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Abstract
This study considers an adaptive neural control for a two degrees of freedom helicopter nonlinear system preceded by

system uncertainties, input backlash, and output constraints. First, a neural network is adopted to handle the hybrid effects

of input backlash nonlinearities and system uncertainties. Subsequently, a barrier Lyapunov function is introduced to limit

the output signals for further ensuring the safe operation of the system. The bounded stability of the closed-loop system is

analyzed employing the direct Lyapunov approach. In the end, the simulation and experiment results are provided to

demonstrate the validity and efficacy of the derived control.

Keywords 2-DOF helicopter system � Neural network control � Input backlash � Output constraint

1 Introduction

Recently, unmanned aerial vehicles (UAVs) have been

widely applied in civil and military areas, owing to the

advantages of vertical take-off, hovering, flexibility, and

rapid response [1, 2]. However, the helicopter is a highly

nonlinear multiple-input multiple-output (MIMO) system

with multiple coupling and many internal system parame-

ters are difficult to measure accurately in practical appli-

cations [3]. Thus, a stabilized control strategy is urgently

developed to ensure the stable robustness of nonlinear

helicopter systems.

In recent decades, various control methodologies have

been put forward for controller design of helicopter sys-

tems, such as model-based control, linear quadratic regu-

lator (LQR) control, and Q-learning control [4–8]. In [4], a

model-based tracking controller was introduced to track

reference trajectories for small-scale unmanned heli-

copters. In [5], a linear quadratic controller was designed

by an enhanced performance adaptive technique, and the

system’s performance and robustness were discussed. In

[6], a direct adaptive LQR control with the advantage of

the wide operating horizon was introduced to increase the

system’s stability and robustness. In [7], to handle the LQR

problem, a new Q-learning algorithm was constructed

utilizing an iteration policy. However, the above-men-

tioned studies linearized the nonlinear helicopter systems

by ignoring the nonlinear portion and couple effects for

ease of control design, and the instability and poor per-

formance of the nonlinear helicopter systems in practical

applications may arise. Thus, incorporating the nonlinear-

ities into the controller design is necessary.

In such case, various nonlinear control methods, such as

robust control, optimal control, adaptive neural network

(NN) control and so on, have been developed to tackle the

uncertainties in UAV systems [9–13]. In [9], a trigono-

metric-saturation-function-based position controller was

designed to address internal and external disturbances. In

[10], an adaptive control was proposed to handle the
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trajectory tracking issue of flapping-wing micro aerial

vehicles. In [11], an adaptive NN control was introduced to

approximate unknown helicopter systems with output

constraints and input dead-zone. However, the control

design in the above literatures resolved the issue of system

uncertainties and nonlinearities, and the effect of input

backlash nonlinearity was not considered. Moreover, the

effectiveness of the above approach was only validated in

simulations without an experimental verification. Recently,

some nonlinear control methods have been developed in

the practical application of helicopter systems. In [14], an

explicit model predictive control was introduced for a

helicopter system to track desired time-varying trajectories.

In practice, the optimization problems is difficult to be

solved in the case of short sampling time intervals. It can

be noted that the optimization computation in the predic-

tive control scheme was achieved offline and the effects of

internal mechanical properties and external disturbances

were neglected. In [15], a sliding mode control (SMC)

synthesis was proposed to compensate the effect of the

external disturbances and chattering phenomenon often

occured under the SMC, which may result in system

instabilities or even destruction under long-time operation.

Hence, a control scheme with online adjustment and steady

operation is necessary for practical application.

Input nonlinearities universally exist in practical engi-

neering applications due to non-smooth mechanical con-

nections [16–22]. Backlash is one of the input

nonlinearities, the existence of which may affect the

smoothness of input signal and then cause control perfor-

mance degradation. Thus, it is imperative to develop

effective control schemes to handle and compensate for the

effects of backlash nonlinearity. In [20], an H-infinity

observer-based feedback control was constructed for time-

delayed MIMO nonlinear systems to compensate for

unknown backlash and estimate unmeasurable states. In

[21], a neural network-adaptive strategy was established to

address the tracking control for uncertain MIMO nonlinear

systems. In [22], a robust H-infinity control was proposed

for UAV systems to handle parametric uncertainties

including nonlinear friction force and backlash. Although

the successful solution has been attained on the control

design for tackling the backlash in MIMO systems, little

research has been reported thus far on the adaptive NN

control for unknown 2-DOF helicopter systems with input

backlash, which inspires us for further study.

In practical control engineering, due to the requirement

for the stability and security of the system, the signals of

states and outputs should be maintained in a reasonably

constrained range [23–25]. If the constraints are trans-

gressed and violated, it may give rise to system perfor-

mance degradation, result in instability, or even lead to

serious accidents [26]. Thus, constraints are required to be

incorporated into the control design. Barrier Lyapunov

function (BLF), as an effective tool to address the con-

straint issue, was proposed to handle output constraints in

nonlinear systems [27]. In [28], the BLF was introduced in

the design of adaptive NN control to prevent from violating

the constraint. In [29], a novel integral BLF was proposed

to address the full state constraints. In [30], time-varying

constraints were considered in an adaptive NN control

design of n-link robot systems. However, the above study

only resolved the output constrained control for nonlinear

systems, and the simultaneous effects of the backlash

nonlinearity, output constraints, and uncertainties were

neglected. Considering the complexly coupled character-

istics in 2-DOF helicopter systems will pose an increased

challenge to the control design.

Driven by the existing results, this study concentrates on

the design of an adaptive NN control of uncertain 2-DOF

helicopter systems involving the input backlash and output

constraint. The main contributions are summarized as

follows:

1. The input backlash, output constraints, and uncertain-

ties are considered in 2-DOF helicopter systems, and

the RBFNN is utilized to develop an adaptive NN

constrained control to approximate the unknown func-

tion and uncertainties, and ensure no violation of

constraints.

2. The proposed adaptive NN control can stabilize the

closed-loop system at a specified region. The simula-

tion and experiment results on the Quanser’s 2-DOF

helicopter platform prove the control performance.

2 Problem formulation

A backlash nonlinearity shown in Fig. 1 is depicted as [31]

Fig. 1 Backlash diagram
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sðtÞ ¼ BðudÞ ¼

jðudðtÞ � B1Þ; if _ud [ 0 and

sðtÞ ¼ jðudðtÞ � B1Þ;

jðudðtÞ � B2Þ; if _ud\0 and

sðtÞ ¼ jðudðtÞ � B2Þ;

sðt Þ; otherwise;

8
>>>>>>>><

>>>>>>>>:

ð1Þ

where BðudÞ denotes a backlash nonlinearity, udðtÞ is a

desired control input, and sðt Þ means that the output

signal sðtÞ remains unchanged. j[ 0, B1 [ 0, and B2\0

are constant parameters. In addition, j is the line’s slope.

Assumption 1 The parameters j, B1, and B2 are known

and bounded constants in (1) and satisfy the following

constraints

0\jmin � j� jmax;

0\ðjB1Þmin � jB1 �ðjB1Þmax;

ðjB2Þmin � jB2 �ðjB2Þmax\0:

Then, we can rewrite (1) as

sðtÞ ¼ BðudÞ ¼ judðtÞ þ DðudÞ; ð2Þ

where DðudÞ denotes a nonlinearity error for the backlash

described as

DðudÞ ¼

� jB1; if _ud [ 0 and

sðtÞ ¼ jðudðtÞ � B1Þ;

� jB2; if _ud\0 and

sðtÞ ¼ jðudðtÞ � B2Þ;

sðt Þ � judðtÞ; otherelse:

8
>>>>>>>><

>>>>>>>>:

ð3Þ

Remark 1 From the Assumption 1, we derive that

kDðudÞk\D� is bounded and the unknown parameter D�

satisfies D� ¼ max ðjB1Þmax;�ðjB2Þmin

� �
.

The schematic diagram of a 2-DOF helicopter is dis-

played in Fig. 2. From which, it can be observed that the

pitch and yaw motions are controlled by the thrust forces

Fp and Fy, respectively.

By Lagrange dynamic equations, the nonlinear equa-

tions of a 2-DOF helicopter system can be modeled as [32]:

ðJp þ mL2cmÞ€h ¼ KppVp þ KpyVy � mgLcm cos h

� Dp
_h� mL2cm

_w
2
sin h cos h;

ð4Þ

ðJy þ mL2cm cos2 hÞ €w ¼ KypVp þ KyyVy � Dy
_w

þ 2mL2cm
_w _h sin h cos h;

ð5Þ

where the specific parameters above-mentioned can be

referred in Table 1.

Define the state vectors as x1 ¼ ½h;w�T and x2 ¼ ½ _h; _w�T ,
and an input vector as s ¼ ½Vp;Vy�T . To facilitate the

control design, the dynamic Eqs. (4) and (5) can be

rewritten as the state-space equations formulated as

_x1 ¼ x2;

_x2 ¼ Fðx1; x2Þ þMðx1Þs;
y ¼ x1;

s ¼ BðudÞ;

ð6Þ

where s ¼ BðudÞ denotes the a backlash nonlinearity of the

actuators and

Fig. 2 The schematic diagram of a 2-DOF helicopter

Table 1 Parameters of 2-DOF helicopter system

Symbol Definition

Jp Moment of inertia about the pitch axis

Jy Moment of inertia about the yaw axis

Dp Pitch viscous friction constant

Dy Yaw viscous friction constant

Kpp Torque thrust gain of Fp acting on pitch axis

Kpy Torque thrust gain of Fy acting on pitch axis

Kyp Torque thrust gain of Fp acting on yaw axis

Kyy Torque thrust gain of Fy acting on yaw axis

Lcm Center of mass distance from the body-fixed frame origin

m Mass
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Fðx1; x2Þ ¼

a2
a1
b2
b1

2

6
6
4

3

7
7
5; Mðx1Þ ¼

Kpp

a1

Kpy

a1
Kyp

b1

Kyy

b1

2

6
6
4

3

7
7
5; ð7Þ

with the variables a1, a2, b1 and b2 designed as

a1 ¼ Jp þ mL2cm; ð8Þ

a2 ¼ �mgLcm cos h� Dp
_h� mL2cm

_w
2
sin h cos h; ð9Þ

b1 ¼ Jy þ mL2cm cos2 h; ð10Þ

b2 ¼ �Dy
_wþ 2mL2cm

_w _h sin h cos h: ð11Þ

In practical application, the system nonlinearity and

parameters in 2-DOF helicopter systems are difficult to

measure accurately, and the functions Fðx1; x2Þ and Mðx1Þ
are uncertain, which raises the difficulties in control design.

To deal with this, (6) can be rewritten as

_x1 ¼ x2;

_x2 ¼ Fðx1; x2Þ þ DFðx1; x2Þ þ Mðx1Þ þ DMðx1Þð Þs;
y ¼ x1;

s ¼ BðudÞ:

ð12Þ

For the convenience of reading, we replace Fðx1; x2Þ,
Mðx1Þ, DFðx1; x2Þ, and DMðx1Þ with F, M, DF, and DM,

respectively.

Lemma 1 The RBFNNs can approximate any continuous

unknown function f ðfÞ: Rk ! R [33] and can be described

as

f ðfÞ ¼ W�TSðfÞ þ �; ð13Þ

where f � Rk represents a RBFNN input vector, Ŵ 2 Rn is

an estimated weight vector, and n[ 1 is the number of

hidden layer nodes. SðfÞ is the basic function expressed as

SðfÞ ¼ exp
�ðf� CÞTðf� CÞ

b2

" #

; ð14Þ

where C denotes a RBFNN center vector of the receptive

field, and b denotes the width of the Gaussian function.

Lemma 2 For any positive constant ka 2 R satisfying

x 2 R and kxk\kkak, the following inequality holds [34]

log
k2a

k2a � x2
� x2

k2a � x2
: ð15Þ

3 Control design and stability analysis

Based on backstepping approach, we design the output

tracking errors z1 and z2, and an auxiliary variable a as

follows

z1 ¼ x1 � yd;

z2 ¼ x2 � a;

a ¼ �c1z1 þ _yd;

ð16Þ

where c1 ¼ diag½c11; c12� is a positive definite diagonal

matrix.

Combining (12), we provide the time derivative of z1
and z2 as

_z1 ¼ x2 � _yd ¼ a� _yd þ z2 ¼ �c1z1 þ z2; ð17Þ

_z2 ¼ _x2 � _a ¼ F þ DF þ M þ DMð Þs� _a: ð18Þ

Considering that the control gain matrix M may be irre-

versible [35], we define udðtÞ ¼ MTt, with t being a

designed control input signal, and an appropriate positive

parameter k is selected to make the matrix MMT þ kI2�2ð Þ
reversible, with I2�2 being second order identity matrix.

Then, with sðtÞ ¼ judðtÞ þ DðudÞ in (2), (18) can be given

by

_z2 ¼ F þ DF þ M þ DMð Þ judðtÞ þ DðudÞð Þ � _a

¼ F þ jMudðtÞ þ DF þ jDMudðtÞ
þ M þ DMð ÞDðudÞ � _a

¼ F þ j MMT þ kI2�2

� �
t� jkI2�2tþ DF

þ jDMudðtÞ þ M þ DMð ÞDðudÞ � _a:

ð19Þ

We consider the Lyapunov function as

V1 ¼
1

2

X2

i¼1

log
k2ai

k2ai � z21i
: ð20Þ

Invoking (17), the time derivative of V1 is described as

_V1 ¼
X2

i¼1

ð z1iz2i
k2ai � z21i

� c1iz
2
1i

k2ai � z21i
Þ: ð21Þ

To eliminate
P2

i¼1
z1iz2i
k2ai�z2

1i

in (21), we construct a new Lya-

punov function as

V2 ¼
1

2

X2

i¼1

log
k2ai

k2ai � z21i
þ 1

2
zT2 z2: ð22Þ

Differentiating (22) yields
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_V2 ¼
X2

i¼1

ð z1iz2i
k2ai � z21i

� c1iz
2
1i

k2ai � z21i
Þ þ zT2 F þ j MMT þ kI2�2

� �
t

�

� jkI2�2tþ DF þ jDMudðtÞ þ M þ DMð ÞDðudÞ � _a�:
ð23Þ

Invoking (23), the following RBFNN is adopted to

approximate the unknown function and uncertainties of the

system

f ðfÞ ¼ W�TSðfÞ þ ��

¼ �jkI2�2tþ DF

þ jDMudðtÞ þ M þ DMð ÞDðudÞ � _a;

ð24Þ

where W� is an optimal weight vector, �� is the optimal

approximate error, and SðfÞ is the basis function vector

with the input vector f ¼ ½xT1 ; xT2 ; _aT ; uTd �.
Then, the designed control signal t can be formulated as
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Fig. 3 Simulated tracking performance under the ANNIBOCC: a h, b w
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Fig. 4 Simulated input signal under the ANNIBOCC a ud , b s
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t ¼ � 1

j
ðMMT þ kI2�2Þ�1 c2z2 þ F þ

z11
k2a1 � z211

z12
k2a2 � z212

2

6
6
4

3

7
7
5þW�TSðfÞ þ ��

0

B
B
@

1

C
C
A:

ð25Þ

Considering that the optiaml weight W� is unknown, the

estimated weight Ŵ is used to approximate it. Hence, the

designed control signal t can be described as follows

t ¼ � 1

j
ðMMT þ kI2�2Þ�1 c2z2 þ F þ

z11
k2a1 � z211

z12
k2a2 � z212

2

6
6
4

3

7
7
5þ Ŵ

T
SðfÞ

0

B
B
@

1

C
C
A:

ð26Þ

where c2 is a positive definite diagonal matrix, and Ŵ is an

estimated weight satisfying Ŵ ¼ ~W þW� with ~W being a

weight error.

Furthermore, we propose an adaptive law as
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Fig. 5 Simulated tracking performance under the SMC: a h, b w
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Fig. 6 Simulated tracking errors under the SMC and the ANNIBOCC
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_̂W ¼ �CðzT2SðfÞ þ rŴÞ: ð27Þ

where r is a small postive constant.

Remark 2 Different from the literatures [36, 37], the

adaptive neural control method was applied for a class of

switched nonlinear systems, to construct a finite-time fault-

tolerant controller for handling the tracking problem or

construct a novel mode-dependent adaptive laws and

sampled-data control laws for stabilizing the controlled

system. However, in this paper, we exploit the adaptive

neural control method to develop a continous control law

for a nonlinear 2-DOF helicopter system for achieving an

excellent control performance and guarantee the output

contraints satifaction. In addition, when the RBFNN was

employed to approximate the unknown dynamic uncer-

tainties and the backlash error in (24), the possiblity of

singularity problem caused by the affine item was taken

into considertion in (19).

Proof The Lyapunov function for stability analysis is

constructed as

V ¼ 1

2

X2

i¼1

log
k2ai

k2ai � z21i
þ 1

2
zT2 z2 þ

1

2
trð ~W

T
C�1 ~WÞ: ð28Þ

Combining (23)–(27), we obtain

_V ¼
X2

i¼1

z1i _z1i
k2ai � z21i

þ zT2 _z2 þ trð ~WTC�1 _~WÞ

¼ �
X2

i¼1

c1iz
2
1i

k2ai � z21i
þ trð ~WTC�1 _̂WÞ þ

X2

i¼1

z1iz2i
k2ai � z21i

þ

zT2 ½F þ jðMMT þ kI2�2Þt� jkI2�2tþ
DF þ jDMudðtÞ þ ðM þ DMÞDðudÞ � _a�

� �
X2

i¼1

logc1i
k2ai

k2ai � z21i
� zT2 ðc2 �

1

2
I2�2Þz2 þ

1

2
k��k2

� r

2kmaxðC�1Þ
trð ~WTC�1 ~WÞ þ r

2
kW�k2

� � qV þ l

ð29Þ

where

q ¼ min kminðc1Þ; kminðc2 �
1

2
I2�2Þ;

r

2kmaxðC�1Þ

� �

;

l ¼ 1

2
k��k2 þ r

2
kW�k2:

ð30Þ

If the corresponding design matrices c1, c2 � 1
2
I2�2, and

r
2kmaxðCÞ are chosen to make q[ 0 and the bounded initial

states exist, the variables z1, z2, and ~W are semi-globally

uniformly ultimately bounded (SGUUB) [38]. We then

obtain

0�V � l
q
þ Vð0Þ � l

q

	 


e�qt: ð31Þ

Then, we further derive
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Fig. 7 Simulated input signal s under the SMC and the ANNIBOCC
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kz1ik2 � k2aið1� e�2ðVð0Þþl
qÞÞ;

kz2k2 � 2 Vð0Þ þ l
q

� �

;

k ~Wk2 �
2 Vð0Þ þ l

q

� �

kminðC�1Þ
:

ð32Þ

At this moment, we can conclude that the controlled sys-

tem is SUGGB.

4 Simulation and experiment results

To verify the feasibility and effectiveness of the designed

control scheme, we carry out a simulation on the Matlab

platform. To further prove the validity and efficacy of the

derived control, comparative experiments of two control

schemes are conducted on a Quanser’s 2-DOF helicopter

platform shown in Fig. 8. The two schemes for comparison

include adaptive NN with input backlash and output con-

straint control (ANNIBOCC) and SMC.

4.1 Simulation

In the simulation, the initial states are chosen as x1 ¼
½0; 0�T and x2 ¼ ½0; 0�T . yd ¼ ½10p sinðtÞ=180; 20p sinðtÞ=
180�T is a desired tracking trajectory. The relevant

parameters for the input backlash are set as j ¼ 0:8,

B1 ¼ 0:2, and B2 ¼ �0:25. The adaptive law parameters

are C ¼ 3 and r ¼ 0:01. The control gains are selected as

c1 ¼ diag½100; 100� and c2 ¼ diag½150; 100�. The control

parameter is given as k ¼ 0:1. According the approximated

function and the input vector of RBFNN, the nodes are

chosen as 150 and the center parameters are chosen as

either 1 or -1. The variances are chosen as b ¼ 2 and the

intial weights Ŵ are set as zero. The 2-DOF helicopter

system parameters are chosen as Jp ¼ 0:0219 kg�m2,

Jy ¼ 0:022 kg�m2, Dp ¼ 0:0071 N/V, Dy ¼ 0:022 N/V,

Kpp ¼ 0:0011 N�m/V, Kpy ¼ 0:0022 N�m/V, Kyp ¼
�0:0027 N�m/V, Kyy ¼ 0:0022 N�m/V, Lcm ¼ 0:0071 m

and m ¼ 1:075 kg. In Fig. 3, we observe that the output

signals of h and w can realize the trajectory tracking with

small tracking errors shown in Fig. 6. In other words, the

proposed control scheme achieves an excellent control

performance in the 2-DOF helicopter system. In addition,

the trajectories of h and w are kept within the specified

constraint range, which denotes that the output constraints

are not violated. It can be depicted from Fig. 4 that the

Fig. 8 The Quanser’s 2-DOF helicopter platform
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Fig. 9 Tracking performance under the ANNIBOCC: a h, b w
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input signals become smoother, which illustrates the pre-

sented control scheme is capable of eliminating the input

backlash nonlinearity. Combining the tracking trajectories

under the SMC in Fig. 5 and tracking errors in Fig. 6, we

can conclude that the ANNIBOCC scheme achieved a

superior control perforamance. As shown in Fig. 7, the

appearance of chattering is inevitable under the SMC,

which results in more complex input nonlinearity com-

pared with the proposed scheme.

4.2 Experiment

In this part, Figs. 9, 10, 11, 12 and 13 show the experiment

results of two nonlinear control schemes, including the

ANNIBOCC and SMC. In addition, Fig. 9 depicts the

tracking trajectories of h and w under the ANNIBOCC.

From which, we can conclude that the proposed

scheme ensures no violation of output constraints. In

Fig. 10, by comparing the input ud and s, we can observe

that the processed input s with backlash nonlinearity is

smoother. Figure 11 displays the tracking trajectories under
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Fig. 10 The contrast picture of ud and s under the ANNIBOCC
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the SMC. It can be seen from Figs. 12 and 13 that the

tracking errors and input signals demonstrate that the yaw

action and pitch action have a drastic chattering, which is

caused by the nonlinear mechanism and the characteristics

of the SMC algorithm. Under the hybrid effects of chat-

tering and input backlash nonlinearity, rapidly changing

inputs are required under the SMC to minimize the tracking

errors. This may cause damage to objects with limited

input. To sum up, the proposed strategy can effectively

eliminate the backlash of input signals and the constrained

output ensures that the output signals are retained within a

desired range. From the perspective of practical applica-

tion, the ANNIBOCC with less chattering and smoother

input, is more suitable than the SMC.

5 Conclusion

The framework of the adaptive NN control of 2-DOF

helicopter systems with input backlash and output con-

straints was presented in this study. To compensate for the

hybrid effects of input backlash nonlinearity and system
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Fig. 12 Tracking errors under the SMC and the ANNIBOCC
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uncertainties, the unknown function and nonlinearity error

were approximated using the RBFNN. The proposed con-

trol scheme realized that the tracking errors converged to a

small neighborhood around zero and the backlash was

eliminated. Furthermore, the BLF function was adopted to

tackle the output constraints, and guarantee the system

safety and effectiveness in the operation. Exploiting the

rigorous Lyapunov analysis, the designed control realized

the controlled system’s uniform stability. The simulation

and experimental results validated that the designed control

revealed a superior control performance. Considering that

the output constraints may be asymmetric under certain

circumstances and the compensation of the backlash non-

linearity can be futhur improved, the future research will

therefore come up with a new approach to address this

challenge.
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