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Abstract
Culex quinquefasciatus is the main vector of West Nile Virus (WNV) in the southeast USA, and inter-annual variation in

this vector abundance is mainly related to meteorological variability. In this study, short-term effects of meteorological

conditions on seasonal variation in the vector abundance in the central north part of the State of Georgia, USA, from 2002

to 2009 were assessed. Four weeks moving average temperature, precipitation, potential evapotranspiration, and available

moisture in the surface layer of soil were considered as risk factors. Cross-correlation maps were developed to investigate

influences of preceding environmental conditions during a time-lagged interval on mosquito count data. The Poisson

regression model and Artificial Neural Network (ANN) model were used for prediction purposes. Two sets of predictors

were used: (1) the interval lagged climate data with the highest correlation and (2) single time lag antecedent Culex

mosquito abundance up to 10 weeks prior to the events combined with lagged climate data. Results revealed that both

models predicted the seasonal cycle of vector abundance fairly accurately, with ANN performing better than the regression

model. The addition of antecedent mosquito data as input improved the prediction power of both models. The developed

predictive models can be helpful in informed decision-making when high WNV activities are anticipated.
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1 Introduction

Culex species are the major vector of West Nile Virus

(WNV) in the USA. This virus was first identified in North

America in New York City in 1999. By the end of 2019,

more than 51,801 disease cases of WNV had been reported

to the Centers for Disease Control and Prevention (CDC)

[1]. Recently in 2020, 664 human cases and 52 deaths were

reported to the CDC. In the southeast USA, over 96% of

the WNV positive mosquito pools reported to the CDC

from 1999 to 2010 have been obtained from Culex mos-

quitoes, among which 64.6% were from Culex quinque-

fasciatus (CQ) [2]. The state of Georgia, and especially the

Atlanta area, was a hotspot of WNV incidence in 2012 with

117 WNV human cases, 6 deaths, and 125 WNV positive

mosquito pools (among which over 81% were from CQ)

reported by the Georgia Department of Public Health.

Transmission of vector-borne diseases is influenced by a

wide range of environmental factors. Among these, mete-

orologic variability is one of the most important drivers of

inter-annual WNV transmission risk. Weather directly

affects the vector population, pathogens and hosts distri-

bution, and their abundances [3–5]. Culex species display a

seasonal behavior. Their activity reaches its minimal level

in the winter and then rises in the spring to the peak levels

of summer and continues until mid-fall [6]. Females which

emerge in late summer search for sheltered areas where
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they become inactive until spring. They become inactive

when the temperature drops below 60 �F [7], while warm

weather brings them out in search of water on which to lay

their eggs [8]. Changes in meteorological conditions such

as temperature, relative humidity, and wind speed can

impact mosquito populations [9]. The greatest WNV

transmissions during the epidemic summers of 2002–2004

in the USA were linked to above normal temperatures.

Analysis of temperature deviations from the 30-year mean

(1971–2000) during summer in the USA showed that

during years with above normal temperatures, WNV

always dispersed into new areas and the amplification

occurred during summers with above or normal tempera-

tures. Subsequent cool summers were associated with

decreased or delayed virus activity, especially at northern

latitudes [10].

Temperature influences the development rate and fitness

of immature mosquitoes and the biting rate and survival of

adult female mosquitoes [11]. Drought can lead to a

decline in the number of mosquito predators, and it may

encourage birds to gather near standing water, where the

virus can circulate more easily. High temperatures also

speed the development of viruses within the mosquito

carriers [12–14]. During periods of drought between rain-

fall events, blood-fed and potentially infected mosquitoes

digest blood meals and wait for a heavy rainfall that floods

the temporary pools to oviposit [15]. Rainfall and the

surface moisture first create temporary freshwater habitats

and also maintain permanent aquatic habitats that are used

as egg-laying sites by female mosquitoes. Subsequently,

rainfall saturates the ground and increases near-surface

humidity levels [16].

The increase in the relative rate of WNV human cases

from 2001 to 2005 in the USA has been linked to warmer

temperatures, elevated humidity, and heavy precipitation

independent of season using conditional logistic regression

[17]. WNV mosquito infection changes from year to year

spatiotemporally. For the temporal scale, higher tempera-

ture and less rainfall are associated with more human cases

and also with the highest WNV prevalence in the mos-

quitoes. WNV infection can also be negatively correlated

with the previous year’s precipitation [18]. For the spatial

analysis, temperature plays a bigger role than precipitation

in comparison to temporal patterns [18]. Drought followed

by wetting of the land surface is associated with the spa-

tiotemporal variability of human WNV cases [19]. Spring

drought induces the amplification of WNV by concentrat-

ing vector mosquitoes in humid vegetated areas where

nesting birds are present. This makes the virus transmission

easier as birds are the natural host of WNV, and this virus

is maintained in nature in a mosquito-bird-mosquito

transmission cycle. Subsequent summer rainfall and wet-

ting of the land surface enable the dispersal of infected

mosquitoes into the open, sparsely vegetated areas they had

avoided during the drought [20].

To control mosquito populations and to prevent disease,

understanding this vector–environment relationship is

essential. It is also helpful to understand the responses of

WNV transmission risk to meteorological variability for

public health policies so they can be adapted based on the

consequent impacts [21]. Predictive models can be helpful

in this regard to enhance the warning of high-risk periods

for WNV and to describe the variations in mosquito

abundance over time. Extensive attempts have been made

to develop mosquito abundance prediction models which

mostly rely on meteorological and environmental data from

the days and weeks preceding the capture of mosquitoes

[22]. Such models can be designed to provide continuous

daily or weekly estimates of mosquito populations under

the impacts of different environmental conditions. Ahu-

mada et al. [23] proposed a discrete-time population model

to simulate the temporal dynamics of CQ abundance. The

model incorporated temperature and rainfall dependence

and breeding site density dependent competition. This

model simulated the mosquito population growth through

time and at different elevations in Hawaii. Temperature

was the major driving force behind mosquito population

growth and abundance in Hawaii, but precipitation

dependence also constrained population size which was

evident during dry years.

A climate-based model was developed by [24] to predict

mosquito abundance of WNV Culex species. Temperature,

rainfall, evaporation, and photoperiod were used as inputs

to the model. A moisture index was also created based on

7 days cumulative rainfall and evaporation. The model was

developed on temperature-dependent functions including

development rate and survival rate, a moisture index

dependent function, and daily egg-laying rate.

The Dynamic Mosquito Simulation model (DyMSiM)

developed by Morin and Comrie [25] was used in simu-

lating CQ population dynamics in Florida and California.

This model breaks up the larval phases into separate instar

stages. The model used daily temperature and precipitation

to drive population simulations throughout the year. This

model revealed that dry conditions in California reduced

mosquito populations due to loss of immature mosquito

habitats, while drier late summer conditions in Florida

decreased late-season adult mosquito populations.

In most of the previously mentioned analyses, the

impact of meteorological conditions on mosquito abun-

dance was limited to single point lags which consider the

conditions at a certain time prior to trapping. Curriero

et al. [9] introduced cross-correlation maps (CCMs) as a

graphical method for visualizing the influence of preceding

environmental conditions during a time lagged interval on

the abundance of Ochlerotatus sollicitans species. Since
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then, this tool has been used to identify the timing and

duration of potential meteorological effects on mosquito

populations [22, 26–28]. In this study, to investigate the

correlation between meteorological variables and inter-

annual and seasonal variation in Culex mosquito popula-

tion carrying WNV, CCMs were developed for mosquito

data from central north Georgia (GA). The main goal was

to develop an improved predictive model of CQ popula-

tions by extending effects of meteorological conditions

over a range of time rather than a single point in time. Two

modeling approaches were applied in this study, multi-re-

gression and Artificial Neural Network (ANN); lagged

meteorological data were fed into these models for pre-

diction purposes. In addition, as there is a correlation

between any two observations of the time series of mos-

quito count data, antecedent conditions of response vari-

able up to 10 weeks prior to the event were added to the

models as predictors. It was hypothesized that addition of

past values of mosquito count data to the model improves

the model performance and increases the prediction

accuracy.

2 Materials and methods

2.1 Mosquito and meteorological data

In this study, effects of meteorological variation on female

CQ abundance per trap night were explored for central

north Georgia. The weekly meteorological data including

mean weekly precipitation, temperature, potential evapo-

transpiration (PET), and available moisture in surface layer

from 2002 to 2009 were downloaded from the National

Weather Service, Climate Prediction Center (CPC) (http://

www.cpc.ncep.noaa.gov/products/monitoring_and_data/

drought.shtml). Climatic divisions were defined for the

state of GA by CPC, and as the Atlanta metropolitan area is

located in division 2, the central north part of GA, weekly

climatic data were obtained for this division (Fig. 1). Soil

moisture is estimated by a one-layer hydrological model

[29, 30]. The model takes observed precipitation and

temperature and calculates soil moisture, evaporation, and

runoff. Potential evapotranspiration is computed from

observed temperature and using Thornthwaite method [31].

Mosquito data were obtained from 2002 to 2009 for the

counties located in division 2. Mosquitoes had been col-

lected, classified by species, pooled by date, location,

species and trap type, and tested for WNV infection [32].

Collections were done using paired CO2-baited CDC light

traps [33] and gravid traps [34].

As Culex species either hibernate or become inactive

during winter, no traps were set during winter and active

mosquito counts were assumed to be zero for this period

[28]. Figure 1 shows the average weekly precipitation,

temperature and female CQ abundance over the period

2002–2009 for counties located in the study area.

2.2 Statistical analysis

Female CQ mosquito time-series data and its potential

relationship with each meteorological variable were ana-

lyzed using cross-correlation maps (CCMs). This graphical

approach characterizes the temporal structure of mosquito

population size in association with meteorological vari-

ables. Using this method, the key antecedent environmental

conditions, their timings, and durations were identified

which can improve the ability of developing predictive

models of vector abundances.

Assume Y(t) and X(t) represent two time series with time

index t, CCMs illustrate the correlation coefficients (r)

between Y(t), in this study number of captured female

Culex mosquitos at time t, and a meteorological variable X,

averaged over a time period starting at time t - j and

ending at time t - k with j C k:

rðY ;Xj;kÞ ¼ corðYðtÞ;Xðt � j; t � kÞÞ ð1Þ

In this study, t changes from 1 to 52 for a given year

(i.e., weekly time interval). Spearman’s rank-order corre-

lation was applied to calculate the correlations as it makes

no assumption about the distribution of the data and does

not consider a linear relationship between mosquito abun-

dance and meteorological data. The CCMs were developed

for four weeks moving average scale. As preceding mete-

orological conditions up to 5 months prior to summer play

a significant role on the life cycle of mosquitoes, and also

to make sure that sufficient time lag is searched to capture

high correlations, the maximum time lag was set to

20 weeks. Other studies used similarly long time lags

[28, 35]. In addition, the sample autocorrelation function

(ACF) was defined for the time series of mosquito count

data to identify the time interval over which a correlation in

the data series exists. All analyses were performed in R

statistical software (version 3.0.2.) [36].

2.3 Predictive models

As the response variable is count data, Poisson regression

model was selected for prediction purposes. Poisson

regression model assumes that the log-transformed out-

comes are linearly related to the count data, and the mean

and variance of date are equal. To overcome the limitations

of statistical models, and to capture the potential complex

nonlinear relationships between meteorological variables

and mosquito abundance, the ANN model was also used.

ANN is a black box type lumped model that has the ability
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to identify a relationship from given patterns which makes

it possible to solve nonlinear models. ANNs can be cate-

gorized based on the direction of information flow and

processing. In a feed-forward network, the connections

between nodes are from an input layer, through one or

more hidden layers, to an output layer [37] (Fig. 2). The

most common method used to find the number of hidden

layers and nodes is a trial-and-error approach [38]. In this

study, the number of hidden neurons changed from 4 to 6,

and number of hidden layer was set to 1 to build a parsi-

monious model and to avoid data overtraining. A neural

network was constructed using MATLAB version 7.10.0

(2010) and was trained by adjusting the weights that link its

neurons.

Some meteorological variables are highly correlated

with each other (e.g., evaporation and temperature), which

will cause high variance inflation in the Poisson regression

Fig. 1 A Climatic divisions for the state of Georgia defined by

Climate Prediction Center (http://www.cpc.ncep.noaa.gov/products/

monitoring_and_data/drought.shtml). B, C Average weekly weather

and mosquito abundance data over the period 2002 to 2009 for the

central north of GA, respectively

Fig. 2 An example of feed-forward artificial neural network structure

with three vectors as inputs, 1 hidden layer with 4 neurons and two

output vectors
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model. To handle such collinearities, Principle Component

Analysis (PCA) was used. PCA is a variable reduction

technique that uses orthogonal transformation to convert a

set of observations of correlated variables into a set of

values of linearly uncorrelated variables called principle

components. PCA was applied to two sets of predictors: the

first set included the interval lags of meteorological vari-

ables with highest correlation, temperature, precipitation,

PET, and available moisture in surface layer, and the sec-

ond set included the interval lags of meteorological vari-

ables and also antecedent conditions of Culex mosquito

count. Components that explained the variability of

observed data were fed into ANN and Poisson regression

models. 70% of the time series data, selected randomly

from the whole data set [39], was used for training and 30%

of data was used for testing purposes into the ANN and

regression models. Model performances were assessed with

the coefficient of determination (R2), Nash–Sutcliffe effi-

ciency (ENASH) [40], and bias ratio (RBIAS) [40].

3 Results

3.1 Cross-correlation maps (CCMs)

Results of CCMs for each meteorological variable and

Culex mosquito abundance (female CQ species) data are

shown in Fig. 3. Culex vector abundance was positively

correlated with temperature and PET, respectively, over 20

to 5 weeks prior to sampling, r M; T20;5

� �
= 0.82, and 19 to

7 weeks prior to sampling, r M;PET19;7

� �
= 0.82, and

negatively correlated with four weeks moving average

available moisture in surface layer over 16 to 8 weeks prior

the capture event, r M; h16;8
� �

= - 0.75. Four weeks mov-

ing average precipitation over 20 to 13 weeks was posi-

tively correlated with mosquito abundance at week t,

r M;P20;13

� �
= 0.1; also precipitation one week prior to

mosquito capture event was weakly and negatively corre-

lated with vector abundance, r M;P1;1

� �
= - 0.09. As

mosquito population density peaks in summer/early fall

(Fig. 1C), counting back the lags with the highest corre-

lation identifies the preceding late winter and spring as the

most relevant time period.

3.2 Principal component analysis (PCA)

The weather data of interval lags with the highest positive

or negative correlation were fed into PCA to eliminate

collinearity. Table 1 shows the proportion of variance of

each component and how much each variable contributed

to that principal component. PCs 1, 2 and 3 together

explained 97% of the variance in observed data. PC1 has

negative loadings for temperature and PET and positive

loadings for surface moisture which considering summer/

early fall as peak Culex species population corresponds to

cold and moist late winter and spring. PC2 has strong

negative loading for precipitation which reflects low pre-

cipitation in early spring and PC3 is positively related to

precipitation one week prior the trapping event.

3.3 Female Culex Quinquefasciatus abundance
prediction

Results of the Poisson regression model showed that all

three PCs have a negative relationship with Culex mosquito

count data. One unit increase in PC1 decreased mosquito

abundance by 50% (0.50, 0.48–0.52, 95% C.L.),

(p\ 0.0001), so half as many female Culex mosquitoes.

PC2 is negatively related to mosquito data, and 1 unit

increase in PC2 decreases mosquito abundance by 22%

(0.78, 0.75–0.82, 95% C.L.) (p\ 0.0001) (Table 2). In

addition, PC3 has a statistically significant negative rela-

tionship with mosquito data (0.94, 0.91–0.97, 95% C.L.)

(p = 0.0004) (Table 2).

Three PCs were randomized and fed to the ANN model

as input for prediction purposes. Figure 4 compares ANN

and the regression model performance versus the observed

data, after sorting the randomized data (combined training

and testing data). ANN predicted the four weeks moving

average mosquito abundance more accurately with

ENASH = 0.62 and RBIAS = 9% relative to the regression

model with ENASH = 0.52 and RBIAS = 18%. To

improve the model prediction accuracy, the antecedent four

weeks moving average Culex mosquito abundance data up

to 10 weeks prior to sampling was added to the PCA as a

predictor. Table 3 shows the proportion of variance of

components for each set of PCs. PCs 1 & 2 & 3 & 4

explained about 98% of variance in observed data. Com-

ponents 1 & 2 & 3 had same interpretation as explained for

Table 1. Component 4 corresponds to antecedent mosquito

abundance condition. These components were fed into

ANN and regression models for prediction purposes. Fig-

ure 5 compares the predicted versus observed data for

testing and training periods. For all the data sets, ANN

performed better, with higher ENASH values and smaller

RBIAS values compared to the regression model, and as the

lag interval increases, models performances gradually

decrease (Fig. 6). This indicates that by combining interval

lagged weather data and single time lag antecedent Culex

mosquito abundance at the four weeks moving average

scale, a stronger model with higher accuracy performance

can be built for prediction purposes.
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Fig. 3 CCMs of 4 weeks moving average Culex mosquito abundance versus meteorological variables. Black or white rectangles show the

interval lags with the highest correlation

Table 1 PCA for

meteorological variables with

highest correlation with four

weeks moving average Culex
mosquito abundance

Spearman correlation PC1 PC2 PC3 PC4 PC5

T20;5 0.82 - 0.57 - 0.20 - 0.39 0.69

P1;1 - 0.09 - 0.20 0.98

P20;13 0.1 0.14 - 0.92 - 0.18 0.33

PET19;7 0.82 - 0.58 - 0.19 - 0.31 - 0.73

h16;8 - 0.75 0.56 - 0.20 - 0.80

Proportion of variance – 56% 21% 20% 2% 0%

T, temperature; P, precipitation; PET, potential evapotranspiration, h, soil moisture in surface layer. First

column shows the Spearman’s rank order correlation coefficient between each meteorological variable and

four weeks moving average mosquito abundance. Second to sixth columns, i.e., PC1 to PC5, show PC

loadings
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4 Discussion

In this study, the associations of preceding meteorological

conditions and Culex mosquito abundance were explored

to enhance our understanding of mosquito ecology and

disease risk of CQ vectors carrying WNV. To determine

the maximum correlations between mosquito data and

meteorological variables, cross-correlation maps (CCMs)

were generated. The association of vector abundance with

leading meteorological variables under specific time

interval lags results in more robust inference than analyses

that are restricted to single predefined time lags [27]. Using

CCMs and considering interval lag structures, both the

timing and duration of the meteorological effects are dis-

played [9]. The relationships revealed between interval-

lagged environmental factors and the abundance of mos-

quitoes carrying WNV can be used as leading indicators of

vector abundance. Predicting WNV activity is an essential

requirement for vector control, and studying the Culex

species population dynamics in relation to meteorological

factors like ambient air temperature, surface moisture, and

precipitation could help to improve the ability of predicting

the WNV risk.

Using PCA, the collinearities among the meteorological

variables were removed and the new components obtained

at four weeks moving average scale were fed into the ANN

and Poisson regression models as explanatory variables.

Considering the timing of peak mosquito abundance, which

is summer and early fall, results of CCMs and the Poisson

regression model reflected that elevated temperature and

PET averaged over late winter and spring were closely

associated with increased abundance of CQ in summer

(considering mid-July as peak mosquito count, Fig. 1C).

This is consistent with other field studies as larval and

pupal developments are temperature dependent [27]. Also,

drier than normal conditions during spring with low

available moisture in surface layers creates favorable

conditions for the development of Culex vectors in sum-

mer. Prolonged above normal temperature extends the

duration of the mosquito season and vector activity. It also

accelerates the development rate, influences the fitness of

immature mosquitoes, the biting rate, and survival of adult

female mosquitoes [13, 41]. Also, vector development

conditions are facilitated and the frequency of transmission

events is increased due to dry conditions by gathering hosts

and vectors around nutrient-rich water bodies [19].

An increase in formation and persistence of mosquito

development sites due to early period precipitation is

associated with an increase in the abundance of Culex

mosquitoes [42]. Extensive habitats of Culex mosquitoes

can result from the heavy rains and associated flooding,

especially in late winter and early spring, which is right

before the mosquito life cycle starts. Habitats can include

temporary ground pools, pools along receding river flood-

plains, or natural or man-made containers. However, the

impact of precipitation on the mosquito population is

controversial [3]. Generally, regions with lower seasonal

variation in precipitation such as the southeastern USA

have a lower probability of WNV mosquito cases [43].

Also, the southeastern USA receives sufficient precipita-

tion to support mosquito populations throughout the year,

making temperature the controlling variable affecting

Culex mosquito population dynamics [40]. The CCMs

obtained for precipitation versus mosquito count data

support this statement. Due to exponential growth rates and

Table 2 Poisson model analysis of four weeks moving average Culex
mosquito abundance

Intercept Estimate 95% CI P value

4.22a 3.93 4.54 \ 0.0001

PC1 0.50 0.48 0.52 \ 0.0001

PC2 0.78 0.75 0.82 \ 0.0001

PC3 0.94 0.91 0.97 0.0004

aOdds ratios were derived using the link function e(coefficient) and

coefficient estimates of the GLM model

Fig. 4 Comparison of predicted

four weeks moving average

Culex mosquito abundance by

ANN and regression model

versus observed data
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also complex interaction between mosquito abundance and

rainfall, even small effects of weather conditions on a

mosquito population could result in vast effects in future

generations [3, 28]

The ANN and Poisson regression model predicted the

seasonal cycle of mosquito abundance fairly accurately.

The predictions improved significantly when antecedent

conditions of mosquito count data up to 10 weeks prior to

point of interest were added as predictors to the models.

Addition of 1 week antecedent mosquito count data to the

ANN model as a predictor increased the ENASH value from

0.62 to 0.89 during the testing period. Also, the addition of

10 weeks antecedent mosquito abundance data to the ANN

model improved the model performance during the testing

period by increasing ENASH from 0.62 to 0.68 (Fig. 6).

ANN predicted the mosquito abundance slightly better than

Table 3 PCA for meteorological variables and lagged four weeks moving average Culex mosquito abundance time series. Each set contains

antecedent mosquito data changing from 1 to 10 weeks prior

PC1 PC2 PC3 PC4 PC5 PC1 PC2 PC3 PC4 PC5

T20;5 - 0.52 - 0.16 - 0.31 - 0.38 T20;5 - 0.52 - 0.16 - 0.32 - 0.37

P1;1 - 0.20 - 0.98 P1;1 - 0.16 - 0.99

P13;20 0.11 - 0.92 0.18 0.33 P13;20 0.11 - 0.93 0.15 0.33

PET19;7 - 0.52 - 0.16 - 0.27 - 0.30 PET19;7 - 0.52 - 0.15 - 0.28 - 0.30

h16;8 0.50 - 0.23 0.19 - 0.81 h16;8 0.50 - 0.24 0.17 - 0.81

Mt�1 - 0.44 0.89 Mt�2 - 0.44 - 0.10 0.89

%VAR 57% 18% 16% 7% 2% %VAR 57% 18% 17% 7% 2%

T20;5 - 0.52 - 0.15 - 0.33 - 0.37 T20;5 - 0.52 0.14 - 0.33 - 0.36

P1;1 - 0.15 - 0.99 P1;1 0.153 - 0.99

P13;20 0.11 - 0.93 0.14 0.33 P13;20 0.10 0.92 0.14 0.33

PET19;7 - 0.52 - 0.15 - 0.28 - 0.30 PET19;7 - 0.53 0.14 - 0.29 - 0.30

h16;8 0.50 - 0.24 0.15 - 0.82 h16;8 0.51 0.25 0.13 - 0.82

Mt�3 - 0.43 - 0.13 0.89 Mt�4 - 0.42 0.16 0.89

%VAR 56% 18% 17% 7% 2% %VAR 56% 18% 17% 8% 2%

T20;5 - 0.53 0.12 - 0.32 - 0.36 T20;5 - 0.53 - 0.11 0.13 - 0.30 0.37

P1;1 0.21 - 0.97 P1;1 - 0.29 - 0.94 - 0.18

P13;20 0.10 0.91 0.20 - 0.12 0.33 P13;20 0.10 - 0.88 0.29 - 0.14 - 0.33

PET19;7 - 0.53 0.12 - 0.28 - 0.30 PET19;7 - 0.53 - 0.10 0.12 - 0.27 0.30

h16;8 0.51 0.25 0.11 - 0.81 h16;8 0.51 - 0.26 0.81

Mt�5 - 0.41 0.20 0.89 Mt�6 - 0.39 - 0.24 0.88

%VAR 55% 18% 16% 9% 2% %VAR 54% 18% 17% 9% 2%

T20;5 0.534 0.15 - 0.27 - 0.38 T20;5 - 0.54 0.17 - 0.24 - 0.38

P1;1 - 0.34 - 0.91 - 0.24 P1;1 - 0.40 - 0.86 - 0.32

P13;20 - 0.11 - 0.85 0.36 - 0.15 0.33 P13;20 0.11 - 0.82 0.43 - 0.16 0.33

PET19;7 0.54 0.14 - 0.25 - 0.30 PET19;7 - 0.54 0.16 - 0.23 - 0.30

h16;8 - 0.52 - 0.25 - 0.81 h16;8 0.53 - 0.25 - 0.81

Mt�7 0.37 - 0.27 - 0.10 0.88 Mt�8 - 0.34 - 0.31 - 0.15 0.87

%VAR 53% 19% 17% 10% 2% %VAR 52% 19% 17% 11% 2%

T20;5 - 0.55 0.16 - 0.22 - 0.38 T20;5 - 0.56 - 0.10 0.15 0.20 - 0.39

P1;1 - 0.35 - 0.88 - 0.31 P1;1 - 0.31 - 0.90 0.30

P13;20 0.12 - 0.83 0.39 - 0.18 0.33 P13;20 0.12 - 0.84 0.36 0.22 0.33

PET19;7 - 0.55 0.15 - 0.22 - 0.30 PET19;7 - 0.56 0.14 0.20 - 0.30

h16;8 0.53 - 0.24 - 0.81 h16;8 0.54 - 0.23 - 0.81

Mt�9 - 0.31 - 0.33 - 0.15 0.88 Mt�10 - 0.26 - 0.36 - 0.15 - 0.88

%VAR 51% 19% 17% 12% 2% %VAR 51% 19% 17% 12% 2%

%VAR = proportion of variation
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Fig. 5 Time series of predicted 4 weeks moving average Culex mosquito abundance by ANN and regression model versus observed data using

different antecedent values of mosquito abundance and lagged weather data as predictors for training and testing periods
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the regression model, which could be due to the high non-

linearity of ANN in comparison with Poisson which is a

log-linear model. Generally, including the antecedent

mosquito count to the model increased the predictive

power of both ANN and regression models. This suggests

that meteorological conditions and mosquito data from

preceding weeks may be better indicators of future popu-

lation dynamics for Culex quinquefasciatus mosquito spe-

cies and the WNV risk than just the present size of the

population.

5 Conclusions

The findings of this study and the developed ANN and

Poisson regression models for predictions could have

important implications for the control of West Nile Virus

spread by Culex mosquito species. Most other studies

developed mosquito abundance regression based models

with single time lag antecedent weather data up to

2 months as explanatory variables without fixing the

collinearities among meteorological variables and without

extending effects of weather conditions over a range of

time. Multi-collinearity can increase the variance of the

coefficient estimates and reduce the statistical power of the

analysis. In addition, single time lag might not capture

meteorological effects on mosquito abundance if preceding

conditions contributed to breeding and survival over weeks

to months [27]. By collecting rigorous weather and mos-

quito data during important seasons, between February and

June, and also addition of any antecedent mosquito count

data 1–10 weeks prior, the size of vector populations that

are likely to be seen in summer can be estimated and the

possible abnormalities in the increase in rates of WNV

infection can be monitored. These meteorological factors

can be modeled under future warming conditions so that

long-term predictions of shifts in risk can be estimated

[44]. Such information could be used for planning of

mosquito control strategies and to prioritize the distribution

of scarce mosquito control resources before the transmis-

sion season begins. Also, it can help in early detection of

virus circulation in mosquitoes and pro92vide early

warning for WNV outbreaks. In years with warm spring

and mild late winter, control operations such as applying

insecticides can be initiated late in the winter to prevent

rapid development of mosquitoes early in the spring and

summer as a result of increase in survival rate of Culex

mosquitoes throughout the winter. Although weather is the

main driver of WNV risk and meteorological factors

increase predictive power of determining risk associated

with WNV, further studies are needed to explore whether

other environmental factors such as socio-economic con-

ditions, and landscape and mosquito habitat characteristics

should be accounted for a better understanding of disease

risk and for developing a more comprehensive Culex

mosquito dynamic simulation model.
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