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Abstract
High-precision detection of vehicle position and contour from unmanned aerial vehicles (UAV) provides critical infor-

mation for vehicle behavior and traffic flow studies. Vehicles in UAV videos present unique features of small target pixels,

which pose challenges in accurate detection. In addition, shaking of UAV camera, shadow of vehicle, and ground

sign/marking also lead to difficulties in precise vehicle contour detection. The study proposes a novel approach that designs

a bidirectional feedback framework (GKB) between optimized Gaussian mixture model and Kernel correlation filter to

enhance vehicle detection. The framework predicts vehicle position based on information of continuous and correlated

previous frames to achieve improved performance. We also improve the detection of closely spaced and dark vehicles with

morphological algorithms and data processing. The approach is tested on two UAV videos with different shooting heights,

illumination conditions, and traffic states. The results show that the proposed method significantly improves vehicle

detection. The total accuracy of our model is 98%, which is a 11% improvement over the traditional single detect model

and a 4% improvement over the track-after-detect method. Our model’s detection rate of closely spaced and dark vehicles

is improved by 15–25% compared to previous methods. Our model’s vehicle contour detection accuracy is over 94%,

which is about a 15% improvement over previous methods.
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1 Introduction

High-precision vehicle detection from videos benefits

traffic flow studies by generating vehicle trajectories con-

taining information such as vehicle position, speed, accel-

eration, and gap. They greatly support traffic flow

modeling, traffic congestion analysis, and traffic conflict

evaluation [1–3]. In recent years, due to the advantages of

comprehensive visibility coverage, low deployment cost,

and high flexibility, the unmanned aerial vehicle (UAV) is

becoming an emerging technology for collecting traffic

videos. However, vehicles in UAV videos present some

unique features such as small targets and low pixels, which

pose challenges in foreground extraction and vehicle-

background distinguishing and thus usually result in the

decreased detection rate of vehicles. In addition, shaking of

UAV camera, shadow of vehicle, and ground sign/marking

also lead to difficulties in accurately detecting vehicle

contours such as front and rear bumpers. Improving vehicle

detection rate in UAV videos is a challenging research

topic [4–6].

Currently, the hottest method of vehicle detection is

deep learning. Those models mainly include supervised

learning (such as convolutional neural network (CNN), fast

region convolutional neural network (FAST-RCNN), Yolo
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[7–9]) and semi-supervised or unsupervised learning (such

as generative adversarial nets (GANs), stacked capsule

autoencoder (SCAE) [10, 11]). A reasonable vehicle

detection rate can be achieved based on the condition that

the deep learning agent has been well-trained by a rela-

tively large number of sample sets. In other words, the

performance is overly dependent on the training sample

quality and can be disturbed by factors prone to under-

fitting and over-fitting phenomena in different scenes. The

training also requires a lot of work such as preparation,

parameters tuning, time, and environmental allocation. In

scenarios without sufficient and high-quality training

samples, such as our case of vehicle detection with small-

target, low-resolution, changeable condition in UAV

videos, the deep learning model performance can be pri-

marily limited [12–14].

Previous studies have proposed machine vision methods

for vehicle detection, such as the adaptive Gaussian mix-

ture model [15], background modeling for foreground

detection [16], Harris corner detection method [17], and

universal background subtraction vibe algorithm [18]. The

central idea of those methods is establishing the video

background and finding the features of moving objects in

pixel variety for target detection. Compared with the deep

learning methods, the advantages are no need for an

extensive training sample set and heavy preparation work,

which is robust to new scenarios. However, the background

models are highly influenced by video shaking and scene

interference, and the foreground extraction is greatly

affected by the vehicle pixels. As a result, the model per-

formance usually arises the minuses such as vehicle sha-

dow misdetection, abnormal connection of closely spaced

vehicles, and ghost areas by invalid foreground [19].

In recent years, target tracking algorithms have been

applied to track vehicles’ positions in UAV videos. For

example, Ke et al. develop a Kanade–Lucas–Tomasi

tracking method [20]. Kristan et al. developed a visual

object tracking method [21]. Lee et al. developed a visual

tracking method by partition-based histogram back-pro-

jection and maximum support criteria [22]. Chen et al.

develop a high-resolution vehicle trajectory extraction

method using the region of intersect (ROI) detection and

the Kernel correlation filter (KCF) tracking [23]. Ren et al.

propose state-of-the-art multi-object tracking (MOT)

methods to obtain the trajectories [24]. Naima Amrouche

et al. developed a track-before-detect (TBD) approach [25].

The main idea of these algorithms is to predict the subse-

quent positions of vehicles through pixel features from

previous positions. They improve the robustness and

accuracy of detecting the to-be-tracked vehicles. However,

most tracking algorithms predict the target position only

from the function of extreme value acquisition by ridge

regression and other methods, which may cause the

tracking model to be easily influenced by changeable

conditions and neighboring vehicles. As a result, these

tracking algorithms often suffer from the problem of miss

detection and loss tracking during the detection of complex

scenes [26].

The primary objective of our study is to propose a

bidirectional feedback framework for the optimized

Gaussian mixture model (OGMM) and Kernel correlation

filter (KCF) by optimizing the interaction to enhance the

performance of vehicle detection. The framework uses a

generative complementarity (GC) structure through the

correlated-frame motion characteristics to optimize the

modeling and improve the detection of vehicle and con-

tour. The results are compared with other models for dif-

ferent scenarios. The findings of our study can benefit

vehicle trajectory extraction, traffic flow modeling, traffic

incident detection, and vehicle sample database building-

up.

2 Methodology

2.1 Overall framework

We proposed the bidirectional feedback framework (GKB)

between optimized Gaussian mixture model (OGMM) and

Kernel correlation filter (KCF) to obtain high-precision

trajectory data and vehicle contour data from UAV video,

especially for the detection of small pixel targets and clo-

sely spaced vehicle. The GKB framework is derived from

the generative complementarity thought, in which the two

methods (detection and track) can play to their strength

while complementing each other’s disadvantages by the

feedback mechanism. We designed our detection model

with solid robustness to better detect UAV video in com-

plex and changeable scenes without enough sample train-

ing. The core steps of the algorithm include: (i).

Pretreatment: We used our new pixel feature enhancement

framework, which provides for scale-invariant feature

transform (SIFT), feature extraction (FE), linear affine

(LA), and k-nearest neighbor (KNN), to eliminate back-

ground interference (including jitter, light, and shadow)

and optimize the background image and foreground pixel.

(ii). Detection and Tracking: We adapted the GKB

framework, which enhances detection through inter-frame

position features. Meanwhile, the framework proposes

coordinate information optimization based on two-way

feedback, solving some detection problems of traditional

algorithms, such as missed inspection and the ‘ghost

Region of Intersect (ROI)’ area. (iii). Data Processing and

Optimization: We optimized the new trajectory by coor-

dinating accurate regression and abnormal trajectory
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elimination to collect high-precision trajectory data.

Details of the algorithm are given as follows.

3 Notations

Before formulating the GKB model, the notations used in

this paper are listed in Table 1.

3.1 Pretreatment

To extract the foreground target effectively when the UAV

video background is instability, we propose a new frame-

work based on scale-invariant feature transform (SIFT)

feature extraction, k-nearest neighbor (KNN) matching,

and linear affine transform [27, 28]. Firstly, we will use

SIFT algorithm to extract the feature points in aerial video

and obtain their scale vector information. Secondly, we use

the KNN proximity method to match the feature points

between interference frames and map the jitter frame back

to the current standard frame through the feature linear

affine transformation matrix to eliminate the jitter of UAV.

Finally, we will enhance the target area of the foreground

through binarization algorithm and opening and closing

operation, which will help us better carry out video

detection.

3.1.1 Background optimization method

In the beginning, we use the SIFT method to create a new

Gauss-scale-space to represent the video background to

obtain the feature information of each frame better as

follows:

G x; y; rð Þ ¼ 1

2pr2
e� xþyð Þ2=2r2 ð1Þ

L x; y; rð Þ ¼ G x; y; rð Þ � I x; yð Þ ð2Þ

where Gðx; y; rÞ is a two-dimensional Gaussian kernel

function that represents convolution operation, x and y are

the positions of the image, r is the smoothness coefficient

of the image, L x; y; rð Þ is the Gaussian convolution of the

original image at variable scale, � represents convolution

operation, and I x; yð Þ is the XY coordinates of the original

image.

To effectively detect stable key points in scale space, we

transform them into Gaussian-difference-scale (DOG)

space for feature acquisition:

D x; y; rð Þ ¼ G x; y;urð Þ � G x; y; rð Þð Þ � I x; yð Þ
¼ L x; y;urð Þ � L x; y; rð Þ ð3Þ

where u is a constant of the space multiple of adjacent

scales. D x; y; rð Þ can replace the Gauss–Laplace function

r2r2G to establish the background.

Then, we detect extremum points of the DOG scale

spatial to find the position of the feature points. Each

sampling point should be compared with all adjacent points

to discover whether it is larger or smaller than adjacent

points in the scale domain. After that, we distribute

direction parameters for feature points and determine a

SIFT feature area from these three key factors: real posi-

tion, direction, and scale. During the process, the directions

are distributed as follows:

h x; yð Þ ¼ _g tan 2
L x; yþ 1ð Þ � L x; y� 1ð Þ
L xþ 1; yð Þ � L x� 1; yð Þ

� �
ð5Þ

where m (x, y) means length, h x; yð Þ means angle, and _g

means the larger value of the Gaussian difference operator.

So far, the feature points of the image have been

detected, and each feature point has three pieces of infor-

mation: location, scale vector, and direction so that a SIFT

feature area can be determined. To match the feature points

between frames, we calculate the Hamming distance

D Vp;Vq

� �
and feature vector between each feature point in

the current standard frame and the shaking frame, where Vp

is the feature vector of a feature point P in the shaking

frame, and Vq is the feature vector of the nearest feature

point Q in the first frame. The smaller D Vp;Vq

� �
is, the

more similar the two features are.

Finally, we use the linear affine transformation matrix

from the designed image to the first frame image to match

pairs. The linear affine transformation matrix is defined as

follows:

Ajb½ � ¼ a11 a12 b1
�a12 a11 b2

� �
: ð6Þ

Then, the shaking frame can be a regression as follows:

Âjb̂
� 	

¼ argmin
½Ajb�

X
i

u i½ � � Av i½ �r�b ð7Þ

m x; yð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð L xþ 1ð Þ; yð Þ � L x� 1; yð ÞÞ2 þ L x; yþ 1ð Þ � L x; y� 1ð Þð Þ2

q
ð4Þ
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Table 1 Main notations used in

this paper
Notations Definitions

x Horizontal coordinates in pixels

y Vertical coordinates in pixels

r Smoothness coefficient of the image

G x; y;rð Þ Two-dimensional Gaussian kernel function

L x; y;rð Þ Gaussian convolution of the original image at variable scale

I x; yð Þ XY coordinates of the original image

u Constant of the space multiple adjacent scales

D x; y;rð Þ Difference of Gaussian scale-space

m x; yð Þ Length in pixels

h x; yð Þ Angle in pixels

_g Larger value of Gaussian difference operator

Ajb½ � Linear affine transformation matrix

amn Coefficient of variation in the linear affine transformation matrix

Âjb̂
� 	

Affine regression matrix

u i½ � Feature point i in the shaking frame

v i½ � Feature point i in the standard frame

A, B Structural element

p xð Þ Probability density function of the k th Gauss model

xk;t Weight of the k th Gauss model in t th frame

a Square of the learning rate

act Updated learning rate

pk Weight of the k th Gauss model

ti Basic model establishing time

c Gap time

z Input data

wT Parameter matrix of regression model

k
xx0 Kernel matrix

r2 Coefficient of the Gauss kernel matrix

F(x) Fourier transform matrix

f̂ zð Þ Possible vehicle position between different frames

â Kernel regressor

an New tracking learning kernel model

a0 Prediction model of detection results

AG;1 Real new position

m0 Learning rate of tracking position update

b Conditional variable

AG;0 Detection ROI results of the GMM method

Ak;0 Tracking ROI of the KCF tracker

corx=cory Left/right angular coordinates

P i;kð Þ Real point of the k th vehicle in the i th frame

b1;b2;b3;b4 Position control parameters

Lr Designing real trajectory

DK Trajectory coincidence matrix

C1;C2;C3 Trajectory control parameters

8750 Neural Computing and Applications (2023) 35:8747–8761

123



where u i½ � is the feature point i in the shaking frame, and

v i½ � is the feature point i in the standard frame.

Since the positional relationship between frames is linear,

we modify the current frame through the affine matrix Âjb̂
� 	

to obtain the fixed coordinate position of the dithered frame.

Through the above methods, we match the feature points

between different video frames and correct the coordinate

difference of the overall position between frames using the

linear change matrix. We could finally eliminate the

interference of jitter in UAV video on detection and

improve the robustness of the general framework.

3.1.2 Connected region area operation

To give better play to the detection characteristics of the

GKB framework, we transform the background into the

binary (or multi-valued) image using the threshold seg-

mentation. We extract the feature targets of different

regions by calibrating the feature points of connected

regions and preprocessing with opening and closing

operations.

Firstly, we use the open operation to smooth the contour

of the vehicles, disconnect the narrow discontinuity and

eliminate the prominence as follows:

A � B ¼ A�Bð Þ � B ð8Þ

where � means open operation, � means corrode operation,

and � means expand the operation.

To open A with structural element B is to corrode A with

B, then expand the result with B. In patents, convolution

kernels (B) with decreasing pixels are used to open the

original binary image (A) to remove the outliers outside the

target vehicle. The video is corrupted with the background

expanding. But the corroded area will shrink one circle.

Therefore, an operation is needed to expand the target

(vehicle) area to its original size.

So, we use the close operation as follows:

A � B ¼ A� Bð Þ�B ð9Þ

where means close operation, � means corrode operation,

and � means expand the operation.

To close A with structural element B is to expand set

A with B, and then erode the result with B. In patents,

convolution kernels (B) with decreasing pixels are used to

open the original binary image (A) to eliminate the disorder

and cracks from the open operation. The faults in the target

vehicle are eliminated. And the edges of the vehicle are

smoothed. But the target vehicle area also expands one

circle outward. The corrosion operation is needed to restore

the vehicle area in the image to the previous size.

Considering the small target pixel in UAV video, we use

the third-order cycle iteration of open-close operation to

deal with the problems such as the closely spaced vehicles.

Using gradient decrement of the convolution core, we

process the original image from coarse to fine, making the

edge sharpness of the final processing more accurate.

Because iterative processing erodes the edges of open

operations locally, it increases the anti-interference ability

of recognition methods for possible transversal and dis-

turbance of video (Fig. 1).

At last, with the hole filling operation, for the 0-value

noise appearing in some local open operations, 1 value is

added according to the surrounding connected region. The

vehicle position is reproduced and clearer.

3.2 Detection and tracing

To improve the detect efficiency in complex and change-

able scenes, a novel framework is proposed to detect and

trace the trace in UAV videos efficiently. There are two

main parts to this part. One is optimizing the detection and

tracking algorithm framework to improve overall aerial

video efficiency and adaptability. The other is to establish a

bidirectional feedback mechanism in the tracking process.

The processing mechanism is shown in Fig. 2 as follows:

3.2.1 Optimized gauss mixture model

In aerial video analysis, the detection of moving objects is

the focus of the problem. We adopt the optimized Gauss

mixture model to obtain more accurate detection results to

extract the moving foreground from the current frame.

Among the similar algorithms, updating the background by

the weighted average of the current frame and background

frame in the video is more reliable and robust. Besides, the

OGMM method is much better suited for our GKB model

with extensive processing capacity, high stability, and high

flexibility.

The essence of GMM is to fuse several single-Gaussian

models to make the model more complex and produce

more complex samples. For an input video Z�, assuming

the GMM is composed of K Gaussian models, in the

OGMM model converted from video images, the proba-

bility density function is shown as follows [29]:

p xð Þ ¼
XK
k¼1

p kð Þp xjkð Þ ¼
XK
k¼1

pkNðxjuk;
X

kÞ ð10Þ

XK
k¼1

pk ¼ 1 ð11Þ

where p xjkð Þ ¼ Nðxjuk;
P

kÞ is the probability density

function of the k th Gauss model, which can be seen as the

probability of generating x when the k th model is selected.
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p kð Þ ¼ pk is the weight of the k th Gauss model, also called

prior probability.

The weight of the different models is continuously

updated when the video is playing. To decrease the com-

putational effort, we propose a new weight updating

method as follows:

xk;t ¼ 1� að Þxk;t þ a Mk;t

� �
; t\ti

xk;ct ¼ 1� actð Þxk;ct þ act Mk;ct

� �
; t	 ti

(
ð12Þ

act ¼ a= lnðtiÞ ð13Þ

where xk;t means the weight of the k th Gauss model in t th

frame, a is the square of the learning rate, act is the updated
learning rate, Mk;ct is 1 for the matching component, and

for other components, it is set to 0, ti is the basic model

establishing time, and c is the gap time.

This is a gradient decreasing updating mode, which is

exceptionally suited for the GKB framework. First of all,

after the pretreatment of the UAV video, the video a rel-

atively stable so that this model can provide the OGMM

efficiency to the greatest extent. Secondly, it can signifi-

cantly reduce the filter interference and ensure the model

stability in the long-time video detection. Thirdly, con-

sidering the only change of the a can be offset in the

expectation maximization (EM) solving model, the change

is compensated in the M-step as follows. So, the computed

amount in the solving step will not increase.

After that, the background model is relatively stable.

And the moving vehicles can be successfully detected in

the UAV video.

3.2.2 Kernel correlation filter and GKB mechanism

Considering the accurate extraction of small pixel targets in

different scenes, a novel Kernel correlation filter (KCF)

method is proposed based on the OGMM results. The core

Fig. 1 Schematic diagram of the algorithm framework

Fig. 2 Mechanism of the GKB method
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idea of the KCF algorithm is to expand the number of

negative samples to enhance the performance of the

tracker. In our framework, the core part of sample acqui-

sition is by the cyclic matrix and ROI from OGMM.

Besides, the new sample images can also be obtained by

moving different pixels upward and downward, respec-

tively, which can significantly expand the sample library to

get better tracking results.

Specifically, the OGMM model results are the input of

the KCF method, and the OGMM would find the actual

position Xt;i; Yt;i
� �

for each vehicle in each frame from the

whole scene. According to our regression model, we can

get:

f zð Þ ¼ wTz ð14Þ

where z is the input position data, wT is the parameter

matrix of the regression model (regression), f zð Þ is the

result of regression, which also can be called the response

value.

We use the least square regression and take the regres-

sion function of w as followed [30]:

w ¼ XHX þ kI
� ��1

XHy ð15Þ

where the parameters of X matrix correspond to the sample

value, the parameters of y matrix corresponds to the

regression value.

The ridge regression function is the most significant part

of the KCF, it directly influent the tracking results. In the

framework, we use the kernel function and regression to

solve the function as follows:

�kxx
0 ¼ exp � 1

r2
k�xk2 þ kx0k2 � 2F�1

X
c

x̂�c 
 x̂
0

c

 ! ! !

ð16Þ

where k
xx0

is kernel matrix, 1
r2 is the coefficient of the Gauss

kernel matrix, F(x) is the Fourier transform matrix, x̂ is the

cyclic matrix of the x, and 
 is the element-wise product

operation in the Fourier transformation.

So, a nonlinear regressor â can be trained for our input

aerial video with the HOG feature graph:

â ¼ ŷ

ckxx þ k
: ð17Þ

In the next frame, the vehicle image is selected in the

target position frame of the previous frame, and the HOG

feature map is obtained by cosine weighting. Then, by

computing of response matrix in the Fourier domain, we

can get the response matrix f̂ zð Þ for the possible vehicle

position between different frames as follows:

f̂ zð Þ ¼ k̂xz 
 â: ð18Þ

So that we can find the maximum response position in

matrix f zð Þ, if the response value exceeds the given cosine

threshold, then the position is the positions of vehicles in

the current frame; if the maximum response value is still

less than the threshold, the following positions need to be

remedied. That is one reason the KCF track result would

appear to track the lost phenomenon. At that time, The

OGMM helped output the detect positions of the vehicles

to join the matrix. When the maximum response value is

less than the threshold, the KCF tracker can find the nearest

detection position as the value to judge again. Most of the

time, the detection result can successfully make up the

track lost phenomenon.

Finally, the KCF tracker updates the model. To find the

accurate contour, the model repeats the steps as before by

selecting the sample at the newly found vehicle’s location,

calculating the model for the current frame, and marking it.

The model for the next frame is calculated by linear

interpolation as follows:

an ¼ m0ao þ 1� m0ð Þa0 ð19Þ

where an is new model, m0 is the learning rate, ao is the

tracking prediction model, and a0 is the prediction model of

detection results.

Using this kind of learning mode, the KCF tracker can

find the whole trajectories of the vehicles in the detection

area, which are also the real positions of the vehicles.

Moreover, its region of interest (ROI) area is more accurate

than the OGMM result because the tracing model is more

robust in light of weather conditions. So that the real

position areas renew as follows:

AG;1 ¼
b

1þ b
AG;0 þ

1

1þ b
Ak;0 ð20Þ

where b is a conditional variable, AG;0 is the detection ROI

results of the GMM method, and Ak;0 is the tracking ROI of

the KCF tracker.

After the data quality control, the new AG;1 would join

into the following KCF tracking process as the input of the

vehicle positions and the compensation position (see

Fig. 2). For several times of renewing processing until the

training results attain the threshold, a high-precision vehi-

cle position result F can be obtained.

3.3 Data processing and optimization

We need to perform the data cleaning and optimization

steps to obtain more accurate trajectory coordinate data and

vehicle contour position. Firstly, through the vehicle’s

dynamic characteristics and driving speed, we carry out

trajectory regression and initial data cleaning according to

the identification coordinates obtained by OGMM results.
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Secondly, using the coincidence matrix K, we match the

regression results with the KCF tracking position to get a

relatively accurate designing real trajectory Lr. At last, we

eliminate the abnormal points, mainly caused by ‘ghost

ROI’ or false detection, and correct the vehicle contour

through the correlation control function to output the final

high-precision result set W (as shown in Fig. 3).

In the beginning, to get better results, we need to define

and analyze the real positions and the characteristic of the

vehicles by the correlated-frame trajectory and extract the

trajectory of the vehicles from the OGMM results.

Define the center of the frame selection matrix as the

real point of the k th vehicle P i;kð Þ in the i th frame:

P i;kð Þ ¼ corx1þ corx2ð Þ=2; cory1þ cory2ð Þ=2ð Þ ð21Þ

where corx and cory is the left/right angular coordinates.

Considering the behaviors of the vehicles, the vehicles

have the characteristics such as the speed range, transverse

movement range, and acceleration range. Combined with

these characteristics, we can arrange the trajectory of the

vehicles by the following:

P iþ1;kð Þ ¼ min
j
ðdisðP i;kð Þ;P iþ1;jþ1ð ÞÞ: ð22Þ

The P iþ1;kð Þ need to meet the conditions of the following

characteristic of the vehicles, including:

Speed control:

dis P i;kð Þ;P iþ1;kð Þ
� �

\b1: ð23Þ

Transverse movement(in the expressway) control:

b2\angle P i;kð Þ����P iþ1;kð Þ����P iþ2;kð Þ
� �

\180�: ð24Þ

Acceleration control:

b3\
dis P i;kð Þ;P i�1;kð Þ
� �

dis P i;kð Þ;P iþ1;kð Þ
� �\b4 ð25Þ

where b1, b2, b3, b4 are the control parameters.

From the vehicles’ behavior performance in the pixels,

we can quickly eliminate the abnormal data and regress the

raw trajectories of the vehicles. However, these raw tra-

jectories come from the raw position data, so their relia-

bility and accuracy must be tested and optimized.

According to these two sets of vehicle trajectory data,

we judge their coincidence degree and generate the coin-

cidence matrix K of trajectory.

Definition trajectory results are as follows:

L1 ¼ a1 a2 � � � anj j
L2 ¼ b1 b2 � � � bnj j

Lr ¼
L1 þ L2

2

8><
>: ð26Þ

where an is the result of the trajectory regression of

OGMM detection, bn is the result of the trajectory of the

vehicles from the KCF method, and Lr is the real designing

trajectory.

Definition coincidence matrix DK is as follows:

DK ¼ Da1 Da2 � � � Dan
Db1 Db2 � � � Dbn

����
���� ð27Þ

where the Dan and the Dbn are the designing deviation,

which are the different values from the OGMM and KCF

results to the real designing position. The DK matrix is the

integration results of the GKB algorithm, from which we

can judge whether a designing trajectory Lr is reliable.

For a specific DK matrix, we have the following judg-

ment conditions:

Fig. 3 Mechanism of the data

processing
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P
i

ai\C1P
i

bi\C1

ai\C2

bi\C2P
i

ðjai � bijÞ\C3

8>>>>>>><
>>>>>>>:

ð28Þ

Firstly, the value of the
P
i

ai and
P
i

bi should be less

than the limited trajectory mistaken value C1, which could

be recorded as a reliable trajectory. Secondly, we judge

each vehicle’s position ai and bi. If they are less than the

limited single mistaken value C2, they are recorded as

reliable coordinates. Thirdly, we judge the GKB method

difference
P

i ðjai � bijÞ, which should be less than the

limited method mistaken value C3. Generally speaking,

most DK matrices have completely reliable trajectories and

coordinates. For these parts of DK matrics, the data in it are

smoothed to form a real trajectory. For unreliable coordi-

nates, the tracking trajectory is judged by three parts in the

vehicle identification trajectory regression process. After

eliminating the outliers, the new DK matrix is judged

repeatedly. Until the position accuracy attains the cali-

brated threshold, the final vehicle positions in Lr is the real

detection positions of our whole framework.

3.4 Experiment design

In the data collection process, the research team collected

two typical freeway sections in Nanjing, China, by the

unmanned aerial vehicle (DJI Mavic professional). The

videos contain specific traffic behaviors such as congestion

formation, merging and diversion in weaving areas, and

traffic conflict, which are of value in theoretical research.

Besides, they are different in shoot condition, height,

weather condition, road geometry, and traffic condition,

which is better to verify the effectiveness and robustness of

our GKB framework.

The detailed shooting conditions are shown in Table 2.

Video #1 is shot in a straight section on a sunny day, so it

has a relatively apparent phenomenon of vehicle shadow.

Video #2 is shot in a curve section on a cloudy day, so it

has a shaking phenomenon. The traffic conditions of the

two videos are free flow and congestion flow. The UAV

flying heights for the two videos are 207 m and 230 m.

And the length of the two videos is 569 frames and 803

frames. The video resolution is 3840*2160. The frame rate

is 25 fps. The test environment is based on the platform of

MATLAB 2016b. The test equipment is based on a

memory laptop with Inter Core I5-8300HQ@3.6 Hz CPU

processor, 4G system memory, and GeForce GTX 950

graphics card. We believe that the running speed of the

GKB framework can be significantly improved with better

equipment.

As an unsupervised machine learning framework mode,

the most significant advantage of the GKB framework is

that the algorithm can maintain its strong robustness

without pre-training and adapt to different scene environ-

ments through as few parameter changes as possible. In our

method, the parameters of most contents are relatively

opposite, and there is less interference and influence on

each other.

According to the specific needs of the experiment, a set

of recommended parameters is given as follows: (i). Pre-

processing part: The main influencing factor of parameter

selection is the average pixel size of the target of interest.

Under the shooting accuracy of 4 K, when the UAV flying

altitude is lower than 200 m, the vehicle pixel size is nearly

50 * 24 (pi)—200 * 65 (pi). According to the experimental

data, the best-recommended parameter of the convolution

kernel of the opening and closing algorithm is M = (27,9)

to m = (9,9). When the UAV’s flying altitude is higher than

200 m, the vehicle’s pixels are often below 50 * 24 (pi), so

the best-recommended parameter is M = (12,3) to

m = (3,3). (ii). Detection and tracking part: According to

the duration of the videos, the test modeling process of

A = 100 frames is selected, and the learning rate a = 0.005,

which is the main factor affecting the accuracy and speed

of the model. The basic model establishes time ti = 40 to

get background, the gap time c = 10 frames is better to

establish and update the background. During the process of

the bidirectional feedback, the learning rate m0 = 0.75, the

conditional parameter b ¼ 0:55, which are the main factors

affecting the accuracy of vehicle trajectory in different

scenes. (iii). Data processing part: According to the per-

formance of essential vehicle dynamics and current driving

speed, the control parameters in the correlated-frame tra-

jectory process are b1 ¼ 20 pixelð Þ, b2 ¼ 130�, b3 ¼ 4:45,

b4 ¼ 8:5, which are the critical control parameters to

eliminate outliers. For the coincidence matrix DK,
according to the shooting accuracy and height, the optimal

Table 2 Information on the UAV video shooting conditions

Information Video #1 Video #2

Road geometry Straight section Curve section

Frame rate 25fps 25fps

Resolution 3860*2160 3860*2160

Weather condition Sunny Cloudy

Shoot condition Small jitter Shaking

Duration 18 s 27 s

Height 207 m 230 m

Traffic condition Free flow Congestion flow
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vehicle contour control parameters are C1 ¼ 95 pixelð Þ,
C2 ¼ 7:5 pixelð Þ, C3 ¼ 55 pixelð Þ. Such parameter settings

can be helpful for eliminating the system’s error and sig-

nificantly improve the accuracy of the detection results.

4 Experiment results

4.1 Measurement of goodness of fit

The results come from the UAV video by the GKB algo-

rithm, including the real positions and the contours of the

vehicles, every detection vehicle picture in every frame, the

regression trajectory, and the residual from the DK matrix.

To significantly validate the performance of GKB results,

we still define other indexes to help us better judge the

data’s reliability.

The algorithm effect time:

AT ¼ real time sð Þ in detect 25 frame

1s
: ð29Þ

The rate of the successful detection:

RD ¼
P

i;j detect number of vehiclesP
i;j real number of vehicles

ð30Þ

where i means in the i th frame, and j means the j th vehicle

in detection.

The rate of the successful detection of the dark vehicle:

Dim the dark vehicles as the average pixel value is less

than c1, and in the test,c1 ¼ 25 (including black, dark blue,

red, dark brown, etc.).

DRD ¼
P

i;j detect number of dark vehiclesP
i;j real number of dark vehicles

: ð31Þ

The rate of the successful detection of the closely spaced

vehicles:

Dim the closely spaced vehicles as the two ROI borders

nearby pixel position is less than c2, and in the test,c2 = 12

(12 is the enormous convolution core in the open–close

algorithm)

NRD ¼
P

i;j detect number of closely� spaced vehiclesP
i;j real number of closely� spaced vehicles

:

ð32Þ

The rate of the reliability of the ROI area:

RCA ¼ coincidente area

detect area
: ð33Þ

The average rate of the whole detection ROI reliability:

ACA ¼ avg i;jð Þ
coincidente area

detect area

� �
¼ avg i;jð Þ RCAð Þ:

ð34Þ

The rate of ‘perfect’ detection vehicles:

RACA ¼
P

i;jðRCA[ c3ÞP
i;j real number of vehicles

: ð35Þ

In the experience test, to get a high-precision vehicle

position, we set the parameter c3 = 0.85.

The index to determine whether the result is reliable

mainly depends on the RD, ACA, and RACA, which closer

to 1 is better.

4.2 Outputs of methodological procedures

The outputs from each step in our framework are shown in

detail to guide our research’s functions. The pretreatment

examples are shown in Fig. 4b, c. It can be seen that before

the pretreatment, the background after binarization is

seriously interfered by the non-vehicle factors such as lane

lines and guideposts. Moreover, the ghost areas appearing,

such as in frame #40 and #110, can greatly influence the

final result. After the pretreatment, the background

becomes much clearer, and the foreground of the vehicle is

easier to detect and track (see Fig. 4).

The GKB method examples are shown in Fig. 4d, e, f.

Figure 4.d shows the detection result of the single detection

model using GMM, which has the problems of the detec-

tion loss of the adjacent vehicles and dark vehicles, ghost

areas, and low ACA and RACA. Figure 4e shows the result

of the unidirectional track after detection method using

GMM detection and KCF tracking, which have the lost

track and low RACA problems. And Fig. 4f shows the

result of our GKB algorithm, which overcomes the above

issues and superiorly detects all vehicles in the UAV video.

The data processing examples are shown in Fig. 5. It can

be seen that some of the vehicle positions are in low RCA

conditions by different causes, including transverse inter-

ference (TI), vertical interference (VI), road interference

(RI), and abnormal detection (AD), which significantly

influence the data mining and R&D work. These raw

results always have the bad Dai and Dbi and very volatile.

After the data cleaning method, nearly all the vehicle

positions with RCA, about 70–80% could be repaired into a

‘perfect’ position. More than half of the positions with

RCA, about 60–70% could be fixed into a ‘perfect’ posi-

tion. For these abnormal positions (RCA\ 0.6), the out-

liers could be eliminated or fixed into regular positions.

4.3 Results of vehicle detection using GKB
framework

To present the method results more intuitively and better

help us test the impact of the experience, we mark the real

positions and areas of each vehicle in about one hundred
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frames of each video to compare and get the rate results.

Besides, we also tested video in various other methods,

including single GMM, tracking-after-detection, and one-

stage deep learning method (YoloV4 with default weight).

The results are as follows:

The result indexes of different methods in video #1

are shown in Table 3. In Table 3, we collect the

essential test parameter of detecting vehicles and the

algorithm effect time in the video. Then, we calculate

the main depending indexes of the test RD, DRD, NRD,

ACA, and RACA compared with the real marked

Fig. 4 Comparing results with different framework in video #1 frame

40, 70, 110 a raw video; b binarization results before pretreatment;

c binarization results after pretreatment; d detect results using the

single Gaussian mixture model; e detect result using the track-before-

detect (GMM ? KCF) model; f detect result using GKB model
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positions of the vehicle we picked up. From the results,

under relatively stable video conditions, it is evident that

the single GMM model is relatively poor in the location

and accuracy of the detection. And unidirectional feed-

back method (GMM ? KCF method) merely gets a

reasonable detection rate. At the same time, although the

Yolov4 method has a higher speed and maintains rela-

tively good detection and position accuracy, its detection

ability for dark vehicles and adjacent vehicles is still

insufficient. Only by the GKB framework can we receive

a set of high-precision vehicle detection results, espe-

cially for accurately controlling vehicles’ contour.

The proposed framework is also used in video #2

where the road geometry is curved, the flight height of

the UAV is much higher, the video is slightly shaking,

the traffic conditions are more complex, and the number

of vehicles is several times than video #1. The detection

results are shown in Fig. 6, including the whole detection

of video #2 (the number with predicted means that the

vehicle’s position is the feedback result), detection

examples of special vehicles, and the processing of tra-

jectory regression. The result indexes are shown in

Table 4. The traditional detection method is much

weaker in complex conditions and congestion traffic

flow. At the same time, the Yolov4 algorithm also per-

forms poorly in this complicated scene, and its overall

recognition efficiency is not as good as the track-after-

detect method. The GKB framework detection rate is

nearly twice that of dark and closely spaced vehicles

compared to the single model. Besides, our algorithm

can still collect the relatively accurate vehicles’ contour,

nearly 20% over the YoloV4 method, even on the curve

road.

Fig. 5 Data processing results with difference RCA a the processing of the vehicles whose RCA are between 0.7 and 0.8; b the processing of the

vehicles whose RCA are between 0.6 and 0.7; c the processing of the vehicles whose RCA are below 0.6

Table 3 Results index of the different frameworks using in video #1

Index of results in video #1 Single GMM detect Unidirectional track after detect result GKB result(our) YoloV4(darknet)

Number of vehicles been detected 74(whole video) 93(whole video) 99(whole video) 87(whole video)

Algorithm effect time(s) 16.5(whole video) 24.0(whole video) 4.5(whole video) 2.1(whole video)

Number of RCA\ 0.6 (Times, frames) 25 9 1 6

Number of RCA\ 0.7 (Times, frames) 58 25 4 11

Number of RCA\ 0.8 (Times, frames) 139 78 10 65

Number of RCA\ 0.85 (Times, frames) 201 115 19 119

RD(%) 86.1 94.4 97.9 92.9

DRD(%) 45.0 62.4 82.1 67.1

NRD(%) 37.9 65.9 90.3 75.6

ACA(%) 74.2 79.8 90.1 80.3

RACA(%) 72.4 81.5 93.8 81.1

Bold indicates the best performance in the corresponding index
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Fig. 6 Detection results of the GKB framework in video #2 a detection results in video #2; b detection results of dark vehicles; c detection results
of nearby vehicles and buses; d results of trajectory regression

Table 4 Results index of the different frameworks used in video #2

Index of results in video #2 Single GMM

detect

Unidirectional track after the detect

result

GKB result YoloV4(darknet)

Number of vehicles been detected 420(whole video) 638(whole video) 741(whole

video)

552(whole

video)

Algorithm effect time(s) 22.5(whole video) 31.5(whole video) 5.0(whole
video)

2.1(whole video)

Number of RCA\ 0.6 (Times, frames) 329 119 18 65

Number of RCA\ 0.7 (Times, frames) [ 800 245 38 259

Number of RCA\ 0.8 (Times, frames) [ 800 453 84 554

Number of RCA\ 0.85 (Times, frames) [ 800 [ 800 159 [ 800

RD(%) 72.3 82.0 95.7 75.4

DRD(%) 40.9 62.8 81.3 58.6

NRD(%) 40.4 58.8 85.4 50.7

ACA(%) 64.3 76.1 87.9 72.5

RACA(%) 60.8 73.7 91.7 70.9

Bold indicates the best performance in the corresponding index
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Comparing the results between video #1 and #2, the

percentage of the standard positions (RCA[ 0.6) is similar

to the results of the video #1, considering the seven times a

whole number of the vehicles, which suggests that the

GKB method has the remarkable ability to control the

accuracy of the detect results. It is noted that the traditional

machine learning algorithms and the Yolov4 method all

have a sharp decrease in RD value, mainly due to the

scene’s complexity, the interference of video, and the

reduction in the vehicle pixel value. Even so, the GKB

algorithm can obtain rather high-precision positions and

trajectories of vehicles, which is extremely important for

traffic analysis.

Validation of the detection performance with low illu-

mination conditions would be helpful for practitioners. Our

current study does not collect the UAV videos in very low

illumination conditions such as night data. However, our

proposed methodology is believed to adapt well to low

illumination environments. We proposed the enhancement

model for complex conditions such as closely spaced and

dark vehicles with morphological algorithms and data

processing. The results demonstrate the effectiveness of the

detection enhancement algorithms. Thus, the algorithms

are expected to have good detection performance for low

illumination conditions.

In this study, the proposed methodology framework is

tested and validated on two datasets in which traffic

status is free-flowing and congested. The results show

that the proposed models perform well for vehicle

detection and trajectory construction. Though not evalu-

ated in the present study, the proposed framework can

still work well under complex and dynamic traffic con-

ditions such as stop-and-go traffic. The reason is that the

proposed methodology first detects the vehicle shape in

the image and then correlates the frame detections into

the vehicle trajectories according to the vehicle move-

ments. Thus, the framework does not require traffic

conditions because it does not rely on traffic flow the-

ories. Therefore, the algorithms should have extreme

reliability, adaptability, and robustness.

5 Conclusion and future work

This research proposes an enhancing precision vehicle

detection GKB framework for UAV video. Firstly, we

adapted SIFT feature extraction, KNN matching, and linear

affine transform to eliminate the video shaking and con-

nected region area operation to reduce the interference of

external factors. Secondly, we proposed the GKB frame-

work, which enhances detection through inter-frame posi-

tion features. Besides, the framework proposes coordinate

information optimization based on two-way feedback,

which solves some detection problems of traditional algo-

rithms, such as missed inspection and the ‘ghost Region of

Intersect (ROI)’ area. Thirdly, we use correlated-frame

trajectory integration and coincident matrix to promote the

accuracy of the trajectory and eliminate the abnormal

position. The framework has strong reliability, adaptability,

and robustness, which can better detect small pixel vehicle

targets in the case of changeable scenes and UAV jitter.

The results show that the proposed approach signifi-

cantly improves vehicle detection. The total accuracy of

our model is 98%, which is a 11% improvement over the

traditional single detect model and a 4% improvement

over the track-after-detect method. Our model’s detection

rate of closely spaced and dark vehicles is improved by

15–25% compared to previous methods. Our model’s

vehicle contour detection accuracy is over 94%, which is

about a 15% improvement over previous methods.

Our study provides a more straightforward way for

traffic researchers to obtain vehicle trajectory information

in each frame for each vehicle from UAV video,

including the position, horizontal and vertical location in

the road coordinate, speed and acceleration, and so on,

which can better help traffic researchers in traffic flow

modeling, traffic congestion analysis, and traffic conflict

evaluation. At the same time, using our method, we can

quickly collect the high-precision training database

required for deep learning research with different scenes.

The UAV video data is crucial for other researchers to

validate and compare their models. We have decided to

publish the data for researchers to access on the website

www.seutraffic.com.

In the future, we plan to expand our research scale and

conditions. Firstly, we will further improve the adaptability

of the algorithm to detect more traffic elements, including

pedestrians, non-motor vehicles, and other motor vehicles

on urban roads. Secondly, we will further enhance the

robustness of our framework under the conditions of low

resolution, severe shadows, and shadow interference.

Thirdly, we will combine our method with the advanced

algorithm and expand our traffic database for future

research.
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