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Abstract
Transcription factors (TF) control gene expression by binding to specific regions of DNA sequence. TF play an important

role in various disease processes, and their identification helps in understanding underlying gene regulation leading to

disease risk. Currently, the most powerful models used for the predicting binding sites between TF and DNA sequence

from ChIP-Seq dataset are lagging in terms of good feature extraction capabilities. We propose two models named PCLAtt

and TranAtt for the prediction of 690 TF-cell line pairs from DNA sequence data. PCLAtt consists of two sets of

convolutional neural networks—bidirectional long short-term memory (CNN-BiLSTM) layers in parallel followed by a

multi-head attention layer and weight-shared dense layer which all contribute towards extracting efficient features from

DNA sequence. TranAtt consists of convolution layers of a pre-trained model along with a BiLSTM layer and attention

layer. The convolutional layers of the model act as a motif scanner and the BiLSTM layer learns the regulatory grammar of

the motifs. Further, the attention mechanism is applied to give more importance to those sequence regions of DNA that

consist of transcription factor binding motifs thus resulting in better performance of the proposed models. PCLAtt

outperformed other state-of-the-art methods like DeepSEA, DanQ, TBiNet and DeepATT in prediction of binding sites

between TF and the DNA sequence.

Keywords Transcription factors � Convolution neural network-bidirectional long short-term memory � Multi-head

attention � Weight-shared dense

1 Introduction

Transcription factors control the rate of transcription from

DNA to messenger RNA by binding to a particular DNA

sequence. In other words, it controls the copying of a

particular segment of DNA into messenger RNA using

RNA polymerase. Transcription factors can be activators or

repressors. The activators increase the rate of transcription

from DNA to messenger RNA while repressors decrease or

block the rate of gene transcription. Transcription factors

turn genes on or off so that the right genes are expressed in

the right cells of the body at the right time and in the right

amount. Some genes need to be expressed in more than one

body part or cell, that means there may be situations where

a gene needs to be turned on in the skull, spine and fin-

gertips but not required to be turned on in other parts of the

body at that time. Groups of transcription factors coordi-

nate to direct cell division, cell growth throughout life.

Improper coordination may lead to mutations that results in
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a large number of human diseases such as cancer and

diabetes. For understanding the gene regulatory mechanism

of various diseases, accurate prediction of transcription

factor binding sites is required.

Nowadays, deep learning methods have become popular

and are being used in various fields. They have shown

better performance than traditional machine learning

methods. Convolutional neural networks, a variant of deep

neural networks are popular for their automatic feature

extraction capabilities from raw input sequences. It has

been applied in various fields like computational biology,

bioinformatics and medical informatics [3, 4, 9, 23, 24] and

has shown better performance than traditional machine

learning methods. The weight sharing strategy used by the

CNNs are useful to capture local patterns from the input

data. Using this property, the kernels of the CNN can

capture sequence motifs from DNA sequences required for

predicting biological functions. The deep neural networks

consisting of convolutional layers have also been applied in

various models used for the prediction of the relationship

between transcription factors with the DNA sequence.

Some of the models like DeepSEA [34], DanQ [26],

DeepATT [20] have been developed, that use deep learning

methods for prediction of 919 non-coding DNA regulatory

functions. DeepBind [1], a deep learning method, generates

a mutation map that depicts the binding affinity inside a

sequence. Statistical methods were combined with deep

learning to predict DNA-protein binding using a technique

known as expectation pooling [22].

TBiNet [25] is another deep learning model developed

for prediction of 690 TF-cell line pairs from ChIP-Seq

dataset. DeepSEA, which employs deep convolutional

neural networks for predicting the functions of DNA

sequences outperformed gkmSVM [12] that used a support

vector machine for prediction. After DeepSEA, DanQ was

built that extended DeepSEA architecture by adding

BiLSTM to the CNN layer. LSTM [16] is a variant of

recurrent neural networks that learns long-term dependen-

cies which were developed to solve the vanishing gradient

problem of basic recurrent neural network (RNN). Another

variant of DNNs is the attention mechanism that has been

used in many machine learning tasks such as machine

translation tasks [5], computer vision, speech processing

and many more. It has also been used in various bioin-

formatics tasks [2, 17, 18, 29, 31]. DeepATT and TBiNet

both are attention-based neural networks. DeepATT uses a

category multi-head attention layer (modified version of

self-attention mechanism) and a category dense layer

(weight-shared mode) along with CNN and BiLSTM layer

for prediction of 919 regulatory functions from DNA

sequence data. Another attention-based neural network,

TBiNet [25] is developed for predicting TF-DNA binding

which is trained on the ChIP-Seq dataset that consists of

690 ChIP-Seq experiments from ENCODE [7] that yield

better results than DeepSEA and DanQ. PBVPP-Hybrid

[8], a more recent state-of-the-art approach, is a combina-

tion of CNN and RNN that can extract vital features from

large-scale genomic sequences obtained by high through-

put technology to predict the occurrence of TFBS and RBP

sites. However, still there is a need of a model with better

feature extraction capabilities for more accurate TF-DNA

binding prediction task.

In this paper, we propose two models, TranAtt and

PCLAtt. TranAtt consists of two convolution layers and

two max-pooling layers used alternatively which were

transferred from a pre-trained model (an implementation of

DeepSEA model that was trained for predicting DNA

functions consisting of transcription factors, histone mod-

ification, and DNase I hypersensitivity sites) and then fol-

lowed by bidirectional LSTM layer and an attention layer.

PCLAtt consists of two sets of CNN-BiLSTM layers, such

that one set of CNN-BiLSTM layer is in parallel with the

another set of CNN (uses small kernel size) with two

BiLSTM layers, which are followed by a multi-head

attention layer and weight-shared dense layer. To increase

the feature extraction capabilities of the model so as to get

better performance than the existing models we used

ensemble of two different sets of CNN-BiLSTM layers in

parallel. Since both CNN and RNN are good feature

extractors, so by combining the features extracted from two

different sets of CNN-BiLSTM layers, the feature extrac-

tion capabilities of the proposed model are increased. The

convolution layer captures the regulatory motifs and the

bidirectional LSTM layer learns the regulatory grammar of

the sequence motifs obtained from the CNN layer. We used

multi-head attention layer and weight-shared dense layer

[20] in PCLAtt. The multi-head attention layer selects the

important features required for the prediction of tran-

scription factor binding sites and the weight-shared dense

layer classifies transcription factors with features selected

by the attention layer.

2 Related work

Earlier, traditional machine learning methods were used for

the prediction problem from biological sequences (e.g.

DNA sequences) that needed manual feature extraction,

which was both tedious and ignored important information.

To overcome these problems, deep learning methods were

used and have shown better performance than traditional

machine learning methods. Deep learning methods have

been used in many bioinformatics problems. The automatic

feature extraction capabilities of deep convolutional neural

networks have been successfully applied in the prediction

of functions from biological sequences. DeepSEA [34]
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which is based on CNN architecture was used for pre-

dicting DNA functions consisting of transcription factors,

histone modification and DNase I hypersensitivity sites. It

consists of three convolution layers and two max-pooling

layers arranged alternatively followed by a fully connected

layer and an output layer. The kernels of the CNN layer are

used to capture the sequence motifs. DeepSEA is trained in

a multi-task way to predict DNA functions. It showed

better performance than gkm-SVM [12] that uses a support

vector machine to predict regulatory functions from DNA

sequences. The classifiers that were trained on DeepSEA

output showed better classification performance than rep-

resentative variant scoring methods like CADD [27],

GWAVA [28] and FunSeq2 [10]. Later, the DanQ model

was proposed as an improvement over the DeepSEA

model.

DanQ [26] is designed using CNN-RNN architecture. It

consists of a CNN layer followed by a BiLSTM layer, a

fully connected layer and an output layer. The CNN layer

of DanQ uses kernels that act as a motif scanner for given

input DNA sequence and the BiLSTM learns the regulatory

grammar from the motif information obtained from the

CNN layer. DanQ has a hybrid architecture that helps it to

simultaneously learn motif features and the regulatory

grammar of the sequence motifs. Both DeepSEA and DanQ

models have given equal importance to all sequence

regions of input DNA when predicting TF-DNA binding

and other biological functions. Although, to get a better

prediction of TF-DNA binding, the regions of the DNA

sequence that contain TF-binding motifs should be given

more importance than other sequence regions, that can be

attained using an attention mechanism. Later, TBiNet was

proposed as an improvement over DeepSEA and DanQ in

the prediction of binding sites of TF with the DNA

sequence.

TBiNet [25] used an attention mechanism in addition to

the CNN layer and BiLSTM layer. It consists of a CNN

layer along with an attention layer which is further fol-

lowed by a BiLSTM layer, a fully connected layer and an

output layer. Attention mechanism has shown good per-

formance in machine translation tasks, computer vision and

many other applications [11, 32]. In TBiNet, the attention

layer gives more importance to those sequence regions of

DNA that contain TF-binding motifs by giving different

weights known as attention scores to different parts of

input sequence thus selecting important features required

for predicting transcription factor binding sites. DeepATT

[20] is another attention-based neural network for multi-

class prediction of 919 regulatory functions from DNA

sequence data. It consists of a CNN layer followed by a

Bidirectional-LSTM, multi-head attention layer and

weight-shared dense layer. The multi-head attention layer

designed in DeepATT is modified version of self-attention

mechanism. The multi-head attention layer and weight-

shared dense layer were used in DeepATT in order to select

important features required for predicting different DNA

regulatory functions.

Although, state-of-the-art deep learning models have

shown noticeable performance, still there is a room for

improvement in TF-DNA binding prediction task. In this

paper, we built Parallel convolutional-LSTM with Atten-

tion (PCLAtt) consisting of two sets of CNN-BiLSTM

layers such that one set of CNN-BiLSTM layer is in par-

allel with a second set of CNN with two BiLSTM layers,

followed by a multi-head attention layer and weight-shared

dense layer. We also designed another model, Transfer

learning with Attention (TranAtt) that proved to be an

improvement over TBiNet for more accurate prediction of

TF-DNA binding. TranAtt consists of two convolution

layers and two max-pooling layers used alternatively which

were transferred from a pre-trained model (an implemen-

tation of DeepSEA model) used for predicting DNA

functions consisting of transcription factors, histone mod-

ification and DNase I hypersensitivity sites and then added

a bidirectional LSTM layer and an attention layer to it.

Transfer learning has been used in different bioinformatics

tasks [21, 33] and has yield good performance results. The

two convolutional layers which were transferred from a

pre-trained model were kept freezed in TranAtt.

3 Materials and methods

In this section the dataset used and details of the design of

TranAtt and PCLAtt are described.

3.1 Dataset collection

In our work, we used a dataset obtained from ENCODE

(Encyclopedia of DNA elements) [7] which is same as that

used by DeepSEA, DanQ, TBiNet and DeepATT, con-

sisting of 4,863,024 total samples that includes training,

validation and test samples. Each sample consists of a

DNA sequence represented as 1000 X 4 one-hot encoding

matrix and the target binary vector of size 690 X 1. The

dataset was preprocessed by the authors of DeepSEA and

this preprocessed data was further used by DanQ, TBiNet

and DeepATT and then in our proposed models. Each

column of the one-hot encoded matrix of a DNA sequence

consists of DNA bases A, C, G and T and each element of

the target binary vector corresponds to one of the 690 TF-

cell line pairs (e.g., K562-Pol2). Each sample is labelled

based on the middle 200bp of the DNA sequence and the

remaining 400bp on each side of the 200bp is added to give

additional context, thus making the DNA sequence of

1000bp length. For each sample, the target binary vector
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consists of 690 tasks such that for each task if more than

half of the middle 200bp bins of an input sequence belong

to the peak, then that task of the target vector is labelled

positive otherwise negative. The GRCh37 reference gen-

ome sequence was used to generate the input DNA

sequence. The dataset consisting of a total of 4,863,024

samples includes 4,400,000 training samples, 8,000 vali-

dation samples and 455,024 test samples. Reverse com-

plement of sequences doubled the size of the dataset.

3.2 Proposed methods

We have proposed two models in this paper. The first

model TranAtt is an attention-based neural network with

transfer learning and can outperform DeepSEA, DanQ and

TBiNet in TF-DNA binding prediction task. Our second

model PCLAtt is built using Convolutional Neural Net-

work, Bidirectional Long short-term memory, multi-head

attention layer and weight-shared dense layer. PCLAtt

outperforms all the current best performing models

(DeepSEA, DanQ, TBiNet and DeepATT) in TF-DNA

binding prediction task.

3.2.1 Convolutional neural networks

Convolutional Neural Network is a multi-layer perceptron

with automatic feature extraction capabilities. The convo-

lution layer uses kernels to extract features from the input

data and a non-linear activation function, ReLU as

described by Eq. (1) is applied between the convolution

and pooling layer to increase non-linearity. The pooling

layer used after the convolutional layer reduces the spatial

size of the output generated by the convolution layer.

Various models such as DeepBind [1] and DeepSEA [34]

are built using CNN architecture. Here one-hot encoded

matrix of DNA sequences is treated as an input image and

uses filters to extract motif features from it.

ReLUðxÞ ¼ max ð0; xÞ ð1Þ

3.2.2 Recurrent neural networks

Recurrent Neural Network is a kind of Deep Neural Net-

work (DNNs) that learns sequential data and are capable of

processing variable lengths data. Basic Recurrent Neural

Network has vanishing gradient problem and is unable to

learn long-term dependencies. To solve the vanishing

gradient problem of RNN, long short-term memory

(LSTM) was used. DeeperBind [14] and DanQ [26] are

models that used CNN-LSTM architecture for better per-

formance. DanQ uses Bidirectional LSTM which is a

variant of RNN that learns sequence from both the direc-

tion. BiLSTM has been used to learn long-term

dependencies in bioinformatics applications [15] and has

been used in various other machine learning applications

[13, 30].

3.2.3 Attention neural network

The attention mechanism is known to give more impor-

tance to those regions of input sequence which are

important for generating output. It gives different weights

to different parts of the input sequence, these weights are

known as attention scores. Attention mechanism has been

used in various machine learning tasks like computer

vision but it gained popularity from its application in

Natural Language Processing (NLP) [5, 11, 32]. The multi-

head attention layer used in PCLAtt is based on that used in

DeepATT [20], which is modified version of the self-at-

tention mechanism [32]. The query, key and value vectors

used in self-attention layer can be expressed as shown

below:

qi ¼Wqaiq ð2Þ

ki ¼Wkaik ð3Þ

vi ¼Wvaiv ð4Þ

a1;i ¼
q1 � ki

ffiffiffi

d
p ð5Þ

b̂1;i ¼
exp ða1;iÞ
P

j

expða1;jÞ
ð6Þ

Here q, k and v are the query, key and value vectors

respectively. The symbol a is used to represent the scaled

dot-product attention. The output is then normalized using

softmax function. Finally the context vector c is obtained

as shown in Eq. (7).

c1 ¼
X

i

b̂1;i v
i

ð7Þ

For our model, PCLAtt, we create category query code

with 690 X 690 diagonal matrix that represents first stage

query vector of 690 transcription factor-cell line pairs

while the key vectors and value vectors both are same

containing the resultant output obtained after concatenation

of the output from the two final BiLSTM layers in parallel.

3.3 Architecture of TranAtt

TranAtt consists of an input layer, convolution layers of a

pre-trained model followed by a BiLSTM layer, attention

layer, fully connected layer, output layer. Convolution

layer extracts TF-binding motif related features. After each

convolution, a rectifier activation function was applied to

increase non-linearity. To reduce the spatial size of the
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output obtained from the convolution layer, the max

pooling layer is applied next to it. The Bidirectional LSTM

is used to get information about the regulatory grammar of

the sequence motifs. Then an attention layer was applied to

give more importance to those regions of input DNA

sequence that contains TF binding motifs.

We used transfer learning in TranAtt by using the con-

volution layers of a pre-trained model. The pre-trained

model consists of 3 convolutional layers, 2 max-pooling

layers, a fully connected layer and an output layer. Each of

the first two convolution layers is followed by a max-

pooling layer. This pre-trained model was designed for

predicting DNA functions, consisting of histone-mark

profile , transcription factor bindings and DNase I sensi-

tivity. We first freezed all the layers of the pre-trained

model and took the first two convolutional layers up to the

dropout layer of the pre-trained model and then added a

BiLSTM layer followed by an attention layer to it for more

accurate prediction of TF-DNA binding. Thus the two

convolutional layers of TranAtt were freezed such that

their weights cannot be updated and the features learned by

the convolutional layers in the pre-trained model can be

used in TranAtt.

The architecture of TranAtt is as shown in Fig. 1. The

1000 X 4 one-hot encoded matrix is passed through the two

freezed convolutional layers of TranAtt and the output

obtained from the convolution layers is then passed

through bidirectional LSTM layer. The Bidirectional

LSTM concatenates the output of forward and backward

LSTM thus producing 60 RNN vectors with 960 dimen-

sions. The output matrix of BiLSTM layer is then fed to the

attention layer. In an attention layer, a key vector of size 2

X hidden units of LSTM is randomly initialized. Then a dot

product is performed between each row of the output

matrix of BiLSTM layer and the key vector of the attention

layer. The softmax activation function is further applied to

the resultant output to get normalized output known as

attention vector. Later, an element-wise multiplication is

performed between the attention vector and each column of

the output matrix obtained from the BiLSTM layer. The

resultant matrix obtained is finally passed through the fully

connected layer, which is a dense layer with ReLU as an

activation function. The output of the fully connected layer

is finally fed to the output layer to get an output vector of

size 690 representing 690 TF-cell line pairs. The output

layer uses sigmoid as an activation function.

3.4 Architecture of PCLAtt

Our second proposed model PCLAtt consists of an input

layer, two sets of CNN-BiLSTM layers in parallel followed

by a multi-head attention layer and weight-shared dense

layer as shown in Fig. 2. The 1000 X 4 one-hot encoded

matrix is passed through the two parallel convolutional

layers which pass through their respective connected

bidirectional LSTM layers. The two convolution layer is

used to capture TF-binding motif related features. The set

consisting of a CNN with two BiLSTM layers with a max-

pooling layer in between the two BiLSTM layers produces

the output consisting of 64 RNN vectors with 400 dimen-

sions. The another set consisting of one CNN followed by

one BiLSTM layer produces output consisting of 64 RNN

vectors with 1024 dimensions. The bidirectional LSTM

learns the regulatory grammar of the sequence motifs

obtained from their respective connected CNN layers. The

output from the two BiLSTM layers is then concatenated

and passed through the attention layer. In the multi-head

attention layer, we create category query code with 690 X

690 diagonal matrix for first stage query vector of 690

transcription factor-cell line pairs, then the second stage

query vector is generated by the linear combination from

that obtained from the first stage. The query vector is

splitted among 4 heads. The key and value vector matrix is

the same as the output obtained after the concatenation of

the output from the two BiLSTM layers. The output of the

attention layer is 690 ATT vectors with 400 dimensions

which is then passed through the weight-shared dense layer

[20]. The 690 dense layers are assigned to 690 attention

vectors respectively such that different dense layers have

the same weight. The resultant is then passed through the

sigmoid output layer.

3.5 Loss function

Both of the models use binary cross-entropy as their loss

function which is defined as given in e Eq. (8).

Loss ¼� 1

N

X

N

n¼1

½yn log ðŷnÞ

þ ð1� ynÞ log ð1� ŷnÞ�
ð8Þ

Here yn represents the target label, ŷn represents the pre-

dicted output by the model and N represents the number of

samples.

3.6 Model training

Proposed models are trained using Adam optimizer [19]

and 0.0005 as the learning rate with varying batch size. It

was trained for 20 epochs. Due to limited RAM, the

training set consisting of 4,400,000 samples has been split

into 10 chunks, each chunk consists of 440,000 samples

while the validation and test set remained the same as used

by the existing models (DeepSEA, DanQ, TBiNet and

DeepATT).
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4 Results and discussion

4.1 Evaluation metrics

We evaluated PCLAtt and TranAtt, used for predicting TF-

DNA binding with various state-of-the-art models: Deep-

Bind, Expectation Pooling, DeepSEA, DanQ, TBiNet,

DeepATT and PBVPP-Hybrid. All these models were

trained on 690 ChIP-Seq dataset. The evaluation metrics,

AUROC and AUPR were used for evaluating the predic-

tion of TF-DNA binding. AUROC is the area under

receiver operating characteristic curve which is the area

under true-positive rate and false-positive rate. True-posi-

tive rate is given by Eq. (9) and False-positive rate is as

shown by Eq. (10) respectively. AUPR is the area under the

precision-recall curve. Precision and recall are defined by

Eqs. (11) and (12) respectively. AUPR is the better metric

for evaluation in case of imbalanced dataset [6] as com-

pared to the AUROC evaluation metric.

True� PositiveRate ¼ TP

TPþ FN
ð9Þ

False� PositiveRate ¼ FP

FPþ TN
ð10Þ

Precision ¼ TP

TPþ FP
ð11Þ

Recall ¼ TP

TPþ FN
ð12Þ

4.2 Hyper parameter tuning

We considered various hyperparameters during training of

the proposed models. The hyper-parameters that are tuned

during training are batch-size and learning rate (0.0005).

We used a random search to find the best hyper-parameter

values, which are listed in Table 1. The tuned hyper-pa-

rameters include the size of the CNN filters, learning rate,
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Fig. 1 Fig (a)Architecture of the TranAtt: An input of 1000 X 4 one-

hot encoded matrix representation of a DNA sequence is passed

through pre-trained convolution layers followed by a BiLSTM layer.

The output is then passed through attention layer, fully connected

layer and output layer thus resulting into 690 TF-cell line pairs

(b) pre-trained model architecture: Freezed convolutional layers of

the model
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number of filters and LSTM units, dropout ratio, activation

functions, optimizers, and so on.

4.3 Discriminative ability of the proposed
models

We compared both proposed models with various existing

models: DeepBind, Expectation Pooling, DeepSEA, DanQ,

TBiNet, DeepATT and PBVPP-Hybrid, and found that

TranAtt and PCLAtt, achieved higher average AUROC and

AUPR scores. TranAtt has an average AUROC value of

0.9564 and an average AUPR value of 0.3616. PCLAtt has

an average AUROC value of 0.9630 and an average AUPR

score of 0.3987. Results of the models shown in Table 2

are trained in our system on 690 ChIP-Seq dataset. TBiNet

achieved an average AUROC score of 0.9454 and an

average AUPR score of 0.3253 and DeepATT achieved an

average AUROC score of 0.9582 and an average AUPR

score of 0.3771 as shown in Table 2. Table 3 shows the

scores of the proposed models compared with various state-

of-the-art models trained on 690 ChIP-Seq dataset
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Fig. 2 Architecture of PCLAtt model. The 1000 X 4 one-hot encoded

matrix representation of a DNA sequence is an input of the model.

The kernels of the convolution layer act as motif scanner. The

BiLSTM layer added after each convolution layer learns the

regulatory grammar of the sequence motifs. The output of two

BiLSTM layers in parallel are concatenated and passed through the

multi-head attention layer and the resultant is then passed through

weight-shared dense layer. The multi-head attention layer selects the

important features and the weight-shared dense layer predicts

transcription factor binding sites with the selected features

Table 1 Tuning different Hyper parameters

Hyper parameter Search space Optimal value

Activation function ReLU,Tanh,Sigmoid ReLU

Batch size 64,128,256,512,1024 256

Dropout probability 0.1,0.2,0.3,0.4,0.5 0.2

Number of filters 256,512,1024,2048 1024, 512

Optimizer ADAM, SGD ADAM

Size of filters 6,12,18,24,30,36 30, 6

Strides 1,2,3 1

Type of pooling Average , Max Max

# LSTM units 128, 256, 512,1024 512, 256
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including our two proposed models TranAtt and PCLAtt.

The percentage of improvement in the average AUC-ROC

in PCLAtt when compare with recent models TBiNet [25]

and PBVPP-Hybrid [8] are 1.65%, 1.42% respectively.

Figure 3 shows the curve plotted between precision-re-

call (AUPR curve) and the curve plotted between true-

positive rate and false-positive rate (AUROC curve) of

TranAtt. We plotted scatter plots for comparing AUPR and

AUROC scores between PCLAtt and DeepATT as shown

in Fig. 4. For most TF-cell line prediction, PCLAtt showed

better performance than DeepATT in terms of AUPR

scores and AUROC scores (Fig. 5).

5 Conclusion

Identification of transcription factor binding sites is nec-

essary as it helps in understanding the gene regulation.

Deep neural networks along with attention mechanisms

have been used in various applications. We proposed two

models TranAtt and PCLAtt focusing more on increasing

the feature extraction capabilities that results in more

accurate TF-DNA binding prediction task. In TranAtt, the

transfer learning mechanism plays a key role in efficient

feature extraction from the DNA sequence thus improving

the performance of the model. The model PCLAtt is built

using two sets of CNN-BiLSTM layers in parallel such

that one set consists of one CNN layer with two BiLSTM

layers and the another set consists of one CNN and one

BiLSTM layer, followed by multi-head attention layer

and weight-shared dense layer, all contributing towards

efficient feature extraction from DNA sequence and

selecting the valid features required for prediction of

transcription factor binding sites. We trained all the

models with the 690 ChIP-Seq dataset (contains data from

690 ChIP-Seq experiments) obtained from ENCODE

Project. We evaluated both models based on average

Table 2 AUROC and AUPR scores of the model trained in our

system (* proposed models)

Models AUROC AUPR

TBiNet [25] 0.9454 0.3253

DeepATT [20] 0.9591 0.3771

TranAtt* 0.9564 0.3616

PCLAtt* 0.9630 0.3987

*Proposed models

Table 3 Comparison of TranAtt and PCLAtt with various state-of-

the-art models trained on 690 ChIP-Seq dataset (DeepBind,

Expect_Pool, DeepSEA, DanQ, TBiNet and PBVPP-Hybrid models)

Models AUROC AUPR

DeepBind [1] 0.8440 –

Expect_Pool [22] 0.8821 –

DeepSEA [34] 0.9015 0.2485

DanQ [26] 0.9316 0.2959

TBiNet [25] 0.9473 0.3332

PBVPP-Hybrid [8] 0.9491 –

TranAtt 0.9564 0.3616

PCLAtt 0.9630 0.3987

Bold value indicates the best values of AUROC and AUPR of pro-

posed models when compare with existing models
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Fig. 3 (a) Area under precision-recall (AUPR) curve for TranAtt (b) Area under receiver operating characteristics (AUROC) curves of TranAtt
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AUROC and AUPR scores. Finally, PCLAtt achieved

higher AUPR and AUROC scores on average and out-

performed state-of-the-art models (DeepSEA, DanQ,

TBiNet and DeepATT) in TF-DNA binding prediction

task.
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