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Abstract
The object tracking field continues to evolve as an important application of computer vision. Real-time performance is

typically required in most applications of object tracking. The recent introduction of Convolutional Neural network (CNN)

techniques to the object tracking field enabled the attainment of significant performance gains. However, the heavy

computational load required for CNNs conflicts with the real-time requirements required for object tracking. In this paper,

we address these computational limitations on the algorithm-side and the circuit-side. On the algorithm side, we adopt

interpolation schemes which can significantly reduce the processing time and the memory storage requirements. We also

evaluate the approximation of the hardware-expensive computations to attain an efficient hardware design. Moreover, we

modify the online-training scheme in order to achieve a constant processing time across all video frames. On the circuit

side, we developed a hardware accelerator of the online training stage. We avoid transposed reading from the external

memory to speed-up the data movement with no performance degradation. Our proposed hardware accelerator achieves 44

frames-per-second in training the fully connected layers.

Keywords Object tracking � CNN � Online training � Deep-feature interpolation � Hardware accelerator

1 Introduction

The object tracking field has wide application domains

which are ever increasing like surveillance systems, intel-

ligent robotics, unmanned vehicles and virtual reality. The

dramatic increase in the computational power has opened

the door for the creation of new tracking algorithms to

overcome the tracking field challenges [1].

Traditionally, tracking algorithms employed hand-craf-

ted features like pixel intensity, color and Histogram of

Oriented Gradients (HOG) [2] to represent the target.

However, hand-crafted features are not robust against

severe appearance variations [3]. Deep features obtained

from Convolutional Neural Networks (CNNs) achieved

better performance than that obtained by hand-crafted

features on recent tracking benchmarks. The adoption of

CNNs in the tracking field can be classified into three

categories: First, CNNs are exploited to train the regression

models of the Discriminative Correlation Filters (DCF)-

based trackers as in [4–6]. Second, a Siamese structure

[7–9] is adopted where the two identical CNN branches are

used to measure the similarity of two input patches. Third,

fully connected layers are added after the convolutional

layers to score the input patches and classify them into

object or background as in [3, 10–12]. All the three cate-

gories have achieved state-of-the-art performance on the

object tracking benchmarks. We focus on the third category

in this paper.

Generally, real-time processing and small-form factor

are desirable in most of the tracking applications. Hence,
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embedded platforms are the typical choice for imple-

menting the tracking algorithms [1]. The implementation

of the CNN-based object trackers on embedded platforms,

however, confronts several challenges because of the slow

speed, large memory requirements and the online training

computations. In general, CNN training requires at least

5 9 more multiply and accumulate (MAC) operations than

the inference phase [13] with much larger amount of

external memory accesses. For an efficient embedded

implementation, the limitations of the CNN-based trackers

need to be tackled while keeping acceptable performance

levels.

Initial results of this work were published in [12, 14]. In

[12], we outlined the overall architecture and presented a

Matlab model of our proposed object tracker named

Interpolation and Localization Network (ILNET). Refer-

ence [14] presented an initial HW design of ILNET where

we showed the benefits of applying interpolation schemes

and word length exploration of the different variables to

cut-down the required memory size and speed-up the

processing time. We presented also a novel technique for

the error back-propagation that avoids the transposed

reading from the external memory.

In this paper, we sum-up the full development of our

proposed object tracker, ILNET. The main objective of

ILNET is to enhance the speed of CNN-based object

trackers. The following new contributions are introduced in

this paper:Computationbreakdown in fully

• We modify the online training scheme where we spread

the required computations across all the frames instead

of at every specific frame intervals, and hence, a steady

frames-per-second (fps) throughput can be achieved for

the whole system.

• Additional algorithm-level enhancements are explored

aiming at a hardware-efficient implementation, like

dispensing the hard-negative mining step, approximat-

ing the softmax function and adopting a fixed dropout

pattern.

• A detailed description of our online-training hardware

accelerator is provided including a detailed computa-

tion flow analysis, reduction in the external memory

latency and top-level implementation details.

• Detailed comparison with a recent published tracker

[13] and a speed analysis of the whole tracker

implementation on embedded systems.

• This paper is organized as follows: Sect. 2 gives an

overview of our proposed object tracker and the

interpolation schemes employed. In Sect. 3, we evaluate

additional algorithm-level features to simplify the

hardware implementation. Section 4 describes our

proposed hardware accelerator for the online training.

Experimental results and speed analysis for the

complete tracker system are presented in Sect. 4 and

finally, section VI concludes our work.

2 Overview of ILNET tracker

ILNET is based on the MDNET tracker [3], while it is

modified to be suitable for embedded systems. The

MDNET network consists of three convolutional layers,

conv1:3, followed by three fully connected layers fc4:6 to

classify the tested patches into object or background.

Generally, the required processing can be divided into

three phases: tracking phase, training phase and network

update. In the MDNET tracking phase, candidate patches

are generated with Gaussian distribution around the object

location in the previous frame as shown in Fig. 2a. All

these candidate patches are forwarded through the whole

network and classified into object or background. The new

predicted location can then be obtained by averaging the

location of the candidate patches of the highest object

score. In the training phase, training patches are generated

around the new predicted location and the feature maps are

extracted and stored every frame. The network update is

carried out either at fixed frame intervals, which is the

long-term update, or when the object score drops severely

during the tracking, which is the short-term update as

defined in [3].

2.1 ILNET network structure

In ILNET, the network is supplemented by fully connected

localization layers, fc7:9, in order to classify also the object

location inside the patch into five positions: up, down,

right, left and middle. The input of fc7 is the conv3 output,

the same input for fc4. Figure 1 shows the network struc-

ture of ILNET.

The computation in the convolutional layers is the

dominant part in the tracker operation. Therefore, the main

purpose of our tracker is to reduce the number of the

convolutional computations in the network and reuse the

feature maps in the tracking phase and the training phase.

In ILNET, the whole Region of Interest (ROI) is forwarded

Fig. 1 ILNET network structure. Convolutional layers, conv1:3,

Classification layers, fc4:6. Localization layers, fc7:9 [12]
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to the network instead of small random patches and a

15 9 15 9 512 feature map is obtained. The object is

represented by 3 9 3 9 512 inside the ROI feature map.

Accordingly, a ROI feature map of size 15 9 15 9 512

represents 169 fixed-spaced candidates, each with feature

map of size 3 9 3 9 512.

2.2 ILNET tracking phase

A coarse–fine localization scheme is adopted for the

ILNET tracking phase. Figure 2b-f shows the main steps of

the coarse localization. Figure 2b shows the ROI which is

equivalent to fixed-spaced samples in Fig. 2c. For sim-

plicity, nine fixed-spaced samples are shown. The steps of

the coarse localization can be summarized as follows for

this example:

• Classify all candidates into object or background.

• Discard the background candidates as in Fig. 2d.

• Move the object candidates using the localization layers

as shown in Fig. 2e. The dominant move of candidate

two, five and six are down, right and left, respectively,

in this example.

Obtain a coarse predicted location which is the candi-

date with the maximum overlap with the other candidates

as in Fig. 2f.

For the fine localization, fine samples are scored around

the coarse locations. ILNET exploits interpolation schemes

to approximate the feature maps of the fine samples. As the

object is represented by a 3 9 3 9 512 feature map, and if

we extract feature maps for a region larger than the target

size (e.g., 5 9 5 9 512 feature maps), we would have nine

3 9 3 grid in total. Each 3 9 3 grid is displaced by dx and/

or dy from its neighbors. The value of dx and dy depends

on the network structure. Accordingly, we can obtain the

feature maps of all image patches which have displace-

ments ranging from 0 to dx or dy measured from the center

by bilinear interpolation without forwarding the image

patches through the convolutional layers. ILENT employs

bilinear interpolation and linear interpolation to approxi-

mate the feature maps in the translation domain and the

scale domain, respectively. We only need to extract two

additional feature maps at scale-up and scale-down because

we already generate a larger-sized feature map

(15 9 15 9 512) at the normal scale in the coarse local-

ization step. The fine localization steps are illustrated in

Fig. 3 and summarized as follows:

Extract two additional feature maps of size

5 9 5 9 512 around the coarse location at scale-up and

scale-down.

Approximate the feature maps of the fine samples in the

translation domain by adopting bilinear interpolation.

Approximate the final feature map in the scale domain

by adopting linear interpolation.

Attain the fine location by averaging the location of the

highest score samples.

2.3 ILNET training phase

ILNET reuses the ROI feature maps obtained in the

tracking phase to approximate the feature maps of the

training patches by applying bilinear interpolation as well.

Accordingly, a significant reduction in the processing time

is achieved because the computation in the convolutional

layers is dispensed in the training phase. A speed

improvement of 8.8 9 is obtained while achieving a

comparable performance with the baseline tracker for all

the tracking benchmark challenges [15].

2.4 ILNET algorithm and performance

Our overall tracking algorithm is presented in Algorithm 1.

The convolutional layer weights, [W1:W3], are initialized

by the VGG-M [16] network model pre-trained on the

ImageNet dataset, while the weights of fully connected

layers, [W4:W6] and [W7:W9], are randomly initialized.

Fig. 2 Random samples and fixed-spaced samples: a MDNET

random samples, b-f ILNET ROI and coarse localization steps Fig. 3 ILNET fine localization step [12]
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Hence, our tracker is not offline-trained on any video

dataset. At frame i, fmap1,i is a conv3 feature map of size

15 9 15 9 512, while fmap2,i and fmap3,i are feature maps

of size 5 9 5 9 512 at scale-up and scale-down, respec-

tively.

Table 1 shows the breakdown of the processing time for

ILNET and MDNET_N running on an Intel i7-3520 M

CPU system. MDNET_N is the same as MDNET [3] but

without offline training and bounding box regression for

fair comparison with our tracker. Table 2 shows the success

Area Under the Curve (AUC) and the precision of the

Object Tracking Benchmark (OTB-100) [15]. Figure 4

shows illustrative ex from OTB-100 for MDNET_N and

ILNET.

Moreover, our proposed tracker achieves a significant

reduction in the memory storage requirement compared to

the baseline tracker. Figure 5 shows the breakdown of the

required memory storage. The memory requirement is

divided into weight storage, intermediate feature storage,

fully connected training and conv3 deep features which is

used in the training. 16-bit fixed-point representation is

assumed for all parameters. The localization layers used in

ILNET adds an extra 5 MB for the weight storage. In

addition, the storage of the intermediate feature is slightly

increased as well because we have increased the size of the

input patches. However, this increase in the storage of the

weights and the intermediate feature maps for ILNET is

insignificant to the achieved reduction in the storage of the

conv3 feature maps.

Table 1 Average computation time in seconds per frame*

MDNET-N ILNET Speed-up factor

Tracking phase 3.4 0.36 9.4 9

Training phase 3.3 0.21 15.7 9

Network update 2.3 2.3 1 9

First frame training 90 52 1.72 9

Frame processing

without first frame 7 0.8 8.8 9

*Running on an Intel i7-3520 M CPU system

Table 2 performance Comparison of ilnet and mdnet_n

Tracker Success AUC Precision

MDNET_N 0.618 0.867

ILNET 0.622 0.863

Fig. 4 Illustrative tracking examples from OTB-100 (Biker, Motor-

Rolling, DragonBaby, Bolt2)

Fig. 5 Memory storage comparison between MDNET and ILNET
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The long-term and short-term network updates in both

MDNET and ILNET are 100 and 20 frames, respectively.

The required memory storage for conv3 feature maps in

MDNET is given by Eqs. (1) and (2), where fmap_sz and

fmap_num are the size and number of the feature maps,

respectively. The number of the feature maps of the posi-

tive (object) class is 500 from the first frame and 50 each

frame in the long-term. The number of the feature maps of

the negative (background) class is 200 each frame in the

short-term. For our tracker ILNET, conv3 feature maps are

not stored for all positive and negative samples each frame.

As we exploit interpolation schemes, we can obtain and

store a single and larger-size feature map each frame which

can be reused to obtain the required feature maps when the

training process needs it. For positive training, three feature

maps of size 5 9 5 9 512 at three scales are stored each

frame in the long-term. For negative training, a single

15 9 15 9 512 feature map is stored for each frame in the

short-term. The required memory storage for conv3 feature

maps in ILNET is given by Eqs. (3) and (4), where

pfmap_sz, pfmap_num, nfmap_sz and nfmap_num are the

size and number of the feature maps required for the pos-

itive and negative training, respectively. As shown in

Fig. 5, our proposed tracker achieves a total memory

reduction of 63%.

MDNETconv3 ¼ fmap sz� fmap num ð1Þ

MDNETconv3

¼ 3� 3� 512� 2
|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

fmap sz

� 500
|{z}

initial

þ 50
|{z}

pos

� 100
|{z}

long

þ 200
|{z}

neg

� 20
|{z}

short

0

@

1

A

¼ 83:5 MB

ð2Þ

ILNETconv3 ¼ pfmap sz� pfmap num

þ nfmap sz� nfmap num
ð3Þ

ILNETconv3

¼ 5� 5� 512� 2
|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

pfmap sz

� 100
|{z}

long

� 3
|{z}

scale

þ 15� 15� 512� 2
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

nfmap sz

� 20
|{z}

short

¼ 11:72 MB

ð4Þ

3 Evaluation of algorithm-level features

In this section, the algorithm-level features which have a

severe impact on the hardware implementation are evalu-

ated. We study the performance impact if we remove or

approximate these features in addition to the gain that can

be achieved in return. In [14], we explored the design space

of the fixed-point representation of the main parameters of

ILNET and we studied 11 ILNET variants using OTB-100

benchmark.

Although we showed in [14] that the fixed-point repre-

sentation of the fully connected layers can be reduced

down to 13-bit and 12-bit for the weights and the feature

maps, respectively, with small performance degradation,

we adopt 16-bit in this section because the external mem-

ories are typically byte-aligned and this 16-bit representa-

tion simplifies the memory data allocation and data access.

In this analysis, we incrementally study one system-

feature at a time, create a tracker variant and check the

performance delta by running OTB-100 on all tracker

variants. Table 3 shows a summary of the results: the

tracker variant number, OTB success AUC, OTB precision,

memory estimate, speed-up factor and outline of the system

modification.

3.1 Removal of the multi-scales in the training

As described in Algorithm 1, multi-scale feature maps are

extracted at two steps: for the fine localization step and for

collecting feature maps required in the training step. In

ILNET12, we removed the extraction of multi-scale feature

maps that were used in the training phase. We depend on

one scale only for the online training. However, we still

extract multi-scale feature maps for the fine localization

step. Accordingly, the processing time and the required

memory storage can be reduced, while trading-off a small

performance degradation. Compared to ILNET5, the

memory is reduced from 27.14 to 24.70 MB.

3.2 Removal of the hard-negative mining

The idea of hard-negative mining is to identify good neg-

ative samples for the training which is done via getting

false positive classifications. In [3], 1024 negative samples

are scored by the network, and then, the 96 negative

samples with the highest positive score out of the 1024

tested samples are selected for the mini-batch training. The

mini-batch consists of 32 and 96 positive and negative

training samples, respectively. Although hard-negative

mining would enhance the classification capability of the

tracker, it would challenge the hardware implementation.

We would need to run the whole network for 1024 samples,

score them and select-out the samples of the highest object

scores to be used in the training phase. Therefore, in

ILNET13, we evaluate the performance degradation if we

remove the hard-negative mining step. It can be noticed

that there is a considerable amount of performance loss in

ILNET13 accordingly.

Neural Computing and Applications (2022) 34:19937–19952 19941
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3.3 Proposed online training scheme

The online training step is carried out every tenth frame

and with 10 iterations per update in MDNET and ILNET.

This update scheme results in a non-uniform processing

time across the frames. In addition to localization and

collecting training samples each frame, the tenth frames

would require longer processing time because of the online

update process. We believe this update scheme is unde-

sirable for the hardware implementation and it is important

to achieve a constant processing time across all the frames.

Therefore, we propose to modify the online update process

where we perform the online training each frame and with

a single iteration only. Consequently, the overall process-

ing time would not change compared to the baseline

tracker, while the processing time of the online training is

spread evenly on the frames. Figure 6 illustrates the

advantage of using our proposed online training

scheme where a steady processing time can be achieved for

all video frames. The proposed update scheme is imple-

mented in ILNET14 and the interesting point is that it has

re-gained some of the performance loss caused by

removing the hard-negative mining feature. Additionally,

we made the Stochastic Gradient Descent (SGD) update

much simpler by removing the momentum and decay

update which would save 5 MB required for the momen-

tum storage. In ILNET14, the online update that we per-

form each frame is not actually affecting the filter weights

directly. We store the updated weights temporarily and

apply them to the network at the tenth frames. The required

filter storage of the fully connected layers would double

consequently, while removing the momentum storage

compensates that and there will be no memory increase in

total. We attempt to keep our proposed update

scheme close to that of the baseline tracker. The difference

between both approaches would be in the training patches

adopted in the update process. For a batch of 10 frames, the

baseline update scheme is carried out utilizing all the

training patches collected from the last 10 frames as well as

Table 3 Exploration of system-level features*

Tracker Success

AUC

Precision Memory

(MB)

Speed-up

factor

Modification outline

ILNET5 0.606 0.843 27.14 1x Baseline [14]

ILNET12 0.599 0.832 24.70 1.02 9 -Remove multi-scales used in the training

ILNET13 0.583 0.819 24.70 1.40 9 Remove multi-scales used in the trainingRemove hard-negative mining

ILNET14 0.588 0.816 24.70 1.45 9 Remove multi-scales used in the training

Remove hard-negative mining -Proposed training scheme (update every 10

frames)

ILNET15 0.581 0.808 24.70 1.45 9 Remove multi-scales used in the training

Remove hard-negative mining -Proposed training scheme (update every 10

frames) -Softmax PWL

ILNET16 0.5511

0.5752

0.5803

0.5864

0.7571

0.7912

0.8003

0.8094

24.70 1.45 9 Remove multi-scales used in the training

Remove hard-negative mining -Proposed training scheme (update every 10

frames)

Softmax PWL -Dropout fixed patterns

ILNET17 0.583 0.801 19.70 1.45 9 Remove multi-scales used in the training -Remove hard-negative mining

Proposed training scheme (update every frame)

Softmax PWL

Dropout fixed pattern (30 pattern)

*For all ILNET variants given in this table, the weights and the feature maps are represented by 8-bit for the convolutional layers, and by 16-bit

for the fully connected layers
1No dropout, 2dropout pattern: 8, 3dropout pattern: 18, 4dropout pattern: 30

Fig. 6 Frame speed analysis using the proposed online training

scheme
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the previous frames. In our proposed update scheme,

however, the update process is obviously carried out uti-

lizing the training patches collected from the frames that

are only received.

3.4 Approximation for Softmax layer

Softmax layer has been widely used in neural networks as

an activation function and as a final classification layer.

However, Softmax involves expensive division and expo-

nentiation functions. Several works in literature, e.g.,

[17–21], proposed efficient hardware implementations for

the softmax function where all of them adopted domain

transformation technique. The domain transformation is

described in Eqs. (5), (6) and (7).

f aið Þ ¼ eai�amax

Pz
k¼1 e

ak�amax
ð5Þ

ln f aið Þð Þ ¼ ai � amaxð Þ � ln
X
z

k¼1

exp ak � amaxð Þ
 !

ð6Þ

f aið Þ ¼ exp ai � amaxð Þ � ln
X
z

k¼1

exp ak � amaxð Þ
 ! !

ð7Þ

It can be noticed from Eq. (7) that the division is

removed and a logarithmic function is added. In [17], the

logarithmic and exponential functions are implemented by

Look-Up Tables (LUT). Linear fitting is adopted in [18] to

approximate the logarithmic and exponential functions to

simplify the hardware implementation. In [19], Eq. (7) is

further approximated to f aið Þ ¼ exp ai � amaxð Þ in case of

ðai 6¼ amaxÞ.
We can see that Eq. (7) has two exact exponential

functions and one logarithmic function. Piece Wise Linear

(PWL) approximation for the exponential function was

presented in [20, 21]. In our work, we propose to adopt

PWL approximation for both, the exponential and loga-

rithmic functions. We started from Matlab to opt a suit-

able number of lines and the location of the breakpoints in

addition to the proper fixed point representation of all the

intermediate results. First for exp ak � amaxð Þ, we can

notice that the operand ak � amaxð Þ is always less than or

equal zero which would simplify the approximation. For

the logarithmic function, the operand value
Pz

k¼1 exp ak � amaxð Þ
� �

would be range from 1 to z (z is

two for the classification network and five for the local-

ization network). Consequently, the output from the loga-

rithmic function would range from 0 to * 1.61. For the

final exponential function, it can be noticed that the oper-

and ai � amaxð Þ � ln
Pz

k¼1 exp ak � amaxð Þ
� �� �

would be

also less than zero like the first exponential, and hence, we

can apply the same PWL for both exponential functions in

Eq. (7). We adopted five linear pieces and four linear

pieces for PWLexp and PWLln, respectively. Figure 7 and

Fig. 8 plot the PWL function along with the exact func-

tions. A small performance loss is observed when we apply

the PWL approximation to the ILNET15 tracker as shown

in Table 3.

3.5 Dropout layer

We study the effect of the dropout layer on the training

process in ILNET16. Having a fully random dropout in

hardware would complicate the design. Hence, we apply

pseudo-random dropout patterns and evaluate the perfor-

mance. We tested few variants where the pattern for the

same dropout layer is repeated every 8, 18 and 30 itera-

tions. The performance of no dropout is also evaluated. It

can be noticed that there is a significant impact of the

dropout layer on the performance. Removing the dropout

layer has a severe performance degradation (success AUC

is lowered to 0.551), while for the pseudo-random patterns,

the performance is getting better as the pattern size

increases (success AUC is enhanced to 0.586 for a repeated

pattern every 30 iterations).

3.6 Every-frame network update

In ILNET17, we extended our proposed update scheme by

applying the new filter weights directly to the network each

Fig. 7 PWL of the logarithmic function

Fig. 8 PWL of the exponential function
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frame. Hence, we would be able to get rid of the temporary

filter storage and reduce the required memory storage. It

can be noticed that performance is slightly affected com-

pared to ILNET16 with a dropout pattern repeated every 30

iterations.

In addition to the advantages of simplifying the hard-

ware implementation and the memory reduction that are

gained by applying the schemes in ILNET12 to ILNET17,

a speed-up improvement of 1.45 9 is also obtained. The

speed-up improvement arises mainly from removing the

hard-negative mining in ILNET13. In addition, our pro-

posed training scheme features a constant training time

even in case of the frames that require a short-term update.

We analyzed the speed of ILNET5 [14] and all the ILNET

variants presented in this paper by running the Matlab

system model on all OTB-100 videos using an Intel i7-

3520 M CPU system. ILNET5 runs in 0.78 s per frame,

while ILNET17 run in 0.54 s per frame.

4 Online training hardware accelerator

The implementation of online training capability in

embedded systems is challenging because of the additional

processing steps and memory storage. The main focus of

most of the previous publications on CNN hardware

implementations was on the inference phase. In such sys-

tems, offline training is mainly exploited to obtain the filter

weights which would be fixed throughout the inference

computations. However, online training is a vital for

ILNET and other CNN-based trackers. In ILNET, we did

not even train the network on any video dataset, while we

solely depend on the online training in the initial frame and

throughout the successive frames. Hence, we propose a

hardware accelerator for the online training of the fully

connected layers that we preset in this section.

We opted to develop and test our design on an FPGA as

the target fabric, while our design is suitable for ASIC

development as well. We target Xilinx VC709 evaluation

board [22] which has Virtex-7 FPGA (XC7VX690T-

2FFG1761C) [23].

4.1 Computation flow

The network weights and the feature maps are typically

stored in the external memory due to the large data size.

Chunks of data are fetched from the external memory and

processed on chip. The result is written back to the external

memory. There is a trade-off between the data chunk size

and the on-chip memory versus the number of external

memory accesses. As the number of external memory

accesses increases, the processing time and the energy

consumption intuitively increase. Figure 9 illustrates the

computation flow in the ILNET fully connected layers. The

input is X4 which is selected from the stored feature maps.

The mini-batch size is 128 and the feature map size is

3 9 3 9 512. Hence, the size of X4 is 128 9 4608. The

fully connected layers fc4, fc5 and fc6 compute X5, X6 and

X7, respectively. The loss is calculated by the Softmax

layer and back-propagated in the network to get the delta

weights: dW6, dW5 and dW4, and the new propagated

errors: dX6 and dX5. Matrix transpose operation has to be

applied to W6, X6, W5, X5 and X4 in the backward path.

Hence, the main computations are eight matrix multipli-

cations with different sizes as shown in yellow rectangles

in Fig. 9: three matrix multiplications in the forward path

and five matrix multiplications in the backward path.

The transposed reading required in the backward path is

time-consuming. It requires 4 9 more memory accesses

than that required in the forward path [13]. In order to

overcome this issue, a transposed SRAM with two different

access modes is proposed in [24] in order to allow trans-

posed readings, while it requires 40% larger area. Binary

Feedback Alignment (BFA) scheme is adopted in [13]

where a constant matrix is used in the back-propagation

path instead of the transposed weight matrix. BFA causes

performance degradation as it replaces the standard back-

propagation.

In our work, we address the transposed reading issue by

re-forming the matrix multiplications in the backward path.

We simply apply the transpose operator to both sides of the

backward path equations. As shown in Fig. 10, we store

lossT in the memory instead of loss and the back-propa-

gated errors would be calculated in the transpose format as

well, dXT
6 and dXT

5 . In this proposed scheme, we would

need to perform the transpose operation only when writing

the loss and the delta weights. The external memory

accesses required for writing the result in a transposed form

are significantly less than that required for the transposed-

reading to perform matrix multiplications. In addition, we

show that the weight update step can be done on the fly

without requiring additional processing steps.

The arithmetic multiplier is a key element in this

implementation. We can achieve better processing time by

increasing the number of the parallel multiplications in the

system. However, it is typically desired to reduce the

number of multipliers to save the logic area. Moreover, the

number of DSP elements in the FPGAs is limited. In order

to get a sense of how many multipliers we need to achieve

the target performance, we performed the quick analysis

shown in Table 4. We listed the number of the required

multiplications in the forward path and backward path for

the three layers and assuming 200 MHz clock frequency

and single update iteration. We can achieve 72.6 fps with

256 multipliers. This performance should be
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acceptable such that when the fully connected computation

is added to the convolutional layers computation, the whole

system can achieve a real-time operation (i.e., around 30

fps). It is worth mentioning that this performance of 72.6

fps is theoretical without taking into consideration the

memory access latency or the Finite State Machine (FSM)

delays.

4.2 Memory latency reduction

Previous works have focused on reducing the number of

the external memory accesses via transferring parts of the

data to the on-chip buffer and maximizing the reuse of this

on-chip data. Compression techniques have been also

proposed to reduce the data size that is transferred from the

external memory. Although these works result is a reduced

number of memory accesses, they are sub-optimal as they

Fig. 9 The computation flow of a conventional online training [14]

Fig. 10 The computation flow of the proposed online training

Table 4 Computation

breakdown in fully connected

layer

FCx # of multiplications FPS

Forward Backward Per layer Total

FC4 128 9 4608 9 512 0 84.8 72.6

FC5 128 9 512 9 512 512 9 512 9 128 ? 512 9 128 9 512 508.6

FC6 128 9 512 9 2 512 9 2 9 128 ? 2 9 128 9 512 130,208.3
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do not consider the memory latency-per-access which also

affects the energy consumption [25]. Therefore, in our

work, we focus on reducing the external memory latency

by adopting an efficient arrangement of storing and

accessing the data.

First for the data storage, instead of storing the data

matrix row-by-row or column-by-column, we store chunks

of each row. The chunk is the maximum data that we can

read from the DRAM in one clock cycle which is 512-bit

(32 9 16-bit) on Xilinx VC709 evaluation board. Hence,

starting from the first row, we store the first chunks

(32 9 16-bit) of all the rows till we reach the last row, then

we store the second (32 9 16-bit) chunks of all the rows

and so on. Figure 11 illustrates the proposed order of data

storage. If we manage to read and write the data in

sequential addresses, this would yield the minimum

memory latency.

Second for the memory access order and the matrix

multiplication operation, we apply the same multiplication

scheme for all the eight matrix multiplications where

½Z� ¼ Mat1½ � � ½Mat2�. Each matrix element is represented

by 16-bit. We start by reading chunks (each chunk is 512-

bit : 32 element) from eight rows of Mat1½ � and store

them on-chip. This read data can be considered a sub-

matrix of size 8 9 32 elements, we call it subMat1½ �. We

then read a single chunk (32 elements) from the first row of

½Mat2�. We perform 256 multiplications between the first

column of subMat1½ � and the 32 elements from Mat2½ �: The
partial sums are stored inside the registers of the MAC

units and there is no need to transfer them to on-chip

memory or the DRAM. Then, the next chunk is read from

Mat2½ � and multiplied with the second column of

subMat1½ �. The second column of subMat1½ � is already

stored on chip and the partial sum is accumulated. A

double-buffer is employed to store subMat1½ � on-chip so

that we maintain available data from Mat1½ � when transi-

tioning from the last column of subMat1½ �. We continue the

same sequence till reaching the chunk in the last row of

Mat2½ �. The output from the 256 multipliers will then give

the first 8 9 32 elements of the final result Z½ � which are

stored back to DRAM. We repeat the same sequence until

we obtain all elements of Z½ �:
It can be noticed that reading a single subMat1½ � yields

the minimum DRAM latency as the read addresses are

sequential. The latency of filling the double-buffer by

different sub-matrices whose DRAM start addresses are not

sequential should not affect the processing time because

filling the double-buffer is carried out in parallel while

performing the multiplications. The multiplications of all

the 32 columns of a single subMat1½ � would take at least 32

clock cycles which are typically sufficient to fetch another

subMat1½ � from the DRAM even if its start address is not

contiguous with that of the previous sub-matrix.

For Mat2½ �, we read the first 32 elements from all the

rows sequentially. The MAC units perform the multiply

and add operations on the fly while reading Mat2½ � chunks
till the last row is read. Hence, this scheme should also

yield the minimum DRAM latency as all the read addresses

are contiguous.

For the result Z½ �, it is worth mentioning that it will be

read in the following computation steps, and hence, it will

be considered Mat1½ � or Mat2½ � of the new computation

step. Therefore, we write the result in the same order we

described before. We always obtain chunks of the result of

size 8 9 32 and we write the chunk data in sequential

addresses.

4.3 Weight update

As we mentioned, we avoid the transposed reading of

Mat1½ � and Mat2½ � by re-forming the matrix multiplications

in the backward path. The transposed delta weights ½dwT �
would be obtained accordingly. If we opt to write the delta

weights to DRAM, this would slow-down the processing

speed due to the increased number of memory accesses

required for the weight update step. Instead, we do not

write the delta weights to DRAM in our update scheme. As

the matrix multiplication result ½dwT � is calculated into

chunks of size 8 9 32, we read chunks of the old weights

½Wold� of size 32 9 8 and do the weight update and the

transpose operation directly on this chunk. We then write

chunks of size 32 9 8 of the new weights ½Wnew� back to

DRAM.
Fig. 11 Matrix storing order
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4.4 ReLU and dropout storage

fc4 and fc5 are followed by ReLU and Dropout layers.

ReLU layer saturates all negative values in the feature

maps to zero and Dropout layer sets some values in the

feature maps to zero randomly. We need to store the values

that are set to zero in the forward path by ReLU and

Dropout layers because they are required in the backward

path when back-propagating the loss. Instead of storing the

feature maps at each layer output (i.e., fc, ReLU and

Dropout outputs), we store the output at the Dropout layer

only in DRAM. We build a small array and store it on-chip

memory where one bit per output neuron is employed to

indicate whether this output neuron has been set to zero by

ReLU, Dropout or not. As shown in Fig. 12, we store the

pattern of ReLU and Dropout together which requires

8 KB (128 9 512 9 1-bit) instead of 128 KB if we store

the complete feature maps (128 9 512 9 16-bit). Fig-

ure 13 shows an example of applying the ReLU and

Dropout functions where we use a value of ‘1’ to indicate

that the neuron output is set to zero by either ReLU or

Dropout layer.

4.5 Memory allocation

We store the feature maps in one DRAM and the fitter

weights in the other DRAM. Our objective is to maximize

the memory throughput in the system. Hence, we avoid

reading Mat1½ � and Mat2½ � from the same DRAM. There-

fore, we start by having X4 in DRAM1, and all the

weights:W4, W5 and W6 in DRAM2. Then, we obtain and

store X5 and X6 in DRAM1. After obtaining the loss, we

store it in both memories because the loss would be

required as Mat1½ � when we calculate dWT
6

� �

, while it

would be required as Mat2½ � when we calculate dXT
6

� �

. We

follow the same scheme after obtaining the propagated

error dXT
6

� �

, we write it in both memories because it would

be considered Mat1½ � and Mat2½ � in the following compu-

tation steps. This writing scheme allows us to avoid reading

Mat1½ � and Mat2½ � from the same DRAM in any of the

computation steps.

4.6 Top-level design description

Figure 14 shows the top-level block diagram of our pro-

posed hardware design of the fully connected layers. The

blue arrows represent the data signals only and not the

address or side-band signals. There are two FSMs to read

Mat1½ � and Mat2½ � from the DRAMs. The maximum data

size we can read from DRAM per clock cycle is 512-bit (32

elements each of 16-bit). As previously mentioned, the data

for Mat1½ � is stored in a double buffer of size

2 9 8x32 9 16-bit. There are 256 Processing Elements

(PE) employed in our design which perform the MAC

operations on two inputs. A bias would be added if required

by the computation step. The data read from the double

buffer are of size 8 9 16-bit, and are then replicated 32

times to generate input A (256 9 16-bit) of the MAC units.

Input B (256 9 16-bit) of the MAC units comes from

Mat2½ � RD FSM after replicating the data eight times.

The output from the MAC units is stored in FlipFlops

(FF) which will be written back to DRAM directly or

processed first based on the computation step. In the soft-

max step, the MAC outputs are processed first by the

softmax logic before writing to DRAM. In the weight

update steps, the old weights are read by the weight RD

FSM, got updated by the delta weights stored in the FFs

and then written back to DRAM. We choose which DRAM

to write in based on the computation step and the

scheme we described previously. For the bias read and

update, we store the bias values in chip RAM as they do

not need large memory size. The bias is required for the

matrix multiplication in the forward path. The bias update

is carried out by the summation of the loss and the back-

propagated errors.

The proposed design is described in Verilog with several

parameterized parameters so that the same design can be

ported easily to support other fully connected layers with

different structures, input and weight sizes. The main

parameters in our Verilog code are as follows:-

• a_total, b_total: first and second dimension of Mat1½ �

Fig. 12 ReLU and Dropout storage

Fig. 13 Example of applying ReLU and Dropout patterns
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• c_total, d_total: first and second dimension of Mat2½ �
(b_total = c_total).

• a_step and b_step: step size for reading Mat1½ �
• c_step and d_step: step size for reading Mat2½ �
• memwr_step: step size for writing the result to DRAM.

In addition, the number of the PEs and the associated

interface is parameterized so that we can study the area-

performance tradeoff when increasing or decreasing the

number of the PEs and choose the appropriate number

based on the system needs.

There are also run-time configurations that would allow

flexibility in the system when integrating the hardware

accelerator with CPU. The start address of reading Mat1½ �
and Mat2½ � from DRAM is configurable for all the com-

putation steps and they should be provided by the CPU. In

addition, the start address for writing the result to DRAM is

configurable for all the computation steps. The selection of

which DRAM to write the result in is also configurable.

The CPU can also change the learning rate used by the

accelerator at run-time based on the performance and

system needs.

5 Experimental results and analysis

Test vectors are dumped from the Matlab model for all the

design intermediate nodes. The same input vector and the

initial weight values are used in simulating the design on

the Register Transfer Level (RTL). The outputs at all the

intermediate nodes from the hardware design are bit-mat-

ched with those of the Matlab model. We measured the

design speed using an ideal memory model and a DRAM3

memory model. The ideal memory model has the same

interface as that of DRAM3, while there are no wait states

for read and write requests. Table 5 shows the performance

of our design with the theoretical speed where there is no

FSM or memory access overhead. It can be noticed that

FSM overhead in our design is minimal where our design

with the ideal memory model achieves pretty much the

same performance as the theoretical case. For DRAM3

model, we achieved a memory access efficiency of 64.5%

using our access scheme and the proposed order of the data

storage.

Our proposed design is synthesized and implemented by

the Xilinx Vivado 2018.1 tool. We adopted the Xilinx

generated design for the DRAM3 memory controllers. The

FPGA resource utilization is shown in Table 6. In general,

the utilization is low for all types of resources on the

Virtex-7 FPGA. It is worth mentioning that the DRAM3

memory controller consumes 24.6% (22,613 slices) of the

whole LUT slices (91,954 slices) used by our design.

Although our design is relatively small and Virtex-7

FPGA is relatively big in logic size, there was a congestion

during placement and during routing which initially ren-

dered the Vivado tool unable to meet the required timing.

For such congested designs, the Vivado tool would prior-

itize the routing completion of all signals over meeting the

required timing. There are a couple of reasons for this

congestion: the double buffer was implemented initially

with BRAMs which may have limited the capability of the

placer and router. High fan-out of several signals and big

combinational logic for fixed-point conversion were

Fig. 14 Top-level block diagram of our proposed accelerator
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reasons for the congestion as well. Therefore, we imple-

mented the double-buffer with registers (FFs) and added

several pipelined FlipFlops to break long combinational

paths. In addition, we added several Multi Cycle Path

(MCP) constraints for many signals. If intended by the

design, adding MCP constraints on the failing paths would

allow to meet the required timing for these paths without

breaking the paths and adding more FlipFlops and latency.

Moreover, we had to enable a special strategy for the

Vivado implementation (Congestion_SpreadLogic_

medium) which is recommended for highly congested

designs. In some cases, there might be a need to explore the

special strategy (Congestion_SpreadLogic_high) as well

depending on the design complexity. After applying all

these techniques, we are able to meet the required timing at

200 MHz.

Our HW accelerator can be adopted to train other Multi-

Layer Perceptron (MLP) neural networks that are

employed in real-time applications on embedded devices.

Some prior works [13, 26, 27] exist in literature to accel-

erate the training of the MLP or fully connected neural

networks. Approximate computing is adopted in [26] via

inexact multipliers and bit-precision reduction to reduce

the power consumption. The synapses that have lesser

impact on the final error are obtained from the training

phase and approximated by the inexact multipliers. In [27],

the authors proposed a pipeline implementation of the

Quasi-Newton method for training instead of the conven-

tional batch training. The Quasi-Newton training method

speeds-up the training convergence at the cost of memory

resources.

A HW accelerator close to our work was recently pub-

lished in [13]. The authors implement a HW accelerator in

65 nm ASIC to train the last fully connected layers in the

MDNET-based object tracker similar to our work. How-

ever, there are several differences. The whole network in

[13] is trained offline on the VOT dataset. The authors

added a new fully connected layer of weight size

1 9 1x512 9 512 in order not to train fc4 which has a

weight size of 3 9 3x512 9 512. Hence, in the modified

network, there will be four fully connected layers. fc5, fc6

and fc7 are only trained online, while the weights of fc4 are

fixed. The idea behind this is to reduce the External

Memory Access (EMA) where fc4 has the main contribu-

tion because of its large weight size. This modification in

MDNET has negatively affected the performance by 5% on

a Tracking Accuracy (TA) metric defined by the authors. In

addition, in order to overcome the matrix transpose oper-

ation required in the error propagation and weight update

steps, the authors employed BFA instead of reading

transposed weight matrices. BFA has performance degra-

dation as well, reported to by 2.93% on TA. It is not

mentioned, however, the actual impact of BFA and the

scheme of not training fc4 online on the OTB benchmark.

We believe it is important to have a unique metric, like

OTB success AUC, across the different designs in order to

achieve a fair comparison. The HW design in [13] imple-

ments a Run-Length Coding (RLC) to store the feature

maps completely on-chip memory, while it brings chunks

of the weights from the external memory to an on-chip

memory of size 1 KB.

On the other hand, in our proposed HW accelerator, we

did not modify the fully connected layers in order not to

affect the performance. We still train fc4, fc5 and fc6

online. For the matrix transpose issue, we re-form the

matrix multiplications in the backward path so that we do

not need to read transposed weight and feature map

matrices from the external memory. Instead, the propa-

gated errors are calculated in the transposed form. Hence,

we employ the normal back-propagation for the weight

updates and avoid degrading the performance as is reported

by [13] due to BFA. We store the feature maps and the

propagated errors to the external memory which makes our

design more scalable to larger-size networks. We have

provided detailed OTB results on all the system-level

features we studied. Table 7 shows a comparison summary

of our work with [13]. Both accelerators operate at the

Table 5 Performance of the

proposed accelerator
Design Performance at 200 MHz and 256 multipliers

Theoretical (no FSM, no memory) 72.6 fps

Our design (ideal memory model) 71.2 fps

Our design (DRAM3 model) 44 fps

Table 6 Resource utilization using Xilinx Virtex-7

Resource Utilization Available Utilization %

LUT 91,954 433,200 21.23

LUTRAM 8637 174,200 4.96

FF 40,338 866,400 4.66

BRAM 585 1470 16.25

DSP 380 3600 44.71

IO 6 850 18.75

MMCM 3 20 15

PLL 2 20 10
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same frequency of 200 MHz and achieve a theoretical

throughput of 51.2 GOPS. However, our accelerator

achieves 44 fps compared to 16.2 fps achieved by [13].

As we target embedded systems, it is important to get

the performance of the whole tracker operation including

the inference and the training phases. We assume the CNN

inference is carried out by the inference processor [28]

which is the same inference processor assumed in [13]. We

estimate the speed of the our tracker ILNET and MDNET

when employing our training accelerator and the training

accelerator in [13], respectively, while using the same

inference processor for both. Table 8 shows the maximum

FPS that can be obtained when using the CNN processor

[28] as the CNN inference for both MDNET and our pro-

posed tracker ILNET along with the computation break-

down. This analysis is carried out through obtaining the

required MAC operations of the convolutional computa-

tions in both trackers. For MDNET, the number of MAC

operations required to obtain the feature map of one

candidate is calculated. This number is then multiplied by

the total number of candidates in the tracking phase and the

training phase to get the total number of MAC operations.

For ILNET, the number of MAC operations is calculated

for each feature map size: one feature maps of size

15 9 15 9 512 and two feature maps of size

5 9 5 9 512. There are no convolutional computations

required for the training phase. Accordingly, the CNN

accelerator [28] can run ILNET convolution computations

with 167.45 fps, while it can run MDNET convolution

computations with 4.87 fps. We can then add the speed of

the online training accelerator published in [13] and the

speed of our online training accelerator to the MDNET and

ILNET analysis, respectively, to estimate the performance

of the whole tracker system. Our proposed tracker can run

at 34.81 fps on the mentioned hardware accelerators

compared to 3.74 fps for MDNET. It is evident that our

modifications on the system-level of ILNET have achieved

a significant improvement of the total tracker speed.

It is worth mentioning that our contributions presented

in ILNET can be utilized in many other CNN-based

trackers, but the performance impact of each modification

may differ from one tracker system to another. Therefore,

we recommend running the object tracker benchmarks to

obtain the actual system impact when applying these

modifications to other CNN-based trackers. Some contri-

butions we present that can be utilized in other CNN-based

trackers include the interpolation schemes, the uniform

processing time across all frames and the approximation of

Softmax and dropout layers. Some other contributions are

even general and can benefit CNN networks in other

applications, like avoiding the transposed read in the

training of the fully connected layers and the proposed

scheme for memory latency reduction.

6 Conclusion

The full hardware design of our CNN-based object tracker,

code named ILNET, is exposed. ILNET targets speed

enhancement and relies solely on online training. A mul-

titude of algorithmic and circuit design techniques are

integrated to attain an efficient, and real-time object

tracker.

On the algorithmic level, interpolation schemes and a

novel technique for online training with uniform per frame

latency are utilized. Also, the impact of removing or

approximating the hardware-expensive computations is

evaluated at the system-level.

On the circuit level, a fixed-point hardware accelerator

for the online training of the fully connected layers is

presented. We introduce a novel technique for error back-

propagation in the fully connected layers that avoids the

Table 7 Comparison summary of online training accelerators used in

object tracking

[13] Our work

Online-trained only No Yes

Error propagation BFA Back-propagation

EMA reduction scheme RLC, BFA No

Implementation fabric ASIC 65 nm FPGA Virtex-7

Online training FPS 16.2 FPS 44 FPS

Table 8 Tracker performance on a CNN accelerator

Computation

breakdown

MDNET ILNET

# of conv MAC per

one candidate

122 9 106

(3 9 3

fmap)

1323 9 106 (15 9 15 fmap)

231 9 106 (5 9 5 fmap)

# of runs in the

tracking phase

256 1 (15 9 15 fmap)

2 (5 9 5 fmap)

# of runs in the

training phase

250 0

# of interpolation

MAC per frame

NA 6.5 9 106

Total # of MAC per

frame

61.6 GMAC 1.8 GMAC

Inference processor

throughput [28]

300 GOPS

Maximum inference

fps of the tracker

4.87 fps 166.7 fps

Total tracker speed 3.74 fps 34.81 fps
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costly reading of transposed data from external memories.

In addition, we present a novel technique for memory

latency reduction via adopting an efficient arrangement of

storing and accessing the data.

Thanks to this multitude of algorithmic and circuit level

enhancements, our proposed accelerator can train the fully

connected layers at a rate of 44 fps compared to 16.2 fps

achieved with the prior-art designs at the same clock

frequency.
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