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Abstract
In many real-world scenarios, the utility of a user is derived from a single execution of a policy. In this case, to apply multi-

objective reinforcement learning, the expected utility of the returns must be optimised. Various scenarios exist where a

user’s preferences over objectives (also known as the utility function) are unknown or difficult to specify. In such scenarios,

a set of optimal policies must be learned. However, settings where the expected utility must be maximised have been

largely overlooked by the multi-objective reinforcement learning community and, as a consequence, a set of optimal

solutions has yet to be defined. In this work, we propose first-order stochastic dominance as a criterion to build solution sets

to maximise expected utility. We also define a new dominance criterion, known as expected scalarised returns (ESR)

dominance, that extends first-order stochastic dominance to allow a set of optimal policies to be learned in practice.

Additionally, we define a new solution concept called the ESR set, which is a set of policies that are ESR dominant.

Finally, we present a new multi-objective tabular distributional reinforcement learning (MOTDRL) algorithm to learn the

ESR set in multi-objective multi-armed bandit settings.

Keywords Multi-objective � Decision making � Distributional � Reinforcement learning � Stochastic dominance

1 Introduction

When making decisions in the real world, decision makers

must make trade-offs between multiple, often conflicting,

objectives [44]. In many real-world settings, a policy is

only executed once. For example, consider a municipality

that receives the majority of its electricity from local solar

farms. To deal with the intermittency of the solar farms, the

municipality wants to build a new electricity generation

facility. The municipality are considering two choices:

building a natural gas facility or adding a lithium-ion

battery storage facility to the solar farms. Moreover, the

municipality want to minimise CO2 emissions while

ensuring energy demand can continuously be met. Given a

new energy generation facility will only be constructed

once, a full distribution over each potential outcome for

capacity to meet electricity demand and CO2 emissions

must be considered to make an optimal decision. The

current state-of-the-art multi-objective reinforcement

learning (MORL) literature focuses almost exclusively on

learning polices that are optimal over multiple executions.

Given such problems are salient, to fully utilise MORL in

the real world, we must develop algorithms to compute a

policy, or set of policies, that are optimal given the single-

execution nature of the problem.

In multi-objective reinforcement learning (MORL), a

user’s preferences over objectives are represented by a

utility function. In certain scenarios, a user’s preferences

over objectives may be unknown; therefore, the utility

function is unknown. In this case, a user is said to be in the

unknown utility function or unknown weights scenario

[36]. The unknown utility function scenario has three

phases: the learning phase, the selection phase and the

execution phase. During the learning phase, a multi-
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objective method [42] is used compute a set of optimal

policies and the set of policies is returned to the user.

During the selection phase, the utility function of the user

becomes known and a policy from the computed set is

selected which best reflects their preferences. The selected

policy is then executed during the execution phase [18].

In contrast to single-objective reinforcement learning

(RL), multiple optimality criteria exist for MORL [36]. In

scenarios where the utility of the user is derived from

multiple executions of a policy, the scalarised expected

returns (SER) must be optimised. However, in scenarios

where the utility of a user is derived from a single execu-

tion of a policy, the expected utility of the returns (or

expected scalarised returns, ESR) must be optimised. The

majority of MORL research focuses on the SER criterion

and linear utility functions [29], which limits the applica-

bility of MORL to real-world problems. In the real world, a

user’s utility function may be derived in a linear or non-

linear manner. For known linear utility functions, single-

objective methods can be used to learn an optimal policy

[36]. Nonlinear utility functions do not distribute across the

sum of the immediate and future returns, which invalidates

the Bellman equation [33]. Therefore, to learn optimal

policies for nonlinear utility functions, strictly multi-ob-

jective methods must be used.

For nonlinear utility functions, the policies learned

under the SER criterion and the ESR criterion can be dif-

ferent [29, 30]. The ESR criterion has received very little

attention, to date, from the MORL community with some

exceptions [21, 31, 33, 43]. To learn optimal policies in

many real-world scenarios where a policy will be executed

only once, the ESR criterion must be optimised. For

example, in a medical setting where a user has one

opportunity to select a treatment, a user will aim to max-

imise the expected utility of a single outcome. However,

choosing the wrong optimisation criterion (SER) for such a

scenario could potentially lead to a different policy than

that which would be learned under ESR. In the real world,

like in the aforementioned scenario, learning a sub-optimal

policy could have catastrophic outcomes.

Therefore, it is crucial that the MORL community

focuses on developing multi-objective algorithms that can

learn optimal policies under the ESR criterion. Recently, a

number of multi-objective methods have been imple-

mented that can learn a single optimal policy under the

ESR criterion [15, 33]. However, in the current MORL

literature, no multi-policy algorithms exist for the ESR

criterion. In fact, a set of optimal policies for the ESR

criterion has yet to be defined.

Due to the lack of existing research for the ESR crite-

rion, a formal definition of the requirements to learn opti-

mal policies under the ESR criterion has yet to be

determined. In Sect. 3, we define the requirements

necessary to compute policies under the ESR criterion. The

applicability of MORL to many real-world scenarios under

the ESR criterion is limited because no solution set has

been defined for scenarios when a user’s utility function is

unknown. In Sect. 4, we show how first-order stochastic

dominance can be used to define sets of optimal policies

under the ESR criterion. In Sect. 5, we expand first-order

stochastic dominance to define a new dominance criterion,

called expected scalarised returns (ESR) dominance. This

work proposes that ESR dominance can be used to com-

pute a set of optimal policies, which we define as the ESR

set. Finally, we present a novel multi-objective tabular

distributional reinforcement learning algorithm

(MOTDRL) which aims to learn the ESR set in scenarios

when the utility function of the user is unknown. We apply

MOTDRL to two different multi-objective multi-armed

bandit settings where MOTDRL is able to learn the ESR set

in both settings.

2 Background

In this section, we introduce necessary background mate-

rial, including multi-objective reinforcement learning,

utility functions, the unknown utility function scenario,

multi-objective multi-armed bandits, commonly used

optimality criteria in multi-objective decision making, and

stochastic dominance.

2.1 Multi-objective reinforcement learning

In multi-objective reinforcement learning (MORL) [18],

we deal with decision-making problems with multiple

objectives, often modelled as a multi-objective Markov

decision process (MOMDP). An MOMDP is a tuple,

M ¼ ðS;A; T ; c;RÞ, where S and A are the state and

action spaces, respectively, T : S �A� S ! 0; 1½ � is a

probabilistic transition function, c is a discount factor

determining the importance of future rewards and R :

S �A� S ! Rn is an n-dimensional vector-valued

immediate reward function. In multi-objective reinforce-

ment learning, n[ 1.

2.2 Utility functions

In MORL, utility functions are used to model a user’s

preferences. In this work, utility functions map vector

returns to a scalar value which represents the user’s pref-

erences over the returns,

u : Rn ! R; ð1Þ

where u is a utility function and Rn is an n-dimensional
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vector. Linear utility functions are widely used to represent

a user’s preferences,

u ¼
Xn

i¼1

wiri; ð2Þ

where wi is the preference weight and ri is the value at

position i of the return vector. However, certain scenarios

exist where linear utility functions cannot accurately rep-

resent a user’s preferences. In this case, the user’s prefer-

ences must be represented using a nonlinear utility

function.

In this paper, we consider monotonically increasing

utility functions [36], i.e.

ð8 i;Vp
i �Vp0

i ^ 9 i;Vp
i [Vp0

i Þ) ð8 u; uðVpÞ[ uðVp0 ÞÞ;
ð3Þ

where Vp and Vp0 are the values of executing policies p and

p0, respectively.

It is important to note that a monotonically increasing

utility function also includes linear utility functions of the

form in Eq. 2. In certain scenarios, the utility function may

be unknown; therefore, we do not know the shape of the

utility function. If we assume the utility function is

monotonically increasing we know that, if the value of one

of the objectives in the return vector increases, then the

utility also increases [36]. This assumption makes it pos-

sible to determine a partial ordering over policies when the

shape of the utility function is unknown. In this work, we

make no assumptions about the shape of the utility func-

tion, but rather we assume the utility function is mono-

tonically increasing.

2.3 The unknown utility function scenario

In MORL, a user’s preferences over objectives can be

modelled as a utility function [36]. However, a user’s

utility function is often unknown at the time of learning or

planning. In the taxonomy of multi-objective decision

making (MODeM), this is known as the unknown utility

function scenario (Fig. 1), where a set of optimal policies

must be computed and returned to the user [18]. In the

unknown utility function scenario, there are three phases:

the learning or planning phase, the selection phase and the

execution phase. In the learning or planning phase a multi-

objective planning or learning algorithm is deployed in a

MOMDP. Given the utility function is unknown, the

MORL algorithm computes a set of optimal policies during

the learning or planning. During the selection phase, the

user’s preferences over objectives become known and the

user selects a policy from the set of optimal policies that

best reflects their preferences. Finally, during the execution

phase the selected policy is executed.

2.4 Multi-objective multi-armed bandits

Multi-objective multi-armed bandits (MOMAB) [11] are a

natural extension of multi-armed bandits, where each arm

returns an n-dimensional reward vector Rn, where n is the

number of objectives. At each timestep, t, the agent must

select an arm, i, and receives a reward vector. The returns

in an MOMAB setting can be deterministic [11] or

stochastic [3]. Many algorithms focus on the MOMAB

setting and learn a set of arms that are optimal

[11, 27, 35, 47].

For example, Pareto UCB1 [11] is an algorithm that can

learn a set of optimal policies in an MOMAB setting.

Pareto UCB1 [11] initially selects each arm once, then at

each timestep the algorithm computes the mean vector of

each of the multi-objective arms and adds the upper con-

fidence bound to the mean return vector. Using this

method, Pareto UCB1 can learn the Pareto front in an

MOMAB setting.

2.5 Scalarised expected returns and expected
scalarised returns

For MORL, the ability to express a user’s preferences over

objectives as a utility function is essential when learning a

single optimal policy. In MORL, different optimality cri-

teria exist [36]. Additionally, the utility function can be

applied to the expectation of the returns, or the utility

function can be applied directly to the returns before

computing the expectation. Calculating the expected value

of the return of a policy before applying the utility function

leads to the scalarised expected returns (SER) optimisation

criterion:

Fig. 1 The unknown utility

function scenario [18]
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Vp
u ¼ u E

X1

t¼0

ctrt
�� p; l0

" # !
; ð4Þ

where l0 is the probability distribution over possible

starting states.

SER is the most commonly used criterion in the multi-

objective (single agent) planning and reinforcement

learning literature [36]. For SER, a coverage set is defined

as a set of optimal solutions for all possible utility func-

tions. If the utility function is instead applied to the returns

before computing the expectation, this leads to the expec-

ted scalarised returns (ESR) optimisation criterion

[15, 33, 36]:

Vp
u ¼ E u

X1

t¼0

ctrt

 !
�� p; l0

" #
: ð5Þ

ESR is the most commonly used criterion in the game

theory literature on multi-objective games [29].

2.6 Stochastic dominance

Stochastic dominance [4, 14] gives a partial order between

distributions and can be used when making decisions under

uncertainty (Fig. 2). Stochastic dominance is particularly

useful when a distribution must be taken into consideration

rather than an expected value when making decisions.

Stochastic dominance is a prominent dominance criterion

in finance, economics and decision theory. When making

decisions under uncertainty, stochastic dominance can be

used to determine the most risk-averse decision. Various

degrees of stochastic dominance exist; however, in this

paper we focus on first-order stochastic dominance (FSD).

FSD can be used to give a partial ordering over random

variables or random vectors to give an FSD dominant set.

In Definition 1, we present the necessary conditions for

FSD, and in Theorem 1, we prove that if a random variable

is FSD dominant, it has at least as high an expected value

as another random variable [46]. We use the work of

Wolfstetter [46] to prove Theorem 1.

Definition 1 For random variables X and Y, X �FSD Y if:

PðX[ zÞ�PðY [ zÞ; 8 z:

If we consider the cumulative distribution function

(CDF) of X, FX , and the CDF of Y, FY , we can say that X

�FSD Y if:

FXðzÞ�FYðzÞ; 8 z:

Theorem 1 If X �FSD Y, then X has a greater than or

equal expected value as Y.

X �FSD Y)EðXÞ�EðYÞ:

Proof By a known property of expected values, the fol-

lowing is true for any random variable:

EðXÞ ¼
Z þ1

0

ð1 � FXðxÞÞ dx;

EðYÞ ¼
Z þ1

0

ð1 � FYðxÞÞ dx:

Therefore, if X �FSD Y, then:
Z þ1

0

ð1 � FXðxÞÞ dx�
Z þ1

0

ð1 � FYðxÞÞ dx

which gives,

EðXÞ� EðYÞ:

[46] h

3 Expected scalarised returns

In contrast to single-objective reinforcement learning (RL),

different optimality criteria exist for MORL. In scenarios

where the utility of a user is derived from multiple exe-

cutions of a policy, the agent should optimise over the

scalarised expected returns (SER) criterion. In scenarios

where the utility of a user is derived from a single execu-

tion of a policy, the agent should optimise over the

expected scalarised returns (ESR) criterion. Let us con-

sider, as an example, a power plant that generates elec-

tricity for a city and emits harmful CO2 and greenhouse

gases. City regulations have been imposed which limit the

amount of pollution that the power plant can generate. If

the regulations require that the emissions from the power

Fig. 2 For random variables X and Y, X �FSD Y, where FX and FY are

the cumulative distribution functions (CDFs) of X and Y, respectively.

In this case, X is preferable to Y because higher utilities occur with

greater frequency in FX
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plant do not exceed a certain amount over an entire year,

the SER criterion should be optimised. In this scenario, the

regulations allow for the pollution to vary day to day, as

long as the emissions do not exceed the regulated level for

a given year. However, if the regulations are much stricter

and the power plant is fined every day it exceeds a certain

level of pollution, it is beneficial to optimise under the ESR

criterion.

The majority of MORL research focuses on linear utility

functions. However, in the real world, a user’s utility

function can be nonlinear. For example, a utility function is

nonlinear in situations where a minimum value must be

achieved on each objective [26]. Focusing on linear utility

functions limits the applicability of MORL in real-world

decision-making problems. For example, linear utility

functions cannot be used to learn policies in concave

regions of the Pareto front [41]. Furthermore, if a user’s

preferences are nonlinear, these are fundamentally incom-

patible with linear utility functions. In this case, strictly

multi-objective methods must be used to learn optimal

policies for nonlinear utility functions. In MORL, for

nonlinear utility functions, different policies are preferred

when optimising under the ESR criterion versus the SER

criterion [30]. It is important to note that, for linear utility

functions, the distinction between ESR and SER does not

exist [29].

For example, a decision maker has to choose between

the following lotteries, L1 and L2, which are highlighted in

Table 1.

The decision maker has the following nonlinear utility

function:

uðxÞ ¼ x2
1 þ x2

2; ð6Þ

where x is a vector returned from R in Table 1 and x1 and

x2 are the values of two objectives. Note that this utility

function is monotonically increasing for x1 � 0 and x2 � 0.

Under the SER criterion, the decision maker will compute

the expected value of each lottery, apply the utility func-

tion, and select the lottery that maximises their utility

function. Let us consider which lottery the decision maker

will play under the SER criterion:

L1 : EðL1Þ ¼ 0:5ð4; 3Þ þ 0:5ð2; 3Þ ¼ ð2; 1:5Þ þ ð1; 1:5Þ ¼ ð3; 3Þ
L1 : uðEðL1ÞÞ ¼ ð32 þ 32Þ ¼ 9 þ 9 ¼ 18

L2 : EðL2Þ ¼ 0:9ð1; 3Þ þ 0:1ð10; 2Þ ¼ ð0:9; 2:7Þ þ ð1; 0:2Þ ¼ ð1:9; 2:9Þ
L2 : uðEðL2ÞÞ ¼ ð1:92 þ 2:92Þ ¼ 3:61 þ 8:41 ¼ 12:02:

Therefore, a decision maker with the utility function in

Eq. 6 will prefer to play lottery L1 under the SER criterion.

Under the ESR criterion, the decision maker will first

apply the utility function to the return vectors, compute the

expectation and select the lottery to maximise their utility

function. Let us consider how a decision maker will choose

which lottery to play under the ESR criterion:

L1 : EðuðL1ÞÞ ¼ 0:5ðuð4; 3ÞÞ þ 0:5ðuð2; 3ÞÞ ¼ 0:5ð42 þ 32Þ þ 0:5ð22 þ 32Þ
¼ 0:5ð25Þ þ 0:5ð13Þ ¼ 12:5 þ 6:5 ¼ 19

L2 : EðuðL2ÞÞ ¼ 0:9ðuð1; 3ÞÞ þ 0:1ðuð10; 2ÞÞ ¼ 0:9ð12 þ 32Þ þ 0:1ð102 þ 22Þ
¼ 0:9ð10Þ þ 0:1ð104Þ ¼ 9 þ 10:4 ¼ 19:4:

Therefore, a decision maker with the utility function in

Eq. 6 will prefer to play lottery L2 under the ESR criterion.

From the example, it is clear that users with the same

nonlinear utility function can prefer different policies,

depending on which multi-objective optimisation criterion

is selected. Therefore, it is critical that the distinction ESR

and SER are taken into consideration when selecting a

MORL algorithm to learn optimal policies in a given sce-

nario. The majority of MORL research focuses on the SER

criterion [29]. By comparison, the ESR criterion has

received very little attention from the MORL community

[15, 29, 33, 36]. Many of the traditional MORL methods

cannot be used when optimising under the ESR criterion,

given nonlinear utility functions in MOMDPs do not dis-

tribute across the sum of immediate and future returns

which invalidates the Bellman equation [33],

max
p

E u R�
t þ

X1

i¼t

ciri

 !
�� p; st

" #

6¼ uðR�
t Þ þ max

p
E u

X1

i¼t

ciri

 !
�� p; st

" #
;

ð7Þ

where u is a nonlinear utility function and R�
t ¼

Pt�1
i¼0 c

iri.

An example of an algorithm that can learn policies for

nonlinear utility functions and the ESR criterion is distri-

butional Monte Carlo tree search (DMCTS) [15]. Hayes

et al. [15] use DMCTS to calculate the returns of a full

policy and compute a posterior distribution over the

expected utility of individual policy executions. DMCTS

achieves state-of-the-art performance under the ESR

Table 1 A lottery, L1, has two

possible returns, (4, 3) and (2,

3), each with a probability of 0.5

L1

P(L1= R) R

0.5 (4, 3)

0.5 (2, 3)

L2

P(L2=R) R

0.9 (1, 3)

0.1 (10, 2)

A lottery, L2, has two possible

returns, (1, 3) with a probability

of 0.9 and (10, 2) with a prob-

ability of 0.1
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criterion. Hayes et al. [15] demonstrate that, when opti-

mising under the ESR criterion, making decisions based on

a distribution over the utility of the returns is particularly

useful when learning in realistic problems where rewards

are stochastic.

However, DMCTS and other MORL algorithms that

optimise for the ESR criterion [21, 33, 36] require the

utility function of a user to be known a priori. In practice,

many scenarios exist where a user’s utility function may be

unknown at the time of learning or planning. To compute

policies under the ESR criterion when a user’s utility

function is unknown, a distribution over the returns must be

maintained. To highlight why a distribution over the

returns must be used when the utility function of a user is

unknown, let us consider the following example in

Table 2.1

To determine which lottery to play while optimising for

the ESR criterion, the utility function must first be applied

and then the expected utility can be computed (see Eq. 5):

uðL3Þ ¼ uðð�20; 1ÞÞ þ uðð20; 3ÞÞ
EðuðL3ÞÞ ¼ 0:5ðuðð�20; 1ÞÞÞ þ 0:5ðuðð20; 3ÞÞÞ

uðL4Þ ¼ uðð0; 2ÞÞ þ uðð5; 2ÞÞ
EðuðL4ÞÞ ¼ 0:9ðuðð0; 2ÞÞÞ þ 0:1ðuðð5; 2ÞÞÞ:

Given the utility function is unknown, it impossible to

compute the expected utility. Moreover, a distribution over

the returns received from a policy execution must be

maintained in order to optimise for the ESR criterion.

Maintaining a distribution over the returns ensures the

expected utility can be computed once the user’s utility

function becomes known at decision time.

As demonstrated above, maintaining a distribution over

the returns is critical to learning optimal policies when the

utility function of a user is unknown. Therefore, to com-

pute a set of optimal policies under the ESR criterion it is

necessary to adopt a distributional approach.

To adopt a distributional approach to multi-objective

decision making, we must first introduce a multi-objective

version of the return distribution [7]2, Zp. A return distri-

bution, Zp, is equivalent to a multivariate distribution

where a dimension exists per objective. The return distri-

bution, Zp, gives the distribution over returns of a random

vector [40] when a policy p is executed, such that,

EZp ¼ E
X1

t¼0

ctrt
�� p; l0

" #
: ð8Þ

Moreover, a return distribution can be used to represent

policies. Under the ESR criterion, the utility-of-the-return-

distribution, Zp
u , is defined as a distribution over the scalar

utilities received from applying the utility function to each

vector in the return distribution, Zp. Therefore, Zp
u is a

distribution over the scalar utility of vector returns of a

random vector received from executing a policy p, such

that,

E Zp
u ¼ E u

X1

t¼0

ctrt

 !
�� p; l0

" #
: ð9Þ

The utility-of-the-return-distribution can only be calculated

when the utility function is known a priori.

When the utility function of a user is unknown, a set of

policies that are optimal for all monotonically increasing

utility functions must be learned. However, for the ESR

criterion, a set of optimal solutions has yet to be defined.

To learn a set of optimal policies under the ESR criterion,

we must develop new methods. In Sect. 4, we apply first-

order stochastic dominance to determine a partial ordering

over return distributions under the ESR criterion.

4 Stochastic dominance for ESR

For MORL, there are two classes of algorithms: single-

policy and multi-policy algorithms [36, 42]. When the

user’s utility function is known a priori, it is possible to use

a single-policy algorithm [15, 33] to learn an optimal

solution. However, when the user’s utility function is

unknown, we aim to learn a set of policies that are optimal

Table 2 A lottery, L3, has two

possible returns, (-20, 1) and

(20, 3), each with a probability

of 0.5

L3

P(L3= R) R

0.5 (- 20, 1)

0.5 (20, 3)

L4

P(L4=R) R

0.9 (0, 2)

0.1 (5, 2)

A lottery, L4, has two possible

returns, (0, 2) with a probability

of 0.9 and (5, 2) with a proba-

bility of 0.1

1 Generally, in the unknown utility function scenario a set of optimal

policies is calculated. Under the ESR criterion, a set of optimal

policies has yet be defined. Therefore, this example does not calculate

a set of optimal policies but instead illustrates why a distribution over

the returns is required under the ESR criterion. We define a set of

optimal policies under the ESR criterion in a later section.

2 Bellemare et al. [7] introduce a value distribution. However, given

the distribution is a distribution over the returns, not values, we prefer

the term return distribution.
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for all monotonically increasing utility functions. The

current literature on the ESR criterion focuses only on

scenarios where the utility function of a user is known

[15, 33], overlooking scenarios where the utility function

of a user is unknown. Moreover, a set of solutions under

the ESR criterion for the unknown utility function scenario

[36] has yet to be defined.

Various algorithms have been proposed to learn solution

sets under the SER criterion (see Sect. 2.5), for example

[24, 34, 45]. Under the SER criterion, multi-policy algo-

rithms determine optimality by comparing policies based

on the utility of expected value vectors (see Eq. 4). In

contrast, under the ESR criterion it is crucial to maintain a

distribution over the utility of possible vector-valued out-

comes. SER multi-policy algorithms cannot be used to

learn optimal policies under the ESR criterion because they

compute expected value vectors. It is necessary to develop

new methods that can generate solution sets for the ESR

criterion with unknown utilities. The development of

methods that determine an optimal partial ordering over

return distributions is a promising avenue to address this

challenge.

First-order stochastic dominance (see Sect. 2.6) is a

method which gives a partial ordering over random vari-

ables [20, 46]. FSD compares the cumulative distribution

functions (CDFs) of the underlying probability distribu-

tions of random variables to determine optimality. When

computing policies under the ESR criterion, it is essential

that the expected utility is maximised. To use FSD for the

ESR criterion, we must show the FSD conditions presented

in Sect. 2.6 also hold when optimising the expected utility

for unknown monotonically increasing utility functions.

For the single-objective case, Theorem 2 proves for

random variables X and Y, if X �FSD Y, the expected

utility of X is greater than, or equal to, the expected utility

of Y for monotonically increasing utility functions. In

Theorem 2, random variables X and Y are considered, and

their corresponding CDFs FX , FY . The work of Mas-Colell

et al. [23] is used as a foundation for Theorem 2.

Theorem 2 A random variable, X, is preferred to a ran-

dom variable, Y, for all decision makers with a monoton-

ically increasing utility function if, X �FSD Y.

X �FSD Y ) EðuðXÞÞ� EðuðYÞÞ:

Proof If X �FSD Y, then3,

FXðzÞ�FYðzÞ; 8 z;

since

EðuðXÞÞ ¼
Z 1

�1
uðzÞdFXðzÞ

EðuðYÞÞ ¼
Z 1

�1
uðzÞdFYðzÞ:

When integrating both EðuðXÞÞ and EðuðYÞÞ by parts, the

following results are generated:

EðuðXÞÞ ¼ ½uðzÞFXðzÞ�1�1 �
Z 1

�1
u0ðzÞFXðzÞ dz

EðuðYÞÞ ¼ ½uðzÞFYðzÞ�1�1 �
Z 1

�1
u0ðzÞFYðzÞ dz:

Given FXð�1Þ ¼ FYð�1Þ ¼ 0 and

FXð1Þ ¼ FYð1Þ ¼ 1, the first terms in EðuðXÞÞ and

EðuðYÞÞ are equal, and thus,

EðuðXÞÞ � EðuðYÞÞ ¼
Z 1

�1
u0ðzÞFYðzÞ dz�

Z 1

�1
u0ðzÞFXðzÞ dz

Since FXðzÞ�FYðzÞ and u0ðzÞ� 0 for all monotonically

increasing utility functions,

EðuðXÞÞ � EðuðYÞÞ� 0

and thus,

EðuðXÞÞ� EðuðYÞÞ:

h

A utility function maps an input (scalar or vector return)

to an output (scalar utility). Since the probability of

receiving some utility is equal to the probability of

receiving some return for a random variable, X, we can

write the following:

PðX[ cÞ ¼ PðuðXÞ[ uðcÞÞ; ð10Þ

where c is a constant. Using the results shown in Theo-

rem 2 and Eq. 10, the FSD conditions highlighted in Sect.

2.6 can be rewritten to include monotonically increasing

utility functions:

PðuðXÞ[ uðzÞÞ�PðuðYÞ[ uðzÞÞ: ð11Þ

Definition 2 Let X and Y be random variables. X domi-

nates Y for all decision makers with a monotonically

increasing utility function if the following is true:

X �FSD Y ,
8u : 8v : PðuðXÞ[ uðvÞÞ�PðuðYÞ[ uðvÞÞ:

3 CDFs with lower probability values for a given z are preferable.

Figure 2 explains why this is the case.

Neural Computing and Applications

123



In MORL, the return from the reward function is a

vector, where each element in the return vector represents

an objective. To apply FSD to MORL under the ESR cri-

terion, random vectors must be considered. In this case, a

random vector (or multivariate random variable) is a vector

whose components are scalar-valued random variables on

the same probability space. For simplicity, this paper

focuses on the case in which a random vector has two

random variables, known as the bi-variate case. FSD con-

ditions have been proven to hold for random vectors with n

random variables in the works of Sriboonchitta et al. [39],

Levhari et al. [19], Nakayama et al. [25] and Scarsini [37].

In Theorem 3, the work of Atkinson and Bourguignon [2]

is distilled into a suitable Theorem for MORL. Theorem 3

highlights how the conditions for FSD hold for random

vectors when optimising under the ESR criterion for a

monotonically increasing utility function, u, where
o2uðx1;x2Þ
ox1ox2

� 0 [32]. It is important to note that Atikson and

Bourguignon [2] have shown the conditions for FSD hold

for random vectors for utility functions where
o2uðx1;x2Þ
ox1ox2

� 0.

We plan to extend these conditions for MORL in a future

work. In Theorem 3, X and Y are random vectors where

each random vector consists of two random variables, X ¼
½X1;X2� and Y ¼ ½Y1; Y2�. FX1X2

and FY1Y2
are the corre-

sponding CDFs.

Theorem 3 Assume that u : R� 0 � R� 0 ! R� 0 is a

monotonically increasing function, with ouðx1;x2Þ
ox1

� 0,

ouðx1;x2Þ
ox2

� 0 and o2uðx1;x2Þ
ox1ox2

� 0. If, for random vectors X and

Y, X �FSD Y, then X is preferred to Y by all decision

makers, i.e.

X �FSD Y)EðuðXÞÞ� EðuðYÞÞ:

Proof As X �FSD Y, 8t; z we have

FXðt; zÞ�FYðt; zÞ;

or DFðt; zÞ ¼ FXðt; zÞ � FYðt; zÞ� 0:

The expected utility of the random variable X can be

written as follows:

E uðXÞð Þ ¼
Z 1

0

Z 1

0

uðt; zÞfXðt; zÞdtdz;

where f is the probability density function of X. Note that

Df ðt; zÞ ¼ fXðt; zÞ � fYðt; zÞ

¼ o2DFðt; zÞ
otoz

:

Using integration-by-parts (I), and the fact that DFðt; 0Þ ¼
oDFð0;zÞ

oz ¼ 0 (Z), we obtain:

E uðXÞð Þ � E uðYÞð Þ

¼
Z 1

0

Z 1

0

uðt; zÞDf ðt; zÞdtdz

¼ðIÞ
Z 1

0

uðt; zÞ oDFðt; zÞ
oz

� �1

t¼0

dz�
Z 1

0

Z 1

0

ouðt; zÞ
ot

oDFðt; zÞ
oz

dtdz

¼ðIÞ
Z 1

0

uðt; zÞ oDFðt; zÞ
oz

� �1

t¼0

dz�
Z 1

0

ouðt; zÞ
ot

DFðt; zÞ
� �1

z¼0

dt

þ
Z 1

0

Z 1

0

o2uðt; zÞ
otoz

DFðt; zÞdtdz

¼ðZÞ
Z 1

0

lim
t!1

uðt; zÞ oDFðt; zÞ
oz

dz�
Z 1

0

lim
z!1

ouðt; zÞ
ot

DFðt; zÞdt

þ
Z 1

0

Z 1

0

o2uðt; zÞ
otoz

DFðt; zÞdtdz:

Given that
o2uðt;zÞ
otoz � 0,

ouðt;zÞ
ot � 0 and DFðt; zÞ� 0, we know

that the last two terms are positive. Therefore, we can state

that

E uðXÞð Þ � E uðYÞð Þ

¼
Z 1

0

lim
t!1

uðt; zÞ oDFðt; zÞ
oz

dz�
Z 1

0

lim
z!1

ouðt; zÞ
ot

DFðt; zÞdt

þ
Z 1

0

Z 1

0

o2uðt; zÞ
otoz

DFðt; zÞdtdz�
Z 1

0

lim
t!1

uðt; zÞ oDFðt; zÞ
oz

dz:

According to Lemma 2 (see Appendix section), as

u(t, z)F(t, z) is a positive monotonically increasing func-

tion in both t and z, we know that:
Z 1

0

lim
t!1

uðt; zÞ oFðt; zÞ
oz

dz ¼ lim
t!1

Z 1

0

uðt; zÞ oFðt; zÞ
oz

dz:

Using integration-by-parts (I), and the fact that DFðt; 0Þ ¼
0 (Z), we have:

E uðXÞð Þ � E uðYÞð Þ

� lim
t!1

Z 1

0

uðt; zÞ oDFðt; zÞ
oz

dz

¼ðIÞ lim
t!1

uðt; zÞDFðt; zÞ½ �10 � lim
t!1

Z 1

0

ouðt; zÞ
oz

DFðt; zÞdz

¼ðZÞ lim
t!1

lim
z!1

uðt; zÞDFðt; zÞ � lim
t!1

Z 1

0

ouðt; zÞ
oz

DFðt; zÞdz:

Finally, given that
ouðt;zÞ
oz � 0 and DFðt; zÞ� 0, we know

that:

Neural Computing and Applications

123



E uðXÞð Þ � E uðYÞð Þ

� lim
t!1

lim
z!1

uðt; zÞDFðt; zÞ � lim
t!1

Z 1

0

ouðt; zÞ
oz

DFðt; zÞdz

� 0:

h

Using the results from Theorem 3, Eq. 11 can be

updated to include random vectors,

PðuðXÞ[ uðzÞÞ�PðuðYÞ[ uðzÞÞ: ð12Þ

Definition 3 For random vectors X and Y, X is preferred

over Y by all decision makers with a monotonically

increasing utility function if, and only if, the following is

true:

X �FSD Y ,
8u : ð8v : PðuðXÞ[ uðvÞÞ�PðuðYÞ[ uðvÞÞ:

Using the results from Theorem 3 and Definition 3, it is

possible to extend FSD to MORL. For MORL, under the

ESR criterion, the return distribution, Zp, is considered to

be the full distribution of the returns of a random vector

received when executing a policy, p (see Sect. 3), return

distributions can be used to represent policies. In this case,

it is possible to use FSD to obtain a partial ordering over

policies. For example, consider two policies, p and p0,
where each policy has the underlying return distribution Zp

and Zp0 . If Zp �FSD Zp0 , then p will be preferred over p0.

Definition 4 Policies p and p0 have return distributions Zp

and Zp0 . Policy p is preferred over policy p0 by all decision

makers with a utility function, u, that is monotonically

increasing if, and only if, the following is true:

Zp �FSD Zp0 :

Now that a partial ordering over policies has been

defined under the ESR criterion for the unknown utility

function scenario, it is possible to define a set of optimal

policies.

5 Solution sets for ESR

Section 4 defines a partial ordering over policies under the

ESR criterion for unknown utility functions using FSD. In

the unknown utility function scenario, it is infeasible to

learn a single optimal policy [36]. When a user’s utility

function is unknown, multi-policy MORL algorithms must

be used to learn a set of optimal policies. To apply MORL

to the ESR criterion in scenarios with unknown utility, a set

of optimal policies under the ESR criterion must be

defined. In Sect. 5, FSD is used to define multiple sets of

optimal policies for the ESR criterion.

Firstly, a set of optimal policies, known as the undom-

inated set, is defined. The undominated set is defined using

FSD, where each policy in the undominated set has an

underlying return distribution that is FSD dominant. The

undominated set contains at least one optimal policy for all

possible monotonically increasing utility functions.

Definition 5 The undominated set, UðPÞ, is a subset of all

possible policies for where there exists some utility func-

tion, u, where a policy’s return distribution is FSD

dominant.

UðPÞ ¼ p 2 P
�� 9u; 8p0 2 P : Zp �FSD Zp0

n o
:

However, the undominated set may contain excess

policies. For example, under FSD, if two dominant policies

have return distributions that are equal, then both policies

will be in the undominated set. Given both return distri-

butions are equal, a user with a monotonically increasing

utility function will not prefer one policy over the other. In

this case, both policies have the same expected utility. To

reduce the number of policies that must be considered at

execution time, for each possible utility function we can

keep just one corresponding FSD dominant policy; such a

set of policies is called a coverage set (CS).

Definition 6 The coverage set, CSðPÞ, is a subset of the

undominated set, UðPÞ, where, for every utility function,

u, the set contains a policy that has a FSD dominant return

distribution,

CSðPÞ 	 UðPÞ ^ 8u; 9p 2 CSðPÞ; 8p0 2 P : Zp �FSD Zp0
� �

:

In practice, a decision maker may aim to learn the

smallest possible set of optimal policies. However, FSD

considered in this work does not have a strict inequality

condition. Moreover, the undominated set generated using

FSD may contain excess policies. Therefore, to compute a

coverage set in practice where each optimal policy has a

unique return distribution, we define expected scalarised

returns dominance (ESR dominance). In contrast to FSD,

ESR dominance ensures that an explicitly strict inequality

exists.

Definition 7 For random vectors X and Y, X 
ESR Y for

all decision makers with a monotonically increasing utility

function if, and only if, the following is true:
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X
ESRY ,
8u : ð8v : PðuðXÞ[ uðvÞÞ�PðuðYÞ[ uðvÞÞ

^ 9 v : PðuðXÞ[ uðvÞÞ[PðuðYÞ[ uðvÞÞÞ:

ESR dominance (Definition 7) extends FSD; however,

ESR dominance is a more strict dominance criterion. For

FSD, policies that have equal return distributions are

considered dominant policies, which is not the case under

ESR dominance. Therefore, if a random vector is ESR

dominant, the random vector has a greater expected utility

than all ESR-dominated random vectors. Theorem 4 proves

that ESR dominance satisfies the ESR criterion when the

utility function of the user is unknown for all monotoni-

cally increasing utility functions. Theorem 4 focuses on

random vectors X and Y where each random vector has

two random variables, such that X ¼ ½X1;X2� and

Y ¼ ½Y1; Y2�. FX and FY are the corresponding CDFs and

v ¼ ½t; z�. However, Theorem 4 can easily be extended for

random vectors with n random variables

(X ¼ ½X1;X2; . . .;Xn�).

Theorem 4 A random vector, X, is preferred to a random

vector, Y, by all decision makers with a monotonically

increasing utility function if, and only if, X � ESR Y:

X
ESRY)EðuðXÞÞ[ EðuðYÞÞ

Proof X and Y are random vectors with n random vari-

ables. If X 
ESR Y, the following two conditions must be

met for all u:

1. 8v : PðuðXÞ[ uðvÞÞ�PðuðYÞ[ uðvÞÞ
2. 9 v : PðuðXÞ[ uðvÞÞ[PðuðYÞ[ uðvÞÞ.
From Definition 3, if X �FSD Y, then the following is true:

8u : 8v : PðuðXÞ[ uðvÞÞ�PðuðYÞ[ uðvÞÞ:

If X �FSD Y, then, from Theorem 3, the following is true:

EðuðXÞÞ� EðuðYÞÞ

If condition 1 is satisfied, the expected utility of X is at

least equal to the expected utility of Y; then:

EðuðXÞÞ ¼
Z 1

�1

Z 1

�1
uðzÞfXðt; zÞ dt dz

EðuðYÞÞ ¼
Z 1

�1

Z 1

�1
uðzÞfYðt; zÞ dt dz:

In order to satisfy condition 2, some limits must exist to

give the following,

Z b

a

Z d

c

uðt; zÞfXðt; zÞ dt dz[
Z b

a

Z d

c

uðt; zÞfYðt; zÞ dt dz:

The minimum requirement to satisfy condition 1 is:
Z 1

�1

Z 1

�1
uðt; zÞfXðt; zÞ dt dz ¼

Z 1

�1

Z 1

�1
uðt; zÞfYðt; zÞ dt dz:

If condition 1 is satisfied, to satisfy condition 2 some limits

must exist:

Z b

a

Z d

c

uðt; zÞfXðt; zÞ dt dz[
Z b

a

Z d

c

uðt; zÞfYðt; zÞ dt dz:

Therefore,

Z a

�1

Z c

�1
uðt; zÞfXðt; zÞ dt dz þ

Z b

a

Z d

c

uðt; zÞfXðt; zÞ dt dzþ
Z 1

b

Z 1

d

uðt; zÞfXðt; zÞ dt dz[
Z a

�1

Z c

�1
uðt; zÞfYðt; zÞ dt dzþ

Z b

a

Z d

c

uðt; zÞfYðt; zÞ dt dz þ
Z 1

b

Z 1

d

uðt; zÞfYðt; zÞ dt dz:

Finally,
Z 1

�1

Z 1

�1
uðt; zÞfXðt; zÞ dt dz[

Z 1

�1

Z 1

�1
uðt; zÞfYðt; zÞ dt dz:

If X 
ESR Y, then

EðuðXÞÞ[ EðuðYÞÞ:

h

In the ESR dominance criterion defined in Definition 7,

the utility of different vectors is compared. However, it is

not possible to calculate the utility of a vector when the

utility function is unknown. In this case, Pareto dominance

[28] can be used instead to determine the relative utility of

the vectors being compared.

Definition 8 A Pareto dominates (
p) B if the following is

true:

A
pB , ð8i : Ai �BiÞ ^ ð9i : Ai [BiÞ: ð13Þ

For monotonically increasing utility functions, if the

value of an element of the vector increases, then the scalar

utility of the vector also increases. Therefore, using Defi-

nition 8, if vector A Pareto dominates vector B, for a

monotonically increasing utility function, A has a higher

utility than B. To make ESR comparisons between return

distributions, Pareto dominance can be used.

Definition 9 For random vectors X and Y, X 
ESR Y for

all monotonically increasing utility functions if, and only

if, the following is true:

Neural Computing and Applications

123



X
ESRY ,
8v : PðX[ PvÞ�PðY[ PvÞ ^ 9v :

PðX[ PvÞ[PðY[ PvÞ:

It is also possible to calculate ESR dominance by

comparing the CDFs of random vectors. Using the CDF

guarantees a higher expected utility. Using the CDF, we

compare the cumulative probabilities for a given vector,

where a lower cumulative probability is preferred. ESR

dominance with the CDF does not require any information

about the utility function of a user and therefore can be

used in the unknown utility function scenario.

Definition 10 For random vectors X and Y, X 
ESR Y for

all monotonically increasing utility functions if, and only

if, the following is true:

X
ESRY ,
8v : FXðvÞ�FYðvÞ ^ 9v : FXðvÞ\FYðvÞ:

Therefore, we can use either Definition 9 or Definition

10 to calculate ESR dominance to give a partial ordering

over policies.

Definition 11 For return distributions Zp and Zp0 for

policies p and p0, p is preferred over p0 by all decision

makers with a monotonically increasing utility function if,

and only if, the following is true:

Zp
ESRZ
p0 :

Using ESR dominance, it is possible to define a set of

optimal policies, known as the ESR set.

Definition 12 The ESR set, ESRðPÞ, is a subset of all

policies where each policy in the ESR set is ESR dominant,

ESRðPÞ ¼ fp 2 P j 6 9p0 2 P : Zp0
ESRZ
pg: ð14Þ

The ESR set is a set of non-dominated policies, where

each policy in the ESR set is ESR dominant. The ESR set

can be considered a coverage set, given no excess policies

exist in the ESR set. It is viable for a multi-policy MORL

method to use ESR dominance to construct the ESR set.

6 Multi-objective tabular distributional
reinforcement learning

Traditionally in the MORL literature, multi-objective

methods learn a set of optimal solutions when the utility

function of a user is unknown or hard to specify [18, 36].

The current MORL literature focuses only on methods

which learn the optimal set of policies under the SER

criterion [24, 45]. As already highlighted, the ESR criterion

has largely been ignored by the MORL community, with a

few exceptions [15, 33, 43]. In Sect. 6, we address this

research gap and we present a novel multi-objective tabular

distributional reinforcement learning (MOTDRL) algo-

rithm that learns an optimal set of policies for the ESR

criterion, also known as the ESR set, for multi-objective

multi-armed bandit (MOMAB) problems.

MOTDRL learns the return distribution for a policy by

sampling each available arm in a MOMAB setting and

maintains a multivariate distribution over the returns

received. Given MOTDRL only considers MOMAB

problem domains, MOTDRL maintains a distribution per

arm and updates the distribution after each timestep with

the return vector received from executing the sampled arm.

When optimising under the ESR criterion, it is critical that

a MORL method learns the underlying distribution over the

returns. Other distributional MORL methods, such as

bootstrap Thompson sampling [15], cannot be used to learn

a set of optimal policies under the ESR criterion when the

utility function is unknown. Such methods learn a distri-

bution over the mean returns. In scenarios where the utility

function is unknown or unavailable, such methods would

invalidate the ESR criterion as a distribution over mean

return vectors would be computed. Given a distribution

must be used when learning the ESR set, new distributional

MORL methods must be formulated to learn the underlying

return distributions.

MOTDRL can learn the underlying return distribution

for an arm by maintaining a tabular representation of the

underlying multivariate distribution. To maintain a tabular

representation of a multivariate distribution, we initialise a

Z-table for each arm where the Z-table has an axis per

objective. The Z-table maintains a count of the number of

times a return vector is received for a given arm. The size

of each Z-table is initialised using the parameters Rmin and

Rmax which are the minimum and maximum returns

obtainable for any of the objectives in the given environ-

ment. Therefore, each axis in the Z-table will use Rmin and

Rmax to define the length of the axis, where each index

value of the Z-table is initialised to 0. Using Rmin and Rmax

as initialisation parameters, a Z-table can be constructed

which contains an index for all possible return vectors in a

given problem domain. Table 3 visualises an initialised Z-
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table for a multi-objective problem with two objectives

where Rmin = 0 and Rmax = 5.

Each Z-table can be used to calculate the return distri-

bution of an arm, which can be considered as a policy p, Zp

(see Sect. 3). At each timestep, t, the returns, R, received

from pulling arm, i, are used to update the Z-table. The Z-

table is used to maintain a count of the number of times the

return, R, is received. In MOMAB problem domains, the

returns received from the execution of an arm represent the

full returns of the execution of a policy. To update the Z-

table, the value at the index corresponding to the return R

is incremented by one. To correctly calculate the proba-

bility of receiving return R when pulling arm i, a counter,

Ni, which represents the number of times arm i has been

pulled, must be maintained. Each time arm i is pulled, the

counter Ni is incremented by one. Algorithm 1 outlines

how the Z-table for each arm is updated.

MOTDRL is a multi-policy algorithm that can learn the

ESR set using ESR dominance. Using ESR dominance, a

partial ordering over policies can be determined when the

utility function of a user is unknown. Algorithm 2 outlines

how MOTDRL learns the ESR set when the utility function

of a user is unknown in a MOMAB problem domain. In

Algorithm 2, A is defined as a set of available arms, the

ESR set is defined as E, D is the number of objectives, n is

the total number of pulls across all arms, Nl and Ni are the

number of pulls of arms j and i, and jE�j is the cardinality

of the ESR set, which is known a priori. When learning, the

MOTDRL algorithm has a priori knowledge of A, Rmax

and Rmin. The agent must have knowledge of Rmax and

Rmin, so the Z-table can be correctly initialised and the

agent must know the number of arms in A for action

selection.

On initialisation, each arm is pulled b times. The

hyperparameter b is selected to ensure each arm is pulled

sufficiently to build an initial distribution. For optimal

performance, b is set to greater than 1. For b greater than 1,

MOTDRL can build a sufficient initial distribution and can

then efficiently explore each arm with the UCB1 statistic.

At each timestep, the return distribution of the policies

associated with the execution of each arm is calculated.

The ESR set, E, is then calculated from the resulting return

distributions. Therefore, for all the non-optimal arms l 62 E,

there exists an ESR dominant arm i 2 E that ESR domi-

nates the arm l.

Table 3 An illustration of an initialised Z-table for a problem domain

with two objectives, x1 and x2, with each index value set to 0

Z x2 ¼ 0 x2 ¼ 1 x2 ¼ 2 x2 ¼ 3 x2 ¼ 4 x2 ¼ 5

x1 ¼ 0 0 0 0 0 0 0

x1 ¼ 1 0 0 0 0 0 0

x1 ¼ 2 0 0 0 0 0 0

x1 ¼ 3 0 0 0 0 0 0

x1 ¼ 4 0 0 0 0 0 0

x1 ¼ 5 0 0 0 0 0 0
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To calculate ESR dominance required in Algorithm 2 at

Line 5, it is critical to compute both the PDF and CDF of

the underling return distribution of a policy. The PDF can

be calculated by computing the probability of receiving

individual returns. Combining the Z-table and N for an arm,

i, it is possible to compute the probability of receiving each

return in a given problem domain, since the following is

true:

fXðx1; x2; . . .; xnÞ ¼ PðX ¼ x1;X ¼ x2; . . .;X ¼ xnÞ ¼
Ziðx1; x2; . . .; xnÞ

Ni
:

ð15Þ

Once the PDF has been computed using Eq. 15, it is pos-

sible to compute the CDF. Since the following is true:

FXðx1; x2; . . .; xnÞ ¼PðX� x1;X� x2; . . .;X� xnÞ

¼
X

xa � x1

X

xb � x2

� � �
X

xk � xn

PðX ¼ xa;X ¼ xb; . . .;X ¼ xkÞ

¼
X

xa � x1

X

xb � x2

� � �
X

xk � xn

Ziðxa; xb; . . .; xkÞ
Ni

ð16Þ

Using the PDF and the CDF of a return distribution, it is

possible to calculate ESR dominance using Definition 9 or

Definition 10. Both methods can be used to calculate ESR

dominance.

To efficiently explore all available arms, MOTDRL uses

the UCB1 statistic presented by Drugan et al. [11].

MOTDRL uses UCB1 to transform the PDF of the

underlying return distribution. MOTDRL transforms the

PDF by adding the UCB1 statistic, computed at Line 5 in

Algorithm 2, to the PDF. By summing the UCB1 statistic

and the PDF, the PDF is shifted relative to the value of the

computed UCB1 statistic. The CDF can then calculated

based on the transformed PDF, and ESR dominance can

then be computed.

Transforming the PDF using the UCB1 statistic ensures

that there is sufficient exploration of all available arms

during experimentation. However, as the number of pulls

of a given arm increases, the UCB1 statistic decreases,

which decreases exploration. Over time, the UCB1

statistic’s effect on the PDF and CDF becomes negligible.

At such a point, MOTDRL can exploit the return distri-

butions learned during exploration and compute the ESR

set.

Given MOTDRL is a multi-policy algorithm, MOTDRL

can be used in the unknown utility function scenario

(Fig. 1). During the learning phase, MOTDRL learns the

ESR set by utilising the steps in Algorithm 2. In Sect. 7, we

deploy MOTDRL in two multi-objective multi-armed

bandit settings to show MOTDRL can learn the ESR set. It

is important to note that the experiments presented only

consider the learning phase.

7 Experiments

In order to evaluate the MOTDRL algorithm, we evaluate

MOTDRL in multiple settings4. Before experimentation,

we define a metric that can be used to evaluate the per-

formance of multi-policy ESR methods. We then evaluate

MOTDRL in a multi-objective multi-armed bandit setting.

Finally, we define a new multi-objective multi-armed

bandit problem domain known as the vaccine recom-

mender system (VRS) environment and evaluate

MOTDRL using the VRS environment.

7.1 Evaluation metrics

The standard metrics for MORL [42, 48, 49] are not suit-

able to evaluate a multi-policy method under the ESR

criterion since they are designed to specifically evaluate

SER methods. To evaluate MORL algorithms under the

ESR criterion, we adapt the coverage ratio metric used by

Yang et al. [48] for the ESR criterion. The coverage ratio

evaluates the agent’s ability to recover optimal solutions in

the ESR set (E). If F 	 Rm is the set of solutions found by

the agent, we define the following:

F \� E :¼ fZp 2 F j 9Zp0 2 E s:t sup
x

jFZpðxÞ � FZp0 ðxÞ j� �g; ð17Þ

where x ¼ ½x1; x2; . . .; xD� and D is equal to the number of

objectives. Equation 17 uses the Kolmogorov–Smirnov

statistic [10] (Eq. 18), where supx is the supremum of the

set of distances. The Kolmogorov–Smirnov statistic takes

the largest absolute difference between the two CDFs

across all x values,

sup
x

jFZpðxÞ � FZp0 ðxÞj: ð18Þ

The Kolmogorov–Smirnov statistic returns a minimum

value of 0 and a maximum value of 1. If two CDFs are

equal, then the Kolmogorov–Smirnov statistic will return a

value of 0.

The coverage ratio is then defined as:

F1 ¼ 2 � precision � recall

precision þ recall
; ð19Þ

where precision ¼ jF \� Ej=jF j indicating the fraction of

optimal solutions among the retrieved solutions, and the

recall ¼ jF \� Ej=jEj indicating the fraction of optimal

instances that have been retrieved over the total amount of

optimal solutions [48].

4 It is important to note that for each experiment, the results of the

learning phase are presented where a set of optimal policies is

computed. The selection phase and execution phase are not included

in the evaluation of MOTDRL.
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7.2 Multi-objective multi-armed bandit
environment

In Sect. 7.2, we evaluate MOTDRL in a MOMAB setting.

To evaluate MOTDRL, we consider a bi-objective

MOMAB with five arms. Table 4 outlines the number of

possible outcomes obtainable when selecting a given arm

and the corresponding probabilities. Table 4 is unknown to

the agent, and the agent aims to learn each distribution per

arm and prune the ESR-dominated arms from considera-

tion. In the MOMAB setting, the ESR set is known a priori

where the return distributions for arm1 and arm5 are ESR

dominant and therefore the ESR set only contains arm1 and

arm5.

To evaluate MOTDRL in a MOMAB environment, we

set Rmin ¼ 0, Rmax ¼ 10, D = 2, b = 5 and jE�j = 2. To

compute the coverage ratio, we set � ¼ 0:01. All experi-

ments in this setting are averaged over 10 runs.

MOTDRL is able to learn the underlying return distri-

butions for each arm in the MOMAB setting. Using the

return distributions for each arm, MOTDRL can learn the

ESR set in the MOMAB environment. In Fig. 3, we plot the

coverage ratio as the F1 score. MOTDRL converges to the

optimal F1 score of 1. MOTDRL converges to the optimal

F1 score after 100, 000 episodes. An optimal F1 score can

only be achieved when all policies in the ESR set have been

learned by the agent.

MOTDRL computes the ESR set for the MOMAB

environment during the learning phase. The learned ESR

set contains two arms: arm1 and arm5. Both arm1 and arm5

are ESR dominant; therefore, any user with a monotoni-

cally increasing utility function would prefer arm1 or arm5

over all other available arms in the MOMAB problem.

MOTDRL will return the ESR set to the user during the

selection phase. In practice, a user will select a policy form

the ESR set which best reflects their preferences and the

selected policy will be executed.

Given ESR dominance is a new solution concept, we

utilise Figs. 4, 5 and 6 to give the reader some intuition

about ESR dominance. Figure 4 displays the return distri-

butions in the ESR set learned by MOTDRL as heatmaps.

Each heatmap in Fig. 4 corresponds to the probabilities

highlighted for arm1 (left) and arm5 (right) in Table 4.

Figure 5 displays the CDFs for each return distribution

in the ESR set learned by MOTDRL. The CDF is used to

calculate ESR dominance, and the CDFs in Fig. 5 corre-

spond to the CDFs of arm1 (left) and arm5 (right) in

Table 4.

Figure 6 describes how arm1 ¤ESR arm5 and arm5 ¤ESR

arm1 given the CDFs for arm1 and arm5 intersect at mul-

tiple points (see Definition 7).

Figure 7 highlights why the choice of optimality criteria

must be taken into consideration for multi-objective deci-

sion making when the utility function of the user is

Table 4 A MOMAB with five

arms where selecting an arm has

two outcomes and two

objectives

arm1

P(Arm 1 = R) R

0.4 (0, 1)

0.6 (5, 4)

arm2

P(Arm 2 = R) R

0.85 (1, 0)

0.15 (3, 2)

arm3

P(Arm 3= R) R

0.75 (2, 0)

0.25 (4, 2)

arm4

P(Arm 4 = R) R

0.8 (0, 1)

0.2 (1, 2)

arm5

P(Arm 5 = R) R

0.7 (2, 0)

0.3 (4, 5)

Fig. 3 Results from the MOMAB environment. MOTDRL is able to

learn the ESR set as MOTDRL converges to the optimal coverage

ratio since the F1 score reaches the maximum possible value of 1
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unknown. A number of SER methods use Pareto domi-

nance to determine a partial ordering over policies. The

Pareto dominant policies, or Pareto front, are then returned

to the user. To determine the Pareto front [28], the

expectations of each arm in the MOMAB setting are cal-

culated and the Pareto dominant policies are determined. In

Fig. 7, the policies on the Pareto front (left) are highlighted

in red; all other policies are Pareto dominated. In the

MOMAB environment outlined in Table 4, the Pareto front

consists of a single policy. Figure 7 (right) displays the

expected values of the policies in the ESR set, highlighted

in green. By comparing both plots in Fig. 7, it is clear that

the ESR set contains an extra policy. Therefore, in some

settings, certain policies that are optimal under the ESR

criterion are dominated under the SER criterion. Figure 7

highlights the importance of selecting the correct opti-

mality criterion when learning. If SER methods are used to

compute a set of optimal policies in scenarios where the

ESR criterion should be used, it is possible a sub-optimal

policy may be selected by the user at decision time. This

may have adverse affects when applying multi-policy

multi-objective methods in real-world decision-making

settings.

7.3 Vaccine recommender system

To illustrate a potential real-world use case for the ESR

criterion and ESR dominance, we define a new multi-ob-

jective multi-armed bandit environment known as the

vaccine recommender system (VRS). For example, in a

medical setting a doctor may only have one opportunity to

select a treatment for a patient. In this case, it is necessary

to optimise under the ESR criterion. Consider the following

scenario: a patient is travelling to another country where it

is required to be vaccinated for a specific disease to gain

entry to the country. There are five available vaccines;

Fig. 4 Heatmaps for each return

distribution in the ESR set
learned by MOTDRL in the

MOMAB environment. The left

heatmap describes the return

distribution for arm1 learned by

MOTDRL, and the right

heatmap describes the return

distribution for arm5 learned by

MOTDRL

Fig. 5 CDFs for each policy in

the ESR set learned by

MOTDRL in the MOMAB

environment. The left

figure describes the CDF for

arm1 learned by MOTDRL, and

the right figure describes the

CDF for arm5 learned by

MOTDRL

Fig. 6 The CDFs for arm1 and arm5 intersect at multiple points.

Therefore, as per Definition 7: arm1 ¤ESR arm5 and arm5 ¤ESR arm1
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however, each vaccine will have varying side effects

(safety rating) and effectiveness. This problem has two

objectives: safety and effectiveness. Both objectives are

ranked from 0 to 5, with 0 being the worst rating and 5

being the best rating. None of the available vaccines are

100% effective at treating the disease. When taking each

vaccine there is a chance of different outcomes occurring,

for example, there is a chance of having severe side effects

(low safety rating) and a chance of the vaccine providing

the required immunity to the disease (high effectiveness

rating). Table 5 outlines each vaccine and the probability of

each outcome occurring after taking the vaccine. Table 5 is

unknown to the agent, and the agent aims to learn each

distribution per vaccine and prune the ESR-dominated

vaccines from consideration.

Given the utility function of the user is unknown, the

MOTDRL algorithm is used to learn the underlying return

distributions for each vaccine in Table 5 and determine the

ESR set. Once MOTDRL has finished learning, a set of

optimal polices, in this case the ESR set, is returned to the

user. When the user’s utility function becomes known, a

vaccine that maximises the user’s utility function can be

selected from the ESR set by the user.

The ESR set for the vaccine recommender system (VRS)

environment is known a priori. The return distributions for

V1 and V3 are ESR dominant, and therefore, V1 and V3 are

the only distributions in the ESR set. The VRS environment

has five arms where each arm corresponds to a vaccine in

Table 5. To evaluate MOTDRL in a VRS environment, we

set Rmin ¼ 0, Rmax ¼ 10, D = 2, b = 5 and jE�j = 2. All

experiments in this setting are averaged over 10 runs, and

each experiment lasts 200, 000 episodes. To compute the

coverage ratio, we set � ¼ 0:01.

After sufficient sampling, MOTDRL is able to learn the

underlying return distributions for each arm in the VRS

environment. Given return distributions can be used to give

a partial ordering over policies, MOTDRL can use the

return distributions for each arm to compute the ESR set in

the VRS environment. In Fig. 8, we plot the coverage ratio

as the F1 score. MOTDRL converges to the optimal F1

score after 120, 000 episodes. Given MOTDRL converges

to the optimal F1 score, it is clear MOTDRL is able to learn

the ESR set.

In practice, once learning has completed, MOTDRL

returns the learned ESR set for the VRS environment to the

user. The learned ESR set contains two vaccines: V1 and

V3. Both vaccines in the ESR set are ESR dominant.

Moreover, a user with a monotonically increasing utility

function will prefer either V1 or V3 over all other vaccines

in the VRS environment.

Similar to Sect. 7.2, we utilise Figs. 9 and 10 to give the

reader some intuition about ESR dominance. Figure 9

presents heatmaps to represent the policies in the ESR set

learned by MOTDRL. Each heatmap represents a return

distribution learned by MOTDRL and shows the return

vectors and the corresponding probabilities. Each heatmap

in Fig. 9 corresponds to the probabilities highlighted for V1

(left) and V3 (right) in Table 5. Figure 10 displays the

policies in the ESR set learned by MOTDRL and their

corresponding CDFs. Each CDF in Fig. 10 corresponds to

the CDFs of the underlying return distributions of V1 and

V3 in Table 5.

8 Related work

The various orders of stochastic dominance have been used

extensively as a method to determine the optimal decision

when making decisions under uncertainty in economics [8],

finance [1, 5], game theory [13], and various other real-

world scenarios [6]. However, stochastic dominance has

largely been overlooked in systems that learn. Cook and

Jarret [9] use various orders of stochastic dominance and

Pareto dominance with genetic algorithms to compute

optimal solution sets for an aerospace design problem with

multiple objectives when constrained by a computational

budget. Martin et al. [22] use second-order stochastic

dominance (SSD) with a single-objective distributional RL

algorithm [7]. Martin et al. [22] use SSD to determine the

optimal action to take at decision time, and this approach is

shown to learn good policies during experimentation.

Fig. 7 The policies on the

Pareto front (left) are different

from the expectations of the

policies in the ESR set (right). In

this case, one policy that is in

the ESR set is not on the Pareto

front. This figure illustrates why

SER methods cannot be used to

learn the ESR set.
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To learn the ESR set in sequential decision-making

processes, like MOMDPs, new distributional MORL

methods must be formulated. Distributional Monte Carlo

tree search (DMCTS) is a state-of-the-art ESR method and

uses a bootstrap Thompson sampling method to

approximate a posterior distribution over the returns [15].

However, this method is a single-policy method and relies

on the utility function of the user to be known at the time of

learning or planning. DMCTS would invalidate the ESR

criterion in the unknown utility function scenario and

would therefore be unable to learn the ESR set. Distribu-

tional methods like the C51 algorithm, proposed by

Bellemare et al. [7], could potentially be used to learn the

underlying distribution of a random vector. However, C51

is a single-objective method and defining a multi-objective

version of C51 to learn the ESR set could pose significant

challenges. Replacing the distribution over returns used by

C51 with a multivariate distribution could cause compu-

tation to increase with the number of objectives. In this

case, dedicated multi-objective distributional methods must

be formulated so that it is possible to efficiently learn the

ESR set for the ESR criterion. We highlight this as a new

challenge that must be addressed by the MORL

community.

9 Conclusion and future work

MORL has been highlighted as one of several key chal-

lenges that need to be addressed in order for RL to be

commonly deployed in real-world systems [12]. In order to

apply RL to the real world, the MORL community must

consider the ESR criterion. However, the ESR criterion has

largely been ignored by the MORL community, with the

exception of the works of Roijers et al. [33, 36], Hayes

et al. [15, 16] and Vamplew et al. [43]. The works of Hayes

et al. [15, 16] and Roijers et al. [33] present single-policy

algorithms that are suitable to learn policies under the ESR

criterion; however, prior to this work, a formal definition of

the necessary requirements to compute policies under the

ESR criterion had not previously been defined. In Sect. 3,

we outline, through examples and definitions, the necessary

Table 5 A group of available

vaccines that have varying

outcomes

Vaccine 1 (V1)

P(V1= R) R

0.05 (2, 0)

0.05 (2, 1)

0.1 (3, 2)

0.8 (4, 2)

Vaccine 2 (V2)

P(V2= R) R

0.1 (0, 0)

0.1 (1, 1)

0.5 (2, 0)

0.3 (2, 1)

Vaccine 3 (V3)

P(V3= R) R

0.1 (1, 0)

0.1 (1, 3)

0.2 (3, 4)

0.6 (5, 4)

Vaccine 4 (V4)

P(V4= R) R

0.1 (1, 0)

0.4 (2, 1)

0.4 (3, 1)

0.1 (3, 2)

Vaccine 5 (V5)

P(V5= R) R

0.8 (0, 0)

0.05 (1, 1)

0.05 (1, 2)

0.1 (4, 0)

Some vaccines have a higher

chance of side effects (low

safety rating), while others are

more effective at providing

immunity. The objectives are

ordered as follows: R = (safety,

effectiveness)

Fig. 8 Results from the VRS environment. MOTDRL is able to learn

the full ESR set as it converges the optimal F1 score of 1
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requirements to optimise under the ESR criterion. The

formal definitions outlined in Sect. 3 ensure that an optimal

policy can be learned when the utility function of the user

is known under the ESR criterion. However, in the real

world, a user’s preferences over objectives (or utility

function) may be unknown at the time of learning [36].

Prior to this paper, a suitable solution set for the

unknown utility function scenario under the ESR criterion

had not been defined. This long-standing research gap has

restricted the applicability of MORL in real-world sce-

narios under the ESR criterion. In Sects. 4 and 5, we define

the necessary solution sets required for multi-policy algo-

rithms to learn a set of optimal policies under the ESR

criterion when the utility function of a user is unknown. In

Sect. 6, we present a novel multi-policy algorithm, known

as multi-objective tabular distributional reinforcement

learning (MOTDRL), that can learn the ESR set in a

MOMAB setting when the utility function of a user is

unknown at the time of learning. In Sect. 7, we evaluate

MOTDRL in two MOMAB settings and show that

MOTDRL can learn the ESR set in MOMAB settings. This

work aims to answer some of the existing research ques-

tions regarding the ESR criterion. Moreover, we aim to

highlight the importance of the ESR criterion when

applying MORL to real-world scenarios. In order to suc-

cessfully apply MORL to the real world, we must

implement new single-policy and multi-policy algorithms

that can learn solutions for nonlinear utility functions in

various scenarios.

A promising direction for future work would be to

extend the work of Hayes et al. [15] and the work of Wang

and Sebag [45]. It may be possible to build on the afore-

mentioned works to implement a multi-objective distribu-

tional Monte Carlo tree search algorithm that can learn a

set of optimal policies under the ESR criterion. It is

important to note that Hayes et al. [15, 16] use bootstrap

Thompson sampling to approximate a posterior distribu-

tion. This method cannot learn the ESR set when utility

function of a user is unknown; therefore, a different dis-

tributional method must be used to learn the ESR set.

Although the distributional method used by Hayes et al.

[15] cannot be used to learn the ESR set, this work is still a

useful starting point.

Given distributional MORL methods are a new area of

research, not much is known about the computational

requirements of maintaining a return distribution. There-

fore, it is important that a comprehensive computational

analysis of distributional MORL methods is undertaken to

fully understand the implications of maintaining a return

distribution. In a future publication, we plan to perform a

computational analysis for distributional MORL methods

in both bandit and sequential decision-making settings.

Fig. 9 Heatmaps for each policy

in the ESR set learned by

MOTDRL. The left heatmap

describes the distribution for V1

learned by MOTDRL, and the

right heatmap describes the

distribution for V3 learned by

MOTDRL

Fig. 10 CDFs for each policy in

the ESR set learned by

MOTDRL in the VRS

environment. The left

figure describes the CDF for V1

learned by MOTDRL, and the

right figure describes the CDF

for V3 learned by MOTDRL
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A lack of well-defined benchmarks is a significant

challenge associated with implementing any new single-

policy or multi-policy algorithms under the ESR criterion.

Currently, very few ESR benchmark environments exist

(e.g. Fishwood [33]). In order to accurately evaluate single-

policy and multi-policy ESR algorithms, a suite of

benchmark problem domains need to be designed. Under

the SER criterion, such benchmarks already exist, e.g. deep

sea treasure [42]. It is also important to highlight the need

to establish new metrics to evaluate multi-policy algo-

rithms under the ESR criterion. As previously mentioned,

all metrics used to evaluate multi-objective algorithms are

designed for the SER criterion. In order to accurately

evaluate multi-policy algorithms under the ESR criterion,

new metrics must be determined. We note that extending

the work of Zintgraf et al. [49] for the ESR criterion would

be a promising starting point.

Appendix

Lemma 1 (Beppo Levi’s lemma [38]) Consider a point-wise non-

decreasing sequence of positive functions fn : X ! ½0;þ1�, i.e. for

every k� 1 and every x 2 X.

0� fnðxÞ� fnþ1ðxÞ� þ1:

Set the point-wise limit of the sequence ffig to be f. That is,

for every x 2 X,

lim
n!þ1

fnðxÞ ¼ f ðxÞ:

Then, f is measurable and

lim
n!þ1

Z
fnðxÞdx ¼

Z
lim

n!þ1
fnðxÞdx:

Lemma 2 (Monotone convergence) Let u be a non-negative

monotonically increasing utility function in x and y, and F the CDF

of a random variables X and Y. Then,

Z
lim

y!þ1
uðx; yÞFðx; yÞdx ¼ lim

y!þ1

Z
uðx; yÞFðx; yÞdx:

Proof Let gnðxÞ ¼ uðx; nÞFðx; nÞ. As u and F are positive monoton-

ically increasing functions in n, the function gn is also positive and

monotonically increasing, i.e.

0� gnðxÞ� gnþ1ðxÞ� þ1:

According to Beppo Levi’s lemma (see Lemma 1), the

limit of the integral of gnðxÞ in x is the integral of its limit,

i.e.

lim
n!þ1

Z
gnðxÞdx ¼

Z
lim

n!þ1
gnðxÞdx:
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Restelli M, Vamplew P, Roijers DM (2022) A practical guide to

multi-objective reinforcement learning and planning. Auton

Agent Multi-Agent Syst 36(1):26. https://doi.org/10.1007/

s10458-022-09552-y

19. Levhari D, Paroush J, Peleg B (1975) Efficiency analysis for

multivariate distributions. Rev Econ Stud 42(1): 87–91. http://

www.jstor.org/stable/2296822

20. Levy H (1992) Stochastic dominance and expected utility: survey

and analysis. Manag Sci 38(4): 555–593. http://www.jstor.org/

stable/2632436

21. Malerba F, Mannion P (2021) Evaluating tunable agents with

non-linear utility functions under expected scalarised returns. In:

Multi-objective decision making workshop (MODeM 2021)

22. Martin J, Lyskawinski M, Li X, Englot B (2020) Stochastically

dominant distributional reinforcement learning. In: International

conference on machine learning, pp 6745–6754. PMLR

23. Mas-Colell A, Whinston MD, Green JR et al (1995) Microeco-

nomic theory, vol 1. Oxford University Press, New York

24. Moffaert KV, Nowe A (2014) Multi-objective reinforcement

learning using sets of pareto dominating policies. J Mach Learn

Res 15:3663–3692

25. Nakayama H, Tanino T, Sawaragi Y (1981) Stochastic domi-

nance for decision problems with multiple attributes and/or

multiple decision-makers. IFAC proceedings volumes 14(2),

1397–1402. https://doi.org/10.1016/S1474-6670(17)63673-5.

http://www.sciencedirect.com/science/article/pii/

S1474667017636735. 8th IFAC World Congress on Control

Science and Technology for the Progress of Society, Kyoto,

Japan, 24-28 August 1981

26. O’Callaghan D, Mannion P (2021) Exploring the impact of tun-

able agents in sequential social dilemmas. arXiv preprint: arXiv:

2101.11967
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Fox E, Garnett R (eds) Advances in neural information pro-

cessing systems, vol. 32. Curran Associates, Inc. https://proceed

ings.neurips.cc/paper/2019/file/4a46fbfca3

f1465a27b210f4bdfe6ab3-Paper.pdf

49. Zintgraf LM, Kanters TV, Roijers DM, Oliehoek F, Beau P

(2015) Quality assessment of morl algorithms: a utility-based

approach. In: Benelearn 2015: proceedings of the 24th annual

machine learning conference of Belgium and the Netherlands

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Neural Computing and Applications

123

http://arxiv.org/abs/2112.15422
https://doi.org/10.1017/CBO9780511625787
https://proceedings.neurips.cc/paper/2019/file/4a46fbfca3f1465a27b210f4bdfe6ab3-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/4a46fbfca3f1465a27b210f4bdfe6ab3-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/4a46fbfca3f1465a27b210f4bdfe6ab3-Paper.pdf

	Expected scalarised returns dominance: a new solution concept for multi-objective decision making
	Abstract
	Introduction
	Background
	Multi-objective reinforcement learning
	Utility functions
	The unknown utility function scenario
	Multi-objective multi-armed bandits
	Scalarised expected returns and expected scalarised returns
	Stochastic dominance

	Expected scalarised returns
	Stochastic dominance for ESR
	Solution sets for ESR
	Multi-objective tabular distributional reinforcement learning
	Experiments
	Evaluation metrics
	Multi-objective multi-armed bandit environment
	Vaccine recommender system

	Related work
	Conclusion and future work
	Appendix
	Funding
	References




