in an

automatic manner. Ding et al. [32] generates a global

network pruning strategy using long short-term memory.

Compared to aforementioned works, the proposed

method iteratively prunes the unneccessary channels and
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connections based on the importance magnitude distri-

bution of feature maps with almost no decrease in

accuracy. Moreover, our approach is able to compress

the number of parameters and FLOPs in a balanced way.

2.2 Knowledge transfer

Knowledge transfer utilizes a pre-trained high-performance

teacher network to guide a smaller student network,

thereby improving the experimental accuracy of the small

network. Ba and Caruana [33] uses the input of the final

softmax layer to represent the knowledge learned by the

teacher network to supervise the training of the student

network. Hinton et al. [34] introduces temperature T to the

output of the softmax layer and then trains together as a

soft label with the real target. The two methods above only

consider the information contained in the output, which is

relatively limited. The FitNet proposed in [35] applies not

only the output of the teacher network but also its inter-

mediate feature to jointly optimize the training process of

the student network. This can train a deep and narrow

student network while enhancing its generalization ability.

Komodakis and Zagoruyko [5] proposes attention transfer

that using the attention maps in the teacher network to

deliver the information of the teacher network’s attention

to the student network and improve the performance.

Different from the aforementioned methods, we mainly

introduce the information representation of feature maps

and output features from the original network to guide the

pruned network to quickly eliminate the accuracy loss, thus

making each pruning operation of iterative compressing

more accurate.

3 Proposed method

3.1 The global balanced iterative pruning
framework

Figure 1 shows the overall framework of our pruning

method. Firstly, the labeled training images are input into

the original network. We analyze the magnitude distribu-

tion of feature maps in each pruning layer and remove the

unnecessary channels. Then we select three-pair feature

maps and the output from original network and pruned one

to transfer attention and knowledge. It can be seen from the

figure that for the same input sample, the attention maps

generated by the pruned student network have obviously

weaker interest in the classification object than the original

teacher network. Afterwards, a shallow neural network is

conduct to make the two output features play a game,

which further improves the accuracy of the pruned net-

work. Finally, after few epochs for accuracy recovery the

next pruning phase is performed. In this scenario, we

achieve iterative pruning to compress and accelerate the

original convolutional network.

3.2 Global balanced pruning strategy

Given a convolutional neural network with L layers, we refer

to C ¼ C1;C2; . . .;CLð Þ as the original network structure,

Fig. 1 The global balanced iterative pruning (GBIP) framework. (This figure is best viewed in color and zoomed in) (Color figure online)
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where Cl is the number of channels in the lth layer. W 2
RCout�Cin�K�K is the weight of the filter, where Cout is the

number of output channels, Cin is the number of input chan-

nels, and K � K is the size of the filter. The feature map

generated in the lth layer isM 2 RCl�w�h, where w and h are

width and height of the feature map. With the input sample x,

the output produced by the original network is defined as

f T x;WTð Þ, and the output of the pruned network is defined as
f S x;WSð Þ.G f x;Wð Þ;WGð Þ is the adversarial platform,where

f x;Wð Þ is the output of the teacher or the student network.
Here, we propose a global balanced pruning strategy of

the convolutional neural network. To reduce the complexity

of the network pruning, an effective pruning method based

on the magnitude of parameters should be designed. Filters

with smaller weights tends to produce relatively weak acti-

vation feature maps compared to other filters at the same

layer. Therefore, we can preferentially remove such filters to

reduce network redundancy during network pruning.Most of

the existing methods delete unimportant parameters directly

based on the L1, L2 norm, or other magnitude of the filters

and feature maps. However, this depends on a relatively

uniform distribution of featuremap’s magnitude. Otherwise,

when the pruning threshold is unreasonable, it will cause

enormous differences in the pruning rate of layers, which

will seriously affect the final performance of the network.

Here, we analyze the L1 norm for the feature maps of VGG-

16 and Resnet-56 on the CIFAR10 and Resnet-18 on the

ILSVRC-2012. Specifically, we first calculate all the L1

norm of the feature maps in the layers to be pruned and then

performmaximum regularization on the featuremaps in each

layer using Eq. 1 to obtain the importance score mc
l of each

feature map.

mc
l ¼ Mc

l

�
�

�
�
1
=max M1

l

�
�

�
�
1
; M2

l

�
�

�
�
1
; . . .; MCl

l

�
�

�
�
1

n o

ð1Þ

where c 2 1; 2; . . .;Clgf is the index of the every feature

map in the lth layer. �k k1 refers to the L1 norm. We

visualize the results obtained as Fig. 2.

It can be seen from the figure that for CIFAR-10, the

importance scores of VGG-16 are generally concentrated

between 0 and 0.5. While the importance distribution of

Resnet-56 is relatively uniform, but the importance scores

in the first few layers are almost between 0 and 0.5. On

ILSVRC-2012, the importance of the features for Resnet-

18 at each layer is significantly different. The importance

scores of the sixth layer are almost between 0 and 0.4,

while those of the eighth layer mainly vary from 0.4 to 1.

Therefore, directly setting the threshold based on the L1

norm cannot achieve ideal compression for all layers in the

network. If the layer-wise pruning rate is preset, when the

compressing rate of all layers is kept the same, the final

pruning rates of parameters and FLOPs can indeed be

exactly equal. However, when the compressing rate of each

layer is immense, the performance of the pruned network is

also poor. When different pruning rates are preset for dif-

ferent layers, firstly, a balanced compression rate is not

always obtained, i.e., the difference between the pruning

rates of parameters and FLOPs is large. The two pruning

rates of some methods can even differ by nearly 40%.

Therefore, we set pruning factor k to perform on the mean

value of the importance scores of the feature maps to

determine the final pruning threshold mp
l of the lth layer.

mp
l ¼ k � 1

Cl

XCl

c¼1

mc
l ð2Þ

where k 2 0; 1ð Þ is the pruning threshold factor used to

control the network pruning rate, and it is also the only

variable parameter in our proposed method. The number of

parameters and FLOPs of CNNs are calculated as follows:

Params ¼ Cout � Cin � K � K þ 1ð Þ ð3Þ

FLOPs ¼ 2� w� h� Cout � Cin � K � K þ 1ð Þ ð4Þ

Pruning channels is equivalent to reducing the number of

Cout. The dimension w� h of the feature maps in front

(a) (b) (c)

Fig. 2 The importance score distribution density of the feature map in the pruned layers
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layers is larger than that in last layers. If the channels

pruning rate of the front layers is considerably larger, the

compression ratio of the FLOPs can be much higher than

that of the parameters. Using the method in this paper,

channels in each layer can achieve relatively balanced

compressing. In this case, the clipping rate of parameters

and FLOPs will be closer, which is more conducive to the

balanced compression and acceleration of the convolu-

tional network. Moreover, the compressing amplitude of

each layer can be adaptively adjusted via k to achieve

global equilibrium pruning under different degrees.

Redundant parameters in the CNNs can be deleted at each

pruning step via the above pruning strategy, and the

problem of unbalanced compressing among layers will not

occur. After pruning, the performance of the network will

not suffer a great loss.

3.3 Performance recovery scheme

3.3.1 Knowledge transfer

The intermediate feature map of CNNs is the concrete or

abstract representation extracted by the filters from the

input images, which shows the objects that the network

pays attention to when treating specific tasks. For image

classification, the feature maps will highlight the target to

be classified and weaken the background and irrelevant

objects to obtain a more reliable classification result.

Therefore, whether the feature map can precisely pay

attention to the goal and how strong the attention is are

especially important to the performance of the network. It

can be seen from Fig. 1 that the feature maps of the pruned

network pay less attention to the target, which will seri-

ously affect the correctness of pruning and the accuracy of

the compressed network. Because of this, we introduce

knowledge transfer in the pruning process.

We select three layers with the different dimensions of

feature maps and integrate the feature maps in the same

layer to form an attention map to guide pruned networks to

focus on classification objectives. Specifically, for the Cl

intermediate feature maps of the lth layer, the attention

map is constructed using the Eq. 5:

Al Mab
� �

¼ 1

Cl

XCl

i¼1

Mab
i

� �2 ð5Þ

where Mab is the pixel of the attention map in the lth layer

with a 2 0; 1; . . .;w� 1gf and b 2 0; 1; . . .; h� 1gf . The

attention map produced in this way can get the attention

area of the input sample, and on the other hand, it can also

represent the amount of information learned in the layer.

Then as shown in Eq. 6, after regularizing the three pairs of

attention maps of two networks, we use the L2 norm of

their difference to construct the attention transfer loss LAT

of the student network.

LAT ¼
X3

l¼1

Al
S

Al
S

�
�

�
�
2

� Al
T

Al
Tk k2

�
�
�
�
�

�
�
�
�
�
2

ð6Þ

where Al
S is the attention map in the lth layer of the student

network, and Al
T is the corresponding attention map of the

teacher network. The interest of the student can be made as

close as possible to that of the teacher in the inference

process through the LAT loss. In the experiments, we prune

VGGNet, ResNet, and GoogLeNet. The specific imple-

mentation positions for extracting attention maps in these

three networks are plotted in Fig. 3.

When dealing with image classification tasks, the

output of the convolutional network is the probabilities

of each category, so we apply the output features of the

original network to guide the compressed network. In

this way, we can perform more accurate pruning and

improve the performance of the pruned network at the

same time. Regarding the outputs of the teacher and the

student network f T xð Þ and f S xð Þ, this paper introduces

temperature Temp which draws on the idea of [34] to

smooth the two outputs as shown in Eqs. 7 and 8. Hence

the classification probability of the student for each

category can be as similar to the teacher network as

possible to avoid the probability of all incorrect classi-

fication tends to zero, and result in a smoother category

probability distribution.

p xð Þ ¼ Fsoft max f S xð Þ=Temp

� �

ð7Þ

q xð Þ ¼ Fsoft max f T xð Þ=Temp

� �

ð8Þ

where Fsoft max �ð Þ refers to softmax function. Then the KL

divergence of p xð Þ and q xð Þ is calculated according to

Eq. 9, and the accuracy of the student can be improved by

reducing the divergence during training.

DKL p k qð Þ ¼
Xn

i¼1

p xð Þlog p xð Þð Þ � p xð Þlog q xð Þð Þ½ � ð9Þ

At the same time, to better correct the output of the student

network, the cross-entropy loss LCE WSð Þ between the

output features of the student and the real labels is added to

the above divergence, which is regarded as the output

features transfer loss LOT WSð Þ.

LOT WSð Þ ¼ a � LKL WSð Þ þ ð1� aÞLCE WSð Þ ð10Þ

where a is the weight between the two losses of KL

divergence and cross entropy. And LKL WSð Þ is formulated

in Eq. 11. In order to make the effect of these two losses

roughly under the same magnitude, we multiply DKL by

T2
emp.

21124 Neural Computing and Applications (2022) 34:21119–21138

123



LKL WSð Þ=T2
emp � DKL p k qð Þ ð11Þ

Different from the existing knowledge transfer method

with fixed structure of student network, we continue to

compress the network. In fact, knowledge transfer is only

an auxiliary strategy of iterative pruning in our method,

which aims to quickly mitigate the accuracy loss from each

pruning step. To fully accelerate the optimizing for pruned

network from training process and results, we apply the

intermediate feature maps and the output simultaneously to

guide the fine-tuning of the compact network. Through the

above methods, the intermediate and the final classification

information learned by the original network can be thor-

oughly transmitted to the pruned student network. In this

scenario, we can not only ensure that the student accurately

finds the unimportant parameters for the corresponding task

but also restore the network’s performance through a few

training epochs after each pruning step to achieve iterative

pruning during the training process.

3.3.2 Adversarial game

The above-mentioned knowledge transfer has achieved the

effective delivery of semantic information from the

unpruned network to the pruned network. On this basis, we

found that introducing an adversarial game strategy can

further improve the final output performance of the student

and the recovery speed of accuracy in the iterative pruning.

Hence, this paper constructs a shallow neural network as

the adversarial platform and makes the outputs of the stu-

dent and the teacher network play an adversarial game on

it. In this way, the output of the student network may closer

approach that of the teacher network. Therefore, the

adversarial game loss of the student network is defined as

follows:

LAGðWSÞ ¼ Ef SðxÞ� pSðxÞ log 1� G f S x;WSð Þ;WGð Þð Þ½ �;
ð12Þ

where pSðxÞ represents the feature distribution of the stu-

dent network. Combined with the knowledge transfer loss

in the previous section, the training loss of the student

network in the proposed pruning method consists of the

following three parts:

LS WSð Þ ¼ LAG WSð Þ þ LAT WSð Þ þ LOT WSð Þ: ð13Þ

The network for adversarial game needs to be continuously

trained to distinguish whether the input is from the teacher

or the pruned network. For the output features from the

teacher network, it should produce a positive response,

while for the output features generated by the student

network, the network should treat it as the pseudo sample.

To be specified, the loss of the adversarial platform during

training is defined as follows:

LGðWGÞ ¼ Ef TðxÞ� pTðxÞ log 1� G f T x;WTð Þ;WGð Þð Þ½ �

þ Ef SðxÞ� pSðxÞ log G f S x;WSð Þ;WGð Þð Þ½ �;
ð14Þ

where pTðxÞ represents the feature distribution of the tea-

cher network. The adversarial platform and the pruned

network are alternately optimized in each training epoch to

accelerate the performance improvement of the student

network. In addition, we integrate the knowledge transfer,

so that the accuracy of the compact network can be

regained only after a few training epochs and then the

iterative pruning will be conducted. Accordingly, the entire

network pruning process becomes more compact and

accurate. Moreover, our method can significantly improve

the accuracy of the network after pruning. Extensive

experiments have shown that even in the case of a con-

siderable compressing rate, the performance of the pruned

Fig. 3 The positions of VGGNet, ResNet, and GoogLeNet for extracting attention maps
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network after retraining can still reach or exceed that of the

original network. The subsequent experiments in this paper

also entirely demonstrate the effectiveness and accuracy of

our channel pruning method in network compressing and

accelerating. Algorithm 1 shows the pseudocode of the

global balanced iterative pruning method. Given a pre-

trained original convolutional network, a compact model

S�pruned can be obtained after pruning with the GBIP

scheme. Finally, we retrain the pruned model from scratch

to restore the accuracy of the experiment.

For most of the existing network pruning methods, the

compressed network inherits the weights and bias from the

original network to restore the performance as much as

possible through fine-tuning. However, when the network

pruning rate is remarkable, the accuracy recovery after

fine-tuning is not obvious, and the actual performance of

the compact network cannot be greatly manifested. Liu

et al. [36] makes a surprising observation in structured

network pruning that fine-tuning a pruned model only gives

comparable or worse performance than training that model

with randomly initialized weights. And the experiment

results reveal that the pruned architecture itself, rather than

a set of inherited important weights, is more crucial to the

efficiency in the final model. Our results of pruning VGG-

16 on the CIFAR-10 further verify the observation. In order

to fully demonstrate the performance of the compact net-

work, we retrain the pruned network from scratch via the

performance recovery method in our experiments. Specif-

ically, we keep the number of FLOPs consistent before and

after pruning. The number of training epochs of the orig-

inal network is multiplied by the accelerating rate of

FLOPs as the retraining epochs of the compressed network.

Finally, we compare the accuracy of the pruned network

with the original network to draw a conclusion.

3.4 Pruning strategy for different CNNs

Since different CNNs have different network structures, the

specific pruning implementation details should also change

accordingly. We perform experiments on VGGNet,

ResNet, and GoogLeNet. Among them, VGGNet is a

common layer-by-layer convolutional network and does

not include unusual architecture. Therefore, all layers can

be directly pruned without affecting the integrity of the

final network structure. ResNet contains customized

residual modules, so arbitrarily compressing each layer will

destroy the dimension matching of the channels. The basic

residual block is composed of two convolutional layers.

We only discard the output channels in the first layer, and

the input channels in the second layer will also change

accordingly. By doing so, the overall dimension of the

ResNet is still matched and can be trained correctly after

pruning. GoogLeNet is a more complex convolutional

network with multiple Inception V3 modules, each of

which contains four branches. We cut the branches con-

taining two and three convolutional layers to conduct the

compressing and accelerating. The specific structure and

pruning scheme of the Inception V3 module is plotted in

Fig. 4.

4 Experiments

We demonstrate the effectiveness of the proposed method

by pruning VGGNet, ResNet, and GoogLeNet on the

CIFAR-10, CIFAR-100, and ILSVRC-2012. Moreover, we

compress SSD via GBIP on the PASCAL VOC to analyze

its generalization on object detection. All experiments are

implemented with Pytorch on NVIDIA TITAN X GPUs.

For fairly comparing with the existing pruning methods,

the network pre-training and parameter settings use the

method presented in [8]. Specifically, the pre-training

epochs of CNNs on the CIFAR are 160, while on the

ILSVRC-2012 are 90. The learning rate is initially set to

0.1 and then decreased by a factor of 10 on half and three-

quarter epochs. Stochastic gradient descent (SGD) with

momentum is used for backpropagation, and the momen-

tum is 0.9 with a weight decay of 1e-4. In the retraining

stage, we adjust the learning rate with the cosine annealing

adjustment strategy. The parameter settings during the
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iterative pruning are as follows. The weight in output

transfer is a ¼ 0:3. On the CIFAR, the total epochs of

training are N ¼ 30, and the pruning interval period is

sp ¼ 10. On the ILSVRC-2012, the training epochs for

pruning are N ¼ 20, and the pruning interval is sp ¼ 10.

The pruning threshold factor k is the only parameter that is

changed for pruning. In addition, we draw on the neural

network composed of three fully-connected layers with the

neurons of 128-256-128 in [6] as the adversarial platform

in the adversarial game.

In this section, we compare the proposed method with

the existing pruning schemes, among which Li et al. [14],

SFP [16], DCP [37], FPGM [38], EDP [39], CNN-FCF

[40], CCP [41], Taylor-FO-BN [42], HRank [19], ManiDP

[21], NPPM [43] are the state-of-the-art methods. Due to

the difference in experimental equipment and environment,

the results obtained by different papers also have several

differences. In order to make a fair comparison as much as

possible, we also mainly compare the decrease of accuracy

after pruning according to current methods. The results of

these competing methods are reported according to the

original article.

4.1 Results comparison on CIFAR-10

We first prune VGG-16 on the CIFAR-10, and the

results are shown in Table 1. It can be seen from the

table that when k ¼ 0:3, our method reduces up to

47.86% of the parameters and 44.39% of the FLOPs for

VGG-16, however, the accuracy of the network is even

improved by 0.54% compared with the baseline. When

the network compression ratio exceeds 80%, the compact

network still has a performance improvement of 0.17%.

Although the parameter compression ratio of ABCPruner

[31] is 5.65% higher than that of our method, the

pruning rate of FLOPs is lower than that of this paper

and the final accuracy after pruning is also smaller

(- 0.06% vs. - 0.17%). As the VGG-16 continues to be

compressed, the accuracy of the network is gradually

declining. When discarding 97.22% of the parameters

and 96.57% of the FLOPs with k ¼ 0:7, the accuracy of

the final network still reaches 90.29%.

The experimental results show that for the CIFAR-10,

the VGG-16 does have a certain degree of parameter

redundancy. Compressing the network can reduce the

impact of overfitting and improve the accuracy of the

network. At the same time, the effectiveness of the

pruning method proposed in this paper is preliminarily

verified. Then, we continue to cut ResNet-56, and the

experimental results are tabulated in Table 2. When

k ¼ 0:4, the parameters and FLOPs of ResNet-56 are

reduced by 41.18% and 47.81%, respectively. At this

time, the accuracy of the network after pruning is

increased by 0.67%. And when k ¼ 0:5, the pruning rate

has exceeded 50.00%, but the network still has a per-

formance improvement of 0.36%, which is significantly

better than the compared algorithms. Although the final

accuracy improvement of SRR-GR [49] is 0.01% higher

than that of ours, the compression rate of its FLOPs is

relatively low by 9.55% (53.80% vs. 63.35%). The

accuracy of ResNet-56 only drops by 0.38% when

deleting 70.37% of the parameters and 73.41% of the

FLOPs. In this case, the network parameters are only

0.21M. In addition, it can be found that when k ¼ 0:4,

the classification accuracy of ResNet-56 is 94.09%,

which is 0.32% higher than that of VGG-16 when

k ¼ 0:5, however, the parameters are only about 1/5 of

VGG-16. It also confirms from the side that the residual

module can effectively improve the performance of

CNNs in image classification tasks.

Then, we compress ResNet-110. From Table 3, it can

be concluded that the baseline accuracy of ResNet-110

on the CIFAR-10 is 93.53%. When 20.81% of the

parameters and 22.95% of FLOPs are discarded, the

accuracy increased by 0.95%. HRank [19] compresses

parameters and FLOPs by 41.20% and 39.40%, respec-

tively, which is about 20% lower than our method when

k ¼ 0:5, and the performance drop is also 0.02% worse.

The performance of the compressed network is still

improved by 0.52% compared to the original network

Fig. 4 Illustration of pruning

VGGNet, ResNet and

GoogLeNet. The black font

indicates the number of original

channels, and the red font

indicates that after pruning

(Color figure online)
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even when 71.10% of the parameters and 72.82% of the

FLOPs are eliminated. At this time, the network scale is

similar to that of CNN-FCF [40], but the final accuracy

loss is 1.14% lower (- 0.52 vs. 0.62). This experiment

shows that ResNet-110 has obvious parameter redun-

dancy on the CIFAR-10, which leads to overfitting

during the training process, resulting in lower accuracy

of the original network. And our global balanced itera-

tive pruning method can achieve better accuracy recov-

ery in the case of accurately compressing the ResNet-

110. It also manifests that the compressing rate of

parameters and FLOPs and the accuracy drop using our

pruning method are significantly better than all compar-

ative methods.

In order to further demonstrate the applicability of

GBIP to various convolutional networks, we continue to

prune GoogLeNet. The experimental results are depicted

in Table 4. Due to the Inception module, GoogLeNet

increases the width, therefore the baseline accuracy on

the CIFAR-10 reaches 94.72%, which is ahead of

VGGNet and ResNet. When k ¼ 0:4, after deleting

33.87% of the parameters and 37.95% of the FLOPs, the

accuracy of the network increased by 0.52%. When the

parameters and FLOPs are compressed to about 50%, the

performance of the compact network is increased by

0.41%. Even if the parameters and the FLOPs are

removed by 65.64% and 69.34% respectively, the clas-

sification accuracy of the network is still improved by

0.34%. It attests that GoogLeNet is also redundant on

the CIFAR-10. Using the iterative pruning method in this

paper can effectively eliminate unimportant parameters

and improve the experimental performance of

GoogLeNet.

4.2 Results comparison on CIFAR-100

We continue to prune VGG-19 and ResNet-56 on the

CIFAR-100, and the experimental results are reported in

Tables 5 and 6, respectively. CIFAR-100 has the same

total number of training and test images as CIFAR-10,

but the category has increased from 10 to 100. As the

training data for each class of images decreases, the

performance of the convolutional neural network also

drops significantly. It can be seen from Table 5 that the

baseline accuracy of VGG-19 on CIFAR-100 is 73.58%.

When pruning 75.66% of the parameters and 68.54% of

the FLOPs, the accuracy of the retrained compact net-

work is increased by 0.48%. Even when k ¼ 0:5, the

performance is only declined by 1.76% when parameters

and FLOPs are compressed by 85.17% and 89.82%,

respectively. And it is significantly better than Slimming

[18], Liu et al. [36] and GReg-2 [51] in terms of net-

work compression ratio and performance recovery. This

manifests that our GBIP is also applicable to datasets

with relatively few training samples. Table 6 shows that

the baseline accuracy of ResNet-56 is 71.36%. Because

parameters and FLOPs of ResNet-56 are significantly

less than VGG-19, the redundancy of ResNet-56 is also

smaller. However, when the number of FLOPs is dis-

carded by 48.71%, there is still a 0.52% improvement in

performance. When k ¼ 0:5, we remove 68.27% of the

FLOPs with 0.18% accuracy drop that is still signifi-

cantly superior to the comparison method.

Table 1 Performance comparison of VGG-16 on CIFAR-10

Method Base Acc/% Pruned Acc/% Acc.drop/% Parameters/M Parameters.drop/% FLOPs/M FLOPs.drop/%

Baseline 93.60 – – 14.73 – 314.59 –

GBIP ðk = 0.3) 93.60 94.14 2 0.54 7.68 47.86 174.94 44.39

EPFS-F-0.001 [3] 93.50 93.61 - 0.11 6.49 56.70 206.00 34.30

Li et al. [14] 93.25 93.40 - 0.15 5.40 64.00 206.00 34.20

Liu et al. [36] 93.63 93.78 - 0.15 5.40 64.00 206.00 34.20

Zhao et al. [44] 93.25 93.18 0.07 3.92 73.34 190.00 39.10

GAL-0.05 [6] 93.96 93.77 0.19 3.36 77.60 189.49 39.60

GAL-0.1 [6] 93.96 93.42 0.54 2.67 82.20 171.89 45.20

ABCPruner [31] 93.02 93.08 - 0.06 1.67 88.68 82.81 73.68

GBIP ðk = 0.5) 93.60 93.77 2 0.17 2.50 83.03 60.53 80.76

GBIP ðk = 0.7) 93.60 90.29 3.31 0.41 97.22 10.79 96.57

Acc.drop is the accuracy drop of the pruned network, so a negative number means the compressed model has better performance than the

baseline. A smaller number of Acc.drop is better. Parameters.drop and FLOPs.drop are the pruned percentage of the parameters and FLOPs,

respectively

Bold indicates the experimental results of the method in this paper, which is used to compare with the peer’s method
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Experiments on the CIFAR datasets preliminarily verify

the effectiveness and superior performance of the proposed

method in image classification tasks. Our GBIP can

achieve a certain degree of compression for the parameters

and FLOPs of VGGNet, ResNet, and GoogLeNet almost

without accuracy drop. It also fully indicates that in dif-

ferent tasks, the existing CNNs have certain parameter

redundancy, and removing these unimportant parameters

can achieve network compression and acceleration without

affecting the performance of networks. In this way, the

computational cost of the neural network will reduce

remarkably.

4.3 Results comparison on ILSVRC-2012

To further assess the effectiveness of the proposed

pruning method, we experiment on the large image clas-

sification dataset ILSVRC-2012 with 1000 categories

which are difficult to precisely classify, and the parameters

of the CNNs are less redundant, so pruning is more chal-

lenging. In this subsection, we select ResNet-18 and

ResNet-50 for pruning, which can highlight the power of

our method. The original Top-1 and Top-5 accuracy of

ResNet-18 on ILSVRC-2012 are 70.02% and 89.23%. As

we can see from Table 7 that when pruning less than

46.00% of the FLOPs via GBIP, the Top-1 and Top-5

Table 2 Performance comparison of ResNet-56 on CIFAR-10

Method Baseline Acc/% Pruned Acc/% Acc.drop/% Parameters.drop/% FLOPs.drop/%

SFP [16] 93.59 93.89 - 0.30 – 14.70

Li et al. [14] 93.04 93.06 - 0.02 13.70 27.60

Liu et al. [36] 93.14 93.05 0.09 13.70 27.60

LSTM-SEP-2 [45] 93.04 93.85 - 0.81 27.91 47.52

HRank [19] 93.26 93.52 - 0.26 29.30 16.80

GBIP ( k = 0.4) 93.42 94.09 2 0.67 41.18 47.81

SFP [16] 93.59 93.78 - 0.19 – 41.10

HRank [19] 93.26 93.17 0.09 50.00 42.40

CNN-FCF [40] 93.14 93.38 - 0.24 43.09 42.78

NISP [24] – – 0.03 42.60 43.61

He et al. [46] 93.59 93.72 - 0.13 – 47.10

He et al. [47] 92.80 91.80 1.00 – 50.00

AMC [29] 92.80 91.90 0.90 – 50.00

DCP [37] 93.80 93.59 0.21 – 50.00

DMC [48] 93.62 93.69 - 0.07 – 50.00

NPPM [43] 93.04 93.40 - 0.36 – 50.00

SFP [16] 93.59 93.35 0.24 – 52.60

FPGM [38] 93.59 92.89 0.70 – 52.60

CCP [41] 93.50 93.42 0.08 – 52.60

He et al. [46] 93.59 93.34 0.25 – 52.90

LEGR [23] 93.90 93.70 0.20 – 53.00

SRR-GR [49] 93.38 93.75 - 0.37 – 53.80

ABCPruner [31] 93.26 93.23 0.03 54.20 54.13

RL-MCTS [50] 93.20 93.56 - 0.36 – 55.00

EDP [39] 93.61 93.61 0 54.18 57.71

GReg-2 [51] 93.36 93.36 0 – 60.78

ManiDP [21] 93.70 93.64 0.06 – 62.40

GBIP ðk = 0.5) 93.42 93.78 2 0.36 55.24 63.35

EPFS-C-0.6-0.05 [3] 93.26 92.53 0.73 67.10 55.00

FALF [52] 93.09 93.05 0.04 – 67.62

DAIS [53] 94.53 93.53 1.00 – 70.90

GBIP ðk = 0.6) 93.42 93.04 0.38 70.37 73.41

Bold indicates the experimental results of the method in this paper, which is used to compare with the peer’s method
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accuracy loss is smaller than that of other methods.

Although the parameter compressing rate of ABCPruner

[31] is 6.77% higher than that of ours, and the FLOPs

pruning rate is 0.67% lower, the performance drop after

Table 3 Performance comparison of ResNet-110 on CIFAR-10

Method Baseline Acc/% Pruned Acc/% Acc.drop/% Parameters/M Parameters.drop/% FLOPs/M FLOPs.drop/%

Baseline 93.53 – – 1.73 – 256.04 –

SFP [16] 93.68 93.83 - 0.15 – – 216.00 14.60

Li et al. [14] 93.53 93.55 - 0.02 1.68 2.30 213.00 15.90

Liu et al. [36] 93.14 93.22 - 0.08 1.68 2.30 213.00 15.90

GBIP ðk = 0.3) 93.53 94.48 2 0.95 1.37 20.81 197.29 22.95

SFP [16] 93.68 93.93 - 0.25 – – 182.00 28.20

Li et al. [14] 93.53 93.30 0.20 1.16 32.40 155.00 38.60

Liu et al. [36] 93.14 93.60 - 0.46 1.16 32.40 155.00 38.60

HRank [19] 93.50 94.23 - 0.73 – 41.20 – 39.40

SFP [16] 93.68 93.86 - 0.18 – – 150.00 40.80

CNN-FCF [40] 93.58 93.67 - 0.09 – 43.19 – 43.08

NISP [24] – – 0.18 – 43.25 – 43.78

GAL [6] 93.50 92.74 0.76 0.95 44.80 130.20 48.50

FPGM [38] 93.68 93.73 - 0.05 – – 121.00 52.30

He et al. [46] 93.68 93.79 - 0.11 – – 101.00 60.30

GBIP ðk = 0.5) 93.53 94.28 2 0.75 0.69 60.12 96.48 62.32

ABCPruner [31] 93.50 93.58 - 0.08 0.56 67.41 89.87 65.04

HRank [19] 93.50 92.65 0.85 – 68.60 – 68.70

CNN-FCF [40] 93.58 92.96 0.62 – 69.51 – 70.81

GBIP ðk = 0.7) 93.53 94.05 2 0.52 0.50 71.10 69.58 72.82

Bold indicates the experimental results of the method in this paper, which is used to compare with the peer’s method

Table 4 Performance comparison of GoogLeNet on CIFAR-10

Method Baseline Acc/% Pruned Acc/% Acc.drop/% Parameters/M Parameters.drop/% FLOPs/G FLOPs.drop/%

Baseline 94.72 – – 6.17 – 1.53 –

GBIP ðk = 0.4) 94.72 95.25 2 0.52 4.08 33.87 0.95 37.95

GBIP ðk = 0.5) 94.72 95.13 2 0.41 3.19 48.30 0.74 52.04

GAL-0.5 [6] 95.05 94.56 0.49 3.12 49.30 0.94 38.20

ABCPruner [31] 95.05 94.84 0.21 2.46 60.14 0.51 66.56

GBIP ðk = 0.7) 94.72 95.06 2 0.34 2.12 65.64 0.47 69.34

Bold indicates the experimental results of the method in this paper, which is used to compare with the peer’s method

Table 5 Performance comparison of VGG-19 on CIFAR-100

Method Baseline Acc/% Pruned Acc/% Acc.drop/% Parameters/M Parameters.drop/% FLOPs/M FLOPs.drop/%

Baseline 73.58 – – 20.09 – 399.52 –

Slimming [18] 73.26 73.48 - 0.22 5.00 75.10 251.00 37.10

Liu et al. [36] 72.63 73.08 - 0.45 5.00 75.10 251.00 37.10

GBIP ðk = 0.4) 73.58 74.06 2 0.48 4.89 75.66 125.67 68.54

GReg-2 [51] 74.02 67.75 6.27 – – – 88.69

GBIP ðk = 0.5) 73.58 71.82 1.76 2.98 85.17 40.67 89.82

Bold indicates the experimental results of the method in this paper, which is used to compare with the peer’s method
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pruning is significantly greater. The Top-1 accuracy in [31]

loses 2.38%, while the performance only drops 0.66% via

our method, and its Top-5 accuracy also decreases 0.89%

higher than GBIP. FBS [57] pruning 3.95% FLOPs higher

than that of GBIP, and its Top-1 and Top-5 accuracy loss is

also higher than ours by 0.93% (1.59% vs. 0.66%) and

0.34% (0.86% and 0.52%) respectively. When k ¼ 0:5, the

cutting rate of FLOPs using GBIP is 5.45% lower than that

of ManiDP [21], and the Top-5 accuracy drop is 0.20%

higher (0.52% vs. 0.32%), but the Top-1 accuracy loss is

0.22% lower (0.66% vs. 0.88%). When k ¼ 0:6, GBIP

deletes 46.32% of the parameters and 51.65% of the

FLOPs. In this scenario, the compression degree is sig-

nificantly higher than the comparative pruning algorithms,

and the accuracy loss is also higher. To the best of our

knowledge, this is because the number of remaining

parameters is too little to adequately extract the target

information in the images during the learning process with

the continuous compression of the network, and it results in

the decrease of the final classification performance.

After that, we continue to conduct the pruning experi-

ments on the ResNet-50. Table 8 depicts the performance

comparison of pruning ResNet-50. The original Top-1 and

Top-5 accuracy of ResNet-50 are 75.94% and 92.93%

respectively. When pruning 55.36% parameters and

63.34% FLOPs, the Top-1 accuracy only decreases by

0.47% and the Top-5 accuracy drop is even less. Although

the Top-1 accuracy loss of CNN-FCF [40] is the same as

ours and their Top-5 accuracy loss is 0.04% less, the

compressing rates of parameters and FLOPs of our GBIP

are respectively 12.95% (55.36% vs. 42.41%) and 17.29%

(63.34% vs. 46.05%) higher than CNN-FCF.

All the experiments for image classification reveal that

our global balanced iterative pruning method can achieve a

similar degree of compression rate on the parameters and

FLOPs of convolutional networks. For simple tasks, after

using GBIP for network pruning, overfitting is eliminated,

and the performance of the compact network can maintain

or even exceed the accuracy of the original network after

retraining. The complex classification task requires more

Table 6 Performance

comparison of ResNet-56 on

CIFAR-100

Method Baseline Acc/% Pruned Acc/% Acc.drop/% FLOPs/M FLOPs.drop/%

Baseline 71.36 – – 127.09 –

GBIP ðk = 0.3) 71.36 73.57 2 2.21 92.35 27.33

GBIP ðk = 0.4) 71.36 71.88 2 0.52 65.18 48.71

He et al. [46] 71.41 70.83 0.58 60.80 51.60

SFP [16] 71.40 68.70 2.61 59.40 52.60

FPGM [38] 71.41 69.66 1.75 59.40 52.60

GBIP ðk = 0.5) 71.36 71.18 0.18 40.33 68.27

Bold indicates the experimental results of the method in this paper, which is used to compare with the

peer’s method

Table 7 Performance comparison of ResNet-18 on ILSVRC-2012

Method Pruned Top-1 Acc/% Top-1 Acc.drop/

%

Pruned Top-5 Acc/% Top-5 Acc.drop/

%

Parameters.drop/

%

FLOPs.drop/

%

MIL [54] 66.33 3.43 86.94 2.14 – 33.30

DSA [55] 68.61 1.11 88.35 0.72 – 40.00

SFP [16] 67.10 3.18 87.78 1.85 – 41.80

FPGM [38] 68.41 1.35 88.48 0.60 – 41.80

EPFS-F-

0.05 [3]

67.81 1.94 88.37 0.87 34.60 42.10

PFP [56] 65.65 4.11 86.75 2.33 – 43.00

DAIS [53] 67.56 2.20 87.90 1.18 – 43.30

GBIP ðk = 0.5) 69.36 0.66 88.71 0.52 36.78 45.55

ABCPruner [31] 67.28 2.38 87.67 1.41 43.55 44.88

FBS [57] 68.17 1.59 88.22 0.86 – 49.50

ManiDP [21] 68.88 0.88 88.76 0.32 – 51.00

GBIP ðk = 0.6) 69.20 0.82 88.60 0.63 46.32 51.65

Bold indicates the experimental results of the method in this paper, which is used to compare with the peer’s method
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parameters to extract the semantic information in the

image. There are almost no redundant parameters in tiny

convolutional networks, therefore pruning will be accom-

panied by a decrease in accuracy. However, our GBIP can

still control the performance loss in a smaller range. It

indicates that the iterative channel pruning method pro-

posed in this paper can effectively remove unimportant

parameters in the CNNs and reduce network redundancy in

the sense that it also has regularization on the network

training.

4.4 Pruning SSD on PASCAL VOC

The existing network pruning algorithms are almost totally

for single-target image classification tasks with obvious

targets and rarely involve other more complex tasks. In the

real world, the scenarios of object detection are more

extensive and the requirements for low storage and real-

time are higher. However, in the context of uncertain

conditions such as occlusion, size, and light changes, these

tasks often need more complicated models. Therefore,

compressing the model for object detection while main-

taining accuracy faces salient challenges. To show off the

generalization of the proposed method, we prune the SSD

on the PASCAL VOC object detection dataset. The back-

bone of the SSD adopts the VGG-16 trained on the CIFAR-

100. Here, we compare the parameters and FLOPs com-

pressing rate and Mean Average Precision (mAP) loss. The

results are depicted in Table 8. When k ¼ 0:3, the pruning

rates of the parameters and FLOPs are 47.66% and 30.25%,

respectively. Compared with the mAP of the baseline of

76.10%, the detection accuracy of the compact SSD only

decreases by 0.50%. While pruning 57.66% of the

parameters and 54.06% of the FLOPs in the SSD with

k ¼ 0:4, the mAP drops by 0.90%.

To visually display the results of the pruned SSD in the

object detection, we select five pictures in PASCAL VOC

to visualize the experiments in Table 9. And the results are

depicted in Fig. 5. The first line is the original images, and

the second line is the detection result obtained using the

baseline SSD, while the last two lines are the pruned results

via GBIP with k ¼ 0:3 and k ¼ 0:4. It can be found from

the figure that the compressed SSD can still correctly detect

the object in the images, despite the position and size of the

detection frame may alter slightly within an accept-

able range. Moreover, the confidence of some targets will

also fluctuate to a certain extent. For example, the baseline

confidence of the tvmonitor in figure (d) is 0.97, but when

k ¼ 0:3 and k ¼ 0:4, they are 0.92 and 0.95, respectively.

The confidence of some targets in the other pictures is also

different. We conjecture this is due to the detection accu-

racy of some categories has been improved after pruning,

Table 8 Performance comparison of ResNet-50 on ILSVRC-2012

Method Pruned Top-1 Acc/

%

Top-1 Acc.drop/

%

Pruned Top-5 Acc/

%

Top-5 Acc.drop/

%

Parameters.drop/

%

FLOPs.drop/

%

ThiNet [58] 74.03 1.27 92.11 0.09 33.72 36.79

SFP [16] 74.61 1.54 92.06 0.81 – 41.80

HRank [19] 74.98 1.17 92.33 0.54 36.67 43.77

LSTM [45] 75.00 1.12 92.67 0.33 37.56 –

NISP [24] – 0.89 – – 43.82 44.01

Taylor-FO-

BN [59]

74.50 1.68 – – 44.53 45.00

CNN-FCF [40] 75.68 0.47 92.68 0.19 42.41 46.05

EDP [39] 75.34 0.56 92.43 0.34 43.90 52.60

FPGM [38] 74.83 1.32 92.32 0.55 – 53.50

CCP [41] 75.21 0.94 92.42 0.45 – 54.10

GAL [6] 71.80 4.35 90.82 2.05 24.27 55.00

RL-MCTS [50] 76.46 0.88 92.83 0.34 – 55.00

SRR-GR [49] 75.11 1.02 92.35 0.51 – 55.10

DAIS [53] 74.45 1.70 92.21 0.66 – 55.30

ABCPruner [31] 73.52 2.49 91.51 1.45 56.01 56.61

GReg-2 [51] 74.93 1.20 – – – 60.94

HRank [19] 71.98 4.17 91.01 1.86 46.00 62.10

GBIP (k = 0.4) 75.47 0.47 92.70 0.23 55.36 63.34

Bold indicates the experimental results of the method in this paper, which is used to compare with the peer’s method
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although the overall mAP is slightly lower. To be more

specific, the detection precision of some targets will even

improve when compressing the network. For instance, the

baseline confidence of the bottle in figure (b) is 0.75,

however, when k ¼ 0:3 it reaches 0.85, and when k ¼ 0:4 it

even increases to 0.99. It also reveals that pruning can

improve the capability of the network recognition for some

target classes by reducing model redundancy. Moreover,

when k ¼ 0:4, the SSD is compressed by more than 50%.

At this time, even more persons are accurately found than

the baseline in figure(b). It manifests that the ability to

distinguish people has been developed. The above experi-

ments further verify that the pruning method in this paper

also has good generalization in the field of object detection.

4.5 Ablation analysis

Then, we conduct the ablation analysis on the proposed

GBIP method. This section is composed of the following

three parts: the influence of k on the pruning rate, the

influence of k on the compressing magnitude in different

layers, and the influence of attention transfer, output

transfer, and adversarial game on the network performance

recovery.

4.5.1 The influence of k on the pruning rate

The pruning threshold factor k is the parameter used to

adjust the compression ratio in our proposed pruning

algorithm. The larger the k, the greater the pruning

threshold, so that the higher the degree of network com-

pression. To reveal the influence of the k, we perform six

groups of pruning experiments on VGG-16 by setting dif-

ferent k on the CIFAR-10, and the results are shown in

Fig. 6. It can be seen from the figure that as the k increases,

the pruning rate of parameters, FLOPs, and channels con-

stantly exceeds. The most important is that the parameters

and FLOPs compressing rate are always balanced. When

Table 9 The results of pruning SSD on PASCAL VOC

Method mAP/% mAP.drop/% Parameters/M Parameters.drop/% FLOPs/G FLOPs.drop/%

Baseline 76.10 – 26.29 – 11.34 –

Keeffe et al. [60] 75.04 1.06 18.74 28.72 8.36 26.28

GBIP ðk = 0.3) 75.60 0.50 13.76 47.66 7.91 30.25

Li et al. [14] 74.91 1.19 13.25 49.60 6.53 42.42

GBIP ðk = 0.4) 75.20 0.90 11.13 57.66 5.21 54.06

Bold indicates the experimental results of the method in this paper, which is used to compare with the peer’s method

(a) (b) (c) (d) (e)

Fig. 5 Visualization of pruning SSD on the PASCAL VOC
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the value of k is small, the cropping ratio rises faster

meanwhile the curve is relatively steep. But with the

continuous growth of k, the curve of the parameters and the

FLOPs gradually tends to be smooth, while the com-

pressing rate of channels almost still linearly rises. From

the figure, it is clear that when the compression ratio of

parameters and FLOPs are less than 80%, and that of the

number of channels is less than 60%, the accuracy of the

pruned network remains unchanged or even slightly

improved compared to the baseline. Nevertheless, the

performance of the compact network begins to decline if

continues to compress. This is because when pruning fewer

parameters, the redundancy and the impact of overfitting

are reduced so that the performance will be improved. But

when removing too many parameters, the network is dif-

ficult to cope with the classification tasks which causes

performance degradation.

4.5.2 The influence of k on the compression magnitude
in different layers

To better show the compression amplitude of each layer of

the network under different pruning ratios, this section

visualizes the number of channels of VGG-16, ResNet-56,

and ResNet-110 in CIFAR-10 as Fig. 7. The three rows

from top to bottom are VGG-16, ResNet-56, and ResNet-

Fig. 6 The influence of k on the accuracy and pruning rate of CNNs

Fig. 7 The influence of k for channels of VGG-16 (top), ResNet-56 (second row), and ResNet-110 (bottom) on CIFAR-10
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110. It can be found from the first row that the last layer of

VGG-16 has the most remarkable redundancy. The last

layer has eliminated more than 50.00% of the channels

with k ¼ 0:3, while the discarding ratio of the network is

small. As the pruning ratio increases, the number of

retained channels in the 9th and 12th layers is more than

that in the other layers. It implies that the impact of the two

layers on extracting target information is more pivotal than

that of other layers. For ResNet-56, the number of channels

reserved in the 23th layer is more than that of the 22th layer

with little compression. But when k ¼ 0:6, the cropping

ratio raises, the number of channels saved in the 22th layer

is significantly more than the other layers. It indicates that

as the pruning rate changes, the importance of different

layers also varies to improve the performance as much as

possible. At the same time, it reiterates that the pruning

strategy proposed in this paper can adaptively adjust the

pruning range of each layer according to different com-

pression rates to obtain a compact network that meets the

performance requirements.

4.5.3 The influence of three modules on the performance
recovery

To analyze the influence of attention transfer, output

transfer, and adversarial game on the performance recovery

Table 10 Performance comparison of retraining pruned networks

Method VGG-16 ? CIFAR-10 (k ¼ 0:3) ResNet-56 ? CIFAR-100 (k ¼ 0:5) ResNet-18 ? ImageNet (k ¼ 0:5)

LAT LOT LAG Acc/% Acc.drop/% Acc/% Acc.drop/% Top-1 Acc/% Top-1 Acc.drop/%

93.94 - 0.34 70.94 0.42 68.12 1.90

U 94.00 - 0.40 71.06 0.30 68.26 1.76

U 94.03 - 0.43 71.09 0.27 68.54 1.48

U 94.02 - 0.42 71.07 0.29 68.37 1.65

U U U 94.14 2 0.54 71.18 0.18 69.36 0.66

Bold indicates the experimental results of the method in this paper, which is used to compare with the peer’s method

Table 11 Performance analysis

of our pruning method without

using knowledge transfer and

adversarial game strategy

network?task Method Pruned Acc/% Acc.drop/% FLOPs.drop/%

ResNet-56?CIFAR-10 HRank [19] 93.17 0.09 42.40

NISP [24] – 0.03 43.61

AMC [29] 91.90 0.90 50.00

DCP [37] 93.59 0.21 50.00

SFP [16] 93.35 0.24 52.60

FPGM [38] 92.89 0.70 52.60

CCP [41] 93.42 0.08 52.60

Y.He et al. [46] 93.34 0.25 52.90

LEGR [23] 93.70 0.20 53.00

GReg-2 [51] 93.36 0 60.78

ManiDP [21] 93.64 0.06 62.40

GBIP ðk= 0.5) 93.78 2 0.18 63.35

ResNet-56?CIFAR-100 Y.He et al. [46] 70.83 0.58 51.60

SFP [16] 68.70 2.61 52.60

FPGM [38] 69.66 1.75 52.60

GBIP ðk=0.5) 70.94 0.42 68.27

ResNet-18?ImageNet MIL [54] 66.33 3.43 33.30

SFP [16] 67.10 3.18 41.80

EPFS-F-0.05 [3] 67.81 1.94 42.10

PFP [56] 65.65 4.11 43.00

GBIP ðk=0.5) 68.12 1.90 45.55

Bold indicates the experimental results of the method in this paper, which is used to compare with the

peer’s method
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of the compact network, we retrain the pruned VGG-16 and

ResNet-18 via different strategies on the CIFAR-10/100

and ImageNet respectively. The number of training epochs

and other hyperparameter settings remain the same. The

results are tabulated in Table 10. As we can see from the

table that the VGG-16 network trained by all the three

strategies has the highest accuracy, which can reach

94.14%. The accuracy obtained using the output transfer is

94.03%, which is 0.03% higher than applying the attention

transfer. When utilizing adversarial game, the accuracy is

94.02% which is 0.08% higher than that of retraining

without the three strategies. Therefore, output transfer

plays the most considerable role in the three modules. The

results of ResNet-56 on CIFAR-100 and ResNet-18 on

ImageNet also demonstrate the conclusion above. For large

scale task ImageNet, the accuracy obtained via all three

strategies is 69.36%, which is the best and 1.24% higher

than training without any strategies. It can also be seen

from the table that the performance via the adversarial

game alone is better than only using the attention transfer.

It is because the attention map only works on the inter-

mediate output feature maps and does not restrict the final

output, while the adversarial game can directly optimize

the output features, so it can better improve the perfor-

mance of the pruned network. In addition, we also compare

our pruning strategy without using knowledge migration

and adversarial games with some existing pruning methods

that do not use optimization algorithms. The results are

shown in Table 11. As we can see from the table that the

pruning method in this paper still has leading performance

in terms of network compression rate and accuracy without

optimization.

5 Conclusion and future work

In this paper, we propose a global balanced iterative

pruning method. The unimportant parameters and FLOPs

can be eliminated in similar amplitude based on the

magnitude distribution of the intermediate features. And

then, we design a performance recovery scheme, so that

the performance of the compressed network can be

recovered as soon as possible after each pruning step. In

this way, we can complete continuous iterative pruning

in the training process of the network. The final compact

network obtained will restore the accuracy through

retraining from scratch. We conduct extensive experi-

ments for pruning VGGNet, ResNet, and GoogLeNet on

image classification datasets of CIFAR-10, CIFAR-100,

and ILSVRC-2012. The results have manifested that

GBIP is comparable with state-of-the-art network prun-

ing methods in performance and pruning rate of

parameters and FLOPs. On CIFAR-10, after compressing

75.29% of the parameters and 78.60% of the FLOPs of

ResNet-56, the accuracy only drops by 0.39%. In the

object detection task PASCAL VOC, when removing

more than 50% of the parameters and FLOPs of the

SSD, the mAP is only reduced by 0.9%. The final

ablation analysis reveals that the pruning factor can

achieve flexible control of the compression rate. The

experiments fully show that the proposed method can be

widely applied in different CNNs, image datasets, and

various computer vision tasks. In the future, we will

integrate the channel pruning method with other com-

pression schemes such as quantization. Furthermore, we

will consider applying existing approaches to accelerate

other real-world vision tasks and even natural language

processing.
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