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Abstract
Prohibited item detection from X-ray images determines whether any prohibited items are present in baggage, and great

progress has recently been made in this field with the development of deep learning. Nevertheless, the appearance of an

occluded item interacts with the cover, which is different from occlusions encountered in conventional object detection.

We design three mechanisms to handle this challenge on the assumption that the occluded part is still partially observed.

First, we propose a scale interaction module in which the features in neighboring scales interact one or more times to

enhance the model’s perception ability. Then, we design a cross-image weakly supervised semantic analysis model

utilizing the coattention mechanism to perceive similar and different targets, breaking through the information bottleneck

of the isolated detection of a single image. Finally, we introduce a multitask learning module to simultaneously optimize

the model at the global level and pixel level. We evaluate our approach on the publicly available security inspection X-ray

(SIXray) dataset, the occluded prohibited items X-ray (OPIXray) dataset, and the HIXray dataset, and the results show that

our approach is competitive with other X-ray baggage inspection approaches.

Keywords Computer vision � Convolutional neural network � Information fusion � Weakly supervised learning

1 Introduction

Prohibited item detection from X-ray images can auto-

matically search for prohibited items in passenger pack-

ages, thereby effectively suppressing terrorism and

criminal incidents. Compared to other nondestructive

detection methods (such as ultrasound, overfrequency

imaging, and thermal imaging), the advantage of this

technique lies in its excellent recognition, clarity and

visualization abilities. Therefore, intelligent prohibited

item detection based on X-ray images has always been a

popular area of research in the multimedia field.

Recently, deep learning, especially deep convolutional

neural networks [3, 7, 13, 29], has been successfully

applied to prohibited item detection. However, occlusion in

X-ray baggage inspection is different from that in con-

ventional object detection. The occluded parts are totally

invisible in conventional object detection scenarios, while

the occluded items can still be observed in detection based

on X-ray images. Examples are illustrated in Fig. 1. The

appearance of an item in an X-ray image depends not only

on the specific item but also on the interacting item. To

solve the occlusion problem in prohibited item detection

from X-ray images, several approaches [7, 29] use edge

information to enhance the model’s discrimination capac-

ity. However, the gradient information introduces too much

noise, which causes high uncertainty due to inference. In

addition, models for extracting semantic edge features

require supervised learning, but the true labels used for

model learning can be obtained only through a complex

and tedious labeling process. Therefore, there is an urgent

need for a detection method that can combine semantic

information to detect partially visible prohibited items

without the cumbersome labeling process.
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We argue that 3 factors may help to uncover the

occluded prohibited item in an X-ray image: (1) Multiscale

analysis, since other visible parts of an item provide

valuable knowledge for learning. (2) The characteristics of

the object that distinguish it from other objects such that

the object is discovered only when these characteristics are

found. (3) Multitask learning that utilizes the association

between tasks to assist the inference, e.g., segmentation

and detection; however, since pixelwise labeling requires

complicated annotation for learning, multitask learning

without the tedious labeling process is particularly attrac-

tive. Thus, we must design an approach to detect partially

observed prohibited items by combining these factors.

We propose a method for detecting prohibited objects

based on X-ray images, as shown in Fig. 2. The scale

interaction module (SIM) extracts features through the

encoder by simultaneously exploring information at mul-

tiple scales. Then, the cross-image analysis module (CAM)

uses the coattention mechanism to discriminate the

semantics by using object images from the same or dif-

ferent classes, which provides weakly supervised infor-

mation for localization. Finally, the multitask learning

module (MLM) simultaneously learns the localization and

segmentation branches, in which the segmentation branch

is learned in a weakly supervised manner to alleviate the

annotation effort.

The novelty of this work is exemplified by the

following:

• The context information is explored by incorporating

features from neighboring scales to improve the

discrimination capabilities.

• Cross-image semantics are introduced to further extract

high-level knowledge by using two different

coattentions.

• A weakly supervised method is proposed to learn the

segmentation branch in an MLM.

The experimental results on the security inspection X-ray

(SIXray) dataset [13], the occluded prohibited items X-ray

(OPIXray) dataset [29], and the HIXray dataset [16] show

that our approach outperforms other state-of-the-art pro-

hibited item detection approaches by margins of 1.47 and

1.45 in mean average precision (mAP).

The rest of this paper is organized as follows. Section 2

provides an overview of the recent work on prohibited item

detection and general object detection. Section 3 intro-

duces our approach. Section 4 discusses the experimental

results. Conclusions are reported in Sect. 4.

Object Detec�on

Baggage Inspec�on

Fig. 1 Illustration of the occlusion difference between prohibited item

detection from X-ray images and general object detection. Occluded

pixels are unobserved in general object detection, while prohibited

items from X-ray images should overlap with other items

Fig. 2 Illustration of the framework. SIM extracts features through

the encoder by simultaneously exploring information at multiple

scales. Then, the CAM uses the coattention mechanism to discrim-

inate the semantics by using object images from the same or different

classes, which provides weakly supervised information for localiza-

tion. Finally, the MLM simultaneously obtains the localization and

segmentation outputs
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2 Related work

In this section, we briefly review the related research on

prohibited item detection and general object detection.

2.1 General object detection

Deep learning has made great achievements in the field of

general object detection [19, 22]. According to the measure

of whether there is a candidate anchor generation stage,

these methods can be divided into the following two cat-

egories: (1) Single-stage approaches, such as the scaled you

only look once version 4 (S-YOLOv4) [27], which directly

regress the object location and category from all candidate

locations, have advantages in efficiency. However, invalid

candidates occupy a large proportion, which decreases the

effectiveness of this kind of approach. (2) Two-stage

approaches, such as the faster region-based convolutional

neural network (Faster R-CNN) [15], first locate candidate

anchors and distinguish foreground and background

regions, and then the category and location of the candidate

anchor is determined. These approaches have higher

accuracy. Nevertheless, the initial positioning of objects

requires extensive calculations, and as a result, these

approaches may be slow [24].

A large number of diverse samples is important for

training. Copy-Paste [5] pastes objects from one image to

another image, which is a useful mechanism for data

augmentation. To solve the sample imbalance problem,

RetinaNet [10] employs focal loss to reduce the contribu-

tion of easy samples.

Multiscale analysis perceives the input from different

perception fields [21], among which class-balanced hier-

archical refinement (CHR) [13] and recursive feature

pyramid and switchable atrous convolution detection

(DetectoRS) [14] incorporate extra feedback connections

from high-level features to improve the semantic features.

Contextual exploration has gradually become a popular

research topic [17, 20], especially mining nonlocal

dependent information, such as nonlocal neural networks

[28], dual attention networks (DANs) [4] and ternary

attention networks [25]. Recently, the transformer [26] has

become a prevalent model architecture. The shifted win-

dow (swin transformer) [12] constructs a hierarchical rep-

resentation to expand the applicability of transformers. The

focal transformer [30] performs fine-grained self-attention

only in local regions and coarse-grained attention globally.

However, research on learning the discrepancies of

different semantic features and the interactions between

different feature maps is very limited. In addition, due to

the loss of appearance and geometric information, coupled

with the limited ability to extract semantic information, the

above methods are very sensitive to overlap and occlusion

phenomena. Moreover, the attention mechanism used by

the above methods considers only the isolated information

in a single image to assign pixel weights, which makes the

detection model extremely vulnerable to the bottleneck

constraint of a single image and thus deviates from the

overall distribution of the dataset, significantly reducing the

effectiveness in scenarios where an object is highly

occluded, such as in package inspection.

2.2 Prohibited item detection

For prohibited item detection from X-ray images, transfer

learning is introduced to learn the differences between

general detection tasks and prohibited item detection [2].

To alleviate the adverse effects of outliers, joint learning of

high-dimensional image generation and spatial reasoning

based on a conditional generative adversarial network [1] is

studied. To alleviate the negative impact of complex sce-

nes, CHR [13] investigates the effectiveness of sample

balance and multiscale analysis in prohibited item

detection.

Because package capacity is inevitably limited, the

items in packages are highly occluded and overlap. In this

regard, Wei et al. [29] proposed a deocclusion attention

module (DOAM) based on appearance, material and color

information to extract edge information for the detection

process. The work employing the cascaded structure tensor

(CST) [7] uses a similar idea, fusing gradients in different

directions in an iterative manner. The work [9] combines

CST and transfer learning to further address occlusion

problems and achieves desirable results.

However, the edge cues contain too many irrelevant

gradients. Therefore, they do not improve localization and

classification capabilities, causing the detection model to

have poor discrimination ability in cases of severe occlu-

sion. In addition, the above methods are limited to using

single images for training, which prevents the model from

using other potential information in different images to

form a more comprehensive understanding of prohibited

and nonprohibited objects.

3 Our approach

To handle occlusion in prohibited item detection from

X-ray images without introducing a cumbersome and

complicated labeling process, we propose a weakly

supervised learning method, as shown in Fig. 1.
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3.1 Scale interaction module

Multiscale analysis provides the potential to handle ambi-

guity challenges because other parts of an occluded item

provide valuable information for judgment [23]. However,

the current approach [29] combines features of different

scales only by a linear combination. This manner of

combination does not take the large semantic gaps among

different perception fields into consideration. Therefore,

the fused features have a lower discrimination capacity

because of the inconsistent semantic information.

In fact, there is a dependency between feature maps of

adjacent scales (as shown in Fig. 3). Thus, we model this

dependency and utilize it for baggage inspection.

We propose a method named SIM, as illustrated in

Fig. 4, to improve the feature discernment of the model

with interacting feature maps of adjacent scales to avoid

training fluctuations caused by semantic gaps.

First, assume that the input of the module is image I, and

that the multiscale initial feature maps {f10; f
2
0; . . .; f

C
0 } are

obtained by the encoder, where C is the number of feature

map scales, which is selected in the experiments. The

encoder is a residual learning network composed of C

residual blocks [8]. While additional scales for interaction

would obtain additional global information, this would also

increase the risk of overfitting. Each residual block is

composed of a batch normalization layer, a rectified linear

unit, and a convolutional layer with a kernel size of 3� 3.

To mitigate the semantic gap, we acquire interactions

among feature maps of neighboring scales; that is, low-

level feature maps f i�1
0 , middle-level feature maps f i0, and

high-level feature maps f iþ1
0 are aggregated to obtain

multiscale interaction maps. The scale interaction process

can be added by projection as follows:

f ikþ1 ¼ Wi�1
downf

i�1
k þWi

kf
i
k þWiþ1

up f iþ1
k ; ð1Þ

where Wiþ1
up and Wi�1

down represent the upsampling and

downsampling operations implemented by the 3� 3

deconvolutional and convolutional layers with a stride of 2,

respectively. All channel numbers change to the same

number as the i-th scale feature maps.

To explore nonlocal dependencies, the scale interaction

process can be performed one or more times to generate

multiscale interaction feature maps. We take the feature

interaction maps f i1; . . .; f
i
k�1 generated in round 1 : k � 1

as the input to the round k interaction. The total number of

iterations is K.

In addition, a residual learning strategy is introduced to

prevent vanishing gradient issues, and pixel summation is

performed on all K round feature interaction maps gener-

ated at scale i to obtain the context feature maps ff ig; i ¼
1; 2; . . .;C at each scale. Finally, the branches that pertain

to different scales are fused together through a gated CNN

[31] because the context feature maps in each branch

contain information regarding a specific perception field.

Multiscale feature fusion via an SIM has the following

advantages: (1) The feature interaction of neighboring

scales enhances the feature representation, alleviates the

semantic gaps between features in different perception

domains, and allows the model to obtain a comprehensive

understanding of the entirety and different parts of the

same object. (2) It can effectively capture the appearance

variations caused by severe occlusion, where the visual

features are seriously insufficient. (3) The SIM can be

directly used as a plug-and-play module in various appli-

cations; moreover, it is efficient and easy to train.

3.2 Cross-image analysis module

The unique attributes of an object are also an important

basis for detecting it and can be used for distinguishing a

particular kind of object from other objects. The key point

is how to distinguish and locate the most unusual parts of

prohibited items.

Fig. 3 Example of the relation

between feature maps from

neighboring scales

Fig. 4 SIM Illustration. For simplification, only the third SIM module

has a blue dotted box
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Inspired by the notion of identifying a new object by

comparing it with a reference, such as a photo or an

explanation text for a specific class, we attempt to under-

stand the attributes and patterns of prohibited items by

comparing a target image with reference images through a

cross-image attention mechanism to explore the charac-

teristics between them and weaken complex background

interference. The common attention explores cross-image

shared semantics, which helps the classifier to proficiently

perceive the common semantic labels over the coattentive

regions. Discrepancy attention focuses on unshared

semantics, which enables the classifier to capably separate

the semantic patterns of different objects.

Moreover, we focus on locating unique areas by using

weakly supervised signals; that is, the classification task is

employed to discover the unique part of prohibited items

by optimizing the cross-entropy of the common class and

discrepancy class in the image pair. Compared to the

detection task, this weakly supervised learning method has

relatively less labeling effort. Cross-image semantic rela-

tions are used as additional category-level information to

guide the learning stage. Specifically, we design a CAM

using common attention and discrepancy attention mech-

anisms to learn cross-image semantic representations for

prohibited items. The details are shown in Fig. 5.

Assuming that image Im is a target image and In is a

reference image that is randomly selected from a reference

set containing at least one kind of prohibited item with the

target image, we resize these two images to a fixed size.

The symbol ln 2 f0; 1gK represents a category label cor-

responding to In (elements corresponding to prohibited

items in an image are denoted as ‘1’, and remaining ele-

ments in the label vector are denoted as ‘0’), and K equals

the number of prohibited item categories. The feature maps

ðFm;FnÞ 2 RU�H�W obtained by the SIM are used as the

CAM input, where U, H, and W are the number of chan-

nels, height, and width of the feature map, respectively.

Then, the feature maps ðFm;FnÞ are processed by class-

aware full convolution (CFC) to obtain the activation maps

ðSm; SnÞ 2 RQ�H�W , where Q is the number of channels of

the activation maps. After that, the category score vectors

ðsm; snÞ 2 RQ are obtained through global average pooling.

Finally, the sigmoid function is applied to normalize and

obtain the cross-entropy loss function Lce. The single-im-

age classification loss of the image pair is as follows:

Lm;nsingle ¼ Lceðsm; lmÞ þ Lceðsn; lnÞ: ð2Þ

To learn common attention in an image pair, the feature

maps ðFm;FnÞ are reshaped to obtain flattened feature maps

ðFm;FnÞ 2 RU�HW , where HW is the number of pixels in

the input feature map. The cross-image common attention

similarity matrix

Fig. 5 Details of the cross-image semantic relation exploration. The feature maps are obtained via the SIM; then, the context features are

generated by using the coattention mechanism
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Pmn ¼F
T

mWpFn; ð3Þ

Pnm ¼F
T

nWpFm; ð4Þ

is used to measure the similarity between any positions of

two different feature maps, where Wp 2 RU�U is the

weight matrix to be learned. Pmn;Pnm 2 RHW�HW are nor-

malized with the softmax function to obtain a cross-image

common attention map ðAm;AnÞ 2 RHW�HW , and then the

flattened cross-image common context feature maps are

obtained

F
co

m2n ¼FmAm 2 RU�HW ; ð5Þ

F
co

n2m ¼FnAn 2 RU�HW : ð6Þ

We adjust the shape of ðFco

m2n;F
co

n2mÞ to obtain common

context feature maps ðFco
m2n;F

co
n2mÞ 2 RU�H�W . The class-

aware activation maps ðScom2n; Scon2mÞ 2 RQ�H�W are obtained

through the CFC, and the class score vectors ðscom2n; scon2mÞ 2
RQ are obtained through global average pooling. Finally,

the cross-image common attention classification loss is

calculated using the sigmoid cross-entropy

Lm;nco�att ¼ Lceðscom2n; lm \ lnÞ þ Lceðscon2m; ln \ lmÞ; ð7Þ

where lm \ ln is the common category label of image pair

ðIm; InÞ.
To understand the objects well, we also learn the dis-

crepancy attention by exploring the semantic difference

between different objects in the image pair.

Assuming that the parameter matrix Wb 2 R1�U to be

learned collects common semantic knowledge (imple-

mented by a 1� 1 convolutional layer), the sigmoid acti-

vation function is rð:Þ; then, the class-independent

attention maps are

Bco
m2n ¼rðWbF

co
m2nÞ; ð8Þ

Bco
n2m ¼rðWbF

co
n2mÞ: ð9Þ

The discrepancy attention maps of the unshared semantic

region can be obtained by

Adis
m2n ¼1� Bco

m2n; ð10Þ

Adis
n2m ¼1� Bco

n2m; ð11Þ

then the discrepancy context feature can be obtained by

Fdis
n2m ¼Fm � Adis

n2m; ð12Þ

Fdis
m2n ¼Fn � Adis

m2n; ð13Þ

where � is the elementwise product. Likewise, the acti-

vation maps ðSdism2n; S
dis
n2mÞ 2 RQ�H�W can be obtained

through CFC, the category score vectors ðsdism2n; s
dis
n2mÞ 2 RQ

can be obtained through global average pooling, and the

cross-image discrepancy attention classification loss is as

follows:

Lm;ndis�att ¼ Lceðsdisn2m; lmnlnÞ þ Lceðsdism2n; lnnlmÞ; ð14Þ

where lmnln represents the object classes that exist in image

Im and that do not exist in In, and likewise for lnnlm.
Finally, the total training loss function of the weakly

supervised learning is as follows:

Ltotal ¼
X

m;n

½Lm;nsingle þ aðLm;nco�att þ Lm;ndis�attÞ�; ð15Þ

where a is the weight of the cross-image attention classi-

fication loss.

The usage of common and discrepancy attention in the

CAM has the following advantages: (1) The rich contextual

semantic information between images is explored by

means of common/discrepancy attention to understand the

unique parts of prohibited items. (2) The weakly supervised

signals from the class-aware activation map reduce the

tedious labeling process. (3) Due to the large number of

configurations in image pairs, this approach works simi-

larly to data augmentation to improve semantic under-

standing. (4) The framework is unified, effective, versatile,

and efficient regarding achieving stable results under dif-

ferent configurations.

3.3 Multitask learning module

In prohibited item detection from X-ray images, prohibited

items are likely to be blocked by other objects. However,

X-ray images feature distinguishing effects, clarity and

visualization abilities, so blocked areas are still somewhat

visible. As shown in Fig. 6a, with the characteristics of

X-ray images, current methods [7, 29] use pixel gradients,

such as the Canny operator(Fig. 6b) and Sobel operator

(Fig. 6c), to address occlusion problems. However, edge

features contain too much noisy information, such as the

edge details of items other than prohibited objects, which is

not conducive to detection.

Compared with noisy edge maps, the segmented mask

provides only the semantic shape of the objects of interest,

which can greatly reduce the interference impact [18].

Therefore, we design an MLM learning module for com-

bining segmentation cues to improve the detection results.

An example of the segmented mask is shown in Fig. 6d,

and the corresponding ground-truth segmented mask is

shown in Fig. 6e.

In the segmentation branch, we use the class-aware

CAM activation maps to extract the segmentation infor-

mation because the detection task does not provide pixel-

level labeling. The activation map (see details in Fig. 5) is

not as accurate as the segmented mask map since it
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contains more information from the foreground region than

from the prohibited items. Therefore, we also employ

background pseudomasks that are obtained by saliency

maps [11] to alleviate the overcover in the activation map.

Then, the decoder serves as the segmentor; this capability

is learned by using the pseudoground-truth masks.

Any image Ij in the dataset is fed into the CAM to

generate class-aware activation maps Sdisj ; then, the

semantic segmentation mask is obtained through the

decoder:

Oj ¼ fdðSdisj ; hÞ; ð16Þ

where h is the weight of decoder fd , and the resolution of

the output Oj is the same as that of input Ij. Sdisj is

upsampled and binarized to generate the foreground

pseudomasks and then combined with the background

pseudomasks generated by the saliency maps to constitute

the segmented mask ground truth Ej. The loss function of

the segmentation module is as follows:

Lseg ¼
X

j

LbceðOj;EjÞ; ð17Þ

where Lbce is the binarized cross-entropy loss function. The

segmented mask Oj is downsampled to the same resolution

as that of Sdisj , becoming O0
j, and is fed into the classifi-

cation and localization branches.

The detection branch comprises a region of interest

(ROI) pooling layer, a convolutional (Conv) layer and a

fully connected (FC) layer, followed by two sibling output

layers. The ROI pooling layer performs dynamic max

pooling over 26� 26 output bins for each box. The Conv

layer with a 3� 3 kernel extracts abstract features. The FC

layer reduces the channel number from 256 to 64. Two

sibling output layers follow, that is, a scoring layer and a

bounding box regression layer. Assume that N is the

number of prohibited item classes, the scoring layer outputs

the ðN þ 1Þ-D vector (1 for background) representing the

possibility of existence for all kinds of prohibited items,

and the bounding box regression layer computes 4-D box

offsets (center, width, and height). We employ the cross-

entropy loss Lce for classification and the L1 loss for

localization.

The final loss of the multitask learning is constructed as

follows:

Ldet ¼
X

j

ðLceðrj; tjÞ þ bL1ðpj; djÞÞ; ð18Þ

where rj and tj are the prediction and ground truth for the

classification, respectively, and pj and dj are the corre-

sponding counterparts for localization. b is the hybrid

balance factor.

The use of MLM to construct segmentation pseudo-

mask-assisted detection has the following advantages: (1)

Dual branches are used to perform different tasks, which

optimizes the solution from multiple aspects; (2) Seg-

mentation masks that accurately reflect the object category

and location assist in pixel-level understanding and

improve the detection accuracy.

4 Results

In this section, we verify the performance of the proposed

approach compared with that of popular approaches.

4.1 Hardware and software environment

A workstation with two Intel i7-4790 3.6 GHz central

processing units (CPUs) with 64 GB memory and 4 NVI-

DIA GTX Titan X graphics cards are used. Our approach

for demonstrating the effectiveness of the proposed method

is based on PyTorch.

4.2 Datasets

We evaluate our approach on the SIXray dataset, the

OPIXray dataset, and the HIXray dataset.

The SIXray dataset contains 1,059,231 X-ray images

collected from multiple subway stations. Prohibited items

include guns, knives, wrenches, pliers, scissors, and ham-

mers in 6 categories. The hammer class is removed in this

experiment since there are fewer than 60 images containing

hammers. The average size of all images is 100 K pixels,

and different material objects are displayed in different

colors. The dataset is divided into three subdatasets,

namely, SIXray10, SIXray100 and SIXray1000, and the

corresponding numbers indicate the ratio of negative

samples to positive samples. Because the ratio of positive

and negative samples in the SIXray100 dataset is close to

(a) (b) (c) (d) (e)

Fig. 6 Illustration of the problem with edge cues. a Input X-ray image. b Edge map obtained by the Canny operator and c the Sobel operator.

d Segmented mask generated by our approach. e Corresponding ground truth of the segmentation obtained by manual annotation
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the true distribution, SIXray100 is used as the dataset for

our experiments. The training set contains 7143 positive

samples and 714,300 negative samples, the validation set

contains 893 positive samples and 89,300 negative sam-

ples, and the test set contains 893 positive samples and

89,300 negative samples.

The OPIXray dataset contains 8885 X-ray images col-

lected from security inspection machines at international

airports, including 7109 images in the training set and 1776

images in the test set. All images vary in size. There are 5

types of prohibited items: folding knives, straight knives,

scissors, utility knives, and multifunction knives. All

images in this dataset contain prohibited objects, and 3

types of prohibited object occlusion levels are defined. All

samples were manually marked by professional inspectors

at an international airport.

The HIXray dataset contains 102,928 X-ray images

collected from multiple international airports, including

82,452 images in the training set and 20,476 images in the

test set. Prohibited items include portable chargers, mobile

water bottles, laptops, mobile phones, tablets, cosmetics,

and metallic-lighters (abbreviated as PO1, PO2, WA, LA,

MP, TA, CO and ML) in 8 categories. It has high-quality

images, multiple objects of interest per image, and object

occlusion.

4.3 Evaluation criteria

We use evaluation criteria that others have employed and

released in their work to compare our approach to popular

approaches on the same datasets. We use the mAP at an

intersection over union (IoU) threshold of 50% as the

evaluation measure criteria for the SIXray100 and OPIX-

ray100 datasets. All detected images are sorted according

to the confidence of the detected items, and the average

precision is calculated.

4.4 Implementation details

For implementation, the size of all images is adjusted to

1200� 1000 resolution to meet the input requirements of

the FC layer. For the SIM, the number of residual blocks is

set to 5. The channel numbers of the feature maps of each

scale are 64, 256, 512, 1024, and 2048. The scale inter-

action is iterated for 2 rounds. Then, the feature maps are

fed into category-aware full convolution and global aver-

age pooling to obtain the category score vectors. In the

CAM, the number of object categories in the SIXray

dataset is 7 (including the background), and that in the

OPIXray dataset is 6. In addition, the weight a of the cross-

image attention classification loss function is set to 0.01. In

the MLM, the numbers of feature map channels of the

decoder are 1024, 512, 256, 64, and E (E is the number of

item categories in the dataset). The numbers of channels of

the two FC layers are 128 and D(D is 10 in both the SIXray

dataset and the OPIXray dataset). The parameter b is 0.1

(determined by a grid search). The entire network is trained

using the stochastic gradient descent algorithm, the

momentum parameter is 0.9, and the weight decay coeffi-

cient is 0.007. The learning rate is 0.005 for the first 45,000

iterations and then automatically decreases according to the

feedback results in the validation set. The batch size is set

to 6. The numbers of epochs are set to 150 for the SIXray

dataset and 120 for the OPIXray dataset.

4.5 Ablation study

We conduct extensive ablation studies to evaluate the

effects of several contributions in our approach. These

comparisons are performed only on the OPIXray dataset.

The backbone in the SIM We evaluate the model size,

Giga floating point operations (GFLOPs), and effectiveness

of different backbones, and the results are reported in

Table 1. The swin transformer [12] obtains an obvious

improvement owing to its natural hierarchical representa-

tion. We choose to use the swin transformer as the back-

bone in the following experiments.

Parameters Grid searching is employed to choose

appropriate parameters in different modules. The experi-

mental results of different numbers of scale interactions in

SIM are shown in Fig. 7a. The x-axis is the interaction

number, and the y-axis is the mAP. Two interactions are

conducive to model decision-making, and more interac-

tions only lead to overfitting.

The experimental results of different CFC numbers in

the CAM are shown in Fig. 7b, where the x-axis is the CFC

number and the y-axis is the mAP. A single CFC layer is

selected to maintain a balance between effectiveness and

efficiency.

The experimental results of hyperparameters in the loss

function are shown in Fig. 7c. The x-axis is the parameter

value, and the y-axis is the mAP. We choose a ¼ 0:01 and

b ¼ 1:0 according to the experimental results.

Table 1 Evaluations of different backbones on the OPIXray dataset

Module Backbone Model size(MB) GFLOPs mAP

SIM VGG16 138.3 357.0 68.1 ± 0.3

ResNet50 25.5 97.0 70.6 ± 0.2

ResNet101 44.5 184.9 72.5 ± 0.2

ResNeXt101 44.4 194.3 73.4 ± 0.3

Swin-L 197.0 823.4 74.5 ± 0.3

The values in bold represent the best results among different

approaches
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The robustness of the CAM The performance varies in

mAP owing to different occlusion levels, poses, and

backgrounds among the corresponding reference images.

Therefore, Table 2 reports the performance variation of

different rounds in the experiments. The experimental

results in Table 2 show that the performance is stable when

7 trials are implemented in the experiment. We also visu-

alize common attention and discrepancy attention in the

CAM module to illustrate the discrimination capability of

prohibited items in X-ray images in Fig. 8. Note that input

images are augmented by bounding boxes to localize pro-

hibited items. The common attention discovers the dis-

criminant parts of prohibited items, while normal items

with similar patterns are also highlighted. Then, the dis-

crepancy attention removes high activation regions of

normal items, which makes prohibited items easy to

localize.

Effectiveness Finally, we evaluate the model size,

FLOPs, and effectiveness of the three proposed modules. In

the benchmark model, only the residual learning encoder

with the same number of layers as the proposed solution is

used to extract features, and the FC layers estimate the

category and location of prohibited objects. As a result, the

detection performance is relatively poor. Then, the mod-

ules proposed in this paper are gradually added; the results

are shown in Table 3.

The SIM, CAM and MLM modules achieve improve-

ments of 1.7, 1.6 and 1.4 in the mAP, respectively. This

shows that our method can effectively aggregate context

information, thereby improving the detection performance.

4.6 Evaluation on the SIXray dataset

This section compares the proposed method with other

prohibited item detection methods. The experimental

results are shown in Table 4. RetinaNet and CHR partially

alleviate the occlusion problem by introducing different

weights for each sample, achieving limited effects in X-ray

image detection. The CHR and DetectoRS fuse features

with details or semantics (from different scales) to improve

the localization accuracy. The nonlocal network, swin

transformer, and focal transformer explore useful context

information by using a self-attention mechanism, which is

helpful to detect occluded items. The DOAM and CST

methods use edge information to guide the localization and

are easily affected by noise factors. In contrast, our method

eliminates the negative effects of high-frequency noise by

generating high-level segmentation masks, gaining a

1.47% improvement in mAP.

The detection results of different methods based on the

SIXray dataset are shown in Fig. 9, where the DOAM

method, our method, and the ground truth are represented

by blue, red and green rectangles, respectively. In Fig. 9a,

our method obtains robust detection results for a variety of

occlusion levels of prohibited objects. Compared with

DOAM, which uses noisy edge-assisted detection, our

method uses semantic segmentation information to assist in

prohibited object detection.

However, our method still yields some inaccurate

results, as shown in Fig. 9b. Part of the reason for this is the

complex background in the X-ray images (multiple items

overlap with each other), as the unique regions of the

prohibited items are not correctly understood, and the

information of prohibited items (such as knives) in the real

(a) (b) (c)

Fig. 7 Parameter selection on the OPIXray dataset. Quantitative analysis of a the interaction number in SIM, b the CFC number in CAM, and

c hyperparameters in the loss function

Table 2 The robustness evaluations of different rounds on the

OPIXray dataset

Module Round number mAP

CAM 3 76.6 ± 0.2

5 77.4 ± 0.3

7 77.7 ± 0.2

9 77.7 ± 0.2
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scene is limited because prohibited items occupy only a

small portion of the images.

4.7 Evaluation on the OPIXray dataset

In this section, we verify the effectiveness of various

methods on the OPIXray dataset. The results are shown in

Table 5. FO, ST, SC, UT and MU in the table represent the

folding knife, straight knife, scissors, utility knife and

multifunction knife, respectively. The high-frequency noise

that is generated in the edge extraction makes the CST and

DOAM methods only reach 2.04% and 3.10% mAP

improvements. The nonlocal network, swin transformer,

and focal transformer explore nonlocal dependencies by

using different structures of local regions to enhance con-

textual features, obtaining mAP improvements of 0.5%,

4.13%, and 5.34%, respectively. On the basis of the swin

transformer and DOAM methods, our approach performs

multiscale analysis with the interactions among adjacent

scales, discovers semantic regions via image comparison,

and uses two branches for multitask learning, which leads

to an additional mAP increase of approximately 1.45%.

Fig. 8 Visualization of the variation of feature maps in the CAM module. Images are from the OPIXray dataset. Input images, common attention,

and discrepancy attention are illustrated. Note that input images are augmented by bounding boxes to localize prohibited items

Table 3 Effectiveness evaluations of each module on the OPIXray

dataset

SIM CAM MLM Model size(MB) GFLOPs mAP

197.0 823.4 74.5

U 231.4 934.0 76.2

U 208.3 867.1 76.1

U 203.5 845.3 75.9

U U 242.9 955.9 76.8

U U 212.8 889.0 76.8

U U 240.7 977.7 77.3

U U U 245.2 998.6 77.7

The values in bold represent the best results among different

approaches

Table 4 Comparison of

different aggregation methods

on the SIXray dataset. The

evaluation metric is the mAP.

‘*’ denotes the approach we

reimplemented

Method Gun Knife Wrench Pliers Scissors Average

RetinaNet [3] 81.16 77.27 32.44 66.87 22.61 56.07

Nonlocal [28] 82.49 78.64 33.96 67.95 23.82 57.38

CHR [13] 82.06 78.75 43.22 66.75 28.80 59.92

DetectoRS [14] 82.39 78.64 43.68 66.77 28.74 60.05

S-YOLOv4[27] 82.67 78.77 43.45 67.26 29.04 60.26

DOAM [29]* 82.55 79.05 43.63 67.14 29.21 60.33

Copy-Paste [5] 83.29 79.46 44.04 67.89 29.50 60.85

Swin Trans.[12] 83.48 79.88 44.33 67.67 30.32 61.14

CST [7]* 83.42 80.12 44.57 68.11 30.16 61.28

Focal Trans.[30] 84.27 81.33 45.36 69.40 31.19 62.31

Ours 86.01 82.69 47.17 70.71 32.75 63.78

The values in bold represent the best results among different approaches
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The accurate detection results in Fig. 10a show that our

method is robust to variance in the input. Fig. 10b shows

some of the inaccurate detection results. Note that because

the useful information and the interference information of

the complex background are intertwined, the serious

occlusions caused by other objects greatly affect the per-

formance. In addition, other factors, such as the camera

view, inevitably expand the intravariance. For example, a

straight knife becomes thinner at a specific observation

spot, drifting from the typical characteristics of the pro-

hibited item. Multiview analysis may be a potential solu-

tion, collecting observed cues from different views for

learning.

4.8 Evaluation on the HIXray dataset

We also conduct experiments on the HIXray dataset. The

experimental results are reported in Table 6, and some

detection results are illustrated in Fig. 11. PO1, PO2, WA,

LA, MP, TA, CO, and ML represent portable chargers 1

(lithium-ion prismatic cell), portable chargers 2 (lithium-

ion cylindrical cell), mobile water bottles, laptops, mobile

phones, tablets, cosmetics, and metallic lighters, respec-

tively. Note that our results based on the HIXray dataset

yield conclusions similar to those from our results on the

OPIXray dataset. Our method obtains 83.21% in mAP,

values which are 1.11% more than the runner-up.

In Fig. 11, the detected outputs of the DOAM and our

approach and the corresponding ground truth are illus-

trated. The accurately detected bounding boxes in Fig. 11a

certify that our approach is robust to variations in back-

ground clutter. Feature maps obtained from multiple per-

ception fields and analyzed by common and discrepancy

knowledge across different images help to locate positions

and recognize categories of prohibited items.

Fig. 11b also illustrates the inaccurate inference results.

Note that items in ’cosmetic’ are sometimes missed owing

to its diversity in both appearance and shape. Curriculum

learning [6] is a potential solution, because it learns the

pattern of objects from general to specific in a cascade

manner, which partially solves the cosmetic diversity

problem.

4.9 Discussion

If the prohibited item is partially occluded, the information

from the unoccluded distal part can be employed for dis-

crimination by using multiple scale perceptions. In multi-

scale analysis, CHR [13] and DetectoRS [14] deliver only

(a) Accurate results

(b) Inaccurate results

Fig. 9 Experimental results on

the SIXray dataset, where the

DOAM approach, our approach,

and the corresponding ground

truth are illustrated in blue, red,

and green bounding boxes,

respectively. a Accurate

detection results. The 1st (top)

row shows the cases where the

prohibited items have no or

slight occlusion, and the 2nd

row shows the situations where

the prohibited items exhibit

partial occlusions. b Inaccurate

detection results

Table 5 Experimental comparison of the mAP on the OPIXray

dataset

Method FO ST SC UT MU Average

RetinaNet [3] 77.07 36.06 94.61 64.64 82.15 70.91

Nonlocal [28] 77.55 36.38 95.26 64.86 82.98 71.41

CHR [13] 80.42 40.55 94.17 67.11 82.48 72.95

DetectoRS[14] 81.01 41.03 94.64 68.19 83.41 73.66

S-YOLOv4[27] 81.44 41.07 94.70 68.25 83.67 73.83

DOAM [29]* 81.37 41.50 95.12 68.21 83.83 74.01

Copy-Paste[5] 81.15 42.44 95.13 68.93 84.06 74.38

Swin Trans.[12] 82.14 42.77 95.75 69.60 84.84 75.04

CST [7]* 82.28 42.81 95.80 69.73 84.95 75.13

Focal Trans.[30] 82.96 45.13 96.35 70.92 86.02 76.25

Ours 83.04 48.73 96.54 73.19 87.03 77.70

The values in bold represent the best results among different

approaches

FO, ST, SC, UT and MU represent a folding knife, a straight knife,

scissors, a utility knife and a multitool knife, respectively. ‘*’ denotes

the approach we reimplemented
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high-level visual cues to assist midlevel features and

achieve limited improvement in object localization. To

handle this predicament, our SIM module also incorporates

detailed information from low-level feature maps and

bidirectional mining of contextual semantic information to

improve localization accuracy. The feature interaction of

neighboring scales enhances the feature representation,

alleviates the semantic gaps between features in different

perception domains, and allows the model to obtain a

comprehensive understanding of the entirety and different

parts of the same object. It can also effectively capture the

appearance variations caused by severe occlusion, where

the visual features are seriously insufficient.

The rich contextual semantic information between

images can be explored to understand the unique parts of

prohibited items. The common attention in the CAM

module explores cross-image shared semantics, which

helps the classifier to proficiently perceive the common

semantic labels over the coattentive regions. Discrepancy

attention in the CAM module focuses on unshared

semantics, which enables the classifier to capably separate

the semantic patterns of different objects. Actually, the

cross-attention [28] or transformer [12, 30] mechanism can

not only explore similarity in local and global regions but

also discover and discriminate semantics by using images

containing items in the same of different classes, at the cost

of computational complexity.

Although the segmentation-based branch (our MLM

module) does not receive accurate pixel-level outputs, it is

more robust than edge-based methods [7, 29] because an

edge is affected by factors from other sides, while an object

region contains much information to describe the specific

(a) Accurate results

(b) Inaccurate results

Fig. 10 Experimental results on

the OPIXray dataset, where the

DOAM approach, our approach,

and the corresponding ground

truth are illustrated in blue, red,

and green bounding boxes,

respectively. a Accurate

detection results. b Inaccurate

detection results

Table 6 Experimental

comparison of the mAP on the

HIXray dataset

Method PO1 PO2 WA LA MP TA CO ML Average

RetinaNet [3] 88.73 86.31 86.71 89.82 88.82 88.81 63.44 13.35 75.74

Nonlocal [28] 88.82 87.73 87.61 89.73 89.51 88.66 63.75 12.92 76.23

CHR [13] 88.67 88.52 88.52 90.23 89.44 89.43 69.61 14.42 77.32

DetectoRS[14] 90.84 88.43 88.83 91.94 90.93 90.92 65.53 15.44 77.85

S-YOLOv4[27] 91.04 89.91 89.83 91.91 91.74 90.82 65.44 15.63 78.44

DOAM [29]* 93.22 92.60 90.56 95.65 96.04 92.41 61.79 14.38 79.61

Copy-Paste[5] 93.84 92.75 91.63 94.71 93.57 92.63 64.71 16.90 80.28

Swin Trans.[12] 94.82 93.88 92.44 97.49 97.15 94.72 63.94 15.14 81.22

CST [7]* 95.33 94.71 92.72 97.81 98.22 94.53 63.91 16.52 81.72

Focal Trans.[30] 95.73 94.72 93.32 98.31 98.01 95.67 64.88 16.02 82.10

Ours 96.11 95.02 93.94 98.32 98.53 95.80 65.62 19.97 83.21

The values in bold represent the best results among different approaches

PO1, PO2, WA, LA, MP, TA, CO, and ML represent portable chargers 1 (lithium-ion prismatic cell),

portable chargers 2 (lithium-ion cylindrical cell), mobile water bottles, laptops, mobile phones, tablets,

cosmetics, and metallic lighters, respectively. ‘*’ means the approach we reimplemented
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class to which the object belongs, which reflects the object

category and location assisting in pixel-level understanding

and improving the detection accuracy. In addition, dual

branches are used to perform different tasks (detection and

segmentation), which optimizes the shared feature maps

from both the pixel level and object level.

The basis of our approach is that the occluded part is

still partially visible in the X-ray image. Therefore, we

learn the multiscale analysis, characteristics, and segmen-

tation of the interacting part to improve the perception of

prohibited items. In general object detection, the occluded

part is totally invisible; as a result, our approach does not

work in this situation owing to the absence of valuable

partially observed appearance information.

In future work, we will explore the relationship between

different viewpoints or depths through multiview- or

computed tomography-based approaches to expand the

method and address the challenges under a single view-

point, which will further improve the effectiveness of

prohibited item detection from X-ray images. Curriculum

learning [6], learning the pattern of objects from general to

specific in a cascade manner, is also a potential solution to

handle the problem of diversity in prohibited item

detection.

5 Conclusion

Here, we present a new method that employs multilayer

feature interaction to improve the perception ability of the

model. The proposed cross-image analysis can learn the

pixel-level semantics of objects in a weakly supervised

manner. This pixel-level information can further assist in

prohibited item detection, especially in the case of missing

information, such as from occlusion. Experimental results

on the SIXray dataset, the OPIXray dataset, and the HIX-

ray dataset show that our approach outperforms other

popular approaches by margins of 1.47%, 1.45%, and

1.11% in mAP.

Acknowledgements The authors would like to thank AJE (www.aje.

com) for its linguistic assistance during the preparation of this

manuscript.

Declarations

Conflict of interest All authors declare that they have no conflicts of

interest regarding the publication of this paper.

References

1. Akcay S, Atapour-Abarghouei A, Breckon TP (2018) Ganomaly:

semi-supervised anomaly detection via adversarial training. In:

Asian conference on computer vision, pp 622–637

2. Akcay S, Kundegorski ME, Willcocks CG et al (2018) Using

deep convolutional neural network architectures for object clas-

sification and detection within x-ray baggage security imagery.

IEEE Trans Inf Forens Security 13(9):2203–2215

3. Cui Y, Oztan B (2019) Automated firearms detection in cargo

x-ray images using retinanet. In: Anomaly detection and imaging

with X-Rays (ADIX) IV, p 109990P

4. Fu J, Liu J, Tian H et al (2019) Dual attention network for scene

segmentation. In: Proceedings of the IEEE/CVF conference on

computer vision and pattern recognition, pp 3146–3154

5. Ghiasi G, Cui Y, Srinivas A et al (2021) Simple copy-paste is a

strong data augmentation method for instance segmentation. In:

Proceedings of the IEEE/CVF conference on computer vision and

pattern recognition, pp 2918–2928

6. Hacohen G, Weinshall D (2019) On the power of curriculum

learning in training deep networks. In: International conference

on machine learning, pp 2535–2544

7. Hassan T, Akcay S, Bennamoun M et al (2020) Cascaded

structure tensor framework for robust identification of heavily

(a) Accurate results

(b) Inaccurate results

MobilePhone
Cosme�c

Cosme�c

Cosme�c

Cosme�c

Cosme�c

Cosme�c
MobilePhone

Laptop MobilePhone

Cosme�c
Portable
Charger1

MobilePhone

Portable
Charger1 Cosme�c MobilePhone

Portable Charger1

Cosme�c Portable
Charger2

MobilePhone

Cosme�c

Cosme�c

MobilePhone

Cosme�c

MobilePhone
MobilePhone

MobilePhone

Mobile
Phone

Cosme�c
Cosme�c

Fig. 11 Experimental results on

the HIXray dataset, where the

DOAM approach, our approach,

and the corresponding ground

truth are illustrated in blue, red,

and green bounding boxes,

respectively. a Accurate

detection results. b Inaccurate

detection results

Neural Computing and Applications (2022) 34:20285–20298 20297

123

http://www.aje.com
http://www.aje.com


occluded baggage items from x-ray scans. arXiv preprint arXiv:

2004.06780

8. He K, Zhang X, Ren S, et al (2016) Identity mappings in deep

residual networks. In: Proceedings of the european conference on

computer vision, pp 630–645

9. Jain DK et al (2019) An evaluation of deep learning based object

detection strategies for threat object detection in baggage security

imagery. Pattern Recogn Lett 120:112–119

10. Lin TY, Goyal P, Girshick R, et al (2017) Focal loss for dense

object detection. In: Proceedings of the IEEE international con-

ference on computer vision, pp 2980–2988

11. Liu JJ, Hou Q, Cheng MM et al (2019) A simple pooling-based

design for real-time salient object detection. In: Proceedings of

the IEEE/CVF conference on computer vision and pattern

recognition, pp 3917–3926

12. Liu Z, Lin Y, Cao Y, et al (2021) Swin transformer: Hierarchical

vision transformer using shifted windows. In: Proceedings of the

IEEE/CVF international conference on computer vision,

pp 10012–10022

13. Miao C, Xie L, Wan F, et al (2019) Sixray: A large-scale security

inspection x-ray benchmark for prohibited item discovery in

overlapping images. In: Proceedings of the IEEE/CVF confer-

ence on computer vision and pattern recognition, pp 2119–2128

14. Qiao S, Chen LC, Yuille A (2021) Detectors: Detecting objects

with recursive feature pyramid and switchable atrous convolu-

tion. In: Proceedings of the IEEE/CVF conference on computer

vision and pattern recognition, pp 10213–10224

15. Ren S, He K, Girshick R et al (2015) Faster r-cnn: Towards real-

time object detection with region proposal networks. Proc Adv

Neural Inf Process Syst 28:91–99

16. Tao R, Wei Y, Jiang X, Li H, Qin H, Wang J, Ma Y, Zhang L,

Liu X (2021) Towards real-world x-ray security inspection: A

high-quality benchmark and lateral inhibition module for pro-

hibited items detection. In: Proceedings of the IEEE/CVF inter-

national conference on computer vision, pp 10923–10932

17. Tian Y, Chen T, Cheng G et al (2022) Global context assisted

structure-aware vehicle retrieval. IEEE Trans Intell Transp Syst

22(12):1–10

18. Tian Y, Cheng G, Gelernter J et al (2020) Joint temporal context

exploitation and active learning for video segmentation. Pattern

Recogn 100:107158

19. Tian Y, Gelernter J, Wang X et al (2018) Lane marking detection

via deep convolutional neural network. Neurocomputing

280:46–55

20. Tian Y, Gelernter J, Wang X et al (2019) Traffic sign detection

using a multi-scale recurrent attention network. IEEE Trans Intell

Transp Syst 20(12):4466–4475

21. Tian Y, Hu W, Jiang H et al (2019) Densely connected attentional

pyramid residual network for human pose estimation. Neuro-

computing 347:13–23

22. Tian Y, Wang H, Wang X (2017) Object localization via eval-

uation multi-task learning. Neurocomputing 253:34–41

23. Tian Y, Wang X, Wu J et al (2019) Multi-scale hierarchical

residual network for dense captioning. J Artif Intell Res

64:181–196

24. Tian Y, Zhang Y, Xu H et al (2022) 3d tooth instance segmen-

tation learning objectness and affinity in point cloud. ACM Trans

Multimed Comput Commun Appl 18:202–211

25. Tian Y, Zhang Y, Zhou D et al (2020) Triple attention network

for video segmentation. Neurocomputing 417:202–211

26. Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all

you need. In: Proceedings of the advances in neural information

processing systems, pp 5998–6008

27. Wang CY, Bochkovskiy A, Liao HYM (2021) Scaled-yolov4:

Scaling cross stage partial network. In: Proceedings of the IEEE/

CVF conference on computer vision and pattern recognition,

pp 13029–13038

28. Wang X, Girshick R, Gupta A, et al. (2018) Non-local neural

networks. In: Proceedings of the IEEE conference on computer

vision and pattern recognition, pp 7794–7803

29. Wei Y, Tao R, Wu Z, et al. (2020) Occluded prohibited items

detection: An x-ray security inspection benchmark and de-oc-

clusion attention module. In: Proceedings of the ACM interna-

tional conference on multimedia, pp 138–146

30. Yang J, Li C, Zhang P, et al. (2020) Focal self-attention for local-

global interactions in vision transformers. In: Proceedings of the

advances in neural information processing systems, pp 138–146

31. Yu J, Lin Z, Yang J, et al. (2019) Free-form image inpainting

with gated convolution. In: Proceedings of the IEEE/CVF inter-

national conference on computer vision, pp 4471–4480

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

20298 Neural Computing and Applications (2022) 34:20285–20298

123

http://arxiv.org/abs/2004.06780
http://arxiv.org/abs/2004.06780

	Handling occlusion in prohibited item detection from X-ray images
	Abstract
	Introduction
	Related work
	General object detection
	Prohibited item detection

	Our approach
	Scale interaction module
	Cross-image analysis module
	Multitask learning module

	Results
	Hardware and software environment
	Datasets
	Evaluation criteria
	Implementation details
	Ablation study
	Evaluation on the SIXray dataset
	Evaluation on the OPIXray dataset
	Evaluation on the HIXray dataset
	Discussion

	Conclusion
	Acknowledgements
	References




