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Abstract
Leaf segmentation from plant images is a challenging task, especially when multiple leaves are overlapping in images with

a complex background. Recently, deep learning-based methods have demonstrated their effectiveness in the realm of image

segmentation. In this study, a novel convolutional neural network called LS-Net has been proposed for the leaf seg-

mentation of rosette plants. The experiment is performed over 2010 images from the plant phenotyping (CVPPP) and

KOMATSUNA datasets. The segmentation ability of the LS-Net has been investigated by comparing it with four recently

applied existing CNN-based segmentation models, namely DeepLab V3 ? , Seg Net, Fast-FCN with Pyramid Pooling

Module, and U-Net. The analysis of the experimental results clearly demonstrates the superiority of the proposed LS-Net to

other tested CNN models.

Keywords Machine learning � Deep learning � Image segmentation � MobilenetV2

1 Introduction

In this era of automation, the agricultural domain requires

rigorous manual intervention. This often leads to reduced

growth of plants or crops. Therefore, research is going on in

the domain of plant phenomics. It refers to the study of the

growth and structure of plants. Recently, the extraction of the

shape and counting the number of leaves of a plant have

become a major issue in plant phenotyping. It is quite

challenging to detect the leaves and count them. It is so

because the size of the leaves is quite small and/or the leaves

may be in an overlapping manner. Manually counting the

leaves of such a plant is a tedious and time-consuming task.

Therefore, an automatic process is needed to fix this problem.

Deep learning (DL) is one of the most commonly

applied modern artificial intelligence (AI) tools which

plays a crucial role in plant phenotyping [1]. Convolution

neural networks (CNN) extract the growth dynamics and

morphologic traits of an image with greater precision [2].

Recently, plant phenotyping has been recognized as a

bottleneck in modern plant breeding and similar research

work [3]. Moreover, plant phenotyping is an expanding

research field that connects plant biology, technology, DL,

and automation engineering. The importance of plant

phenotyping is increasing to accelerate the process of plant

breeding [4]. Most of the research work in image-based

phenotyping is performed based on the structural data and

holistic physiological information of the plants present in

the image. The phenotypes are extracted using sprouting,

appearance, senescence of leaves, and the appearance of

fruits and flowers [5]. Related works in phenotyping have

increased rapidly over the last few years.

In recent times, digital cameras (often attached to

mobile phones) are quite available. Therefore, a robust
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plant phenotyping scheme for camera captured images

helps to reduce the costs and improve the production of the

plants and crops. Therefore, several researchers are inves-

tigating plant phenotyping schemes from camera captured

images [1]. The growth of a plant can be estimated from

the projected leaf area [7]. As mentioned earlier, because

the size of the leaves is often small and/or leaves are often

overlapped by other leaves, the existing CNN-based plant

leaf area segmentation is a challenging task. Furthermore,

random rotation or leaf displacement and the lighting effect

on plant images make segmentation more difficult [7].

Moreover, the existing CNN-based approaches often fail to

produce highly accurate results. Therefore, a novel CNN

model has been proposed here to segment the leaf area of

plants with higher accuracy. As a result, it can be executed

on a system that has limited access to high-performance

hardware. It was determined after evaluating previous plant

phenotyping studies that there are fewer CNN models with

smaller parameter sizes that are associated with good

accuracy. CNN models must also be compatible with

mobile devices and require less memory. To address this

issue, the goal of this research is to design a CNN model

with a small number of parameters but high accuracy. The

proposed model, LS-Net, has a small number of parameters

(approximately 5 M) and requires limited storage.

Although the leaf segmentation task is relatively simple for

images of rosette plants [3], the existing methods have yet

to produce an accurate result. So, the model has been

trained and tested using images of rosette plants. The

proposed approach is also compared with four different

standard CNN models, namely (a) DeepLab V3 ? [30];

(b) Seg Net [29]; (c) Fast FCN with Pyramid Pooling

module [38]; and (d) U-Net [42]. The leaf segmentation

efficacy of the tested CNN models has been investigated by

computing segmentation accuracy, dice score, and Inter-

section over Union (IoU) score. The results are quite

encouraging.

In summary, the contributions of the work are as

follows:

• A novel convolutional neural network for leaf segmen-

tation of rosette plants has been proposed which

consists of a powerful and light-weighted backbone as

MobilenetV2, an Atrous Convolution Block which

allows the density of encoder features to be controlled

[34], and an effective decoder that takes previous

information between continuous intervals for better

accuracy.

• Unlike existing approaches, a separable convolution has

been applied in the Atrous convolution block used for

leaf segmentation and in the decoder part, resulting in a

quicker and more robust encoder-decoder network.

• On the merged dataset of CVPPP and KOMATSUNA,

the proposed model achieves a new state-of-the-art

performance. The proposed model was also tested over

the CVPPP dataset to perform a better comparison with

previously published models.

• A normalization layer has been introduced in this

proposed model to filter out the unnecessary pixels from

the images. Details are given in Sect. 2.5.

The rest of the paper is organized as follows. Section 1.1

reflects the related existing work. The proposed method is

discussed in Sect. 2. The experimental study is presented in

Sect. 3. Finally, the concluding remarks are presented in

Sect. 4.

1.1 Related works

Successful plant phenotyping research has been carried out

in recent years. Several researchers have concentrated their

efforts on this hot topic. Phenotyping of plants has been

done in climate-controlled laboratories, greenhouses, and

even in the outdoors. Many plant phenotyping research

projects have been completed recently. Kumar et al. [9]

proposed an orthogonal transform domain-based plant

region segmentation approach based on orthogonal trans-

form coefficients. To count the leaf counts, they employed

a deep CNN. Their models have been tested with mobile

phone images and also tested on CVPPP benchmark

datasets. With a segmentation accuracy of 93.72%, their

recommended system was the most accurate. Wu et al. [10]

proposed a highly effective object-aware embedding

learning architecture. The architecture includes a module

called the distance regression module, which generates

seeds for fast clustering. They combined two U-Nets to get

an increase in 8% in mean symmetric best dice (mSBD).

The fundamental flaw in their suggested model is that it

does not produce predicted results for the CVPPP dataset’s

A3 category. In the leaf segmentation challenge, Gomes

and Zheng [11] describe experimental research on the

constraints of phenotyping datasets and the best performing

approach. They also focused on the notion that model

cardinality and test-time augmentation could be useful in

single-class image segmentation. Huther et al. [12] have

created a versatile pipeline. The approach can extract

phenotypic measurements from plant images in an unsu-

pervised manner. Leaf tissue was classified into three cat-

egories using segmented images: healthy, anthocyanin-

rich, and senescent. Another study had been conducted by

Yang et al. [13], where authors investigated how to seg-

ment and classify leaf images with a complex background.

For this challenge, a Mask R-CNN model had been

utilized.
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Bell et al. [14] described a method for segmenting

Arabidopsis thaliana plant images at the leaf level based on

identified edges. The leaf margins, as well as the number of

leaves, were classified by the model. This method is

effective at extracting occluding pairs of leaves that are

extensively overlapped. Pape and Kulkas [15] published

another paper on leaf segmentation using leaf edge detec-

tion. They also offered a strategy that included image

analysis based on software IAP [16] for extracting a broad

collection of image attributes to forecast the number of

leaves. For varied resolution and noise appearance, the

suggested model’s performance is reduced in the A3 cat-

egory of the CVPPP dataset. Kuznichov et al. [18] sug-

gested a data augmentation technique that keeps the data

objects’ geometric structure. The research tried to match

the physical appearance of an image as closely as possible

to that of authentic images. Researchers got an 86.7 Best-

Dice Score by combining different approaches. However,

the CVPPP dataset’s A2 and A3 categories, on the other

hand, had lower segmentation accuracy than A1 and A4.

Ubbens et al. [17] used both actual and synthetic data-

sets to show that the datasets might be interchanged when

training a model for the leaf number counting task. They

primarily provided a new strategy for complementing plant

phenotyping datasets with rendered visuals of synthetic

databases. It had been discovered that their strategy reduces

the mean absolute count error by 27% approximately.

While most research focused on 2D images, Itakura

et al. [21] used an efficient approach to obtain spatial

information. The boundaries between all the leaves were

unclear in a 2D image of rosette plants because of the

overlapped portions. They collected 3D point-cloud images

of plants with various cameras and sensors to overcome the

drawbacks of a 2D image of the top-view of the plant. As a

result, the authors obtained a 0.06 cm2 absolute leaf area

estimation inaccuracy. Pape and Kulkas [19] provided

another 3D histogram-based segmentation for rosette plants

where a Euclidean-distance-map-based method had been

implemented to detect and segment the leaves. In addition,

a method was introduced to detect the optimal leaf split

points to separate the overlapped leaves.

Yin et al. [20] suggested a unique paradigm for video

processing using fluorescent plants. The number of well-

aligned leaves was determined by applying leaf segmenta-

tion and alignment to a frame. After that, leaf tracking was

used in conjunction with earlier data. The value of the

Symmetric Best Dice (SBD) index gained by their proposed

model was 78.0. Scharr et al. [22] compared several leaf

segmentation methods on a unique dataset containing ima-

ges from phenotyping experiments. Ren et al. [23] presented

an attention-based end-to-end Recurrent Neural Network

(RNN) which was trained on RoI (Regions of Interest) that

had been successively constructed, with object segmentation

inside each region. The suggested model was validated using

both the CVPPP and other datasets.

(a) Sample images from CVPPP dataset with their corresponding ground truths

(b) Sample images from KOMATSUNA dataset with their corresponding ground truths

Fig. 1 Example of Leaf images of the utilized datasets
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Aksoy et al. [24] proposed a multi-level approach for

locating and tracking rosette plant leaves. They worked on

three weeks old tobacco plants in their early phases of

growth with infrared cameras. This allowed for the auto-

matic and non-invasive measurement of essential plant

factors such as leaf growth rates. Pre-processing, leaf

segmentation, and leaf tracking were the three major parts

of this operation. Leaf-shape models were also used to

calculate leaf sizes. Dellen et al. [25] evaluated the growth

of a tobacco plant using pre-processing time-lapse of

growing plants, which was related to plant phenotyping. An

image-shape model partitioned the leaf area in each frame.

They also developed a new graph-based tracking method

that could fully fill gaps in the sequence of a set of sur-

rounding frames. Janssens et al. [26] described yet another

unique method for automatic segmentation of individual

plant leaves. In addition, an approach for extracting the line

of symmetry of the leaf was proposed.

The above discussion clearly demonstrates that accurate

leaf segmentation is very important because the accuracy

of leaf detection, localization, counting, leaf tracking, and

boundary estimation solely depend on this. In addition to

that, it is noticed that the majority of the above discussed

models are unable to produce satisfactory results over the

A2 and A3 categories of the CVPPP dataset due to the

green background as noise and a large number of over-

lapped leaves. Therefore, this study developed a novel

CNN model called LS-Net which is able to perform better

leaf segmentation in the presence of various background

and overlapping leaves. The brief descriptions of the pro-

posed CNN model and dataset have been done in the fol-

lowing section.

2 Materials and methods

This section describes the proposed CNN model as well as

the dataset. The first sub-section describes the used dataset

with some sample images. The next sub-section describes

Fig. 2 a Bottle neck Block; b Conv Block; c Depthwise Conv Block; d MobilenetV2 Architecture

Fig.3 Atrous Convolution Module
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the used backbone of the proposed model. In the next sub-

sections, a discussion of Atrous Convolution and Transpose

Convolution is presented. In the end, the architecture of the

proposed model is demonstrated.

2.1 Dataset design

This experimental study is performed over a merged

dataset which is a combination of two well-known datasets,

namely the plant phenotyping dataset (CVPPP) benchmark

datasets [7] and the KOMATSUNA dataset [8]. The

CVPPP dataset is divided into four parts, termed A1, A2,

A3, and A4. The number of total images in the four sec-

tions is 810.

On the other hand, the KOMATSUNA dataset is divided

into two sections. One section is created using an RGB-D

camera, and another section is created using multiple RGB

cameras. The number of total images in the two sections is

1200. Therefore, there are a total of 2010 images and their

segmented ground truths (binary) with the size same as 224

9 224 in the merged dataset. The images are resized using

bilinear interpolation [27]. Subsequently, a random divi-

sion of the merged dataset has been done to create the train

set, validation set, and test set. The training set has 1410

images, the validation set contains 300 images, and the test

set contains 300 images, all of which were chosen at ran-

dom. Random clockwise and anti-clockwise rotations of

90�, 180�, and vertical flips have been performed over

images. Some sample images from the dataset are shown in

Fig. 1.

A separate dataset of randomly selected 140 images

from the CVPPP dataset is utilized for testing in order to

perform a better comparison with previously published

CNN models.

2.2 Backbone

The CNN backbone determines the precision of an image

segmentation model. The feature maps of an image have

been extracted by the backbone, and the image has been

further segmented based on these feature maps. There are

many segmentation models with different backbones are

reported in [28]. In this paper, MobilenetV2 has been

applied as the backbone of the proposed model because it

Fig. 4 Working methodology of

Transpose Convolution

Fig. 5 Segmentation Outcomes of the proposed LS-Net model with

and without Normalization Layer
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proved to be successful in the CNN-based segmentation

domain. The MobilenetV2 is discussed in the next

paragraph.

The MobilenetV2 [31] model is recently developed

based on CNN, which has been utilized by several well-

known segmentation models. Hence, it has been applied as

a backbone in the proposed model, and the architecture is

depicted in Fig. 2. Some minor modifications are made in

the architecture of the MobilenetV2 to fit the decoding part.

The modifications are discussed in Sect. 4. Many powerful

CNN models require the use of depth-wise convolutional

layers. This layer reduces both the number of parameters

and the amount of computation. A bottleneck block, pre-

sented in Fig. 2(a), is employed in MobilenetV2. ReLU6

[31], a special ReLU function, is used here and is defined

by the equation max x; 6:0ð Þ. There is a ‘conv block’ con-

sisting of three layers, i.e., a convolution layer, a batch

normalization layer, and an activation function as shown in

Fig. 2(b). In addition, a ‘depthwise conv block’ which is

the combination of depth-wise convolution layer, batch

normalization layer, and activation function is presented in

Fig. 2(c).

2.3 Atrous convolution block

Atrous convolution block, which is introduced by Chen et.

al. [34], has shown efficacy when integrated with well-

known DeepLab V3 ? [30], DeepLab [35], and PSP Net

[36]. Atrous convolutions are very efficient in explicitly

controlling the resolution of the feature maps extracted by

the deep CNN backbones. For that reason, Atrous Convo-

lution block from Chen et. al. [30] has been adopted for this

work. However, the traditional convolution layers are

replaced by separable convolution layers because separable

convolution layers have significantly fewer parameters

than the traditional convolution layers. It also contributes

to the reduction of the parameter size in the proposed

model. In addition to that, it also sets the field-of-view of

the filter in order to capture multi-scale information and

simplifies typical convolution operations. In Atrous Con-

volution, the input is parallelly fed into five layers, namely

a (1 9 1) separable convolution layer, three (3 9 3) dilated

separable convolution layers [37] with dilated rates of 6,

12, and 18, and a Max pooling layer. Then, the outputs of

Fig. 6 a Conv Block; b Separable Conv Block; c Depthwise Conv Block; d Bottleneck Block; e Architecture of Proposed LS-Net
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all the mentioned layers are concatenated. The architecture

is presented in Fig. 3.

2.4 Utilized upsampling method

The upsampling methods, such as nearest neighbour [44],

bed of nail [44], max unpooling [44], and bilinear inter-

polation [27], are predefined and do not depend on data,

which makes them task-specific. They do not learn from

data and hence are not a generalized technique. To address

this issue, a well-known upsampling method called trans-

pose convolution has been applied in this work. Transposed

convolutions are the backbone of modern segmentation and

super-resolution algorithms. They provide the best and

most generalized upsampling of abstract representations.

The working methodology is presented in Fig. 4, where it

can be easily noticed that output has been generated by

performing a point-to-point multiplication between input

and kernel [44]. Transposed convolutions also suffer from

checkered board effects, but less than the above-mentioned

interpolation techniques. The main cause of this is uneven

overlap in some parts of the image, causing artefacts. This

can be fixed or reduced by using a kernel-size divisible by

the stride, and therefore taking a kernel size of 2 9 2 or

4 9 4 when having a stride of 2. Hence, this study utilizes

a (2 9 2) kernel size for transpose convolution. However,

for bilinear interpolation, this checkerboard effect exists

badly and is significantly higher than transpose

convolution.

2.5 Normalization layer

A normalization layer, which has been used in the proposed

LS-Net model, is nothing but a layer that makes the values

zero that are less than 0.5 and the other values remain

unchanged. The idea behind this normalization layer is to

filter out the unnecessary pixels from the images. Unwan-

ted pixels can be generated due to the background or the

reflection of light. This can decrease the accuracy of the

segmentation. With this normalization layer, it has become

easier for the designed model to predict more accurately.

Figure 5 shows the two types of segmented images of the

model, i.e., with and without normalization layers, and also

proves the crucial impact of the normalization layer in the

proposed model. The proposed model’s test accuracies

with and without the normalization layer are 97.36% and

92.85%, respectively, over the merged dataset. Hence, it

can be said that the normalization layer significantly

influences the accuracy of the LS-Net. The authors of the

other tested CNN models, like DeepLab V3 ? , Seg Net,

Fast-FCN with Pyramid Pooling Module, and U-Net, did

not consider or incorporate the normalization layer into

their models. Therefore, this normalization layer is an

important component of the proposed LS-Net model as per

the experimental study.

2.6 The architecture of the proposed LS-Net
Model

The main purpose of proposing this model is to increase the

accuracy of the prediction. The proposed LS-Net utilizes

MobilenetV2 [31] as the backbone because, besides being

efficient, it takes fewer parameters than others. The archi-

tecture of our backbone is discussed in the previous

section.

Many efficient neural network [31–33] topologies

employ depthwise convolution layers as a crucial building

element, and this study also uses them. The Separable

convolution layers are used to reduce the parameter size.

The main concept is to replace a fully convolutional

operator with a factorized version that divides convolution

into two layers. The first layer, known as depthwise con-

volution, applies a single convolutional filter per input

channel to conduct light-weight filtering. The second layer

is a 1 9 1 convolution, also known as a pointwise con-

volution, which is responsible for generating new features

by calculating linear combinations of the inputs [31].

In addition, the image information has been saved

before each downsampling and used later in the model, as

shown in Fig. 6. ReLU6 [31] has been used as the

Table 1 Segmentation Quality Parameters

Sl Parameters Formulation Remarks

1 Accuracy (AC) AC ¼ TPþTN
TPþTNþFPþFN

It is defined as the sum of the correctly classified pixels divided by the sum of the total number

of pixels. A high AC value indicates a better result [39]

2 Dice score (DI) DI ¼ 2� A\Bj j
Aj jþ Bj j

Dice measures how much area of the predicted image matched with the ground truth. In other

words, it calculates overlapped area between the predicted image and the ground truth image

[40]. A high DI value indicates a better result [40]

3 Intersection over

Union (IoU)
IoU ¼ A\B

A[B
�
�

�
� It is a score between 0 and 1 that shows how much area is overlapped between the predicted

image and ground truth. If the score is above 0.5 then the model predicts well [41]
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activation function. The Atrous convolution block, as

presented in Fig. 3 is added after the backbone. The entire

architecture is illustrated in Fig. 6. The kernel size of the

separable convolution layer is (1 9 1). The kernel size of

all the ‘separable conv block’ is (3 9 3).

In the decoder part, there are four decoder blocks and

consists of one depthwise conv block as presented in

Fig. 6(c), two bottleneck blocks as presented in Fig. 6(d), a

transpose convolution as shown in Fig. 4 [44], and a

depthwise conv block, and concatenation.

Table 2 Parameter Settings of CNN models over input image size: (224, 224, 3)

CNN model Parameter setting

DeepLab V3 ? The filters of the backbone are the same as the original. The sigmoid activation function is used for prediction.

Total 3.5 M trainable parameters exist for DeepLab V3 ? [30]

Seg Net The filters of the backbone and decoder part are the same as the original. At last, the sigmoid activation

function is used for prediction. the Seg Net model has 16.7 M trainable parameters [29]

Fast FCN with Pyramid

Pooling module

The filters of the backbone and decoder part are the same as the original. At last, the sigmoid activation

function is used for prediction. Fast FCN model associates with 51.8 M trainable parameters [38]

U-Net The filters of the backbone and decoder part are the same as the original. At last, the sigmoid activation

function is used for prediction. U-Net model has 31.0 M trainable parameters [42]

Proposed LS-Net The batch size for the proposed model is 7. The filters of the backbone are the same as the original. For Atrous

convolution block, a filter of size 128 has been used. In the next separable conv layer, proposed model uses

864 filters. After the first concatenation, the number of filters is grown to 1024, and subsequently the number

of filters is gradually reduced. Finally, the sigmoid activation function is employed in the prediction process.

The proposed model has 5 million trainable parameters

(a) (b)

(c)
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Fig. 7 Training details of Proposed LS-Net: a training loss; b training accuracy; c validation loss
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A depthwise conv block as shown in Fig. 6(c) consists

of a conv block as presented in Fig. 6(a) with (1 9 1)

kernel size, a (3 9 3) depthwise convolution layer [31]

followed a batch normalization and an activation function,

a (1 9 1) convolution layer [39], and a batch normalization

layer.

The bottleneck block is the same as the depthwise conv

block but the only difference is that, at the end, the input is

concatenated with the output of that block which is pre-

sented in Fig. 6(d). A bottleneck block consists of a conv

block with (1 9 1) kernel size, a (3 9 3) depthwise con-

volution layer [31] followed by batch normalization and an

activation function, a (1 9 1) convolution layer [39], and a

batch normalization layer, and concatenation.

3 Experimental results

The experimental study has been performed using NVIDIA

GeForce 1650 with cuDNN CUDA 10.0 and AMD Ryzen 5

3550H processor with 16 GB RAM and 256 GB SSD. On

the other hand, the software is Anaconda, which includes

Jupyter Notebook. All experiments have been performed

using TensorFlow and Scikitlearn.

The performance measures of segmentation work have

been investigated by computing three widely used param-

eters, namely segmentation accuracy, dice score, and

intersection over union (IoU). The details of the parameters

are reported in Table 1.

3.1 Parameter settings

The ‘Binary Crossentropy’ has been utilized as the loss

function for all CNN models. The input image is in RGB

format and the shape is (224, 224, 3). The output image is

in binary form and of size (224, 224, 1). The batch size

varies according to the proposed model and machine

capacity. The parameter settings of the proposed and other

tested CNN models are presented in Table 2.

3.2 Training and validation of the proposed
model

Images that belong to the training and validation sets are

normalized before training and preprocessing. In the pro-

posed model, the Adam optimizer and binary crossentropy

as the loss function have been utilized. To get the opti-

mized result, the training process has been terminated when

the training loss is less than or equals 0.011, which is set

empirically. The training accuracy began at 94.01% and

ended at 97.38%, while the training loss began at 0.1335

and ended at 0.0102. The training details of the proposed

LS-Net are presented in Fig. 7. The training outcomes, on

the other hand, are shown in. Table 3.

3.3 Discussion on testing and prediction

The segmentation efficacy of the tested CNN models has

been measured by computing the Dice score and IoU along

with testing loss and accuracy. The proposed LS-Net model

has been compared with DeepLab V3 ?, Seg Net, Fast

FCN with Pyramid Pooling module, U-Net over merged

Table 3 Training results of the Proposed LS-Net

Models Parameters (trainable) MS/STEP Epoch no Training accuracy Validati on loss Training loss

Proposed ls-net model 5.0 M 950 ms 1 94.01% 0.3019 0.1335

100 97.37% 0.0121 0.0110

170 97.38% 0.0120 0.0102

Table 4 The testing results

obtained by different CNN

model over merged dataset

Models Test loss Test accuracy Dice score IoU

DeepLab V3 ? 0.0223 97.13% 94.59 89.78

Seg net 0.0176 97.29% 95.04 90.58

Fast FCN with pyramid pooling block 0.0194 97.24% 94.31 89.29

U-Net 0.0580 96.40% 91.87 86.50

Proposed LS-net 0.0112 97.36% 96.70 93.61

*Best results are marked in bold
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Fig. 8 Graphical analysis of

Dice score and IoU: a DeepLab

V3 ? ; b Seg Net; c Fast-FCN

with Pyramid Pooling Module;

d U-Net; e Proposed LS-Net

Model
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dataset, and CVPPP dataset. In addition to that, LS-Net is

also compared with SLIC_Seg [22, 45], a segmentation

model proposed by Nottingham [9], Wageningen [9],

Kumar & Domnic [9], Kumar & Domnic [45] over the

CVPPP dataset based on Dice score.

The numerical values of the mentioned quality mea-

surement parameters over the merged dataset have been

recorded in Table 4. In addition to that, the graphical

analysis of the dice score and IoU for all employed models

over the merged dataset is performed in Fig. 8. The results

over the CVPPP dataset are presented in Tables 5 and 6,

whereas the segmented leaf outcomes by tested CNN

models are presented in Fig. 9.

According to Table 4 and the graphical analysis of

Fig. 8, it is clear that the proposed LS-Net model delivers

superior results compared to other tested CNN models in

terms of test accuracy, test loss, Dice, and IoU over the

merged dataset. Seg Net provided second best results when

the same evaluation parameters have been considered.

DeepLab V3 ? and Fast FCN with Pyramid Pooling block

produced nearly the same results. U-Net, on the other hand,

produced the worst results.

The tested CNN models were evaluated again on the

CVPPP dataset. The numerical values of test accuracy, test

loss, Dice, and IoU in Table 5 clearly show that the pro-

posed LS-Net produced competitive results when com-

pared to others. LS-Net achieved a testing accuracy of

98.92%. On the other hand, finding the second best model

over the CVPPP dataset is quite difficult. DeepLab V3 ? is

the second best model based solely on testing accuracy.

When test loss and IoU were taken into account, Seg Net

produced the second best result. Fast FCN with Pyramid

Pooling block provided a slightly better Dice score com-

pared to Seg Net. U-Net also produced the worst numerical

results in this case. Table 6 compares the proposed LS-Net

model to some state-of-the-art segmentation techniques by

computing Dice scores over the CVPPP datasets. The Dice

score adds credence to the superiority of the LS-Net. The

dice scores of the compared state-of-the-art techniques

over CVPPP dataset are collected from [9, 45].

The leaf segmented outcomes of the tested CNN models

over the merged dataset are presented in Fig. 9 for visual

analysis following the quality parameter-based analysis.

The ground truth images of the tested images are also

included in Fig. 9 for better visual comparison. Overall, the

proposed LS-Net produces better segmented results than

other tested CNN models. Segmented results over complex

images are also presented for better visual comparison of

the tested CNN models. Images with a small green back-

ground are considered as complex because the colours of

the background and the leaf are very similar. The last three

rows of Fig. 9 show the prediction results of the models

used, demonstrating that LS-Net produced competitive

results.

4 Conclusion

This paper introduces LS-Net, a Deep Convolution Neural

Network (DCNN) for the leaf segmentation of rosette

plants. The LS-Net is trained and evaluated on the CVPPP

[7] and KOMATSUNA [8] datasets. DeepLab V3 ? , Seg

Net, Fast-FCN with Pyramid Pooling Module, and U-Net

are four well-known DCNN models that are compared to

the proposed LS-Net to investigate the efficacy of the

proposed one. Depending on the architecture and experi-

mental results, the following conclusions can be made:

1. The proposed LS-Net model is better in the leaf

segmentation domain because of its powerful and light-

Table 5 The testing results

obtained by different CNN

model over CVPPP Dataset

Models Test loss Test accuracy Dice score IoU

Deeplab V3 ? 0.0237 98.21% 91.79 85.11

Seg net 0.0197 97.92% 92.50 86.04

Fast FCN with pyramid pooling block 0.0211 97.57% 92.54 85.94

U-Net 0.0598 96.92% 89.23 81.55

Proposed LS-net 0.0118 98.92% 96.51 93.30

*Best results are marked in bold

Table 6 Dice Score comparison with prior published leaf segmentation models for leaf segmentation on CVPPP Dataset

Nottingham [9] Wageningen [9] Kumar & Domnic [9] Kumar & Domnic [45] SLIC_Seg [22, 45] Proposed LS-Net

91.6 94.0 94.7 95.4 91.2 96.51

*Best results are marked in bold
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Fig. 9 Segmented outcomes of

the tested CNN Models
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weighted backbone, i.e., MobilenetV2, an Atrous

convolution block that allows the density of encoder

features to be controlled, and an effective decoder that

takes previous information between continuous

intervals.

2. The utilization of normalization layer in the proposed

LS-Net model has a great impact because it helps to

filter out the unnecessary pixels from the images. The

LS-Net also takes up less memory and therefore is

more suited than the other models reviewed.

3. The visual and numerical findings clearly show that the

LS-Net produces competitive outcomes in the leaf

segmentation area when compared to other state-of-

the-art CNN models. The key advantage of the

proposed LS-Net model over other evaluated CNN

models is that it can better segment complex leaf

images, such as those with a light green background.

4. Over the merge dataset and the CVPPP dataset, the LS-

Net obtains 97.36% and 98.92% test accuracies,

respectively, demonstrating its effectiveness in the

field of leaf segmentation. This is supported not only

by accuracy, but also by other well-known segmenta-

tion quality scores such as dice and IoU.

However, the limitation of the proposed model is that it

provides unsatisfactory results when there is a large over-

lap between leaves or images have a significant green

background. Based on the above conclusions and limita-

tions, the following future directions for the study are as

follows:

1. Although LS-Net performs well in the leaf segmenta-

tion of rosette plants, it is important to test it in other

real-world leaf segmentation areas as well as medical

image segmentation areas.

2. Accurate leaf segmentation is required for leaf count-

ing. As a result, leaf counting using an LS-Net-based

segmentation model could be a promising future

endeavour.

3. Aside from the development of CNN models, enhanc-

ing image quality with better advanced techniques can

also help with performance. Furthermore, utilizing an

embedding system, it will be feasible to segment and

classify leaves automatically in real-time.

4. Finally, but certainly not least, deep learning seems to

have its own set of common issues, such as network

structure design, 3D image segmentation model

design, and loss function design. Designing 3D

convolution models to analyze 3D leaf image data is

a researchable direction. Loss function design has long

been a challenge in deep learning research. Nature-

inspired optimization algorithms [46] based optimized

deep learning models [47] can also be an emerging

research topic.
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