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Abstract
Image style transfer based on the generative adversarial network model has become an important research field. Among

these generative adversarial network models, a distinct advantage of CycleGAN is that it can transfer between multiple

domains when the data is not paired. To approximate the effects of the texturing method with the characteristics of

traditional Chinese painting—‘‘Cun method’’, this paper proposes an image style transfer framework to realize the transfer

from scenery photos to Chinese landscape paintings. We design a contour-enhancing translation branch, which effectively

guides the transfer from photos to paintings with edge detection operators computing the gradient maps. Simulation results

show that this method can convert real scenery photos to Chinese landscape paintings. The Inception Score shows that

contour enhancement can make the generated set performs better on sensitivity to image edges. The Kernel Inception

distance and Inception-based Structural Similarity between the generated image and the ‘‘Cun method’’ data set shows that

contour enhancement can make the generated image closer to the ‘‘Cun method’’ effect. Compared with Kernel Inception

distance and Frechet-Inception Distance, the Inception-based Structural Similarity proposed in this paper directly focuses

on similarity, the similarities between the mean features of images generated by our model, and the ‘‘Cun method’’ set is

97.89%, and the composite similarity metric being 0.92. The method also performs better than the MUNIT, NiceGAN,

CycleGAN, and U-GAT-IT reference models under the Neural Image Assessment metric. This indicates that the intro-

duction of the edge operator makes the generated landscape paintings more aesthetic, especially in situations where scenery

photos are rich in edge information.

Keywords GAN � Artificial intelligence art � Chinese painting � Edge-enhanced � Style transfer � Cun method �
ISSIM

1 Introduction

Chinese painting has a long history and distinct national

form and unique style in the world art field, which are

painted on special rice paper or silk with brushes, ink, and

Chinese pigments. The inheritance and innovation of

Chinese painting art have become essential to cultural

heritage and innovation. Recently, the artificial intelligence

(AI) application that transfers scenery photos to Chinese

painting has become popular and exciting for many art

lovers and cultural relic protection. The role of AI tech-

nology in extracting typical features that reflect the style of

artistic works and imitating paintings will help train

painting skills, innovate literary works, and inherit and

protect traditional art.

The translation of scenery photos into Chinese land-

scape paintings is essentially an image style transfer. The

traditional computational digital painting simulation

methods can be divided into physical modeling, artistic

effect decomposition, and non-photorealistic rendering.

(1) The physical modeling methods [1] are based on the

mechanism of landscape paintings: physical methods

model brushes, paper, and ink. Simulation is

achieved by simulating its inherent physical charac-

teristics and dynamic interaction behavior. These

methods are not ideal due to their intrinsic complex-

ity [2].
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(2) In artistic effect decomposition methods [3, 4], the

normal and real continuous painting processes are

explained and described with a logical and virtual

discrete step. The artistic effect decomposition

methods can simulate various landscape painting

effects, but it is difficult to achieve the blending and

gradual change between multiple products, resulting

in unsatisfactory overall outcomes.

(3) The non-photorealistic rendering methods [5] are

based on image analogy, mainly pursuing creativity

to generate non-real image objects, such as synthetic

rock textures. However, due to the ever-changing

artistic effect of landscape paintings, each effect

requires different rendering algorithms, which makes

it difficult to simulate.

The generative adversarial network (GAN), proposed by

Goodfellow et al. [6], is an effective method to realize

image style transfer and has gradually become its main-

stream method. The basic structure of GAN consists of two

networks, one is called generator network, and the other is

called discriminator network. These two networks can be

convolutional neural networks, cyclic neural networks, or

self-encoders. Training GANs is an unsupervised learning

process. The generator network converts the input noise

vector into an image and then sends the generated image to

the discriminator network for classification. The goal of the

generator network is to become perfect in developing

realistic images, while the purpose of the discriminator

network is to become perfect in judging whether the image

provided to it is fake or real. This process is accomplished

through multiple iterations.

GAN is powerful and has many practical applications,

such as generating high-quality images [7], generating

images from text [8], converting images from one style to

another [9], etc. Many widely popular GAN-based archi-

tectures have emerged. Radford et al. proposed DCGAN

[10]. This is the first application of convolutional neural

networks in GANs, an important research milestone. Since

then, a large number of GAN architectures have been

introduced based on the DCGAN architecture. Brock et al.

proposed BigGAN [11], in which the most important

improvement is the orthogonal regularization of the gen-

erator to generate high-fidelity images. Karras proposed

StyleGAN [12]. The core is style transfer or style mixing,

which can generate images of different styles. Zhang et al.

proposed StackGAN [13] to generate realistic images from

text descriptions. Antipov et al. proposed Age-cGAN [14]

for facial aging. Choi et al. proposed StarGAN [15] and

realized the image conversion through an unsupervised

learning method in multiple styles.

Kim et al. proposed the U-GAT-IT [16], which incor-

porates a new attention module and a new learnable

normalization function in an end-to-end manner. Huang

et al. proposed MUNIT [17], which is a multimodal

unsupervised image-to-image translation framework. To

translate an image into another domain, they recombine its

content code with a random style code drawn from the style

space of the target domain. Chen et al. proposed NICE-

GAN [18], which contends a novel role of the discriminator

by reusing it for encoding the images of the target domain.

Although those methods can be applied to scenery

photos and Chinese painting translation, some unique

problems still need to be solved. Due to the particularity of

painting materials and the extensive use of various painting

techniques, strokes, and ink, the creative process of land-

scape paintings is complicated. The main content of Chi-

nese landscape paintings is mountains, rocks, and trees, and

painters often express these contents by the ‘‘Cun method’’

[19]. This has made the ‘‘Cun method’’ a vital expression

language in landscape painting and an art form for painters’

aesthetic experience and aesthetic expression. Chinese

paintings with the ‘‘Cun method’’ are quite different from

other kinds of images and have a unique charm and artistic

conception. Figures 1 and 2 are two typical ‘‘Cun method’’.

These ‘‘Cun methods’’ are mainly presented by lines,

‘‘imitate’’ the rough outlines of objects and scenes in terms

of morphology. Therefore, when automatically generating

landscape paintings from scenery photos, strengthening the

contours of various objects to imitate the ‘‘Cun method’’

effect is a challenging topic worthy of in-depth study.

This paper developed an unsupervised and Contour-

Enhanced(CE) image style transfer framework based on

CycleGAN, called CE-CycleGAN. According to the char-

acteristics of Chinese landscape paintings, it pays attention

to the lines, sets constraints, highlights the edge features to

realize the style transfer from scenery photos to landscape

paintings with more Chinese painting characteristics.

The main innovations of this paper are summarized as

follows:

(1) We proposed an image style transfer framework

from scenery photos to Chinese landscape paintings.

Fig. 1 Hemp-fiber strokes (Pima Cun)

18076 Neural Computing and Applications (2022) 34:18075–18096

123



This framework adds a contour-enhancing transla-

tion branch with the edge detection operator to

enhance edge information. The edge operator can

highlight better the contour of objects such as rocks

and trees and imitate specific texture effects of the

‘‘Cun Method’’.

(2) This paper proposes the Inception-based Structural

Similarity (ISSIM) metrics to describe the similarity

between two image sets. The Frechet-Inception

Distance (FID) and Kernel Inception distance

(KID) metric scores are lower only the more similar

the generated image set is to the original image set

and the more diverse the generated images are at the

same time in only one metric. The ISSIM metric set

is defined directly from similarity and can provide

richer information than the FID metric for judging

the quality of the generated image set. Unlike the

FID and KID, the ISSIM set presents similarity and

diversity separately in multiple metrics, and a single

ISSIM metric can be very intuitive to reflect the

similarity. Therefore, the ISSIM metric is more

applicable to tasks where similarity is more impor-

tant than diversity. From the analysis in the later

section, it is indicated that it can be judged whether

the output of the model collapses to a certain

direction through the ISSIM metrics, if there is a

data set in that direction.

(3) To evaluate the artistry of the generated landscape

paintings, we introduce an aesthetic evaluation

metric, NIMA [20], to evaluate the performance of

the method from an artistic point of view, which can

effectively assess the improvement of the aesthetic

performance of the generated paintings in the

introduction of the edge operator.

The rest of this paper is structured as follows. Section 2

introduces the CycleGAN model and related work, Sect. 3

details the CE-CycleGAN method proposed in this paper,

Sect. 4 gives experimental results and discussions, and

Sect. 5 summarizes the full text and introduces future work

ideas.

2 The CycleGAN model

The two models, Pix2pix [21] and CycleGAN [9], are

worthy of attention in image style transfer from scenery

photos to Chinese landscape paintings. In 2016, the Pix2pix

model proposed by Isola et al. [21] provides a general

framework for transforming images from one style to

another, that is, to map labels to photos, map edges to

objects, convert night images to day images, color for black

and white images, convert sketches to images, etc. How-

ever, the model must require pairwise data (paired data),

but it is usually challenging to obtain training sample pairs

of photos and landscape paintings in photo-to-painting

conversion. In 2017, the CycleGAN model proposed by

Zhu et al. [9] has good performance in geometry, color, and

style transfer and can achieve some exciting image con-

versions, such as converting photos into paintings. The

outstanding advantage of this model is that it can be trained

in unpaired data. Based on CycleGAN, Zhang et al. [22]

proposed a CycleGAN-AdaIN framework to convert real

photos to Chinese ink paintings. In this model structure, the

author uses one cycle-consistency loss to replace the two

cycle-consistency losses. In addition, multi-scale structural

similarity metric loss is added to the reconstruction loss to

generate more detailed images.

As shown in Fig. 3, CycleGAN is essentially two mir-

ror-symmetric GANs that form a ring network. The two

GANs share two generators, and each carries a discrimi-

nator, i.e., two discriminators and two generators. One one-

way GAN has two losses, and two one-way GANs have a

total of four losses. In short, the model works by acquiring

an input image from the domain Discriminator A, DA. This

input image is passed to the first generator, GAB, trans-

forming the given image from the domain Discriminator A

to the target domain Discriminator B. This newly generated

image is then passed to another generator, GBA, whose task

is to convert the image recA back to the original domain

Discriminator A. Here, a comparison can be made with the

autoencoder. This output image must be similar to the

original input image and define meaningful mappings that

did not originally exist in the unpaired dataset (Table 1).

3 The proposed CE-CycleGAN method

CycleGAN is characterized by performing unpaired image-

to-image translation and is suitable for style transfer from

scenery photos to landscape paintings. Landscape paintings

pay attention to freehand brushwork rather than other

Fig. 2 Axe-chapped strokes (Fupi Cun)
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details, but some contrasting edge information is still

essential to the whole work. Generally, the human eye is

more sensitive to solid edges than weak edges. According

to this visual feature of the human eye, it is necessary to

selectively enhance the edge information in the image, that

is, to retain the strong edge with more considerable contrast

instead of the weak edge with minor contrast. Thus, by

adding a contour-enhancing translation branch to the

CycleGAN network, we designed a gradient guidance

method to effectively guide the style transfer from photos

to paintings with gradient information.

Furthermore, to enhance the landscape painting style,

the edge detection operator is used to extract the strong

edge of the grayscale image. In this paper, we use the

simple Sobel edge detection operator [23] to test whether

the introduction of the edge detection operator is useful.

The Sobel operator is a typical edge detection operator

based on the first derivative. Since this operator introduces

a similar local average operation, it smooths the noise and

eliminates its influence. It has a good detection effect on

rough edges. This feature meets the requirements of the

method for the simulation effect of landscape paintings.

The whole network with a contour-enhancing translation

branch is called CE-CycleGAN, and its structure is shown

in Fig. 4. We define scenery photos as domains A and

landscape paintings as domains B. Using the characteristics

of cyclic consistency, the network is designed as for-

warding translation and reverse translation. The forward

translation first transfers the scenery photos into landscape

paintings, namely GAB : A ! B. Then, the landscape

paintings are translated back to the original scenery photos,

namely GBA : B ! A. The reverse translation will transfer

landscape paintings into scenery photos through GBA and

then from scenery photos to the original landscape paint-

ings through GAB. Both forward and reverse translation

contain two branches: the painted translation branch and

the contour-enhancing translation branch.

For the forward translation, the mapping of GAB is first

performed. The painted translation branch takes the real

scenery photos realA as the generator GAB input and the

resulting image enhancement features as the input of the

fusion module. The contour-enhancing translation branch

takes the real image gradient map realA edge as the input of

the generator GBA, and the generated edge-enhanced

Fig. 3 Diagram of the CycleGAN network structure
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gradient map fakeB edge and the real edge-enhanced gra-

dient map realB edge in the reverse translation are input into

the discriminator DB edge for authenticity judgment. The

fakeB edge is also be spliced with the output features of the

image translation branch and sent into the fusion module,

which provides the guidance of the gradient information

for the fusion module to generate the final edge-enhanced

Table 1 A list of terms for all equations and their corresponding meanings

recB edge Image gradient map

recB Generator of contour-enhancing translation branches in the forward translation process

GABGAB Turning landscape photos into landscape paintings

Fuse Integration

fakeA edge Landscape photo edge enhancement gradient map

fakeA Landscape photo final edge enhancement map

fakeB edge Landscape painting edge enhancement gradient map

fakeB The final edge-enhanced view of the landscape painting

GAB edge Generator of contour-enhancing translation branches in the forward translation process

realA edge Landscape photo real edge enhancement gradient map

fakeB edge Landscape painting edge enhancement gradient map

LGAN B edge Generative adversarial loss function for gradient advection branching

LGAN B Generative adversarial loss function for image translation branching

DB Image panning branch of landscape painting discriminator

DB edge Landscape painting discriminator with gradient panning branch

ErealB Discriminator loss function for image translation branch

ErealB edge
Discriminator loss function for gradient advection branching

EfakeB Generator loss function for image translation branching

EfakeB edge
Generator loss function for contour-enhancing translation branches

realB Landscape painting real picture

realB edge Landscape painting real edge enhancement gradient map

recA edge Image gradient map

recA Original landscape photos

GBA edge Generator of contour-enhancing translation branches in the reverse translation process

GAB GAB GAB Converting landscape paintings to landscape photos

fakeB edge Landscape painting edge enhancement gradient map

fakeAB The final edge-enhanced view of the landscape painting

Lcyc A edge Cyclic consistency loss of the reduced image gradient map and the real image gradient map

Lcyc A Loss of circular consistency between restored scene photos and real scene photos

LGAN A edge Generative adversarial loss function for gradient advection branching

LGAN A Generative adversarial loss function for image translation branching

DA Image panning branching for landscape photo discriminator

DA edge Landscape photo discriminator with gradient panning branching

ErealA Discriminator loss function for image translation branch

ErealA edge
Discriminator loss function for gradient advection branching

EfakeA Generator loss function for image translation branching

EfakeA edge
Generator loss function for contour-enhancing translation branches

realA Scenic photo real picture

realA edge Landscape photo real edge enhancement gradient map

Lcyc B edge Cyclic consistency loss of the reduced image gradient map and the real image gradient map

Lcyc B Loss of circular consistency between restored scene photos and real scene photos

L G;Dð Þ The overall objective loss function of the model

k Relative weights of generative adversarial loss and cyclic consistency loss
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Fig. 4 Diagram of the proposed CE-CycleGAN network structure
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map fakeB. The generated fakeB will be input to the dis-

criminator DB with the real edge-enhanced map realB in

reverse translation for authenticity discrimination. The

process is described by formulas (1) and (2) as:

fakeB edge ¼ GAB edge realA edge

� �� �
ð1Þ

fakeB ¼ Fuse GAB realAð Þ; fakeB edge

� �
ð2Þ

The corresponding generative adversarial losses also

come from the contour-enhancing translation branch and

the image translation branch, which are expressed as (3)

and (4):

LGAN B edge GAB edge;DB edge

� �

¼ eErealB edge
logDB edge realB edge

� �� �

þ EfakeB edge
log 1� DB edge fakeB edge

� �� �� �
ð3Þ

LGAN B GAB;DBð Þ ¼ eErealB logDBðrealB½ Þ þEfakeB� ½ logð1
� DBðfakeBÞÞ�

ð4Þ

As a result, we realized the translation from scenery

photos to landscape paintings. We then need to transfer

from landscape paintings back to the original scenery

photos to achieve cyclic consistency, the mapping of GBA.

The generated edge-enhanced map fakeB is input into the

generator GBA of the painted translation branch. A set of

restored image features is obtained as the input of the

fusion module for restoration. The generated edge-en-

hanced gradient map fakeB edge is then input into the

generator GBA edge of the contour-enhancing translation

branch to generate the image gradient map recA edge for

restoration. Finally, recA edge is spliced with the restored

image feature of the painted translation branch and sent to

the fusion module to guide gradient information to restore

the original scenery photo recA. The process can be

described as formula (5) and formula (6):

recA edge ¼ GBA edge fakeB edge

� �
ð5Þ

recA ¼ Fuse GBA fakeBð Þ; recA edge

� �
ð6Þ

We set the cyclic consistency loss of the restored image

gradient map and the real image gradient map, which

facilitates the contour-enhancing translation branch to

provide more accurate gradient information for the image

translation branch to restore the image. At the same time,

we also need to ensure the consistency of restored scenery

photos and real scenery photos. The L1 distance loss

defines the cyclic consistency loss of these two parts as

formula (7) and formula (8):

Lcyc A edge GAB edge; GBA edge

� �

¼ E j recA edge � realA edge

�� ��j1
� �

ð7Þ

Lcyc A GAB;GBAð Þ ¼ E recA � realAj jj j1
� �

ð8Þ

So far, the forward translation process of our method is

completed. The reverse translation is the opposite process

to the forward translation. For the GBA : B ! A mapping,

the process can be described as formula (9) and formula

(10):

fakeA edge ¼ GBA edge realB edge

� �� �
ð9Þ

fakeA ¼ Fuse BBA realBð Þ; fakeA edge

� �
ð10Þ

The corresponding generative adversarial loss function

is defined as formula (11) and formula (12):

LGAN A edge GBA edge;DA edge

� �

¼ eErealA edge
logDA edge realA edge

� �� �

þ EfakeA edge
log 1� DA edge fakeA edge

� �� �� �
ð11Þ

LGAN A GBA;DAð Þ ¼ eErealA logDA realAð Þ½ �
þ EfakeA log 1� DA fakeAð Þð Þ½ � ð12Þ

For the GAB : A ! B mapping, the process can be

described as expressions (13) and (14):

recB edge ¼ GAB edge fakeA edge

� �
ð13Þ

recB ¼ Fuse GAB fakeAð Þ; recB edge

� �
ð14Þ

The corresponding cyclic consistency loss is defined as

expressions (15) and (16):

Lcyc B edge GBA edge;GAB edge

� �

¼ E recB edge � realB edge

�� ���� ��
1

h i
ð15Þ

Lcyc B GBA;GABð Þ ¼ E recB � realBj jj j1
� �

ð16Þ

The overall objective loss function of our model is:

L G;Dð Þ ¼ LGAN B edge þ LGAN B þ LGAN A edge þ LGAN A

þ k Lcyc A þ Lcyc A edge þ Lcyc B þ Lcyc B edge

� �

ð17Þ

where k denotes the relative weight of the generative

adversarial loss and the cyclic consistency loss.

4 The proposed ISSIM metrics

One challenge in comparing models is that quantitative

comparisons are difficult. For a good model, in addition to

generating realistic images (clear), the generated image set

must also have both sufficient similarity and diversity. That

is, the images in the generated set should be similar to the

training set and be representative of the general distribution

at the same time. However, while ensuring similarity,

overfitting should be avoided. Networks tend to overfit

with the deepening of networks and the increase of

parameters [24]. The smaller the data set, the more severe

the overfitting phenomenon. In the extreme case, all images
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in the generation set are copied from the training set.

Simultaneously, insufficient sample diversity in generating

image sets, or mode collapse [25], are common problems

occurring during training a GAN resulting in a generator

that outputs a single data point for the different modes of

the domain. In the extreme case, the generator collapses to

a single output mode which makes the model practically

useless since it can only generate extremely similar pat-

terns regardless of the input. Note that, if the data in the

training set is realistic (clear) enough, then the generated

set with high similarity must also be realistic (clear)

enough. So, in general, it is good enough if a model can

generate image sets that satisfy both diversity and simi-

larity. In order to evaluate the quality of the generated

samples of Chinese landscape paintings reconstructed by

our models, the IS [26], FID [27], and KID [28] metrics are

introduced in this paper.

The IS [26] metric is the KL-Divergence between con-

ditional and marginal label distributions over the generated

data, and the higher is, the better. This score correlates

somewhat with the human judgment of sample quality on

natural images, which determines whether the image is real

(clear) or not. That is, in Inception Net-V3’s ‘‘world view’’,

any data that does not look like ImageNet is not real

(clear). It knows nothing about the desired distribution for

the model and cannot evaluate the similarity between the

generated set and the real set [28].

The FID [27] is the Wasserstein-2 distance between

multi-variate Gaussians fitted to data embedded into a

feature space. As an unbiased alternative to FID, the KID

[28] measures the dissimilarity between two probability

distributions using samples drawn independently from each

distribution. Smaller FID and KID values represent better

feature distributions in the generated images and thus

indicate they are closer to real images [29]. Both of these

metrics incorporate the effects of similarity and diversity,

whose values will become large due to model collapse

[30]. However, neither IS, nor FID can catch the overfitting

and underfitting [31], and the same goes for KID. Mean-

while, since both FID and KID take into account similarity

and diversity, it is not possible to distinguish which values

are specifically influenced by which one.

To overcome these shortcomings, the ISSIM set is

proposed in this paper, which can provide richer informa-

tion. Based on the 2048-dimensional feature vector output

of Inception Net-V3, ISSIM for evaluating individual

image similarity is proposed referring to the form of tra-

ditional structural similarity (SSIM) [32]. Unlike the SSIM,

the samples of ISSIM are 2048-dimensional feature vectors

{x, y} instead of matrixes of image pixel values. The for-

mula for ISSIM is:

ISSIM ¼
2lxly þ C1

� �
2rxry þ C2

� �

l2x þ l2y þ C1

� �
r2x þ r2y þ C2

� � ð18Þ

where lx is the mean of x, ly is the mean of y, r2x is the

variance of x, r2y is the variance of y, and rxy is the

covariance of x and y. The constants C1 and C2 are defined

to avoid system instability when the denominator is close

to 0, which takes C1 ¼ 0:0013;C2 ¼ 0:0117: This ISSIM

metric is used to calculate the similarity of two images

directly.

Based on this, the other three ISSIM metrics for two

image sets were proposed to reflect the similarity between

the generated images and the real images in different

aspects. For a sample set Y with Inception Net-V3 feature

vectors y of m generated images, and a sample set X with

feature vectors x of n real images used for comparison, the

mean value of the feature vectors can be calculated first,

and then ISSIM of two sets is calculated to obtain:

ISSIM0 ¼ ISSIM X; Y
� �

ð19Þ

ISSIM0 corresponds to the similarity between the mean

values of the features of the generated image set and the

real image set, which represents whether the centers of the

two distributions are close. The maximum ISSIM value of

the generated image feature vector Yi and the feature vec-

tors of the sample set X can also be accumulated and then

averaged to obtain:

ISSIM1 ¼
1

m

X

i

max
j

ISSIM Xj; Yi
� �� �

ð20Þ

ISSIM1 corresponds to the average of the similarity

between the features of any image in generated set and the

most similar samples that can be found in the real image

set, which represents whether the images in the generated

set can be found similar in the real set. Similarly, ISSIM2 is

defined as:

ISSIM2 ¼
1

n

X

i

max
j

ISSIM Xi; Yj
� �� �

ð21Þ

which corresponds to the average of the similarity between

the features of any image in the real image set and the most

similar samples that can be found in the generated set. This

represents whether the images in the real set can be found

similar in the generated set. Another method to find ISSIM

of two sets is:

ISSIM3 ¼
1

nm

X

i

X

j

ISSIM Xj; Yi
� �

ð22Þ

ISSIM3 corresponds to the average similarity of each

sample in the generated image set and the real image set,

which is named cross-similarity. The larger the values of

these four metrics, the higher the similarity between the
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Fig. 5 Examples of source (a) and target (b) landscape images
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Fig. 6 Generalization simulations
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generated set and the real set. However, it is straightfor-

ward to deduce from the definition that the wider the dis-

tribution range of the images in two image sets X and Y, the

smaller the value of ISSIM3. That is, the better the diversity

of the two sets, the smaller the value of ISSIM3. Then

considering diversity and similarity together, when the

model is good, ISSIM3 should take must take a value close

to 1 thus ensuring similarity, but not too close to 1 thus

ensuring diversity. The self-similarity ISSIMs of the real

image set can be defined as:

ISSIMs ¼
1

n2

X

i

X

i

ISSIM Xi;Xið Þ ð23Þ

ISSIMs also represents the diversity of the real image

set. The lower the self-similarity, the higher the diversity.

Table 2 The IS (the higher, the

better) and FID scores (the

lower, the better) of different

models

Score IS ISGray ISDiff FIDAll FID
Gray
All

FIDCun FID
Gray
Cun

FIDDiff
All FIDDiff

Cun

U-GAT-IT 2.64 2.47 - 0.17 91.40 80.58 86.61 84.19 - 10.82 - 2.42

MUNIT 2.42 2.34 - 0.08 100.58 88.92 79.63 69.90 - 11.66 - 9.73

NiceGAN 2.57 2.46 - 0.11 82.32 68.85 66.22 55.49 - 13.47 - 10.73

CycleGAN 2.78 2.81 0.03 94.70 85.21 81.03 67.71 - 9.49 - 13.32

Our 2.23 2.44 0.21 115.17 94.97 80.50 61.14 2 20.2 2 19.36

The models with the best effect or the best improvement after graying have been marked in bold. The

superscript ‘‘Gray’’ indicates the result of graying the image. No superscript indicates the result of the

original color image, and ‘‘Diff’’ indicates the difference before and after graying. The subscripts All(Cun)

subscripts indicate the FID scores of the generated set and the full training set(the ‘‘Cun method’’ set in the

training set)

Table 3 The KID scores (the lower, the better), the checkpoint size, and the graphics memory occupancy for batch size being 1 of different

models

Score 9 100 KIDAll KID
Gray
All

KIDCun KID
Gray
Cun

Checkpoint size Graphics memory occupancy

U-GAT-IT 2.66 – 0.11 3.13 ± 0.10 3.56 ± 0.20 4.31 ± 0.19 2.49 GB 19.92 GB

MUNIT 5.67 ± 0.20 4.40 ± 0.15 4.13 ± 0.15 3.88 ± 0.17 0.46 GB 10.74 GB

NiceGAN 3.47 ± 0.24 2.51 – 0.14 1.35 – 0.07 1.51 ± 0.10 7.22 GB 19.88 GB

CycleGAN 3.49 ± 0.18 3.25 ± 0.17 2.12 ± 0.11 1.76 ± 0.08 0.11 GB 9.62 GB

Our 5.28 ± 0.22 3.28 ± 0.17 2.41 ± 0.10 1.27 – 0.05 0.36 GB 8.52 GB

The models with the best effect have been marked in bold. The superscript ‘‘Gray’’ indicates the result of graying the image, while no superscript

indicates the result of the original color image. The subscripts All(Cun) subscripts indicate the KID scores of the generated set and the full

training set(the ‘‘Cun method’’ set in the training set)

Table 4 The metrics scores for artificially created abnormal image sets with seven typical abnormality which are simulated by selecting images

from the grayed-out test set and generated set

OF MC IS FID KID ISSIM0 ISSIM1 ISSIM2 ISSIM3 ISSIMc ISSIMs

Abn1 H 1 1.59 26.19 0.84 ± 0.07 0.994 0.919 0.954 0.746 0.818 0.753

Abn2 H 3 2.48 31.45 0.40 – 0.05 0.997 0.929 0.867 0.659 0.827 0.653

Abn3 3 3 2.89 105.91 6.72 ± 0.18 0.784 0.660 0.636 0.476 0.630 0.581

Abn4 s 1 1.29 131.39 4.14 ± 0.13 0.967 0.842 0.770 0.701 0.862 0.788

Abn5 s 2 1.92 133.91 5.15 ± 0.15 0.966 0.813 0.752 0.646 0.905 0.671

Abn6 H 1 1.32 109.48 2.42 ± 0.12 0.967 1.000 0.771 0.700 0.585 0.787

Abn7 H 2 1.59 111.01 1.67 ± 0.07 0.982 1.000 0.769 0.674 0.629 0.706

The models with the best effect have been marked in bold, and the models that have been excluded because of overfitting or underfitting have

been marked with underlines. The OF column indicates overfitting, H is overfitting, 9 is underfitting and s is rightfitting. The MC column

represents mode collapse, 1 represents mode collapse with a very concentrated sample distribution, 2 represents mode collapse with a broad

sample distribution, and 9 represents no mode collapse occurred. The self-similarity of the test set for Abn1 is 0.751,.for Abn2-Abn7 are 0.668,

and the self-similarity of the artificially created generation set is listed in the following table
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By replacing X in the formula with Y, the self-similarity of

the generated set can also be calculated.

Considering the extreme case, where the distribution of

the generated samples is exactly the same as the real image

set, then ISSIM3 = ISSIMs, which takes the suitable value.

Then, a scoring function is proposed here as:

F x; s; p; að Þ ¼ x=sð Þa x=s� 1

x=sð Þ�p x=s[ 1

	
ð24Þ

where s is the suitable value, p is the penalty factor, a is the

adjustment factor, and p and a are both positive numbers.

Then, when s = ISSIMs, choosing the appropriate p and a,

the score F ISSIM3; s; p; að Þ related to ISSIM3 will become

a value between [0,1]. Similarly, if one does not want the

generated set to be too close to the real set, one can use

F ISSIM1; s; p; að Þ to adjust the scores related to ISSIM1,

using the parameter p to penalize ISSIM1 [ s for overfit-

ting. With these adjustments, all scores become the bigger

the better. Then, considering the above four metrics toge-

ther, a composite metric can be defined as:

ISSIMc ¼ ISSIM0F x1; s1; p1; a1ð ÞF x2; s2; p2; a2ð ÞF x3; s3; p3; a3ð Þð Þ0:25

ð25Þ

where xi ¼ ISSIMi, s3 ¼ ISSIMs, and other parameters

should be adjusted appropriately according to the real

picture set and the actual situation. For example, if the self-

similarity of the real set ISSIMs is large, then the overfit-

ting thresholds s1 and s2 should be adjusted appropriately

to large values; If you want the range of the distribution of

the generated set and the real set to be as close as possible,

you should increase p3 and a3 appropriately; if you care

whether some modes in the real set are missing in the

generated set, you can increase a2; if you care whether the

generated set incorrectly generates modes that do not exist

in the real set, you can increase a1, and so on. The specific

parameter values are discussed in the context of specific

cases in the analysis of the results later on.

Table 5 The ISSIM scores of different models and the self-similarity of the generator set for the grayed image sets

Score Compare with full training set Compare with ‘‘Cun method’’ set

ISSIM0 ISSIM1 ISSIM2 ISSIM3 ISSIMc ISSIMs ISSIM0 ISSIM1 ISSIM2 ISSIM3 ISSIMc

U-GAT-IT 0.963 0.820 0.789 0.572 0.804 0.625 0.945 0.795 0.791 0.609 0.882

MUNIT 0.940 0.778 0.747 0.549 0.848 0.674 0.955 0.778 0.762 0.604 0.875

NiceGAN 0.970 0.820 0.760 0.579 0.795 0.632 0.978 0.783 0.773 0.592 0.899

CycleGAN 0.951 0.797 0.767 0.545 0.882 0.585 0.967 0.786 0.788 0.606 0.897

Our 0.952 0.802 0.767 0.570 0.826 0.638 0.979 0.796 0.796 0.639 0.920

The models with the best effect have been marked in bold, and the models that have been excluded because of overfitting have been marked with

underlines

Fig. 7 NIMA score histograms of 195 test images. The insets show

the average of the NIMA scores or the difference of the NIMA scores
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5 Simulation results

5.1 Preparation of the simulation

5.1.1 Access to data

The Image-Downloader crawler program uses English and

Chinese keywords to grab relevant pictures from the

original URL of image search engines (Baidu, Bing, and

Google) and download them in batches. A total of 2363

images were collected in the target domain (Chinese

landscape paintings), and a total of 2562 images were

collected in the source domain (scenery photos).

5.1.2 Data filtering

We use manual screening methods to eliminate irrelevant

images. A total of 1956 scenery photos and 1884 Chinese

landscape paintings were retained. We randomly assigned

1761 scenery photos as training samples in the source

domain and 195 scenery photos as test samples; in the

target domain, and also randomly assigned 1696 Chinese

landscape paintings as training samples and 188 Chinese

landscape paintings as test samples. Some example images

are shown in Fig. 5. This paper aims to better simulate the

‘‘Cun method’’ through neural networks to achieve better

results with small samples and minor scales. However,

relatively few Chinese landscape paintings were collected

with distinctive ‘‘Cun method’’ features when resized to

256 9 256-pixel. Of the 1696 training samples, only 695

had significant ‘‘Cun method’’ features, as shown in the

first row of Fig. 5. The rest of the samples had general or

weak ‘‘Cun method’’ features, as shown in the second and

third rows of Fig. 5, respectively. The classification of

whether or not the ‘‘Cun method’’ characteristics were

significant was manually determined by the art school of

the northwest university of professionals. The inclusion of

samples with insignificant ‘‘Cun method’’ features

improves the generalization ability of the neural network

and prevents overfitting in small samples.

5.1.3 Simulation environment

The simulation used a workstation with an NVIDIA RTX

3090 graphics card. The operating system is Ubuntu 20.04

with PyTorch 1.7.1. The CUDA version is 11.2, and the

CuDNN version is 8.1.

Fig. 8 The top five best performing images where our proposed method outperforms the Cycle-GAN method
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5.1.4 Training process

To facilitate training and evaluation, all images are adjus-

ted to 256 9 256 resolution. We trained 4,00,000 iters with

a learning rate of 0.0002 in the first 200 epochs, and then

the learning rate decays linearly to zero in the following

400 epochs (8,00,000 iters). We applied the Adam opti-

mizer [33]. The batch size is set to 1.

5.2 Simulation results and analysis

This section shows the effectiveness of our designed CE-

CycleGAN on realistic painting style transfer tasks and

introduces the ablation study. All qualitative results shown

in this section are evaluated on the test set of the prepared

dataset. Figure 6 shows some of the simulation results of

our method.

5.2.1 The IS, FID and KID metrics

The IS metric of the generated image set before and after

graying is given in Table 2. It can be seen that the IS of the

three other models decreases, and the score of CycleGAN,

as well as our model, increases compared to the color

images. It can be inferred that the three other models are

more sensitive to color information and pay relatively little

attention to silhouette information. Before and after gray-

ing, the ISDiff of our model is greater than that of the

CycleGAN model, which indicates that contour enhance-

ment can make the generated set performs better on sen-

sitivity to image edges. Our model may be more

advantageous in simulating image textures, which is the

characteristic required to simulate the ‘‘Cun method’’.

The FID scores of different models are shown in

Table 2, which are calculated from the mean and covari-

ance matrices of the 2048-dimensional feature vector set

output by the two image collections from the Inception

Net-V3. The FIDAll is the FID score between the generated

image set and the full training set, and the FIDCun is the

FID score between the generated image set and the ‘‘Cun

method’’ set. It can be seen that the NiceGAN model

generates the image set closest to the training set as well as

the ‘‘Cun method’’ set. Considering that the ‘‘Cun method’’

is only a stroke method that is not sensitive to color

information, the FID scores of the real image distribution

and the generated image distribution after graying were

also calculated. The FID scores significantly improved, and

our model has the largest drop as shown by FIDDiff
All and

Fig. 9 The top five best performing images where our proposed method outperforms the NiceGAN method
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FIDDiff
Cun , which again illustrates that the generated set of our

model is more sensitive to edge information.

Although the NiceGAN performed the best on the FID

score, the human naked eye perception is not the same. As

can be seen in Fig. 6, some of the images generated by

NiceGAN are significantly worse for humans to feel. On

the contrary, the image set generated by our model, which

scored second in FID
Gray
Cun , gives a subjective feeling closer

to the effect of the ‘‘Cun method’’. So FID may not be the

most appropriate metric for this paper, and then KID was

calculated.

The KID scores of different models are shown in

Table 3, with the variance being also presented to ensure

reliable, due to its high variance can make it unreliable to

provide values only [34]. As we can see, when color

information is considered, the image set generated by

U-GAT-IT is closest to the full training set, and the image

set generated by NiceGAN is closest to the ‘‘Cun method’’

set. When the color information is not considered, the

image set generated by NiceGAN is closest to the full

training set, and the image set generated by our model is

closest to the ‘‘Cun method’’ set. Overfitting tends to occur

when the sample size is small, and the model has too many

parameters. Combining the number of parameters reflected

by the checkpoint size in Table 4 and the fact that some of

the outputs in the fourth and sixth columns in Fig. 6 show a

visible distortion in the contours relative to the inputs, it

can be determined that U-GAT-IT and NiceGAN show

signs of overfitting. Excluding these two models, the KID

scores indicate that the generated set of the CycleGAN

model is clearly closer to the full set. After performing

contour enhancement, the generated set of the model is

closer to the ‘‘Cun method’’ set while ignoring the color

information, although the distance to the full set becomes

larger. This analysis shows that introducing the edge-en-

hanced translation branch can make the images generated

by the neural network closer to the ‘‘Cun method’’ effect.

5.2.2 The ISSIM metrics

To explore the validity of various metrics, a series of

artificially created abnormal sets were tested, and the

results of seven typical anomalies are shown in Table 4.

Abn1 represents the case of low diversity in the training

set, which is made by selecting some similar images from

Fig. 10 The top five best performing images where our proposed method outperforms the MUNIT method
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the training set and the generation set to form new sets. The

self-similarity of Abn1’s training set is 0.751, and assume

that the generated set is a good fit with the training set.

Abn2-Abn7 use the grayed ‘‘Cun method’’ set as the

‘‘training set’’. Some images from the ‘‘Cun method’’ set

were copied to the ‘‘training set’’ to simulate overfitting in

Abn1-Abn2 and Abn6-Abn7. Abn6 and Abn7 are extreme

cases where all the images in the ‘‘generated set’’ are from

the ‘‘Cun method’’ set. In Abn1 and Abn4-Abn7, the same

images are copied several times to simulate mode collapse.

But in mode collapse case 1, the distribution of the copied

images is more concentrated, while in mode collapse case

2, the distribution of the copied images is broader. In Abn3,

randomly selected scenery photos were used as the ‘‘gen-

eration set’’ to simulate the underfitting.

From the test results, the IS scores are more sensitive to

mode collapse. Once the mode collapse occurs, the IS score

will become worse. For the FID and KID metrics, over-

fitting leads to better scores, and mode collapse leads to

worse scores. So when the scores of these two metrics are

good, one needs to be alert to whether overfitting has

occurred. In the case of severe underfitting (Abn3), FID

still achieves relatively good scores, while KID is relatively

more sensitive. From this point of view, the KID metric is

more reasonable than the FID metric. In contrast, the

ISSIM metrics proposed in this paper, because it is directly

related to the similarity, its value can visually reflect the

overfitting and underfitting. Overfitting directly leads to

higher scores for ISSIM1, and underfitting directly leads to

lower scores. Determining whether overfitting or underfit-

ting occurs requires determining a threshold value, which

should be related to the self-similarity of the training set.

Note that for different models, the determination of the

threshold needs to be combined with the actual situation of

the model, and it is best to carry out a certain test and

combine the effect of human visual perception. Through

testing, this paper sets the threshold for overfitting as

min 0:9; ISSIM1ð Þ1=3
� �

and the threshold for underfitting

as ISSIM1ð Þ0:8. Then, the right fitting range for Abn1 is

[0.795,0.9] and for Abn2-Abn7 is [0.724, 0.874]. The

outliers that ISSIM1 does not fall within these ranges have

been underlined in Table 4. It can also be seen from

Table 4 that mode collapse leads to an increase in the self-

similarity of the generated set, especially for mode collapse

case 1.

The above discussion of the test results shows that the

ISSIM metrics do provide intuitive similarity and a richer

Fig. 11 The top five best performing images where our proposed method outperforms the U-GAT-IT method
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set of information than other metrics. In order to combine

this information and give a single reference value,

parameters can be set to calculate the composite metric

ISSIMc. s1 and s2 can be set to the threshold value men-

tioned above as min 0:9; ISSIM1ð Þ1=3
� �

. For the value of

ISSIM1-ISSIM3 exceeding the threshold, the penalty

intensity gradually weakens. p1-p3 are set to 12, 9, and 6,

respectively. These values are relatively large, making it

impossible to obtain a high score for the overfitting cases.

In this paper, we focus more on whether the images in a

generated set are similar to the images in the training set, so

the importance of ISSIM1-ISSIM3 decreases. Then a1 to a3
are set to 1.5, 0.9, and 0.5, respectively. The calculated

composite metric ISSIMc based on these parameter settings

has been listed in Table 4, and it can be seen that the scores

for both overfitting and underfitting are relatively low. For

cases where the fit is good but the mode collapses (similar

to Abn4-Abn5), the case with mode collapse with a broad

sample distribution (similar to Abn5) scores higher.

The ISSIM results of the grayed image sets are shown in

Table 5. The self-similarity of the test set for the full

training set is 0.527,.for the ‘‘Cun method’’ set is 0.668.

Compared to the full training set, the diversity of the ‘‘Cun

method’’ set is reduced, and therefore the self-similarity

increases from 0.527 to 0.668. In accordance with the

previous discussion, the right fitting range of ISSIM1 for

the full training set is [0.599, 0.808], and for the ‘‘Cun

method’’ set is [0.724, 0.874]. ISSIM1 for U-GAT-IT and

NiceGAN are larger than 0.808, so these two models are

suspected of overfitting. Combined with the specific results

shown in Fig. 6, it can be determined that overfitting

occurred in both models may be due to their excessive

parameters compared to the number of training samples.

Therefore, these two models should be excluded (under-

lined in Table 4) when considering which model works

better on the tasks in this paper. The self-similarity of the

generation set of all models is larger than 0.527, which

suggests that all models are suspect of model collapse,

especially for MUNIT with the largest generation set self-

similarity.

From the composite metric ISSIMc, the generated set of

CycleGAN has the best similarity with the full training set,

while the generated set of our model has the best similarity

with the ‘‘Cun method’’ set. It can be seen from Table 5

that after contour enhancement, the ISSIM metrics have

been improved, and the cross-similarity has been improved

from 0.606 to 0.639. That is, the contour enhancement

makes the modes collapse toward the ‘‘Cun method’’ set.

For the full training set, the effects of the models in order

from good to bad are CycleGAN[Our[MUNIT[U-

GAT-IT[NiceGAN; for the ‘‘Cun method’’ set are

Fig. 12 The top five worst performing images of our proposed method compared to the CycleGAN method
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Our[CycleGAN[MUNIT if two over-fitted models are

excluded. The score of ISSIMc is consistent with human

visual perception, which indicates that the previously set

parameters are reasonable.

So, the similarity with the ‘‘Cun method’’ set is the best

in our model, with a 97.89% similarity in the feature

means, a 63.94% similarity in the overall compared fea-

tures, a 79.62% similarity by finding the most similar

images, and the composite similarity metric being 0.92.

The ISSIM proposed in this paper is as simple to calculate

as the FID score, also takes into account the judgment of

diversity, and can effectively describe the similarity

between image sets.

5.2.3 The NIMA metric

In addition to the proximity of the generated images to the

‘‘Cun method,’’ this paper also focuses on the aesthetic

quality of the generated images. Evaluating image tech-

nology quality and aesthetic effects have been a long-s-

tanding problem in image processing and computer vision

[35]. The technical quality assessment measures the image

damage at a pixel level, such as noise, blurriness, and

artificial compression. In contrast, the aesthetic effect

assessment captures the semantic features of emotion and

beauty in the image. In general, image quality assessment

can be divided into two types [36]: Peak Signal to Noise

Ratio(PSNR) with full reference (FR), and standard struc-

ture similarity(SSIM) [32] with no-reference (NR) [32].

This paper also focuses on the artistic effect of transformed

images, so this technical quality evaluation method is not

applicable. Fortunately, NIMA [20] can predict the human

evaluation opinions on images from direct perception and

attractiveness, which has advantages similar to human

subjective scoring, so we choose it as the image quality

evaluation metric. NIMA generates a score histogram for

any image. The image is scored 1–10 points, and the

images of the same subject are compared directly. This

design is consistent in form with the histogram generated

by a human scoring system, and the evaluation effect is

closer to the result of human evaluation.

Figure 7 shows the comparison of NIMA score his-

tograms between our method, CycleGAN method, Nice-

GAN, MUNIT, and U-GAT-IT [16] on 195 test images. It

can be seen from Fig. 7 that our method is superior to the

CycleGAN method, the NiceGAN method, the MUNIT

method, and the U-GAT-IT method. The average score of

the images generated by our method is 4.74 points, the

CycleGAN method is 4.05 points, the NiceGAN method is

3.78 points, the MUNIT method is 4.03 points, and the

U-GAT-IT method is 3.96 points. From the evaluation

metrics of NIMA, the performance of our method improves

Fig. 13 The top five worst performing images of our proposed method compared to the NiceGAN method
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about 17% on average relative to the performance of the

CycleGAN method, about 25% on average relative to the

NiceGAN method, about 18% on average relative to the

MUNIT method, and about 20% on average relative to the

U-GAT-IT method.

To further analyze the effectiveness of our method, we

selected the top five images that outperform the CycleGAN

method, NiceGAN method, MUNIT method, and the

U-GAT-IT method, as shown from Figs. 8, 9, 10 and 11,

respectively. Meanwhile, the worst five images compared

with the CycleGAN, NiceGAN, MUNIT, and U-GAT-IT

methods are shown from Figs. 12, 13, 14 and 15. We can

find that the original photos in Figs. 8, 9, 10 and 11 are

relatively rich in content, and their NIMA scores are

higher, as shown in Table 6. In contrast, the original pho-

tos, shown in Figs. 12, 13, 14 and 15, have relatively

monotonous contents, and their NIMA scores are generally

lower, as shown in Table 7. These results are consistent

with our expectations. Our approach consists of high-

lighting the boundaries of the rocks and trees in photos.

When the image is informative, these boundaries stand out.

When the images are monotonous, the boundary informa-

tion is not rich. Therefore, the method in this paper is

mainly applicable to the case of photos with rich details.

6 Conclusion

This paper proposed the CE-CycleGAN framework to

transfer scenery photos to a realistic landscape painting

style with the ‘‘Cun Model.’’ An edge detection operator is

introduced for the distinctive features of the edges of

landscape paintings. A gradient-guided path is designed

after obtaining the gradient of the image, which enhances

the edge transformation from the photograph to the paint-

ing. The KID metric and ISSIM metric produce somewhat

similar results to the ‘‘Cun method’’. For our experiments,

the ISSIM proposed in this paper is a more powerful metric

than FID and KID, which intuitively give the similarity

between the generated set and the real set. The simulation

results also showed that the subjective evaluation effect of

this method is satisfactory, and it is superior to the other

four methods under the NIMA metric. The results of our

work show that introducing the NIMA metric and ISSIM

metric into the loss function would be a feasible

improvement direction.

Although the CE-CycleGAN method in this paper has

made progress in edge prominence, the generated result is

still awaiting further optimization in the future compared

with the realistic paintings method used by the artist.

Chinese landscape painting focuses on realism, unlike

Western painting, so the presence of the sky or clouds

Fig. 14 The top five worst performing images of our proposed method compared to the MUNIT method
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turning into mountains in the generated images is irrele-

vant. However, it is essential to note that Chinese land-

scape painting focuses on white space, which is not

reflected in the generated images and could be improved by

adding selective attention mechanisms in the future. The

use of the Soble operator to highlight contours in this paper

does bring the generated image closer to the ‘‘Cun

method’’. We infer that the effectiveness comes from the

fact that the ‘‘Cun method’’ itself has significant contours.

Therefore, the CE-CycleGAN method in this paper will

also be effective for large samples and large sizes. It also

reveals that a better way to simulate the ‘‘Cun method’’ is

to enhance the contours by different methods, for example,

introducing other edge extraction and contour extraction

Fig. 15 The top five worst performing images of our proposed method compared to the U-GAT-IT method

Table 6 Our method is

compared with the Cycle-GAN

method and U-GAT-IT method,

respectively, and the NIMA

scores of the top five best-

performing images

Image No.59 Image No.66 Image No.67 Image No.83 Image No.188

Ours 5.09 5.64 5.67 5.01 5.64

CycleGAN 3.61 4.06 3.69 3.52 4.15

Image No.9 Image No.144 Image No.160 Image No.165 Image No.188

Ours 5.65 5.30 5.45 5.37 5.64

NiceGAN 3.52 3.61 3.56 3.59 3.85

Image No.4 Image No.9 Image No.66 Image No.160 Image No.188

Ours 5.17 5.65 5.64 5.45 5.64

MUNIT 3.76 3.93 4.18 4.08 3.92

Image No.9 Image No.66 Image No.67 Image No.144 Image No.188

Ours 5.65 5.64 5.67 5.30 5.64

U-GAT-IT 3.79 3.46 3.60 3.62 3.55

The image with higher NIMA scores have been marked as bold
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operators, as well as further adjustment of the line thick-

ness and trend of the extracted contours to be closer to the

texture strokes of ‘‘Cun method’’, or even using different

contour enhancement effects to simulate different ‘‘Cun

method’’ effects.
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